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Abstract

In this paper a new model for random loads – the Laplace driven moving average
– is presented. The model is second order, non-Gaussian, and strictly stationary.
It shares with its Gaussian counterpart the ability to model any spectrum but has
additional flexibility to model the skewness and kurtosis of the marginal distribu-
tion. Unlike most other non-Gaussian models proposed in the literature, such as
the transformed Gaussian or Volterra series models, the new model is no longer
derivable from Gaussian processes. In the paper a summary of the properties of the
new model is given and its upcrossing intensities are evaluated. Then it is used to
estimate fatigue damage both from simulations and in terms of an upper bound that
is of particular use for narrowband spectra.

Key words: fatigue damage, Laplace distribution, spectral density, Rice’s formula,
moving average, non-Gaussian process

1 Introduction

For a long time the study of random loads has been dominated by Gaussian
processes. However, many real loads, e.g. ocean waves, show considerable non-
Gaussian features such as a skewed marginal distribution with heavy tails. For
mooring lines, for instance, loads often exhibit significant asymmetry having
skewness about 0.8, see [1]. A serious consequence of not taking this into
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account in a fatigue application is that the fatigue life predictions from the
model may be far too long, as reported by [2], [3], [4], [5] and [6]. In order
to overcome this problem a lot of effort has been made to find suitable non-
Gaussian models.

One solution to this problem that has been proposed by [7] is the class of
transformed Gaussian processes. These processes take their starting point in a
Gaussian process Z(t) and a continuous and increasing function g, say. Then
one forms a non-Gaussian process according to Y (t) = g(Z(t)). In this way the
process Y (t) can have a non-Gaussian marginal distribution. Different strate-
gies to choose the function g have been proposed and studied in [8], [9], [10]
and [11]. An advantage with the transformed Gaussian models is that they are
easy to simulate from and that the fatigue damage can be related to Gaus-
sian loads where a lot of results are known. A serious disadvantage, however,
is that the spectral density function is modified when the transformation is
applied. As reported in [12] this can be particularly unfortunate when the
process is used as an input to a linear filter since in such a case the presence
of resonances can lead to large errors in the predicted fatigue damage.

Another, and more complex, approach to non-Gaussian processes are obtained
by Volterra series expansions which can be described as higher order transfor-
mations of Gaussian loads. Considerable effort has been made to study these
kind of processes and examples thereof can be found in [13] and the recent
study [14].

It is common for the just described models that they take Gaussian processes
as their starting point. In this paper we take another approach and study a
model for random loads which fundamentally goes beyond the Gaussian the-
ory. Still, as in the Gaussian case, the main tool for the new model is the
spectral theory. However in addition to the spectrum, the model also has two
more parameters for skewness and kurtosis of the marginal distribution. In
this way it offers an alternative to the transformed Gaussian models that is
preserving the correct spetrum. Both simulating from the model and pass-
ing through linear filters are straightforward. The purpose of the paper is to
present the most fundamental properties and also show through examples how
the model can be used to estimate fatigue damage.

2 Rainflow damage

The rainflow method was first introduced by Endo [15] in the 1960’s. His
approach has then been modified by others to make it more suitable for sta-
tistical analysis and here the definition of the rainflow cycle given in [16] will
be used.

2



Assume that Y (t), t ∈ [0, T ] is a variable load having a finite number of local
maxima and assume that each local maximum vi = Y (ti) in Y (t) is paired
with a particular local minimum ui, determined as follows:

(1) From the ith local maximum (having value vi) one determines the lowest
values in forward and backward directions between ti and the nearest
points at which Y (t) exceeds vi.

(2) The larger of those two values, denoted by urfc
i , is the rainflow minimum

paired with vi, i.e. urfc
i is the smallest drop before reaching the value vi

again on either side, see Figure 1 for an illustration. The cycle range is
defined as Si = vi − urfc

i .

vit

urfci

t

6

?

Si

Fig. 1. A rainflow pair.

Note that for some local maxima vi, the corresponding rainflow minimum urfc
i

could be located outside the interval [0, T ]. In such situations, the incomplete
rainflow cycle constitutes the so called residual and has to be handled sep-
arately. In this approach we assume that, in the residual, the maxima form
cycles with the preceding minima.

The total damage D(T ), defined using the rainflow method and applying the
linear Palmgren-Miner ([17], [18]) damage accumulation rule, leads to

D(T ) =
∑

f(urfc
i , vi) + Dres, (1)

where f(urfc
i , vi) is the fatigue damage due to the rainflow pair (urfc

i , vi) and
Dres is the damage caused by cycles found in the residual. In this study, we
assume that f(urfc

i , vi) is typically of the form f(urfc
i , vi) = α(vi−urfc

i )β, where
α > 0 and β ≥ 1 are experimentally defined fatigue parameters.

If the load is a random process, then one is rather interested in computing the
expected damage. As discussed in the appendix, it is convenient to express the
damage in terms of the intensity of upcrossings of intervals. Unfortunately, it
is in most cases very hard to compute this intensity and explicit formulas are
known only for loads satisfying a Markov condition. However, the intensity
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can be bounded by the intensity of upcrossings of a level which is given by
the celebrated Rice’s formula [19]

µ+(u) =
∫ +∞

0
zfY (0),Ẏ (0)(u, z) dz, (2)

where fY (0),Ẏ (0)(u, z) is the joint probability density function of the process at
time zero Y (0) and its derivative Ẏ (0). Thus, summarizing the discussion in
the appendix, if µ+(u) is known then the fatigue damage can be conveniently
bounded from above.

3 The Laplace driven moving average model

The proposed new class of models for loads is, unlike most other models,
not related to Gaussian processes. However, it still has finite variance and
consequently a spectrum corresponding to its correlation structure. It can
also be viewed as a generalization of Gaussian processes as the latter can be
obtained by proper specification of parameters. Moreover, the model contains
two more parameters defining the third or fourth moments or, equivalenty, the
skewness and kurtosis. This allows for modeling using spectral densities and
at the same time having a skewed marginal distribution with tails that are
heavier than the Gaussian ones.

3.1 Definition and properties

The model we propose for loads is a continuous time moving average (MA)
which may be written as

Y (t) =
∫ ∞

−∞
f(t− x) dΛ(x), (3)

where f(x) will be referred to as a kernel function and Λ(x) is a stochastic
process having independent and stationary increments having a generalized
asymmetric Laplace distribution soon to be defined. The process Λ(x) is re-
ferred to as Laplace motion and the resulting process Y (t) is called the Laplace
driven moving average. Thus Y (t) may be thought of as a convolution of f
with the increments of the process Λ(x). A process generated in this way is
stationary and ergodic. If Λ(x) is chosen to be a Brownian motion, then Y (t)
becomes a Gaussian process, while in general it is non-Gaussian.

The generalized asymmetric Laplace distribution, sometimes called Bessel
function distribution, is easiest defined by its characteristic function. More pre-
cisely, a random variable Z is said to have a generalized asymmetric Laplace
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distribution if its characteristic function is given by

φZ(v) = E[eivZ ] =
eivθ

(1− iµv + σ2v2

2
)

1
ν

,

where θ, µ ∈ R and ν, σ > 0 are parameters. If µ = 0 the distribution is
symmetric and otherwise it is asymmetric. An extensive overview of Laplace
distributions can be found in [20]. The generalized asymmetric Laplace dis-
tribution can be used to construct a process with independent and stationary
increments – the previously mentioned Laplace motion. The Laplace motion
Λ(x) is a process that starts at zero and whose distribution at x is given by

φΛ(x)(v) = E[eivΛ(x)] =
eivγx

(1− iµv + σ2v2

2
)

x
ν

,

where γ is a parameter representing the drift of the process. The Laplace
motion can be extended to the whole real line by basically taking two inde-
pendent copies of it and mirror one of them in the origin. The extended process
can then be used to define the moving average (3). Since the increments of
the Laplace motion are allowed to have an asymmetric distribution (µ 6= 0)
it turns out that also the corresponding moving average process will have a
non-symmetric marginal distribution. In fact, the marginal distribution of the
Laplace driven MA has the following characteristic function

φY (t)(v) = exp

(∫ ∞

−∞
iγvf(x)− 1

ν
log

(
1− iµvf(x) +

σ2f 2(x)v2

2

)
dx

)
, (4)

where log is the complex logarithm function.

When it comes to the properties of the Laplace driven MA one can show that
the mean and the twosided spectral density S(ω) are given by

E[Y (t)] =
(
γ +

µ

ν

) ∫ ∞

−∞
f(x) dx, S(ω) =

σ2 + µ2

ν

1

2π
|Ff(ω)|2, (5)

where F denotes the Fourier transform. This means that by choosing different
kernels one can in principle model any spectrum. However, after having chosen
the kernel f and fitted mean and variance there are still two parameters, out
of the four original ones, left. These “two degrees of freedom” can e.g. be used
to fit skewness s and excess kurtosis κ of the marginal distribution of Y (t).
By using the expression for the characteristic function (4) these are given by

s = µν1/2 2µ2 + 3σ2

(µ2 + σ2)3/2

∫∞
−∞ f 3(x) dx

(∫∞
−∞ f 2(x) dx

)3/2
, (6)

κ = 3ν

(
2− σ4

(µ2 + σ2)2

) ∫∞
−∞ f 4(x) dx

(∫∞
−∞ f 2(x) dx

)2 . (7)
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This ability to fit both spectrum and the marginal skewness and kurtosis is
hence very promising when it comes to modeling using second order processes.
Note that for a Gaussian process both skewness and excess kurtosis equal zero,
i.e. s = κ = 0. In fact, a Gaussian process can be obtained from the Laplace
driven MA as a limiting case as s = 0 and κ → 0, see [20] (page 183). This
can be done by first fixing the spectrum (and thus also the kernel) and then
letting κ → 0.

3.2 Simulation of the Laplace driven MA

The Laplace driven moving average can be simulated in several different ways.
The simplest and most straightforward one is to first simulate the increments
of the Laplace motion over an equally spaced grid and then convolve it with
the kernel f . In full generality, following [20], the asymmetric Laplace motion
Λ(x) with drift γ can be represented as

Λ(x) = γ · x + µΓ(x) + B(Γ(x)),

where Γ(x) is a gamma-process characterized by independent and homoge-
neous dx-increments having a gamma distribution with shape parameter dx/ν
and scale parameter 1 while B(x) is Brownian motion with parameter σ. Us-
ing this representation a simple algorithm for simulating the Laplace driven
moving average with kernel f is given by:

(1) Pick m, and dx so that f is well approximated by its values on 0 < dx <
· · · < m · dx.

(2) Pick n À 2m− 2 so the k = n− 2m + 2 values of Y will be generated at
0 < dx < 2 · dx < · · · < k · dx.

(3) Simulate n i.i.d. Γ(dx/ν, 1) random variables and store them in a vector
G = [Gj].

(4) Simulate n i.i.d. zero mean standard normal random variables and store
them in a vector Z.

(5) Compute Y = γ
∫

f(x) dx + µf ∗ G + σf ∗ (
√

G · Z), where
√

G · Z =

[
√

Gj · Zj], ∗ denotes convolution (we extend to infinite sequences by
setting zero to the entries that have not been set otherwise), and the
integral

∫
f(x) dx is computed by some numerical method.

(6) Remove the first m − 1 and last m − 1 entries of the vector Y . The
resulting vector Y is a simulation of the Laplace driven moving average
with parameters µ, ν, σ and drift γ.

The advantage with this simulation method is that it is very fast and efficient
and that it works for long simulations and for most values of the parameters.
The disadvantage is that one looses some resolution on where the jumps in
the Gamma process occurs, due to taking an equally spaced grid. In Figure 2

6



−4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

y(t)

pr
ob

ab
ili

ty
 d

en
si

ty

0 100 200 300 400 500
−5

0

5

10

t

y(
t)

Fig. 2. Simulation of a zero mean Laplace driven MA having a Pierson-Moskowitz
spectrum with significant waveheight 7 m and peak period 11 s. A symmetric kernel
f satisfying

∫
f2(x) dx = 1 is used and the values of skewness and excess kurtosis

are s = 0.6 and κ = 2. This corresponds to parameters ν = 1.96, σ = 1.45, µ = 1.98
and γ = −µ/ν = −1.01. In the top panel a histogram and the theoretical density,
computed by numerical Fourier inversion of the characteristic function, are shown.
A piece of the simulation of Y is shown in the lower panel.

a simulation of the Laplace MA is shown for a Pierson-Moskowitz spectrum,
see [21].

3.3 Rice’s formula

In order to compute the upper bound (A.3) for the damage the upcrossing
intensity has to be computed. According to Rice’s formula (2) this can be
done as long as the joint density of Y (0) and Ẏ (0) is available. In the case of
the Laplace driven MA one cannot find an explicit formula for this density.
However, one can find one for the joint characteristic function, viz.

φY (0),Ẏ (0)(v1, v2) = exp
(
iγ

∫ ∞

−∞
v1f(x) + v2ḟ(x) dx

)

·exp

(
−1

ν

∫ ∞

−∞
log

(
1− iµ(v1f(x) + v2ḟ(x)) +

σ2

2
(v1f(x) + v2ḟ(x))2

)
dx

)
,

(8)
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where log denotes the complex logarithm function. That this expression holds
is easiest seen by noting that

v1Y (0) + v2Ẏ (0) =
∫ ∞

−∞
(v1f(x) + v2ḟ(x)) dΛ(x)

and using (4). Using the characteristic function (8), we express the upcrossing
intensity by

µ+(u) =
1

(2π)2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
z e−i(v1u+v2z)φY (0),Ẏ (0)(t1, t2) dv1 dv2 dz. (9)

The upcrossing intensity is not given by an explicit formula and thus must be
evaluated numerically. In this paper we apply the two-dimensional fast Fourier
transform algorithm combined with the trapezoidal method.

3.4 Laplace driven MA and linear filters

Another convenience of the Laplace driven MA is its natural behavior when
passed through a linear filter. Let h(x) be the impulse response of a linear
filter. Then, by changing the order of integration,

h ∗ Y (t) =
∫ ∞

−∞
h(t− s)Y (s) ds =

∫ ∞

−∞

∫ ∞

−∞
h(t− s)f(s− x)dΛ(x) ds

=
∫ ∞

−∞

(∫ ∞

−∞
h(t− s)f(s− x) ds

)
dΛ(x) =

∫ ∞

−∞
h ∗ f(t− x) dΛ(x).

Hence, by filtering a Laplace MA with kernel f one gets back a Laplace MA
but now with kernel h∗f , see Figure 3. This means e.g. that if one can compute
crossing intensity for the Laplace MA, and thereby the upper bound (A.3) for
the damage, see the appendix, one can also do it in the same manner for
linearly filtered Laplace MA.

h(x)- -
∫

f(t− x)dΛ(x)

Laplace MA

∫
(h ∗ f)(t− x)dΛ(x)

Laplace MA

Fig. 3. Input-output relation.

Note that as the process is filtered the spectrum is multiplied by |H(ω)|2 as
for Gaussian loads but the parameters ν, σ, µ and γ for the Laplace motion
Λ(x) remain unchanged. However, skewness and kurtosis of the filtered process
change since by virtue of (6) and (7) these quantities are a function of the
kernel which in the filtered process is h ∗ f .

8



4 Examples

In this section we illustrate the proposed model by estimating the expected
damage both for stiff structures and structures having dynamics well described
by a linear oscillator. The load acting on the structure is modeled by a Laplace
driven moving average process.

4.1 Simulation experiment

In order to illustrate the new model and also to evaluate the performance of
the upper bound for the damage, given in (A.3) of the appendix, the following
simulation experiment is done. In the first take, the structure on which the
load is acting is supposed to be stiff, i.e. stresses are proportional to the ap-
plied load. Here, for simplicity, the coefficient of proportionality is set to one.
The load Y (t) is modeled by a Laplace driven moving average having param-
eters ν, σ, µ and γ and a symmetric kernel f corresponding to a spectrum
of the Pierson-Moskowitz type. The same spectrum is used throughout the
experiment and the significant wave height is set to 7 m and the peak period
to 11 s, see Figure 4.

The damage intensity on the structure, that is the accumulated damage per
time unit, can be estimated in two different ways: either by direct simulation
of the response and computing the observed rainflow damage according to (1);
or by direct computation of the upper bound (A.3) for the damage without
making any simulations. In Table 1 the simulated damage intensity and the
upper bound (A.3) for the Laplace driven MA are shown for different values
of skewness and kurtosis. The simulated values are computed as a mean over
1000 independent simulations, each consisting of 10, 000 data points sampled
at 1.85 Hz. For comparison the simulated damage and the upper bound in the
Gaussian model (A.5) are also computed. The Gaussian model clearly causes
much less damage compared to the Laplace driven MA for large values of s and
κ in combination with high values of the fatigue exponent β, mainly due to the
fact that the Gaussian distribution has too light tails and thus does not include
enough big cycles. Moreover, the upper bound seems to follow the simulated
values closesly, both for the Laplace and the Gaussian model, see also Figure
5. This has to do with to the fact that the spectrum is fairly narrow-banded,
at least from a fatigue application point of view. As skewness and excess
kurtosis are close to zero the simulations from the two models are close, as
can be expected since the Laplace model converges to a Gaussian process as
κ → 0. However, the Laplace upper bound is not in perfect agreement with
the Gaussian upper bound because of numerical problems when computing the
crossing intensity (9). These problems arise since one has to choose a finite
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Laplace model Gaussian model

β s = 0, κ = 0.01 s = 0.3, κ = 1 s = 0.6, κ = 2 s = 0, κ = 0

2 2.89 3.16 2.93 3.16 2.90 3.08 2.90 3.06

3 18.6 19.6 21.0 21.8 22.1 22.4 18.7 20.1

4 135 146 180 190 207 211 135 149

5 1080 1200 1790 1940 2300 2350 1080 1230

6 9430 10700 20100 22500 29600 30400 9380 11000

Table 1
Estimated fatigue damage intensity for a stiff structure subjected to a Laplace driven
MA load for different values of skewness s, excess kurtosis κ and fatigue exponent
β. Simulations are given in plain text and the upper bounds in bold text. The last
two columns give the corresponding values for a Gaussian load.

grid to evaluate the characteristic function on before computing the crossing
intensity. If the grid is not fine enough the crossing intensity is underestimated
and thereby also the upper bound.

Next the experiment is repeated. However, this time the load is supposed to be
acting on a structure having dynamics described by a linear damped oscillator,
i.e. having dynamics that is described by the following differential equation

Z ′′(t) + 2zw0Z
′(t) + w2

0Z(t) =
1

m
Y (t),

where Z(t) is the response and Y (t) the load. The parameters have the follow-
ing interpretation: w0 is the resonance frequency of the undamped system, z is
a damping coefficient and m equals the mass that is accelerated. The transfer
function H(ω) is in this case given by

H(ω) =
1/m

−ω2 + 2zω0iω + ω2
0

.

If the load Y (t) is a Laplace driven MA then, due to the properties of this
class of models, the response Z(t) is also a Laplace driven MA. However, the
kernel of Z(t) is h ∗ f(t), where f is the kernel of Y (t) and h = F−1H is
the causal impulse response of the linear oscillator. Moreover the parameters
σ, ν, µ and γ remain unchanged whereas the values of skewness and kurtosis
change according to (6) and (7).

The same spectrum is used for the load as in the previous example, namely a
Pierson-Moskowitz spectrum with significant wave heigth 7 m and peak period
11 s and the parameters of the oscillator are, for illustration reasons, set to
m = 0.37 kg, ω0 = 2 rad/s and z = 0.05. The resulting spectrum of the output
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Fig. 4. Spectrum of the input process in the left panel and the filtered process in
the right one.

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

fatigue exponent

da
m

ag
e 

in
te

ns
ity

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

fatigue exponent

da
m

ag
e 

in
te

ns
ity

Fig. 5. Damage intensity for a stiff structure (left) and a linear oscillator (right)
driven by Laplace MA with skewness s = 0.6 and excess kurtosis κ = 2. Simulated
damage intensity (solid), upper bound according to Laplace MA model (dashed)
and upper bound from Gaussian model (dotted).

process Z(t) is shown in Figure 4. The first peak can be thought of as the
stress induced by e.g. ocean waves and the second peak as the stress induced
by resonances in the structure. In Table 2 the damage intensity is shown for
the filtered process. Again the values corresponds to direct simulation and
the upper bound (A.3) for the Laplace driven MA and the corresponding
quantities for a Gaussian process having the same spectral density function.
The values of s and κ refer in this case to the skewness and excess kurtosis of
the process driving the oscillator. The biggest difference in this case, compared
to the stiff structure in Table 1, is that the upper bound differs more from
the simulated values. This is due to the broadband character of the spectrum.
Keeping in mind that the upper bound (A.3) has the interpretation of being
a narrow-band approximation, at least in the Gaussian case, this is not so
surprising. In Figure 5 the simulated damage is compared to the Laplace MA
upper bounds for excess kurtosis κ = 2 and skewness s = 0.6.
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Laplace model Gaussian model

β s = 0, κ = 0.01 s = 0.3, κ = 1 s = 0.6, κ = 2 s = 0, κ = 0

2 3.62 4.12 3.61 4.10 3.59 4.06 3.63 4.13

3 21.3 24.3 23.3 26.4 24.7 27.9 21.4 25.2

4 143 167 182 197 215 246 144 174

5 1060 1270 1660 1970 2220 2610 1060 1330

6 8540 10500 17100 21100 26700 32500 8520 11100

Table 2
Estimated fatigue damage intensity for a linear oscillator subjected to a Laplace
driven MA load for different values of skewness s, excess kurtosis κ and fatigue
exponent β. Simulations are given in plain text and the upper bounds in bold text.
The last two columns give the corresponding values for a Gaussian load.

4.2 The effect of skewness and kurtosis on fatigue damage

This example illustrates the effect of skewness and kurtosis on the accumu-
lated damage. Moreover it shows the danger of using a Gaussian model when
not appropriate. Again the Pierson-Moskowitz spectrum in Figure 4 is used
and the accumulated damage for the Laplace driven MA is computed by sim-
ulations for different values of skewness and kurtosis. These values are then
compared to what is obtained in a Gaussian model by forming the ratio

λ =
E[DLMA]

E[DG]
,

where DLMA and DG are the accumulated damages in the Laplace and Gaus-
sian models respectively. In Figure 6 λ is shown as a function of skewness and
excess kurtosis. Each value is computed as a mean of 1000 simulations each of
length 10, 000 having sample frequency 3.7 Hz. On one hand, for fixed skew-
ness, the damage increases with excess kurtosis. On the other hand, for fixed
kurtosis, the damage is decreasing with the absolute value of the skewness,
a fact that also was reported by [6] for another type of model. Moreover the
damage is clearly symmetric in the skewness parameter. This is a result of
the particular damage function used here which is symmetric in the rainflow
minima and maxima. As noted in [4] one can by including the mean stress in
the damage function get a damage that is an asymmetric function of skewness
with the highest damage for some positive value of the skewness parameter.
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Fig. 7. Estimation procedure. First the spectrum is estimated from data and a
kernel is found by Fourier inversion. Then mean, variance, skewness and kurtosis
are estimated and equations (5), (6) and (7) are used, together with the kernel, to
solve for the Laplace parameters ν, σ, µ and γ.

4.3 Example with real data

This example deals with a data set consisiting of sea surface elevation mea-
surements, measured at a platform off the west African coast. The platform
is located at shallow water so the data might be expected to deviate from the
Gaussian model. The data set contains 9524 data points sampled at 4 Hz.

The Laplace MA model is fitted to the data. In order to do so the spectral
density is first estimated from data and after that a symmetric kernel satisfying∫

f 2 dx = 1 is determined according to (5) by using Fourier inversion, see
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Fig. 9. Quantile-quantile plot of africa data and fitted model (left) and upcrossing
intensity (right) of data (solid line), Laplace model (dashed line) and corresponding
Gaussian model (dotted line).

Figure 8. The rest of the parameters are fitted using a moment matching
approach, i.e. by estimating mean, variance, skewness and kurtosis and solving
(5), (6) and (7) for the paramters ν, σ, µ and γ. The skewness and excess
kurtosis were in this case estimated to s = 0.25 and κ = 0.17. Thus this data
set is skewed and has somewhat heavier tails than the Gaussian distribution.
A scheme of the estimation procedure is shown if Figure 7. The fit of the model
to the data is good both when it comes to marginal distribution and crossing
intensity, see Figure 9.

Now assume that this load is acting on a stiff structure in the same fashion
as in the previous simulation experiment. In Figure 10 the observered damage
intensity and the damage intensity simulated by the Laplace and Gaussian
models are shown. The simulated values are computed as the sample mean
of 100 simulations each consisting of 9524 data points sampled at frequency
4 Hz. Clearly the values simulated from the Laplace driven MA model give a
very good estimate of the expected damage intensity, whereas the Gaussian
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Fig. 10. Fatigue damage intensity for a stiff structure subjucted to ocean waves. The
damage is comupted using a symmetric damage function (left) and a mean stress
corrected damage function (right). Observed damage (dashed), simulated damage in
Laplace driven MAmodel (solid), and simulated damage in Gaussian model (dotted).

model has a tendency to underestimate the damage. The difference between
the models is however quite small, a fact that may be explained by the values
of skewness and excess kurtosis which in this case are s = 0.25 and κ =
0.17. Based on the experience from the previous simulation experiment it is
known that the Gaussian and the Laplace MA models give similar values
for the damage when both skewness and excess kurtosis are close to zero.
As the kurtosis increases the damage will also increase. However, as a result
of the curve in Figure 6, this effect can to some extent be reduced by also
increasing the skewness. Therefore a Laplace model with small kurtosis and
relatively large skewness, as is the case here, will give rise to similar damage
as a Gaussian model.

So, does this mean that the two models in this case are almost equivalent?
The answer to that question depends on what damage function one uses in
the rainflow analysis. In Figure 11 rainflow minima are plotted against rain-
flow maxima for the observed data and simulations from the Laplace and
Gaussian models. Apparently the Laplace model better models the rainflow
cycles. However, it turns out that this difference does not show up in the cy-
cle range distribution but rather in the cycle mean distribution. Thus, if a
damage function that only uses the cycle range is used the Laplace and the
Gaussian models will in this case be nearly equivalent whereas a mean stress
corrected damage function will lead to a bigger difference. A simple way to
include the mean stress in the damage function, sometimes referred to as mean
stress sensibility, is to use a corrected cycle range Sc, say, defined by

Sc = (vi − urfc
i ) + M(vi + urfc

i ),

where (urfc
i , vi) are the rainflow cycles and M is a material parameter. The

damage function is then defined by f(urfc
i , vi) = Sβ

c . Using this particular
damage function with M = 0.3, see Figure 10, the difference between the
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Fig. 11. Rainflow minima plotted against rainflow maxima. Observed data (dots),
simulation from Laplace model (crosses) and from Gaussian model (stars).

models increases as expected.

5 Conclusions

A new model for random loads, the Laplace driven moving average, has been
presented. The model is a non-Gaussian stationary process possessing a spec-
tral density function. Moreover it also has additional degrees of freedom so
that one e.g. can model the skewness and kurtosis of the marginal distribution.
Thus, for the proposed class of random loads, one can easily vary spectrum,
skewness and kurtosis parameters and consequently fit a variety of possible
loading conditions.

Another property of the proposed class of models is that it is closed under
linear filtration. This means that if a Laplace driven MA is used as input to
a linear filter the output process will also be a Laplace driven MA. This is
an important advantage in comparison to other non-Gaussian models such as
e.g. transformed Gaussian processes.

The fatigue damage due to a Laplace driven MA can be either computed by
direct simulation or bounded from above using an expression relying on the
upcrossing intensity. In our simulation example it has been shown that the
upper bound is a good option when the spectrum is narrow-banded whereas it
can be too crude in other situations. Moreover the new model has been used
to show the effect of skewness and kurtosis on fatigue damage, and the results
are similar to what has been seen in other studies namely that the fatigue
damage increases with kurtosis and decreases with the absolute value of the
skewness. Usefulness for modelling real data has been demonstrated using sea
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surface elevation data. For the particular data set used, the model gave a good
description of the rainflow maxima and minima and thereby also an accurate
analysis of the fatigue damage.
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A Fatigue damage and level crossings

As previously mentioned the fatigue damage may be computed according to

D(T ) =
∑

f(urfc
i , vi) + Dres,

where f(urfc
i , vi) is the fatigue damage due to the ith rainflow pair and Dres

is the damage caused by cycles found in the residual. An alternative way
of computing rainflow damage is by means of counting interval upcrossings
N+

T (u, v), say. The number of upcrossings N+
T (u, v) of an interval [u, v] by a

continuous function y(t), 0 ≤ t ≤ T , is defined as the largest index n such
that there are times 0 ≤ s1 < t1 < s2 < . . . < sn < tn satisfying y(si) < u ≤
v < y(ti) and sn ≤ T , see Figure A.1 for an illustration. Upcrossings of the
interval [u, u] are just upcrossings of the level u and are denoted by N+

T (u).
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Fig. A.1. Upcrossings of the interval [−0.5, 1.5]. In this case N+
100(u, v) = 5.

As was proven in [22], the rainflow damage can be written in terms of interval
upcrossings. Let f(u, v) = α (v − u)β be the damage caused by a single cycle.
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Then

D(T ) = −
∫ +∞

−∞

∫ y

−∞
∂2f(x, y)

∂x∂y
N+

T (x, y) dx dy −
∫ +∞

−∞
∂f(x, y)

∂x

∣∣∣∣∣
y=x

N+
T (x) dx

is the total damage. If the load Y is random one is rather interested in the
expected damage given by

E[D(T )] = −
∫ +∞

−∞

∫ y

−∞
∂2f(x, y)

∂x∂y
E[N+

T (x, y)] dx dy−
∫ +∞

−∞
∂f(x, y)

∂x

∣∣∣∣∣
y=x

E[N+
T (x)] dx. (A.1)

For a stationary load Y the expected number of interval crossings becomes

E[N+
T (u, v)] = T E[N+

1 (u, v)] = T µ+(u, v),

where µ+(u, v) is the intensity of interval upcrossings. Similarly, E[N+
T (u)] =

T E[N+
1 (u)] = T µ+(u). Thus, considering equation (A.1), the key to compute

the expected damage is to know the intensity of upcrossings of intervals for
the random load at hand. Unfortunately, it is in most cases very hard to
compute this intensity and explicit formulas are known only for loads satisfying
a Markov condition. One possibility to avoid this problem is to bound µ+(u, v)
from above in the following manner

µ+(u, v) ≤ min
u≤z≤v

µ+(z) = k(u, v). (A.2)

This simplifies the problem since as long as the joint density of Y (0), Ẏ (0)
is known the upcrossing intensity µ+(u), and thereby also k(u, v), can be
computed by means of the celebrated Rice’s formula [19]. Using the upper
bound (A.2) for f(u, v) = α (v−u)β with β > 1, the expected rainflow damage
can be bounded by

E[D(T )] ≤ Tαβ(β − 1)
∫ +∞

−∞

∫ y

−∞
(y − x)β−2k(x, y) dx dy. (A.3)

For a stationary Gaussian load the upper bound (A.3) takes a particularly
simple form, see [23], and equals a narrow band approximation proposed by
Bendat, [24], at a time when a definition for the rainflow cycle counting was
not yet available. For a zero mean stationary random load Bendat proposed
that the cycle amplitude H, say, has the following probability distribution

P (H ≤ z) = 1− µ+(z)

µ+(0)
. (A.4)

Moreover, he proposed to approximate the intensity of cycles by means of
fz = µ+(0), called the apparent frequency. This method is applicable not
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only for Gaussian loads but for all loads having a unimodal and symmetric
upcrossing intensity µ+(z). The distribution (A.4) of the cycle amplitude was
then used to compute the average damage which is called the narrow band
approximation

E[Dnb(T )] = T α fz E(2H)β.

For a zero mean Gaussian load having spectrum S(ω) and spectral moments
defined by λi =

∫ +∞
−∞ ωi S(ω) dω it follows from Rice’s formula that H has a

Rayleigh distribution, i.e. H =
√

λ0R where P (R ≤ r) = 1− e−r2/2. Further-
more fz = (2π)−1

√
λ2/λ0. Using these facts the narrow band approximation of

the expected damage for Gaussian loads, often used in offshore applications,
becomes

E[D(T )] ≈ E[Dnb(T )] = T αfzE[(2
√

λ0R)β] = Tα fz hβ
s 2−β/2Γ(1 + β/2),

(A.5)
where hs = 4

√
λ0 is the so called significant amplitude while Γ(x) is the gamma

function defined by Γ(x) =
∫ +∞
0 s(x−1) exp(−s) ds.
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