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SE-41296 Göteborg, Sweden

Abstract

We propose an interior penalty discontinuous finite element method for small strain elasto–

plasticity using triangular or tetrahedral meshes. A new penalty formulation suitable for

plasticity, in particular allowing for inter-element slip, is introduced. The method is also

locking free, which is crucial since the plastic zone may exhibit an incompressible response.

Numerical results are presented.

1 Introduction

Near incompressibility, typical in elasto-plastic computations, displays severe locking problems
when low order standard nodal-based displacement methods are used. One approach to alleviating
this problem is to use non-conforming finite element methods with relaxed continuity requirements,
as for example the discontinuous Galerkin method of Hansbo and Larson [8]. In this paper, a
closely related penalty method for elasto–plastic problems is introduced. The penalty method
has the drawback of not being (weakly) consistent, unlike the discontinuous Galerkin method
proposed in [8], which means that the condition number has to be degraded in order to retain
optimal convergence for higher order methods. This may not be so restrictive in practice, since it
is common to use low order finite element methods for elasto–plasticity which can have very non–
smooth solutions. Furthermore, the penalty method yields a formulation that is easily extended
to any type of plasticity model and also allows for a clear analogy with the mathematical work on
slip lines in classical total deformation theory initiated by Temam and Strang [13].

2 A penalty method for linear elasticity

2.1 Problem formulation

We first consider the equations of linear elasticity: Find the displacement u = [ui]
n
i=1 and the

symmetric stress tensor σ = [σij ]
n
i,j=1

such that

σ = λ tr ε(u) I + 2µε(u) in Ω,

−∇ · σ = f in Ω,

u = g on ∂ΩD,

σ · n = h on ∂ΩN.

(1)

Here Ω is a closed subset of R
n, n = 2 or n = 3, λ and µ are the Lamé constants, and ε (u) =

[εij(u)]ni,j=1
is the strain tensor with components

εij(u) =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

,
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with trace
tr ε(u) =

∑

i

εii(u) = ∇ · u.

Furthermore, ∇ ·σ =
[

∑n
j=1 ∂σij/∂xj

]n

i=1
, I = [δij ]

n
i,j=1

with δij = 1 if i = j and δij = 0 if i 6= j,

f and h are given loads, g is a given boundary displacement, and n is the outward unit normal
to ∂Ω.

2.2 Penalty finite element methods

Consider a subdivision of Ω into a geometrically conforming simplicial finite element partitioning
T h = {T } of Ω. Let

P k(T ) = {v: each component of v is a polynomial of degree ≤ k on T},

W h = {v ∈ [L2(Ω)]n : v|T ∈ P k(T ) ∀T ∈ T h},

let ∂Tint denote the sides of the element T neighboring to other elements, ∂TN the sides neighbor-
ing to ∂ΩN, and ∂TD the sides neighboring to ∂ΩD. Further, let nT denote the outward pointing
normal to ∂T , and, for x ∈ ∂T , let

[[u]] := u+ − u−, where u± := lim
ǫ↓0

u(x ∓ ǫ nT ).

A straightforward penalty method for (1) is to seek a function uh ∈ W h such that

ah(uh, vh) = Lh(vh) ∀vh ∈ W h and T ∈ T h, (2)

where the bilinear form ah(·, ·) is given by

ah(u, v) :=
∑

T

(

∫

T

σ(u) : ε(v) dx +
1

2

∫

∂Tint

γ0

hs
[[u]] · [[v]] ds +

∫

∂TD

γ0

hs
uh · v ds

)

, (3)

where we have used the notation σ : ε =
∑

i

∑

j σijεij , and the linear functional as

Lh(v) :=
∑

T

(

∫

T

f · v dx +

∫

∂TN

h · v ds +

∫

∂TD

γ0

hs
g · v ds

)

. (4)

For definiteness, we define the mesh parameter h on each face E by

h =











meas(T +) + meas(T−)

2 meas(E)
for E ⊂ ∂T + ∩ ∂T−,

meas(T )/meas(E) for E ⊂ ∂T ∩ ∂Ω.

(5)

Further, γ0 is a penalty parameter and s ≥ 1 is a number that must be chosen relative to the
polynomial order of the finite element method (cf. below). Note that in order for the method to
scale correctly, the parameter γ0 must be dependent on the elasticity parameters. Mesh-dependent
penalty methods of this type were first proposed by Babuška and Zlámal [2].

The bilinear form given by (3) is not suitable for the extension to elasto–plasticity, however.
The reason is that in a plastic zone terms of the type

∫

∂Tint

γ0

hs
[[uh]] · [[vh]] ds (6)

(used also for plasticity in [6]) are too strong: only normal continuity can be expected in general,
but (6) is penalizing also the tangential interelement displacement. One way to avoid this problem
is to split the displacement into a normal and a tangential part, and penalizing the different parts
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differently. This approach was used in the discontinuous Galerkin method of Hansbo and Larson
[8], but it is still not the natural penalty in the setting of elasto–plasticity. In particular, it
is difficult to define how to project a tangential stress onto a yield surface in a way consistent
with the stress projection in the interior of an element. This problem is also present in standard
Lagrange multiplier methods, where the multiplier is typically interpreted as the traction vector.

For the purpose of modeling plasticity also on the interfaces between elements, we propose the
following modification of the penalty term. Note first that for an arbitrary symmetric tensor τ

and an arbitrary displacement v there holds

τ · nT · v ≡ τ : E(v; nT ), (7)

where

E(v; n) :=
1

2
(n ⊗ v + v ⊗ n)

is a strain-like tensor with components

Eij(v; n) =
1

2
(vinj + vjni) .

In the following, we shall suppress the dependence on nT and write E(v) instead of E(v; nT ),
since the dependence on nT will be clear from the context.

Now, multiplying (1) with a function vh ∈ W h with support only on (for simplicity, an internal)
T , applying integration by parts and using (7) gives us the relation

∫

T

σ(u) : ε(vh) dx −

∫

∂T

σ(u) : E(vh) ds =

∫

T

f · vh dx. (8)

For numerical modeling purposes we are thus looking for a “penalty stress” Σ such that for x ∈ ∂T

Σ([[uh(x)]]) ≈ −σ(u(x)),

and a natural choice is to relate Σ to E in the same way that σ is related to ε, i.e.,

Σ(u) :=
γ

hs
(λ (trE(u)) I + 2µE(u)) , (9)

where we note in particular that
trE(u) = nT · u, (10)

and that the dimensionless number γ (which controls the size of the discontinuity) can be chosen
independently of the elasticity parameters.

This suggests to modify the penalty term in (3) and seek uh ∈ W h such that

ah(uh, vh; g) = fh(vh) ∀vh ∈ W h and T ∈ T h, (11)

where

ah(u, v; g) :=
∑

T

(

∫

T

σ(u) : ε(v) dx +
1

2

∫

∂Tint

Σ([[u]]) : E([[v]]) ds (12)

+

∫

∂TD

Σ(u − g) : E(v) ds
)

,

and

fh(v) :=
∑

T

(

∫

T

f · v dx +

∫

∂TN

h · v ds
)

. (13)

The reason for putting the Dirichlet data g into the bilinear form in (11) will become clear when
we extend the method to elasto–plasticity.

This method is stable (in that it precludes rigid body motions) as long as s ≥ 1 and the Lamé
parameter µ is bounded from below, since the jump [[uh]] is then controlled with sufficient strength,
also as h → 0, cf. [4].
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Remark 1 Note that if Σ is interpreted as a discrete stress, then it is obvious that s > 1 scales
incorrectly. Only by division by the meshsize (i.e., when s = 1) can Σ be interpreted as a discrete
derivative. This scaling problem will adversely affect the conditioning of the discrete system for
s > 1. On the other hand, the choice s = 1 leads to a consistency error that will degrade the
accuracy of the method for higher order polynomial approximation. The method proposed here is
thus best suited for low order elements. We refer to the review paper of Arnold et al. [1] for a
deeper analysis.

Remark 2 An important feature for plasticity computations is the ability to handle incompressible
behaviour, λ/µ → ∞, since in plasticity the load must typically be carried by the trace part of the
stress. Like the discontinuous Galerkin method proposed in [8], the current method is locking
free with respect to (near) incompressibility. The argument to support this assertion is briefly as
follows: W h is large enough to incorporate H(div)-conforming (or nonconforming) approximations
(cf. [8, 9]), which ensures that the element can have ∇ · uh ≡ 0 elementwise and still retain
approximation properties. Numerical examples showing the robustness in this respect are given in
Section 4.

3 An elasto-plastic model problem

We shall consider the following isotropic von Mises model of elastoplasticity.

ε̇ = ε̇e + ε̇p,

ε̇p = ϑ̇σD,

σ̇ = λ tr ε̇eI, +2µ ε̇e,

φ := σD : σD −
2

3
σ2

Y ≤ 0.

(14)

Here,

σD := σ −
1

3
tr σ I

is the stress deviator, σY is the yield stress, ε̇e and ε̇p are the elastic and plastic strain rates,
respectively, ϑ̇ is the plastic multiplier, and φ is the yield function. In this model it is thus
assumed that the stresses must reside in a convex elastic domain E in stress space defined by φ:

E = {σ : φ(σ) ≤ 0}.

Since we are now dealing with a time-dependent problem, we will in the following let u denote
the displacement velocity and thus we have

ε̇ij :=
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

.

Discretizing in space, and in time by use of the backward Euler method, by letting uh
n ≈ u(tn, ·)

and

σn := σ(uh
n),

σn − σn−1

kn
= λ tr ε̇e

nI, +2µ ε̇e
n,

where kn = tn − tn−1, and denoting |τ | := (τ : τ )
1/2

, we can ensure the fulfillment of the yield
condition by defining an elastic trial stress

σ̃n := σn−1 + kn

(

λ tr ε(uh
n) I + 2µε(uh

n)
)

(15)
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and computing the plastically admissible stress by

σ(uh
n) =























σ̃D
n +

1

3
tr σ̃n I, if |σ̃D

n | <

√

2

3
σy,

√

2
3
σy

|σ̃D
n |

σ̃D
n +

1

3
tr σ̃n I, if |σ̃D

n | ≥

√

2

3
σy.

(16)

We write this more compactly as

σ(uh
n) = Πσ̃D

n +
1

3
tr σ̃n (17)

where

ΠσD =























σD, if |σD| <

√

2

3
σy,

√

2
3
σy

|σD|
σD, if |σD| ≥

√

2

3
σy.

(18)

Since we use Σ as an independent model of the stress on the interfaces between elements, Σ must
be projected onto the yield surface in the same way. To this end, we define a trial stress

Σ̃n = Σn−1 + kn
γ

hs

(

λ trE(uh
n), I + 2µE(uh

n)
)

(19)

followed by projection so that

Σ(uh
n) := ΠΣ̃

D

n +
1

3
tr Σ̃n ∈ E. (20)

We note in particular that since the trace of Σ̃n is not affected by the projection, normal continuity
is always enforced by penalty (due to (10)), whereas tangential sliding will not be penalized beyond
the plastic limit.

We can now define the following radial return method: for n = 1, 2, . . ., seek uh
n ∈ W h such

that
∑

T

(

∫

T

σ(uh
n) : ε(vh) dx +

1

2

∫

∂Tint

Σ([[uh
n]]) : E([[vh]]) ds

+

∫

∂TD

Σ(uh
n − gn) : E(vh) ds

)

=
∑

T

(

∫

T

fn · vh dx +

∫

∂TN

hn · vh ds
)

(21)

for all vh ∈ W h, where σ(·) and Σ(·) are given by (17) and (20), respectively.

Remark 3 There is a close relation between the penalty formulation used here and previous math-
ematical work on discontinuous FEM for plasticity [3, 10, 12, 13]. In these papers, minimization
of the complementary energy was considered, with the position of a line of discontinuity either
given or as a part of the minimization problem. In the complementary energy functional, the jump
terms in (21) are then also present, but in the continuous formulation and thus without mesh
dependence (corresponding to letting γ → ∞). This relation to interior penalty methods is also
explicitly pointed out in the concluding remarks of [3].

4 Numerical example

We consider a domain (0, 3/4)× (0, 3/4) \ (0, 1/4)× (0, 1/4) meters in a state of plane strain. The
material data are E = 100 GPa, ν = 0.3, σy = 700 MPa. The domain is fixed at the bottom and
fixed horizontally at the top and pulled a distance δ = 1 cm upwards. The penalty parameter was
set to γ = 10. The problem was solved using one timestep (i.e., as a Hencky problem).

5



In Figure 1 we show a sequence of adapted meshes (the adaptive algorithm being based on a
stress projection scheme, cf. [5]). Note the pronounced slip at the lower right corner and at the
inward pointing corner. In Figures 2 and 3 we show the plastic zone and the edges where plastic
slip may occur. Note the absence of plastic edges in a part of the plastic zone; we interpret this
as an effect of the orientation of the mesh in that the edges are not well aligned with slip lines (cf.
the top right edge in Figure 3 where slip lines should go from top right to bottom left but can not
due to mesh orientation). This type of information is not achieved directly from a standard finite
element simulation. We also remark that no slip line failure seems to occur in this plane strain
problem (cf. the results of [11]).

5 Concluding remarks

The method proposed has two important properties: firstly, it allows for (near) incompressibility
which can be important in elastoplastic simulations; secondly, it allows for interelement slip.
Allowing for slip seems completely natural in the context of plasticity simulations, but in order
to take full advantage of this property the elements have to be aligned along preferred directions
of slip, which may not be so easy to achieve in practice. Another possibility is to allow for
discontinuities independent of the mesh, as for example in [7]. In the work on discontinuous FEM
for slip lines by Stephan and Temam [12] (using a remeshing technique), the position of a slip line
was found through global minimization arguments. This can hardly be the way an actual slip line
forms, and an approach similar to that of tracking crack paths (as in [7]), for instance based on
the eigenvalues of the acoustic tensor as in [11], seems more natural.
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Models, Software, and Applications, Pineridge Press, Swansea, 1987, pp. 243–256.

[13] Temam R, Strang G. Duality and relaxation in the variational problems of plasticity, Journal
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Figure 1: Adapted meshes after 3, 5 and 7 refinement levels
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Figure 2: Plastic elements after 3, 5 and 7 refinement levels
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Figure 3: Plastic edges after 3, 5 and 7 refinement levels
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