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Adaptive Finite Element Methods for
Optimal Control Problems

Karin Kraft

Department of Mathematical Sciences
Chalmers University of Technology and Géteborg University

Sammanfattning

Vi har hérlett en numerisk metod for att 16sa optimala styrningsproblem. De
nédvindiga villkoren f6r optimum hérleds med variationskalkyl och diskretiseras
sedan med en finita elementmetod. Till denna metod har vi bevisat en a posteriori
feluppskattning och anvént denna for att implementera en adaptiv finita element-
metod.

En alternativ adaptiv finita elementmetod utgér fran optimalitetsvillkor hédrledda
pa funktionalform dar man vill minimera felet i kostnadsfunktionalen. Feluppskatt-
ningen kan da uttryckas i dualviktade residualer. Berdkningen av feluppskattningen
blir ddrmed betydligt effektivare. Vi har implementerat d4ven denna metod.

Slutligen presenteras tva numeriska exempel.

Abstract

We have derived a method for solving optimal control problems using variational
calculus for the derivation of the optimality conditions and a finite element method
for the discretisation of these conditions. Further, we have derived an a posteriori
error estimate and based on this estimate, an adaptive finite element method has
been implemented.

As an alternative, we have considered a similar method where the optimality
conditions are derived in a functional form and the error estimate is derived using
the dual weighted residuals approach. With this method, the computation of the
error estimate is more effective. This method has been implemented as well.

Finally, these adaptive finite element methods have been tested on some exam-
ples.

Keywords: Adaptive finite element method, boundary value problem, optimal
control, dual weighted residual, a posteriori, error estimate
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1 Introduction

Consider a car trying to avoid an object that suddenly appears on the road. The
driver has some ability to steer the car. Obviously, the driver faces the problem of
finding the optimal way to manoeuver the car such that a collision is avoided. This
is an example of a optimal control problem which consists of a dynamical system
describing the way the car moves, and an objective function to be minimised or
maximised. Optimal control problems appear also in other fields of engineering,
such as chemical engineering, robotics and vehicle dynamics, and in economics ([4,
9,20)).

There are two ways to obtain the solution of optimal control problems: the di-
rect and the indirect approaches. The direct approach discretises the dynamical sys-
tem and then looks for an optimal solution of the discrete problem. In the indirect
approach one determines the necessary conditions for optimality, and solves them
numerically. In this work we focus on the indirect approach and use variational
calculus for the derivation of the necessary conditions for optimality, resulting in a
system of differential algebraic equations to be solved. We choose to discretise this
system using an adaptive finite element method. We base the error control on two
different a posteriori error estimates, taking the common dual approach in the first
method and the approach of dual weighted residuals in the second.

The following section contains a mathematical formulation of an optimal con-
trol problem and the history of the solution strategies of such problems. Section 3
includes a description of the most common numerical methods used to solve the op-
timal control problems and an introduction to the finite element method. Section 4
contains a description of the solution of an optimal control problem using varia-
tional calculus and an adaptive finite element method. The error estimate which is
used for the adaptive method is also given. Section 5 describes the approach of dual
weighted residuals to an optimal control problem and includes the description of
the adaptive finite element method. Finally, Section 6 contains numerical examples
of the two methods derived in previous sections and some comparisons to Matlab’s
boundary value solver bvp4c [27] are made. The last section contains the plans for
future research.

2 The Optimal Control Problem

The optimal control problem can be formulated as follows. We have a dynamical
system @ = f(x,u), where z(t) € R? are the state variables which are continuous
functions of time ¢, and u(t) € R™ are the control variables and we want to minimise
a cost functional J (z, u). This leads to the problem finding (z, u) such that
minimise J(x,u)
subject to z(t) = f(z(t),u(t)), 0<t<T, (1)
IQCC(O) = X, IT.Z'(T) = XZT.

The last line specifies the boundary conditions of the dynamical system.
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2.1 The direct and indirect approaches

The numerical solution of optimal control problems can be approached in two dif-
ferent ways, the direct and the indirect approaches [6]. In the direct approach the dy-
namical system is discretised and approximated by a finite number of parameters.
After the discretisation, the problem is a finite-dimensional optimisation problem
which can be solved using Non-Linear Programming solvers, for example SQP (see
[6, 10, 17]).

In the indirect approach the necessary conditions for optimality are first deter-
mined using variational techniques, such as variational calculus [8] or Pontryagin’s
maximum principle [24], and then the resulting equations are discretised and solved.
The necessary conditions for optimality consist of the differential equations from the
original problem, an additional set of differential equations called the adjoint equa-
tions and a set of algebraic equations.

2.2 Variational calculus

Variational calculus was developed in the end of the 17th century. It is used for
solving extremal problems and it was further developed for problems in mechanics
by Lagrange and Hamilton [16]. More precisely, variational calculus computes an
extreme point to a certain quantity of a system described as a dynamical system. For
example, the classical brachistochrone problem is the problem of finding the curve
which takes a particle, acted on by gravity, from point A to point B in shortest time.
Using variational calculus, one finds that this time is minimised by a hyperbolic
cosine curve, since any perturbation of this curve increases the time.

Variational calculus can also be used for optimal control problems as long as there
are no constraints on the controls [18]. The difference to the extremal problems above
is that the control problems depend not only on = and & but also on the controls, w.
The controls are often signals to the system which are usually subject to limitations
and therefore the problem includes constraints on the controls. In the 1950’s Pon-
tryagin and co-workers presented Pontryagin’s maximum principle [24], which is a
generalisation of the variational calculus to handle constraints on the controls.

In this thesis we take an indirect approach to the optimal control problem and
derive the necessary conditions for optimality using variational calculus. We also
take a modern approach and present the variational calculus in a functional analytic
framework. We believe that the indirect approach in combination with the finite
element method, which is described below, gives us the possibility to control the
error in the solution and makes it possible to solve more difficult problems.

3 Numerical Solution Methods

The most common numerical methods for solving the discretised optimal control
problems are the multiple shooting method and the collocation method [5].



3.1 Shooting and collocation 3

3.1 Shooting and collocation

The shooting method is a numerical method for solving boundary value problems
of the form

= f(t,x), 0<t<T ()
9(x(0),z(T)) = 0, @)

where 2,9 € R™. The name of the method comes from the procedure of aiming a
cannon so the cannonball hits the target [6, 25]. One considers the function h(c) =
g(c,z(T, c)), where x(T, ¢) is the value of =(T") obtained by shooting with z(0) = ¢,
that is propagating the differential equation from 0 to T'. The equation h(c) = 0 can
then be solved using any appropriate method.

The shooting method has been further developed into multiple shooting. In this
method the computational interval is refined into smaller sub-intervals where the
shooting method is applied in each sub-interval. This method has been used for
optimal control problems, see for example [23].

The use of sub-intervals is present also in the collocation method [2]. One de-
termines a continuous piecewise polynomial which fulfils the differential equation
in the collocation points ¢,, + ¢;h, where t,, is the initial time of the interval, & is the
interval length and 0 < ¢; < 1 are suitable chosen points, for instance the roots of the
Legendre polynomials [11].

We have used the Boundary Value Problem solver bvp4c [27] in Matlab to bench-
mark our results. This solver is based on the collocation idea. An improved colloca-
tion method that controls the error and the residual in the solution has recently been
presented [26].

3.2 The finite element method

The finite element method was developed in the 1950’s and 1960’s, mainly by engi-
neers, to solve equations in elasticity and structural mechanics. It was developed as a
geometrically more flexible alternative to the finite difference method (see for exam-
ple [28]). The finite element method is a special case of the Rayleigh-Ritz-Galerkin-
methods which are used to approximate partial differential equations and it has a
solid foundation in functional analysis [7]. This is one of its strengths, as is the pos-
sibility to use it on complicated domains. The mathematical foundation makes it
easier to derive analytic error estimates which can be used to improve the approxi-
mate solutions.

Traditionally the finite element method has been used for partial differential equa-
tions. However, some work has been done on adaptive finite element methods for
ODE:s, see for example [21, 22, 14, 15].

We illustrate how the finite element method works in the context of a simple
boundary value problem:

— &= f(t), 0<t<T,

z(0) = q, x(T) =b. @
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We start by reformulating the problem in weak form by introducing a set of test func-
tions V' which satisfy the boundary conditions v(0) = v(T') = 0, multiply equation
(4) by a test function v € V, integrate over the interval [0, T], and then integrate by
parts. The weak form is: Find = € C'*([0,77) such that,

z(0) = a, z(T) = b, (5)

/ Todt = / fudt, forallv e V. (6)

Let V}, be a subspace of V' consisting of for instance piecewise linear functions on
[0, T'] with sub- intervals of size h. We want to solve (6) for all v € V}, with the Ansatz
2p(t) = apo(t )+Z 1 " Zipn (t) + bpn (), where @, n = 1,..., N —11is a basis for V,
and ¢( and @y are additional basis functions such that ¢¢(0) = ¢n(T) = 1. In this
example the so called trial space and test space, that is the spaces containing = and v,
respectively, are discretised in the same way, but this need not be the case. The fact
that the finite element methods are based on the weak form (6) rather than (4) makes
it easier to use tools from functional analysis to derive error estimates.

There are two types of error estimates, a priori and a posteriori error estimates. The
first type gives a bound of the error e = x — z},, in terms of z, h, and the data a, b and
f. Since the estimate depends on the unknown exact solution it cannot be explicitly
computed and is used to investigate the convergence of the numerical method. In
the second type of error estimate, the a posteriori error estimate, the error bound is
expressed in terms of the data, xz; and h. The a posteriori error estimates can be ex-
plicitly computed, since they depend only on known or computable quantities. The
a posteriori error estimates are used in constructing adaptive algorithms, see Algo-
rithm 1, which solve the equation repeatedly on refined meshes.

Algorithm 1: An adaptive finite element method

Solve the equation on an initial mesh;
Compute the error estimate est;
while |est| > TOL do
Refine the mesh according to the error estimate, i.e., refine intervals that
give large contributions to the error;
Solve the equation on the refined mesh;
Compute the error estimate on the refined mesh;
end

More about error estimates and adaptive finite element methods can be found in
[7,12,13,19].

In this work we use an adaptive finite element method similar to the one in [15].
We only consider a posteriori error estimates since we want to construct an adaptive
algorithm. We derive an a posteriori error estimate minimising the error expressed in
an arbitrary linear functional G. Further, we take a different approach and derive an



a posteriori error estimate estimating the error, 7 (x,u) — J (2, up), in the minimised
objective functional 7. This approach is called dual weighted residuals [3].

4 The Finite Element Method for Optimal Control

In this section we solve an optimal control problem using an adaptive finite element
method and the section is a summary of Paper 1.

4.1 Necessary conditions for optimality

Consider the optimal control problem

T
minimise 7 (y(t), u(t)) = 1(y(0), y(T)) + /0 L(y(t), u(t)) dt,
subjectto  y(t) = f(y(t), u(t)), 0<t<T,

Joy(0) =wo,  Jry(T) = yr,

@)

where
1:RYxRY - R,
L:R?*xR™ — R,
f:R?x R™ — R,

are smooth functions and Jy and Jr are diagonal matrices with zeroes or ones on
the diagonals. We assume yo € R(Jy), yr € R(Jr), where R(A) denotes the range of
a matrix A. We note that the boundary conditions are equality conditions and that
there are no constraints on the controls u. We want to determine pairs (y, v) that fulfil
(7). Taking an indirect approach, as described in Section 2, we first write down the
necessary conditions for optimality derived by variational calculus. We introduce
the Hamiltonian
H = L(y,u) + 2" f(y,u),

and then the optimal (y*, u*, 2*) fulfil

7= = ry),
. OH 9oL [of\"
=% =5, (o) =
J_OH oL ,0f 8)
u  ou 8u
Joy(0) = yo, Jry(T) = yr,
(I — J()) (0) = 20, (I — JT)Z(T) = ZzZT,

where z € RY are called the co-states or adjoint variables, and zo and zr are ob-
tained from J. We note here that since y, and yr are in the ranges of Jy and Jr,
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respectively, the boundary conditions are imposed on those components of z that
are complementary to the components of z with boundary conditions.

4.2 Reducing the problem

To simplify the problem we assume in Paper 1 that the algebraic equation on the
third line in (8) can be solved explicitly for «* which is then substituted into the
other equations. We then have a two point boundary value problem. In the case
that (8) cannot be solved explicitly our equations constitute a system of differential
algebraic equations (see Paper 2). We reformulate the problem by joining y and z
into the new variable x and end up with the system

&= f(x), 0<t<T,

101'(0) = Xo, ITI(T) =xr, (9)

where x(t) € R?? and I and Ir are diagonal matrices with zeroes or ones on the
diagonals and rank(Iy) + rank(Iy) = 2d.

4.3 Discretisation of the problem

We begin the discretisation of the problem (9) by writing it in a weak form and then
continue with the definitions of the appropriate function spaces. Take the scalar
product between (9) and a test function v € V = C'([0,T]), integrate over the in-
terval [0, T, leading to the weak formulation of the problem is: Seek = € V such
that

Iyz(0) = zo, Irx(T) = 27,
T

Fla,v) = /(a': — f(z),0)dt =0, Yo e V.
0

(10)

The problem in (10) is an infinite dimensional problem which we discretise to get
a finite problem. We choose the following discretisation.

e Mesh: O=tog<ti<ta<...<tn=T,h,=t, —tn_1 and I,, = (tnfl,tn).

e Trial space: W), = R? x {w : w|;, € P°(I,)} x RY, discontinuous piecewise
constant functions.

e Test space: V;, = {v: v, € PY(I,)} N C°([0,T]), continuous piecewise linear
functions.

The notation P*(1,,) refers to the R?-valued polynomials of degree k on the interval
I,,. We also introduce the left and right limits w> = lim, = w(t), and jumps [w],, =
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w; — w;,. The two factors R? in W), contain the boundary values w, and w}. Now
our finite element problem can be stated: Find a function z;, € W}, which fulfils

Xy =z0, It X3 =27,

F(X,v) Z/X f(x dt+z ) =0, Vv € V. D

nlI

Here the definition of the form F' from (10) has been extended to include the con-
tributions from the jump terms which appear since we use discontinuous trial func-
tions. Since the trial space consists of piecewise constant functions, we have X = 0.
Hence, (11) results in a system of (N + 2)d equations, more precisely, d boundary
conditions and (N + 1)d equations. With boundary conditions at both ends, the
equations are coupled and thus we cannot use time stepping. Therefore, the equa-
tions in the system have to be solved simultaneously.

4.4 An a posteriori error estimate

In order to evaluate how good the computed solution is and to construct an adaptive
finite element method we derive an a posteriori error estimate. We introduce the
notation |[v]|;, = sup,;, ||v(t)||, where || - || denotes the norm in R? or R™.

Theorem 4.1. Let e = x — xy, be the error in the finite element solution of the boundary
value problem in (9). The error expressed in a linear functional G is bounded by

N
) <> RuTn,
n=1

where
hy
Ry = || X = FCON, + 11X |+ 5= XD
hn hn
R = hal| X = F Oy, + =5 — 11X o 1+ 7= X
n=2,...,N—1,
h

Ry =hy||X - f(X H[N m” Xy |+ X [

I, = Chn/’dﬁ‘ dt.

I,

C'is a constant and ¢ is the solution to the linearised dual problem to (9) with data functional
G.
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In this error estimate, R,, mainly describes how well the approximate solution
satisfies the differential equation and Z,, describes how sensitive the error functional
G is to local residuals.

We present an adaptive algorithm based on this error estimate (see Algorithm
1). It has been implemented (see also [1]) and bench-marked to the boundary value
problem solver bvp4c in Matlab, see Paper 1. A numerical example is given in
Section 6.

In order to compute the error estimate above we need to solve an additional dual
problem of the same size as the original one, which means that for each step in the
adaptive algorithm we double the size of the problem. For already large problems
this is a major drawback and can force the user to choose another numerical method.
However, in the following section we present a method where we have removed this
feature.

5 The Dual Weighted Residuals Approach

This section is a summary of Paper 2. We express the optimal control problem in a
general and abstract form by introducing smooth functionals F(z, u; ) and J (z, u),
where we use the notation that functionals depend non-linearly on the arguments
before the semicolon and linearly on the arguments after the semicolon. For the
proofs and the details of the definitions of the different spaces and functionals we
refer the reader to Paper 2. The problem we study is this: Determine 2 € W and
u € U such that

minimise  J(z,u),

. (12)
subjectto  F(x,u;p) =0, VeoeV.

This is a constrained optimisation problem and the necessary condition for an opti-
mum is expressed in terms of the Lagrange functional

L(x,u;2) = T(x,u) + F(z,u;2), (x,u,2) € WxUXxYV,

where z are the adjoint variables.

5.1 Necessary conditions for optimality
The necessary conditions for an optimum are presented in the following theorem.

Theorem 5.1. The necessary condition for an optimum (x,u,z) € W x U x V is given by

Lz u;2,0) =L (z,u;2)p=0, YoeW xUxYV, (13)

that is,
To(@,u;00) + Folw,usz,0,) =0, Ve, €W, (14)
Tl us o) + Fo(z,ui2,00) =0, Vo, €U, (15)

f(a:,u; sz) =0, Vo, V. (16)
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The proof of Theorem 5.1 can be found in Paper 2. We note that equation (16)
is the original differential equation in (12) and (14) is the dual equation. We discre-
tise these equations and derive an a posteriori error representation for the Galerkin
approximation of the equations.

Theorem 5.2. Let (z,u,z) € W x U x V and (Th,up, zn) € Wy, x Uy, x V3, be the exact
and discrete solutions of (14)-(16), respectively. Then

j(.’IJ,U) - j(&?h,’uh) = %pw + %pz + %pu + R, (17)
with the residuals p,, p., and p,, defined as

pe = To(@n, un;x — &p) + Fo(xn, up; 2n, © — &),
pu = Ty (Tn,upsu — p) + Fo(@n, uns; zp, w — Gp), (18)

pz = F(xn,un; 2 — Zn).

Here (T, ap, 21n) € Wy, x Up, x Vj, is arbitrary. The remainder term R is given by

1
R= %/ (J’"(xh + S€q, un + seuje, € €)
. (19)

+ F"(xp + sep,up + Sey, zn + €53 2, €, €, e))s(s —1)ds,

where e = (eg,ey,6,) EW XU XV, e, =0 —xp, ey =u—up, and e, = z — zy,.

The remainder term is cubic in the error and can therefore often be neglected. In
particular, we note that R = 0 in the case when F(-,-; -) is tri-linear and J (-, ") is
bi-quadratic.

Using these theorems we derive the necessary conditions and error representa-
tions for an optimal control problem of the form (7) and for a linear/quadratic opti-
mal control problem of the form,

minimise  J(z,u) = [|2(0) — Zo||3, + |=(T) — 27|13,

T
+ u—al% + ||z — Z||3) dt,
| Qu=alf+ e = a12) 20
subject to t=Alt)x+B({t)u, 0<t<T,
IQ.I(O) = X, ITJ?(T) =T,

The finite element discretisation of this problem is described in the following
section.
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5.2 A finite element discretisation

Applying Theorem 5.1 to the linear quadratic optimal control problem (20) we obtain

T
/ (00,2Q(x —T) — 2 — A'2)dt
0

(21)
+ (0.0, 250(xg — To) — 20) + (¢ n, 250 (afy — Zr) + 28) =0, V. € W,
T
/ (pu,2R(u— 1) — B'2)dt =0, Ve, €U, (22)
0
T
/ (¢ — Ax — Bu,p,)dt =0, Ve, eV (23)
0

We discretise the state equation (23) with the same discontinuous Galerkin method
as in the previous section and Paper 1, using W), as trial space and V}, as test space:
Seek z;, € W}, which fulfils

- R
onh’o = X, ITJTh’N =T,

T N
/ (&n — Az, — Bun, @) dit + > ([wn],,,¢n) =0, Vi € Vi,
0

n=0

Since we have discontinuous trial functions we get an extra sum arising from the
jump terms. The dual equation (21) is discretised using the continuous Galerkin
method: Seek z;, € V}, which fulfils

T
/ (0,2Q(xn — ) — 2 — A'zp) dt + (g, 250 (2}, o — Zo) — Zn,0)
0

+ (@E,QST(I;N — ET) + Zh,N) =0 Vype Wh,

(24)

and finally we discretise the equation for the controls, (22), using a continuous Galerkin
method: Seek u;, € Uy,

T
/ (2Ruh - Brzha @u) dt = 0, v@u € Up. (25)
0

We have three sets of equations which must be solved simultaneously in order to
obtain the approximate solutions (zy,, up, 25 ).

5.3 An a posteriori error estimate

In order to implement an adaptive finite element method (see Algorithm 1) we de-
rive an a posteriori error estimate, using Theorem 5.2 with R = 0 since we have a
linear/quadratic problem.
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Theorem 5.3. The a posteriori error estimate for the finite element discretisation of the
linear quadratic optimal control problem described above is given by

N
1T (@) = T(an,un)| < 33 (Rows + Riwh + Riws ) 26)
n=1

where the residuals and weights are defined by

R} = hy||2n + A%z +2Q(xn, — Z)||1

n?

Wy = H.’E - jh In»
R® — o lli — Azr — B _m _m
n = hul|Zn — Ay — Bup||r, + o+ s | lal, || + et ho | lenly |l
wy, = |lz = Zull1,,
Ry = hyl[2Rup — B 2|1,
wy = [lu =], ,

where hg = hy11 = 0.

The error estimate depends only on the already computed numerical solution.
This means that we do not need to compute any new solutions in order to use the
error estimate. This can be compared to the adaptive finite element method in Sec-
tion 4, where an additional dual problem of the same size as the whole system (21)—
(22) has to be solved. However, using this method we can only control the error in
J.

In the explicit calculation of the error estimate (26) we use that the interpolation
errors in w,, w, and w,, are bounded by

|z = Znlz, < hall2l1,,

1, < h2liZr,,

n — 1

1, < hila

n —

2 — 2Zn

= s
where the derivatives are approximated by difference quotients of the discrete solu-
tion.

The refinement of the mesh in the adaptive algorithm is done according to the
principle of equidistribution, that is, we want each interval to give equally large
contribution to the error estimate and insert new nodes to fulfil this criterion.

A numerical example is given in the following section.

6 Numerical Examples

In this section we present numerical examples which have been solved by using the
numerical methods described in the previous sections.
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obstacle

A
Figure 1: The collision avoidance manoeuvre.

6.1 A collision avoidance manoeuvre

The simplest way to model a vehicle is to model it as a point mass on which a force
acts. We let 5 be the angle between this force and the direction of the initial track.
We introduce the X-axis as the direction of the original track and the Y-axis as the
axis perpendicular to the X-axis. The equations of planar motion for the vehicle then
become

X =—pgcos(B),

. 27
Y = pgsin (6), 7

where ( is the friction coefficient and g is the gravitational acceleration. This model
is used in Paper 1.

We test our solver on an example from vehicle dynamics. It is a collision avoid-
ance manoeuvre, where a vehicle should be steered in such a way that it avoids an
object in the road and minimises the final velocity, see Figure 6.1.

We use the equations (27) to describe the dynamics and then the equations of
motion for the vehicle are

X U
U —pgcos(B) |’
1% g sin(3)

where U and V are the velocities in the X and Y directions, respectively, and (3 is the
steering angle. In this model U, V, X, Y are the states and (3 is the control. We want
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Figure 2: The position of the vehicle when it is manoeuvred in the optimal way for the ma-
noeuvre distances ¢ = 60 m and b = 9 m.

to minimise the speed at the time of the accident in order to reduce the damage.
Therefore we formulate an optimal control problem: Find the state z(t) € R™ and
control 5(t) € R™ which fulfil the following minimisation problem

minimise J(z,8) =c=2(T)
subject to 2(t) = f(z,0),
J()Z(O) = 20, JTZ(T) = ZT.

Here Jy and Jr are diagonal matrices with zeroes or ones on the diagonals, f is given
by the right hand side of (28) and ¢" = (0,0,1,0). We solve this problem using the
method described in Section 4.

Figure 2 shows some results from the case with initial velocity vg = 90 km/h (25
m/s) of the vehicle and the manoeuvre distances a = 60 m and b = 9 m, that is, the
object appears 60 m in front of the vehicle. We see in Figure 2 that the solutions from
the FEM solver and bvp4c almost coincide. The final velocity which is the quantity
we minimise, is 31.0 km/h from both bvp4c and the FEM solver. More results can
be found in Paper 1.
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Figure 3: The optimal states. The last image shows the optimal track.

6 NUMERICAL EXAMPLES
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Figure 4: The optimal controls u.

6.2 A linear quadratic optimal control problem

We test the method described in Section 5. In order to get a linear/quadratic problem
we use a simplified model from vehicle dynamics describing a vehicle that is braked
on a surface with different friction on the wheel pairs.We let the control variable u
be u; = é¢f and us = §, and the state variable z is

T Vx
To Wy
T T
wt)= || = i’ (28)
Is X
Te Y
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The differential equations are

‘:/X ai
VY a921 VY + agor + bf15f + brlé,.
I(f) — /; — (131VY + azar + b.f{i(;f + br26r + Tbrake — Al‘(t) + Bu(t) + b (29)
X Vx
Y Vy

The goal functional is

T T
J(z,u) = /0 %(W +r2 VR + 07+ 53) dt = /0 (|\:Jc||22 + \|u||%) dt.

We have used the boundary condition x;(0) = 25 and z2(0) = z3(0) = 24(0) =
25(0) = 26(0) = 0. The numerical solution for the optimal states and controls can be
found in Figures 3 and 4. The initial discretisation was made with 10 intervals and
when the given tolerance of 107¢ was achieved the adaptive method had refined
the mesh into 1072 intervals. The convergence rate of the solution in the numerical
example is 2.03 and the theoretical order is 2 (see Paper 2).

7 Future Research

In this thesis we have presented a new approach to adaptive finite element solution
of optimal control problems using the approach of dual weighted residuals. The
theory for this method, including derivation of necessary conditions for optimality,
error estimates, and finite element discretisations, is presented.

The numerical method has been tested on a linear/quadratic optimal control
problem, but more extensive testing of the method on non-linear problems will be
done. We also want to compare the performance of our method to direct methods.
In addition, we plan to include constraints on the control and state variables over
the entire interval in order to be able to solve more sophisticated models.
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Abstract

The optimal manoeuvering of a vehicle during a collision
avoidance manoeuvre is investigated. A simple model
where the vehicle is modelled as point mass and the math-
ematical formulation of the optimal manoeuvre are pre-
sented. The resulting two-point boundary problem is solved
by an adaptive finite element method and the theory behind
this method is described.

Keywords: Vehicle dynamics, collision avoidance
manoeuvre, optimal control, boundary value prob-
lem, adaptive finite element method.

1 Introduction

Historically, active safety systems for vehicles are de-
signed to ensure that the driver can steer and brake
the vehicle. Automatic controls are being incorpo-
rated in conventional safety systems such as ESC with
the ability to minimise driver errors. It is important to
evaluate how such systems perform in various situa-
tions. For this purpose the American National High-
way Traffic Safety Administration has proposed a test
called ”sine with dwell” to evaluate the performance
of a car during a collision avoidance manoeuvre. In
such a manoeuvre the driver of a vehicle tries to avoid
an object that suddenly appears in front of the vehicle
[1].

This article is a theoretical investigation of how to
combine braking and steering to perform a collision
avoidance manoeuvre in an optimal way. The optimi-
sation function has two goals. The primary objective
is to achieve a vehicle trajectory distance to avoid col-
lision. If the primary objective cannot be met, then a
secondary objective is to minimise the final velocity
of the unavoidable collision. This is an optimal con-
trol problem, since we want to find controls and states
which minimise a quantity subject to constraints con-

sisting of a dynamical system.

Methods for solving optimal control problem can
be classified as either a direct or an indirect approach
[4]. The direct approach approximates the dynamical
system and then looks for a solution, such that the ob-
jective function is minimised. The indirect approach
determines the necessary conditions for optimality,
and then seeks their solution. Taking the indirect ap-
proach means that we have to derive the adjoint equa-
tions and optimality conditions explicitly. However,
we use this approach because the indirect approach
in combination with the finite element method gives
us the possibility to control the error in the numeri-
cal solution of the optimality conditions over the en-
tire interval. We believe that this is important for an
efficient solver. Our first attempts in this direction
are described in the present work. The most com-
mon numerical methods for solving optimal control
problems based on either a direct or an indirect ap-
proach are multiple shooting or collocation methods
[4]. However, in this work we use an adaptive finite
element method similar to the one in [8] to solve the
necessary optimality conditions that arise in an indi-
rect approach. In the presented adaptive finite ele-
ment method we derive an a posteriori error estimate
which is used as a basis for error control and adap-
tive mesh refinement. Since we estimate the error over
the entire time interval we can use the computational
power where it is best needed. This gives us the abil-
ity to choose the level of modelling for the FEM solver
and we also believe that we will be able to solve opti-
mal control problems for more advanced vehicle mod-
els.

2 The collision avoidance man-
oeuvre

A traffic situation that presents a safety risk is defined
for the investigation. A vehicle is driven on a plane



homogeneous surface. There is an obstacle in front of
the vehicle. How shall the driver manoeuver the ve-
hicle in the best way in order to avoid collision and,
if that is not possible, minimise the collision severity?
In Figure 1 we show a picture of the steering in a col-
lision avoidance manoeuvre. The driver performs the
avoidance manoeuvre by braking and steering simul-
taneously. The manoeuver starts at time ¢ = 0, at a
distance a from the obstacle and with velocity Uj,. Af-
ter the manoeuvre the car hits or passes the obstacle
at time 7', with velocity Ur and at distance b from the
original track.

severe
damage

7

Figure 1: The collision avoidance manoeuvre

We know that the higher speed the vehicle has at
the time of collision, the more severe the accident.
Therefore we want to determine the best braking and
steering strategy to avoid collision or minimise the
speed perpendicular to the object at impact. This opti-
misation problem can be formulated as follows: given
the manoeuvre distances a and b determine the brak-
ing and steering strategy that minimises the final ve-
locity component Ur.

3 Point mass vehicle dynamics
model

The driver controls the braking and steering but it is
the friction forces acting on the car tyres that makes
the vehicle move in a certain direction. For our pur-
poses, the dynamics of the vehicle due to these forces
can be modelled as a point mass [10]. We introduce
the X-axis as the direction of the original track and
the Y'-axis as the axis perpendicular to the X-axis. The
equations of planar motion for the vehicle then be-
come

X = —pgcos(B),

. 1
Y = pgsin (8), M

where (3 is the angle between the X-axis and the sum
of the forces between the tyres and the road, p is the
friction coefficient and g is the gravitational accelera-
tion.

4 Optimal control theory for the
collision avoidance manoeuvre

4.1 State-space formulation

To derive the necessary conditions of optimality, the
final speed optimal control problem is formulated in
state space by transforming differential equations (1)
to first order differential equations. The equations of
planar motion for the vehicle then become

X U

. Y| 1%

TTUL T |~rgcos(B)| @
1% p1g sin(/3)

where U and V are the velocities in the X and Y di-
rections, respectively.

We want to minimise the speed at the time of the
accident in order to reduce the damage. Therefore we
formulate an optimal control problem: Find the state
z(t) € R™ and control (t) € R™ which fulfill the fol-
lowing minimisation problem

min J(z,08) =z (T)
st. 2(t) = f(z,0),
J()Z(O) = 20, JTZ(T) = ZT.

3)

Here Jy and Jr are diagonal matrices with zeroes or
ones on the diagonals and f is given by the right hand
side of (1) and ¢ = (0,0,1,0).

Since this problem has a free terminal time we
transform the time interval ¢ € [0, 7] into a normalised
time interval 7 € [0, 1] by introducing the new inde-
pendent variable
t
T b
rewrite the equations in (3) for the new variable 7 and
add the trivial equation 7' = 0. This results in a prob-
lem of the form (3) but with a fixed time interval.

(4)

T =

4.2 Necessary conditions for optimality

Introducing the Hamiltonian,

H=Xf(z0),

and then applying variational calculus [6] to (3) leads
to the following necessary conditions for optimality.



The optimal solution (z*(t), A\*(¢), 8*(¢)) fulfills the
optimality conditions

P %_f:f(@, (5)

. _oH __(of\

A= 0z (82) A ©)
_oH _ (ofY"

0 = 6ﬁ_(6ﬁ) A @

the boundary conditions

Joz(0) = z9, Jpz(T) = 27, (8)

and the transversality conditions

(J = Jo)A0) =Ko, (J=J)AT) = Az, (9)
where \g and Ay are obtained from 7. We note here
that g € R(Jy) and 7 € R(Jr) which means that the
components of the adjoint variable A that have bound-
ary values are the ones complementary to the compo-
nents of x that have boundary values. To simplify the
problem we assume that the optimality condition (7)

can be solved explicitly for 5.

4.3 Reformulating the boundary value
problem into standard form

General purpose software for treating boundary value
problems for ordinary differential equations usually
requires the problem to be reformulated into standard
form [3]. We make this conversion by joining the
states z and the costates A into a new variable z € R?
for d = 2n, and then redefining f by merging the right
hand sides of (5) and (6). The resulting system is a two
point boundary value problem with fixed time inter-
val and separated linear boundary conditions,

T = f(x),
(@) W
I()LE(O) = X, ITJ’J(l) =T,
where & denotes the derivative of « with respect to the
new independent variable 7.

5 An adaptive finite element

method

5.1 Weak formulation

In this section we derive an adaptive finite element
method. It consists of the discretisation of the problem
with definitions of the right function spaces and an a
posteriori error estimate. We start with the so called
weak formulation. To obtain the weak formulation we
multiply (10) by a test function v € V = C([0,T]),

integrate over the interval [0, 7] and the weak formu-
lation of the problem is: Seek = € V such that

I()J)(O) = 2o, IT$(T) =T,
T

F(z,v) = /(x — f(x),v)dt =0, Yv eV,
0

(11)

where (-, -) is the Cartesian scalar product in R%.

5.2 Discretisation of the problem

The problem in (11) is an infinite dimensional problem
which we discretise as follows to get a finite problem.
We discretise the time axis and introduce the trial and
test spaces as follows.

e Mesh: 0=t < t1 < tg < ...
hn = tn —tn—l and I,, = (tn—latn)-

e Trial space: W), = R x {w : w|;, € P°(I,)} xRY,
discontinuous piecewise constant functions.

e Testspace: Vj, = {v : v|r, € P1(I,)NC°([0,T])},
continuous piecewise linear functions.

The notation P*(I,,) refers to the R?-valued polyno-
mials of degree k on the interval I,,. We also introduce
the left and right limits w;; = lim,_,+ w(t), and jumps
[w], = w;" —w,, . The two factors R¢ in W}, contain the
boundary values w, and w3;. Now our finite element
problem can be stated: Find a function X € W}, which

fulfills

- + _
IOX() = Xy, ITXN =T,

N .
F(X7U): (X—f(X),U)dt
>/ a2
N

+ Z([X]n a/Un) = O, Yv € Vh~

n=0

Here the definition of the form F' from (11) has been
extended to include the contributions from the jump
terms which appear since we use discontinuous trial
functions. Since the trial space consists of piecewise
constant functions, X = 0. Hence, (12) results in a
system of (IV + 2)d equations that have to be solved,
more precisely, d boundary conditions and (N + 1)d
equations. With boundary conditions at both ends,
the equations are coupled and thus we cannot use
time stepping and therefore the equations in the sys-
tem have to be solved simultaneously.



5.3 An a posteriori error estimate

An adaptive finite element method gives us the pos-
sibility to control the error in the numerical solution.
In order to derive an a posteriori error estimate we
introduce ¢ as the solution to the adjoint problem to
(10) with data functional G. We want to construct an
equation for the error, e = X — 2 wheree € W =
R%x {w|, : w € C*(I,)} x R%, the difference between
the real and the computed solution. The details of the
a posteriori error estimate are given below.

5.3.1 Proof of the error estimate

We subtract (11) from (12),

F(X,v) — F(z,v)
——
=0,YveV

+ Y (X —a, vn).

Since f is nonlinear we linearise f(X)— f(x) by rewrit-

ing it as follows

=A(t)

Inserting this in (13) we get

n=0 (14)
N
= (6 — A(t)e,v) dt
>/
N
+ 3 (le),  vn), Yo eV
n=0

Since (14) is linear in both e and v we introduce a bi-
linear form to simplify the notation. The bilinear form

B is defined as

Blw,v) =S /(w — A(tyw,v)dt+ S ([l vn)

n:lln

+ (Lowg ,vo) — (ITw]J(,,vN), weW,veV,
(15)

Now we can write the equation for the error (14) with
the bilinear form as

eeW

B(e,v) = F(X,v), YveV. (16)

Partial integration of (15) gives us the backward
form of the bilinear form

N
B(w,v) =Y /(w — A(t)w,v) dt

n:lln

N
+ ([w],, ,va)
n=0

+ (Zowg , vo) — (Irwy, vN)

=y /(w, —0 — A(t)'v) dt

n:lln
— (wq , (I = Io)vo) + (wy, (I = Ir)on),
weWwvelV.

(17)

This suggests the dual problem with arbitrary data
functional G

pcV

B(w, ¢) = G(w), Yw € W. (18)
We put v = ¢ in (16) and w = e in (18) to obtain
G(e) = B(e,¢9) = F(X, ¢), (19)
that is
G(e) = B(e, 9)
N .
:F(X,¢>: (X_f(X)a¢)dt
’;1[ (20)
N
+> (X1, én)-
n=0

Subtracting a Lagrange node interpolant ¢ € V}, from
¢ in the right hand side of (20) using (12) gives us

Gle) =3 / (X—£(X),6-8) dt+ 3 ([X], » n—n).

n:ljn



Hence, The term I in (21) (where X = 0) can be estimated as

follows
el <[> [ (X = f(X),0—¢)dt
Ll/ ‘ > [ 1= g0l dl

n= 1[
+]Z<[X1
<3 (5= rolllo-dlar @

nlI

(24)

<ZhnHX FEDN e =dl, -

n=1

Collecting the estimates (24) and (23) we now have

I

N _ |<ZhHX FEO, Mo =4l
+Z_%H[X]nHH¢n—¢nH-

h -
’ +<HM%H+g;ﬁnghDH¢—Mh
Now we have the basis for an error estimate, but we iy hy, x
want the method to be symmetric, meaning that we + Z ( B + Mgt H [X],, ||
want each interior node to contribute to the error esti- n=2 h
mate on both sides of the node. To do this we rewrite +———| [X],_1 ||) o — 95”1
the last term I7 in (21) as follows ha ;z_ hn—1 "
N + (7NH [(X]n_1 H
- - hn—1+h
D NXT Ml én = énll = [11XT [[[|#0 — ol M
= + 1 XIx ) lle = 8-
1 -
+ hi + ho H X1, H H(bl 9 H According to [5] we have the following error bound
N-1 L 3 for the interpolan t, d~>,
+ 3 (i 1 lle=ddl ) ) ”
o | o, <ct f[] o
+ e ho H [X],_1 HHQSnfl - ¢n71||) " i,
h - .
mﬂ Xy [[[[on-1 = én—af] With
o Ri=hi||X —
+[|1X]x llgn — - 1= M| X - f(X Hh
At this stage we introduce the notation ||v||;, = +h1“ [Xlo H + hy +h2 H H

max, ||v|| for the maximum norm of a function on an
interval. Now we note that ¢ — ¢ € V is continuous R, =h, H X — f(X

and the following estimates qun — én” < H¢ — qBH I, HI

- - hn,
and || — éu]| < ||é— 3], hold. Using this we can o XD
estimate the last term in (22) by h.,
N ) +WH[X]”_1||, n:2,...,N—1,
X n — ¥n
n;”[ Ji [l én = ¢all Ry = h X — 7], +
h - hn
< (N1l + 5 XL ) o= o -+ g X 1D
N-1 and
* 3 (il 7, =cn, [ |3 a.
I, In
A — Iy + P H Js H) ||¢ ¢H we can write the error estimate as
X -9, N
(2 X XL ) o= 6, o= o
n=1

(23)



where e = X — z is the error and R, is essentially
the residual, X — f(X), expressing how well the dif-
ferential equation is satisfied by the numerical solu-
tion. The weights Z,, depend on the solution to the
adjoint problem, ¢, and express the sensitivity of the
error quantity G(e) to the local residuals. The func-
tional G is chosen to be the quantity in which we want
to measure the error, for example, G(e) = T The
error resulting from approximate nonlinear equation
solver is small compared to the error resulting from
the discretisation and is therefore neglected in this es-
timate. Checking which intervals give large contribu-
tions to the error estimate (25), we can refine the inter-
vals where the contributions are large and vice versa.
Using (25) we obtain an adaptive procedure where we
refine those intervals that give large contributions to
the estimate and vice versa, see below.

5.4 Implementation

The finite element discretisation of (10) results in the
system (12) to be solved. Since we have boundary con-
ditions at both ends it is a coupled system of equations
that we have to solve simultaneously. The system is
also nonlinear and the nonlinearity is handled using
a damped Newton method [7] to extend the conver-
gence region. The initial guess is decided by a homo-
topy process [3]. Once a solution is calculated the er-
ror estimate above is computed. Then we apply the

criterion
> RuZn <6,
n=1

where ¢ is a given tolerance. If the error is too large
compared to the tolerance an iteration is made over
the intervals and the mesh is refined where the error
is large. New nodes are inserted according to the prin-
ciple of equidistribution, that is, we want to insert nodes
such that the contribution to the error is the same from
each time interval. A new solution is calculated on the
refined mesh and so on until the solution has reached
the desired accuracy. In theory the mesh can also be
coarsened but we have not implemented this.

The error estimate is dependent of the solution to
the dual problem. We need to approximate the un-
known data G(e) = mer to solve the dual problem nu-
merically. We do this by a Richardson extrapolation
using twice the number of nodes. Then the dual prob-
lem is solved with the finite element method.

The solver is a prototype solver and it has been im-
plemented in Matlab. More information regarding the
implementation can be found in [2].

6 Results

The indirect approach to our optimal control problem
results in a boundary value problem. This makes it

possible to compare our new approach to the bound-
ary value solver bvp4c in Matlab [11]. In Table 1 we
can see the results from various choices of the ma-
noeuvre distances a and b. We have used the same
initial velocity uy = 90 km/h and constant friction p
for all cases. We can see that the FEM code is almost
always about three times slower than bvp4c but it al-
ways uses fewer nodes. There is also a remarkable
case where bvp4c solves the problem in about 30 sec-
onds and with 3415 nodes compared to 1.3 seconds
and 21 nodes for the finite element solver. The prob-
lem becomes difficult to solve but our FEM solver per-
forms well, maybe due to the adaptivity. There is also
one problem that the finite element solver can solve
but bvp4c cannot.

In some cases where bvp4c finds a solution the
FEM solver seems to compute the wrong one, maybe
by missing a singularity. On the other side of the sin-
gularity it continues on another solution. Some results
about existence and uniqueness of solutions to bound-
ary value problems can be found in [7] and [9]. This
aspect of our solver is something that we have to in-
vestigate further.

Figure 2 and 3 show some results from the case
with initial velocity up = 90 km/h (25 m/s) and the
manoeuvre distances a = 50 m and b = 8 m. We see
in the figures that the solutions from the FEM solver
and bvp4c coincide. The final velocity is 53.32 km/h
from bvp4c and 53.37 km/h from the FEM solver.

FEM FEM bvp4c | bvp4c
a[m] | b[m] | CPU [s] | nodes | CPU [s] | nodes
40 6 2.54 15 0.27 25
50 9 1.59 90 0.36 41
50 8 0.61 10 0.24 28
50 5 0.52 10 0.27 37
50 3 1.45 10 - -
60 8 1.45 21 18.39 1287
60 6 1.46 10 0.63 81
60 5 3.45 10 3.06 286

Table 1: Performance of the FEM solver and bvp4c
measured in CPU time and number of nodes for dif-
ferent combinations of manoeuvre distances.
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Figure 2: The optimal velocities in the X and Y-
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Figure 3: The position of the vehicle when it is ma-
noeuvered in the optimal way for the manoeuvre dis-
tances a = 50 mand b = 8 m.

7 Conclusion

In this article we have presented an adaptive finite
element method for solving optimal control in vehi-
cle dynamics. Modelling the vehicle as a point mass,
we obtain a system of ordinary differential equations
which is solved, together with the constraints im-
posed by the manoeuvre, using the adaptive finite ele-
ment method. With this approach, we can control the
error and concentrate our resources to the most sensi-
tive parts of the computations.

We have compared the finite element method to
the Matlab solver bvp4c and found that there are
at least some cases where our solver outperforms
bvp4c. It is noteworthy that in all studied cases, our
method uses fewer nodes to find the same solution. At

the moment the finite element solver is slower than
bvp4c, but up to this point no extra effort has been
put in optimising the code. Thus, it is expected that
the computation time can be reduced by a more effi-
cient implementation. Further, these comparisions are
very preliminary, since the accuracies of both methods
depend on error tolerances that are not directly com-
parable. We are not sure that the settings are equal.
Still, since the quality of the solutions have been sim-
ilar throughout our computations, we feel confident
that our comparision is reasonable.

We have also noted that our solver is sensitive to
the initial guess. If we give the solver a poor initial
guess for some component, it may fail to solve the
problem or show a dramatical increase in computa-
tion time. To make the solver more useful we have to
make it more robust to poor initial guesses.

The model used in this article may look simple.
However, when it comes to evaluation of combined
steering and braking versus braking and then steer-
ing, the behaviour of this model gives insights into
the behaviour of the more realistic vehicle models and
manoeuvres we will consider. In our future work we
also intend to compare the performance of our indi-
rect approach to the direct approach.
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THE DUAL WEIGHTED RESIDUALS APPROACH TO
OPTIMAL CONTROL OF ORDINARY DIFFERENTIAL
EQUATIONS

KARIN KRAFT AND STIG LARSSON

ABsTRACT. The methodology of dual weighted residuals is applied to
an optimal control problem for ordinary differential equations. The dif-
ferential equations are discretised by finite element methods. An a poste-
riori error estimate is derived and an adaptive algorithm is formulated.
The algorithm is implemented in Matlab and tested on a simple model
problem from vehicle dynamics.

1. INTRODUCTION

The methodology of dual weighted residuals was developed in [1] in the
context of finite element methods for partial differential equations. In this
paper we adapt the methodology to optimal control problems of the form:
Find states = and controls u which

T
minimise 7 (z, u) = 1(z(0), 2(T)) + /0 Lz, u) dt,

ID bject to #() = fla(t), ult)), 0<t<T,
IofL‘(O) = T, ITZ‘(T) = XT.

We present an adaptive finite element method with error control based on
an a posteriori error estimate which is the sum of dual weighted residuals.

Optimal control problems can be solved numerically using two different ap-
proaches, the direct and the indirect [2]. In the direct approach the problem
is first discretised and a finite dimensional minimisation problem is solved.
In the indirect approach the necessary conditions for optimality are deter-
mined and these equations are then solved numerically. Traditionally, the
necessary conditions for optimality are derived using variational calculus [3],
and their solution can be obtained using different numerical methods such
as finite element methods [5] or multiple shooting [2].

In the present work we use the indirect approach. We present the classi-
cal variational calculus in a weak form and derive the necessary conditions
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2 K. KRAFT AND S. LARSSON

for optimality. These consist of a system of three equations: the linearised
adjoint equation for the Lagrange multiplier z, the original state equation
for z, and a non-linear algebraic equation for the control variable u. We
approximate the equations by a finite element method and derive an a pos-
teriori error representation formula and an estimate of the error in the goal
functional J. The error estimate is expressed as an element-wise sum of
dual weighted residuals,

N
T (2, u) = T (o, un)] < Y (Rows + Riwi + Riwt) + R,
n=1

where R}, R}, R, are residuals from the adjoint equation, the state equation,
and the algebraic equation for the control variable, respectively, and w,
wi, wh are weights computed from the solutions of the respective equations
indicated by the superscripts, and R is a remainder which may be neglected.

Previous work, [5], [6], aims at controlling the error in an arbitrary linear
functional (or a norm) of the variables and requires the solution of an ad-
ditional adjoint problem of the same size as the optimality conditions. The
main advantage of the dual weighted residual error estimate is that it only
uses the equations introduced in the optimality conditions and no extra dual
problem has to be solved. However, it can only be used for controlling the
error in the goal functional 7.

We use the error estimate as the basis for an adaptive finite element
method, which is implemented in Matlab and tested on an optimal control
problem from vehicle dynamics with quadratic goal functional and linear
state equation.

We begin in Section 2 by presenting an abstract framework for the optimal
control problem where we can derive the necessary conditions for optimality
as well as an a posteriori representation formula for the error in the goal
functional J. In Section 3 we apply these results to the optimal control
problem. In Section 4 we specialise to a quadratic/linear optimal control
problem. For this problem, we derive the a posteriori error estimate from
the error representation formula and we describe the implementation of an
adaptive finite element method based on the a posteriori error estimate.
Finally, we solve an example from vehicle dynamics in Section 5.

2. AN ABSTRACT FRAMEWORK

Following [1] we formulate the optimal control problem in an abstract way.
Let W, U,V be normed vector spaces, let W C W be a subspace, let £ €¢ W
be fixed and define the affine space

W::%—I—W:{wEW:w—i‘EW}.

The reason for using this affine space will be clear in Section 3, where we in-
clude boundary conditions in the problem formulation. Further we introduce
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smooth functionals

F:WxUxV =R,
J:WxU—R.

We assume that F(z,u;z) is linear in the third variable, z. We use the
notation that the functionals depend non-linearly on the arguments before
the semicolon and linearly on the arguments after the semicolon. For ex-
ample, we denote the derivative F.(x,u;z) acting on a test function ¢, by
Fi(x,u; 2, pr) = Folx,u; 2) .

We consider optimal control problems of the form: Determine zz € W and
u € U which

minimise  J(x,u),

2.1
(2.1) subject to  F(z,u;0) =0, VpeV.

The main difference with [1] is the presence of the control variable u and
that we need several spaces in order to allow for a Petrov-Galerkin method
and non-homogeneous boundary conditions.

This is a constrained optimisation problem and the necessary condition
for an optimum is expressed in terms of the Lagrange functional

L(z,u;z) =T (x,u) + F(z,u;2), (x,u,z) € W xUxV.
Theorem 2.1. The necessary condition for an optimum (x,u, z) € W x U x
V is given by
(2.2) L'(z,u;2,0) =0, YoeW xUxV,
that is,

Ta(@,us02) + Fow,us2,00) =0, Vo € W,
(2.3) Tu(@,u; 00) + Fo(@,u;2,00) =0, Y, €U,
F(z,u;0,) =0, YV, e V.
Proof. We expand £’ in partial derivatives, noting that £ (z,u;z,¢,) =
Fl(z,u;z,0,) = F(x,u; ;). 0

Note that the third equation in (2.3) is the equation in the original problem
(2.1) and the first equation in (2.3) is the linearised adjoint equation.

In order to formulate a Petrov-Galerkin approximation of the equations
(2.3) we assume that we have subspaces W), ¢ W, W), ¢ W, V,, C V,
U, C U, and that £ € W}, so that

Wh =+ Wh C w.
The approximation of the necessary condition for optimality now becomes:

find (xh,uh,zh) € Wh x Up, x V}, such that
(2.4) L' (zh,up; zn,0) =0, Vo€ Wi, x Up, X Vi,
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that is,
jgg(l’h,Uh;(P;g) + f:::(xh7uh;zhagp$) = 07 V‘P:c € Wha
(2‘5) jlll,(xh7uh; @u) +‘7:1/L(xhauh;zh’90u) =0, v@u € Up,
Flop,up;02) =0, Vo, € V.

The following theorem provides an a posteriori representation formula for
the error in the functional 7.

Theorem 2.2. Let (z,u,z) € W xUxV and (Th,up, 2n) € Wy, x Uy XV
be solutions of (2.3) and (2.5), respectively. Then

I (@, u) — T (xh, up) = 3pz + 3p- + 3pu + R,
with the residuals py, p., and p, defined as
pr = To(xp, up;x — ) + Folxn, up; 2n,  — Tp),
pu = Ti(@n, un;u — ) + Fo(Th, un; 2, — Gp),
pz = F(xp,up; z — Zp).
Here (Zp,up, 2p) € Wh x Uy x Vy, is arbitrary. The remainder term R is

given by

1
R} [ (o s s )
(2.6) 0

+ F"(xp + seg, up + sey; zn + se,, e, e, e))s(s —1)ds,
where e = (eg,ey,€,) € WXUXV, ep = x—xp, €, = u—up, and e, = z—2zp,.

The remainder term is cubic in the error and can therefore often be ne-
glected. In particular, we note that R = 0 in the important special case
when F(-,-; -) is tri-linear and J(-,-) is bi-quadratic.

Proof. We introduce the notation

—/
L: (mwrha U, Uy %y Zhy 6) = ,C(x,u, Z) - ﬁ(xh7’l£h; Zh)

1

d

= / —L(xp, + Seg, up + sey; zn + se;) ds
0 dS

= /01 L' (zh + sex, up + sey; 2, + se., e) ds,
where ¢ = (es,eu,e;) € W x U x V. Using the third equation in (2.3) and
the third equation in (2.5) we get
T (x,u) = T (@n, un) = L(z,u;2) = F(2,u;2) — L(xh, un; 2n) + F(2h, un; zp)
= L(z,u;2) — L(xp, up; 2p)
= Z/(:L‘,:Eh, U, Up; 2, 2R, €) + %E'(:Eh,uh; 2h, €)

- %El(l'h,’U,h; Zhae) - %E’(w,u;z,e),
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where the last term is zero in view of (2.2). The last two terms are equal to
an approximation of the first term by the trapezoidal rule. Hence, with R
denoting the remainder in this approximation,

\7($7u) - j(.ﬁlfh,Uh) = %El(xhvuh;sze) +R
= %L”(a:h,uh; Zh, T — Tp, U — Up, 2 — 2p) + R
= %,C/(xh,uh; 2hy @ — Tp,u — Up, 2 — 2p) + R.

Here we used the orthogonality property (2.4) to replace (xp,up,zx) by an
arbitrary (Zp,,an, ) € Wy x Uy x V3. By expanding £’ in terms of partial
derivatives we then obtain

TJ(z,u) — T (xp,up) = %(ﬂ(ﬂﬁh,uh; x — Tp) + Fo(@h, un; 2, T — fh))

T @, unyw — ap) + Fo(@h, un; 2n, u — ﬂh))

N[ D=

_I_
+ 5 F(zp,up; 2 — Zp) + R

=200+ gput gp: T R
The remainder term R is

—/
R=L (l’,l‘h,u, Uh;Z,Zh,e) - %El(l‘h,U}l;Z}“e) - %ﬁ'(x,u, Zve)

1
=1 /0 L (xp, + sex, up + sey; 2 + ses, e, e, e)s(s — 1) ds

1
1 " .
— 2/0 (J (Th + seq, up + sey;e, e, e)

+ F"(xp, + seq, up + sey; 2 + se, e, e, e))s(s —1)ds.

3. AN OPTIMAL CONTROL PROBLEM
We consider optimal control problems of the form
T
minimise  (z(0),z(T)) + / L(xz(t),u(t)) dt,
0

subject to  @(t) = f(x(t),u(t)), 0<t<T,
I()J}(O) = T, ITQS‘(T) = XT.

(3.1)

Here
[:RYxRT S R,
L:R'xR™ SR,
f:RYx R™ — RY,

are smooth functions and Iy and I are diagonal matrices with zeroes or
ones on the diagonals, and xg € R(ly), x7 € R(Ir), where R(A) denotes the
range of a matrix A.
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In order to put this into the abstract framework of the previous section, we
need to introduce function spaces W, W, W, V,U and functionals J and F.
The spaces must accommodate both the continuous functions x, z, u and the
corresponding finite element functions. It is therefore convenient to begin
by defining the finite element spaces.

We define a mesh 0 =ty < t] < i3 < ... < ty = T, with steps h,, =
tn — tp—1 and intervals I, = (t,—1,t,). Let ¢ > 0 and let P? denote the
polynomials of degree < q. We introduce the spaces

Wh:Rdx{w:whnqu(In,Rd), n:1,...,N}de,
Wy, = R(I — Io) x {w:wy,n € PU(I,,RY), n:l,...,N} x R(I — I)
= {wEWh:IOwa =0, ITUJX;:O},

of (vector-valued) discontinuous piecewise polynomial functions of degree
< ¢ and the space

v, = {v c O([0,T],RY : v|;, € Pq+1(In,Rd)} ,

of continuous piecewise polynomial functions of degree < ¢+ 1. For w € W},
we use the notation [w], = w;} —w,, , wf = lim; .+ w(t) for the jump and
the one-sided limits at t,, and for v € V}, we write v, = v(t,). The two
factors R? in W}, contain the boundary values w, and wj\r,. We also select
T € Wy, such that

Iyiy =z, Ird}, =ar,
where x, z7 are the boundary values in (3.1), and define the affine space
thﬁc—l—Wh:{weWh:w—ﬁ:EWh}
= {w € Wy : Ipywy = xo, ITw]J\r, = xT}.
Finally, we define

Uy = {v e O([0,T],R™) : o]y, € Pq+1(1n,Rm)}.

Note that
dim(Wy) = (N(¢+ 1) + 2)d,

(32) dim(Wy,) = (N(¢+ 1) + 2)d — do — dr,
dim(Vy,) = (N(¢+1) + 1)d,
dim(Up) = (N (g + 1) + 1)m,

where dy = rank(ly), dr = rank(I7).
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We now define the function spaces
W =R x {w cwlp, € HY(I,,RY), n = 1,...,N} x R,
W = R(I — I) x {w cwlp, € H'(I,,RY), n = 1,...,N} x R(I — Ir)
- {w eW : Iywy =0, Ipwi; = 0},
W=i+W={wew w-ieWw}
= {’U) e W : Iyw, = xo, ITU}]—’\} = .%'T},
V= H'((0,T),RY),
U=H'Y0,T),R™).
The spaces are equipped with the maximum norm. Note that, by Sobolev’s
inequality, functions in W, W are continuous on each interval I,, with one-
sided limits at the endpoints, and functions in V, U are continuous on [0, T].
Boundary values are accommodated in W in the same way as in Wj; of
course, if w € W happens to be continuous, then w; = waL = w(0) and

Wy = w]'t, = w(T) are the usual boundary values. The function spaces have

been constructed so that W, Cc W, Wh - W, Wh - W, V, C V, and
U, CU.
The functional to be minimised is

T
T (w,u) = l(wy ,wy) +/ L(w,u)dt, (w,u) €W x U,
0

and, for the weak formulation of the state equation, we define the functional

N N
F(w,u;v) = Z/ (w = f(w,u),v)dt + Z([w]n,vn),
n=1 In n=0
(w,u,v) e W xU x V.

Here and below (-, -) denotes the scalar product in R? or R™. If x is a smooth
function which satisfies the state equation in (3.1), then it also satisfies the
weak problem: find z € W such that

(3.3) F(z,u;) =0, VoeV.

Here we used the fact that z; = z(0), z}; = 2(T), [z], = 0, because x is

continuous.
We now find it convenient to change the notation for partial derivatives.
For a scalar-valued function

g:R¥x R™ = R,

we denote by g.(z,u) the partial derivative with respect to the ith variable.
It is a linear operator R¢ — R for i = 1 and R™ — R for i = 2, which we
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may identify with a vector, so that

gi(z,w)y = (v, g1 (v,u)), y € RY,  gh(z,u)y = (y, gh(x,u)), y € R™.
For a vector-valued function
f:RYxR™ — RY,

the partial derivatives are linear operators f](x,u) : R? — R? and f}(z,u) :
R™ — RY denoted by y — f](z,u)y, y € R? and y — fi(z,u)y, y € R™.
We note that, by integration by parts,

Fi(w, u;v, )
N N
-> / &~ fllw, w0y dt+ 3 ([Pl vn)
n=0

_Z/l U_flw“) )dt—l—(SOJJ(r,UN)_(SOa’UO)a

V(w,u,v,0) € W x U x V x W.

The Lagrange functional is

L(z,u;z) =T (x,u) +F(z,u; 2), (wu,z)eWxUxV.
The necessary condition for optimality is that (z,u,z) € W x U x V and
(3.5) L(z,u;2,0) =0, YoeW xUxV,
which yields

Ly(x,u; 2, 00) = Ti (2,15 00) + Fi (2,052, 0,) =0, Vo, € W,
(3:6)  Lo(w,uiz,0u) = Ty(x, w5 0u) + Fi(,us 2,00) =0, Viou €T,

Lh(xyu; 2, 0.) =04+ Fla,u;p,) =0, Ve, € V.

The first equation in (3.6) is, in view of the second form of F{ in (3.4),

N
> [ (e L) 2 - fwurar

+ (@E) lé(xaa IL‘E) + ZN) + (SO(;a lll(xaa$;) - ZO) = 07 \VIL,O S W
Assuming that x, 2, ¢ are continuous, we may identify the strong form of this
equation:

i+ fi(w,u)*z — Li(z,u) =0, 0<t<T,
(I = Io)(2(0) = li(=(0 ) (7)) =
(I = Ir) (2(T) + ly(2(0), 2(T ))

which is the linearised adjoint equatlon to the state equation in (3.1). Note
the complementary boundary conditions.
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The second equation in (3.6) is

T
/ (o, Ly(z,u) — fi(x,u)*2)dt =0, Ve eU,
0
or, in strong form,
Liy(z,u) — fo(z,u)*z2=0, 0<t<T.

This a non-linear algebraic equation for u. The third equation is the same
as (3.3).

We next formulate the finite element approximation of these equations.
Find (zp,up, 2n) € W), x Uy, x Vj, such that

(37) E’(xh,uh; Zh, (p) =0, Vype€ Wh X Up x Vp,

which means that we want to determine (xp,up, 2) € Wy x Up, X V}, such
that

N
Z/ (p, Ly (hy un) — 20 — fi(zn, un)*2n) dt
n=1 In,

(3.8) 3 3 B
+ (on By g 2y ) + 20v) + (20, (@5 00 T3 n) = 280)

Vip € Wh,

T
(3.9) / (0, Loy (zn, un) — fo(zn, un)*zn) dt =0, Yo € Uy,
0
IQSC};O = X, ITCCZ,N = a7,

3.10 N N
( ) Z/l (i‘h_f(xhauh)v(p) dt"’_Z([xh]m@n) =0, \V/QO e V.
n=1"""n n=0

Using (3.2) we easily verify that these are N (¢+1)(2d+m)+3d+m algebraic
equations in equally many unknowns.

Since ¢, and ¢} can be chosen arbitrarily in R(I — Iy) and R(I — Ir),
respectively, we see that (3.8) implies

(I - Io)(lll (a:,;o,a:Z,N) — Zh,o) =0,

(3.11) ’
(I —1Ir) (lé(mh’o,xi]\,) + zp,n) = 0.
The a posteriori error representation formula follows from Theorem 2.2.

Corollary 3.1. Let (z,u,z) € W x U x V and (x5, up, z,) € Wi, x Uy X Vj,
be solutions of (3.5) and (3.7), respectively. Then

(3.12) J(w,u) — T (xh, up) = %Pz + %pz + %Pu + R,
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with the residuals py, p., and p, defined as

N
Pz = Z/ (z — @, Ly (@h, up) — 20 — f1(zh, up)*zp) dt,
n=1 I
T
(3.13) Pu = / (u — @p, Ly(xp, upn) — fo(zn,up)*zp) dt,
0

N N
pz = Z/ (& = flanun) 2 = 2n) dt + Y ([@hln: 2n = Znn);
n=1"1In n=0

where (Tp, Up, 2p,) € Wh X Up X Vy, is arbitrary, and the remainder R is given
by (2.6).

Proof. From Theorem 2.2 we have
N

Pz = Z/ (33 — CEh, L’l(xh,uh) — é’h — f{(xh,uh)*zh) dt

n=1
+ (95} - jitm lé(mﬁ,m xier,N) + Zh,N)
(@0 = &0 (@0, T ) — 210)-
Using (3.11) and Io(zy — Z},4) = 0, Ip(xl — :EZN) =0, we find
(N = Ty no Ba(2y 002y ) + 20,8) =0,
(@0 = Zp0 (@00 T ) = 2n0) =0,
and we obtain the desired form of p,. The other residuals, p, and p,, follow

directly from Theorem 2.2. O

4. A QUADRATIC/LINEAR OPTIMAL CONTROL PROBLEM

4.1. The continuous problem. In this section we specialise to the case
when the functional to be minimised is quadratic and the state equation is
linear. We use the notation |[v||% = (v, Sv), where (-, -) is the scalar product
and S is a symmetric, positive semidefinite matrix. The problem then reads

minimise  J(z,u) = ||z(0) — Zo||3, + [|(T) — Z7|3,

T
2 2
W + [ (il + Lo = al) .
subject to & = A(t)r+ B(t)u, 0<t<T,
Ipz(0) = o, Irx(T) =z,
where, for each t, Q(t), So, S € R¥? are symmetric positive semidefinite
matrices, R(t) € R™*™ is a symmetric positive definite matrix, and A(t) €
R4 and B(t) € R¥™ are matrices. The matrices Iy and I are diagonal

matrices with zeroes or ones on the diagonals, and x¢, z7, Zo, T, Z(t), and
u(t) are given.
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Since we now have
f(z,u) = Az + Bu,
fi(w,u) = 4, fa(w,u) = B,
Li(z,u) =2Q(z — 7), Ly(z,u) = 2R(u — 1),

l1(zg . an) = 2S0(zg — o), la(xg,xx) = 2Sr(ay — T7),

the equation (3.5) is now to find (z,u,z) € W x U x V such that

T
/0 (02,2Q(x — %) — 2 — A'z) dt

42) + (970, 250(w5 — Fo) — 20)
+ (@;N, QST(Z‘E — iT) + ZN) =0, Vy,€ W,
T
(4.3) / (pu,2R(u — u) — B"2)dt =0, Ve, €U,
0
T
(4.4) / (t — Az — Bu,@,)dt =0, Ve, €V.
0

4.2. The finite element method. Let the finite element spaces be as in
Section 3. We discretise the state equation (4.4) by a discontinuous Galerkin
method with W}, as trial space and V}, as test space: Seek x; € W} which
fulfils

- _ +
onh,o = xp, ITxh,N = x7,

(4.5) T Y
[ o= on ~ Buno)dt + 3 (nl o 0) =0, Vg € Vi
0

n=0

The dual equation (4.2) is discretised by the continuous Galerkin method:
Seek z;, € V}, which fulfils

T
/0 (,2Q(xp, — &) — 25, — A'2p,) dt

+ (¢0 , 250(2, 0 — o) — 2n,0)
+ (N 27 (x) y — Br) + 2nn) =0, Ve € Wy,

(4.6)

where we have used V}, as trial space and W), as test space. Since we can
vary the boundary values in W}, separately in R(I — Iy) and R(I — Ir), the
boundary conditions become

(L = Io)(zn,0 — 250(z), o — Zo)) =
(I — IT)(Zh,N + QST(‘TZ,N — i‘T)) =0.

=)

)
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The equation for the controls, (4.3), is discretised by a continuous Galerkin
method: Seek uy, € Uy,

T
(4.7) / (o, 2R(up, — @) — B'zp,)dt =0, Vi, € Up,.
0

We now have three sets of linear algebraic equations which must be solved
simultaneously in order to obtain the approximate solution (zp,up, zp).

4.3. The error estimate. We begin by repeating the error representation
formula from Corollary 3.1 in the context of the linear/quadratic optimal
control problem.

Corollary 4.1. Let (z,u,z) € W xUxV and (h, up, 2n) € Wy, x Up, XV,
be solutions of (4.2)—(4.4) and (4.5)—(4.7), respectively. Then

(49) T @) = T o un) = bpo + 5oz + o

with pg, pz, and p, defined as
T
Pz = / (x — 25,2Q(xp, — T) — 2, — A'2y) dt,
0

T
@e)  pu= [ (u @ 2R @) - B dr
0
T N
Py = / (ih — Axyp, — Bup, z — éh) dt + Z([l‘h]n y Zn — th),
0

n=0
where (Tp,Up, Zn) € Wi, x Uy x Vi, is arbitrary.

Proof. The proof is a straightforward calculation using Corollary 3.1. The
remainder R is zero in this case, since we have a linear/quadratic problem
and the remainder is the third derivative of the Lagrangian. 0

In the following theorem we derive an a posteriori error estimate from the
error representation formula. We use the notation | f||;, = sup,;, [[f(#)]l,
where || - || denotes the norm in R or R™.

Theorem 4.2. Let (z,u,z) € W xUxV and (Th,un, zn) € Wy, x Up, X Vi,
be solutions of (4.2)-(4.4) and (4.5)—(4.7), respectively. Then

N
(4.10) T (@ 0) = T ()] < 33 (Rows + Ry + Riw; ),

n=1
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where the residuals R,, and weights w, are defined by (with ho = hy =0)
_ . T
Ry = hpll2Q(zn — %) — 20 — A" z|1,,,

R" = h,||2R(up, — @) — B 2|1,
h

By, = hallin = Az = Bunlls, + 7— || fanl, |
+ #H [h)p |
and, with arbitrary (&, iy, 2,) € Wi, X Uy X Vi,
wy = llo = Zpllr,,  wp=llv—tnllr,, w;=I2z-2l5-

Proof. We estimate the three contributions to the error representation (4.8)
separately. The first term is

N
Sy / o — Enll12Q(en — &) — 20 — ATz dt
n=1 n

N N
< o= &l 12Qan — T) — 2h — Azl e = Y wi R
n=1 n=1

Similarly, for the second term we have

N N
loul <Y llw = il 2R (up, — @) — B 2|l 1,hn = Y wh R,
n=1

n=1

Finally,

N N
lp=] < Z/j ln — Azn — Bun|llz = Zall dt + Y || [zal,, 120 — Znnll
n=1Y"n n=0

N N
<> llén — Azn — Bunllz,llz = Zallr, o + Yl 2, 120 = Znnll-
n=1 n=0

Using the continuity of z we have

120 = Zhnll < llz = Z0ll5s 20 = Z0nll <M1z = Z0ll1as
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so that
N
> I zn] Mz = Znal
n=>0
N
hy ~
=3 (o bl = 20
ha, i
+ m” [‘Th]n—l HHZn,1 - Zh,n—l”)
N
hn, h )
<3 (it b+ el andacs ) 2 = 31,

=1
where hg = hy = 0. This yields
N
102 <D (Bullitn — Awn = Bunlls, +

n=1

3

b,
m“ [zal, |

h N
il 0 e = 2l = ;ng;_

O

We note that the error estimate does not introduce any additional adjoint
equation. However, the weights depend on the exact solutions x, u, z and ap-
proximations Zp, up, Zn, of them. In practice, we approximate the weights by
computable quantities. For example, when ¢ = 0, by standard interpolation
error estimates [4], we can find Zj, 4y, 25 such that

|z = Znll1, < hall|z,,
(4.11) lu— |7, < h2llill7,,
Iz = Zllr, < h2NEL,,

where the derivatives are approximated by difference quotients of the discrete
solutions. See also [1] for other approximations of the weights.

The above estimates of the weights indicate that the term p, in the error
estimate is O(h), while p, and p, are O(h?). We therefore present the
following error estimate, where all terms are formally O(h?). For simplicity
we assume that A(t) = A and Q(t) = @ are constant.

Theorem 4.3. Let ¢ = 0 and assume that A(t) = A and Q(t) = Q are

constant. Then
N

|T (ar,u) = Tn(wn, un) <) (hiHiIIInH?Qf + A"zl

n=1

+ bl Ay + Bug| 1, |21,
+ B3lI2R(un — @) — B znllr, il ).
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Proof. We choose z;, = I,z and 1, = Ipu to be the standard piecewise linear
nodal interpolants, and we choose zj, = P,x to be the orthogonal projection
onto the piecewise constant functions.

Then, using orthogonality, the fact that 2z, — 23, = 0, and the error
estimates (4.11), in the error representation formula (4.8), we obtain

J(x,u) — T (xh, up)

N
= ‘ > (/] (I = Pp)z, (I — Py)(2Q(zp, — &) — 2 — A"2)) dt
n=1 n

+ / (jjh — Azp, — Buy, (I — Ih)z) dt
In
+/ ((I = In)u, 2R(wy, — @) — B zp) dt))
In
N
<> (Bl 12Qn — #) — 2 — A2,
n=1

+ hilén — Az — Bupl|z, |21,
+ B3lI2R(un — @) — Bzl il 1, )-
Since &5, = 0 and Z;, = 0 we obtain the desired estimate. O

4.4. An adaptive algorithm. On the basis of the error estimate in the
previous theorem we implement an adaptive finite element method, with
q = 0, for the solution of the optimal control problem (4.1).

Algorithm 1: An adaptive finite element method
Solve the equation on a coarse initial mesh;

Compute the error estimate in Theorem 4.2, denote it by 7;

while n > TOL do
Refine the mesh according to the error estimate, i.e., refine elements

that give large contributions to the estimate;

Solve the equation on the refined mesh;

Compute the error estimate n on the refined mesh;
end

The refinement of the mesh is done according to the principle of equidis-
tribution, that is, we want all intervals to give equally large contributions to
the error estimate and insert new nodes to fulfil this criterion. A numerical
example is given in the next section.

5. A NUMERICAL EXAMPLE

The adaptive finite element solver is tested on a linear/quadratic prob-
lem. In order to get a linear/quadratic problem we use a simplified model
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FIGURE 1. The optimal states. The last image shows the
optimal track.

from vehicle dynamics describing a vehicle that is braked on a surface with
different friction on the wheel pairs. We let the control variable u be u; = d¢
and us = 4, and the state variable z is

I VX
T2 Vy
I3 r
5.1 t) = =
(5.1 t) = |0 = |
xIs X
_xﬁ_ _Y_

The differential equations are

(5.2)

VX all
Vy a1 Vy + agar + bf10f + brid,

7| _ |V + asar + bf20 4 brady + Torake | _ Az(t) + Bu(t) +b.
P T
X Vx
Y

Wy




THE DUAL WEIGHTED RESIDUALS APPROACH TO OPTIMAL CONTROL 17
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FIGURE 2. The optimal controls u.

The goal functional is

T T
J(w,u):/o LY+ + 12 + 07+ 82) dt:/o (Il + 1l d.

We have used the boundary condition z1(0) = 25 and x2(0) = x3(0) =
x4(0) = 25(0) = x6(0) = 0, which means that the state equation has no
boundary conditions at the end of the time interval and therefore the dual
equation has all its boundary conditions at the final time.

We have now formulated our problem in the form (4.1), but with an extra
b in the right hand side:

T
winimise  J(e,0) = [ (lulf+ 2] dt,
0
subject to &= A(t)r+ B(t)u+b, 0<t<T,
Ipz(0) = xo, Irx(T) =z,

where Iy is the identity matrix and It is zero. The coefficients A, B, @, R
and b can be found in the Appendix.

In Figure 1 we see the optimal states and Figure 2 shows the optimal
controls and velocities. In Figure 3 we see the error estimate plotted as a
function of the number of intervals. The convergence rate of the solution in
the numerical example is 2.03.
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FIGURE 3. The error estimate as a function of the number
of intervals. The convergence rate is 2.03.
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and

where

as

asr =

by =
7“1 =

a1l =

and

APPENDIX
[0 0 0 00 0 [0 0] [ an ]
0 a1 ax, 0 0 O bfy bry 0
0 az1 a2 0 0 O B bfy bro p— |Tbrake
0O O 1 0 0 0 10 01’ - 0 ’
1 0 0O 0 0 O 0 0 0
0 1 0O 0 0 O | 0 0 | 0]
(0 0 0 0 0 O]
0 0000
oo 3000 30
Q_OOOOOO’R_{Oé’
0O 000 0O
00 00 0 3]
—(Cy + Cr)/(muy), az = (CyL, — CyLy)/(muo),
(CrLe = CrLyp)/(Lvo),  as2 = —(Cy(L}) + Co(L2))/(Iwo)),
(Cy = Fyg)/m, bpa = (LyFup + CrLy)/ I,
(C Fxr)/m br? = _(LrFxf + CT‘L’I‘)/IZ7
( Zf+F:I,‘T‘)/m
F:ch = —mgui2, Fer = —Mmgus4,
Fa:fR:Oa F.Z’fL:07
FzT:FxTR+Fera Fxf:Ffo+meL7
Tbrake = _(F:L‘T‘R - Fer)Br/ma

with numerical values

m = (1500 + 150) kg,

L =2.755 m,
L.=L-Ly,
Cy = 20000 N/rad,
vo =20 m/s,
By =1.563 m,

H12 = 0357

I, = 3500 kgm?
L;=120m

C, = 40000 N/rad

g =9.82 m/s?
B, =1.560 m
u3qg = 0.75.
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