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Abstract

The trend in the market for trucks is that highly specialized configurations are made
available for the customers and that only a few completely identical configurations
are manufactured. One reason for this development is that the optimal truck config-
uration for a certain customer is very specific and depending on, e.g., the environ-
ment in which the truck is to be used and for what transport mission. To achieve
reasonable cost levels the manufacturer must be able to produce a limited set of con-
figurations in a cost-effective way by using the same parts in different combinations,
leading to a relatively small number of parts but a large number of possible configu-
rations.

This thesis presents an approach to the configuration problem by modeling it
from a multi-objective optimization perspective. By assuming that a product is de-
scribed by a number of quality measures which different customers appreciate dif-
ferently, the interesting configurations consist of the configurations that lie in the
Pareto optimal subset of the decision space.

For a large number of objectives, multi-objective optimization becomes cumber-
some; therefore a first appended paper provides a method for problem reduction
such that the representation of the Pareto optimal set is kept as good as possible.

A second paper considers a simplification of the configuration problem by as-
suming that the decision variables are continuous and box constrained. A problem,
in which the objective is to find an optimal representation of the Pareto optimal set,
while the number of chosen values of the decision variables is limited, is formulated
and solved for a number of test instances.

The thesis has been written in close cooperation with the product development
department of Volvo 3P.
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1 Introduction

By modeling the problem of creating an optimal set of truck configurations given a
great variety of customer requirements, this thesis constructs a framework for ap-
plying multi-objective optimization to the product development of a population of
products.

The problem is approached from a mathematical programming perspective with
an assumption that there are functions measuring the different qualities of a truck.
This is a critical assumption, and for the framework to be an effective tool, it is an
important task for industry to learn what the customers seek, and hence how quality
should be measured.

The thesis is an attempt to bring the whole product development problem to
the surface. It models the problem in mathematical terms, and then focuses on some
well-defined subparts, which are then studied more extensively in the two appended
papers.

1.1 Background

The ultimate goal of a commercial company is to maximize the long-term dividends
to the stakeholders. To enable this it is necessary to offer the market products that
match the market demands in a cost-effective way.

Volvo 3P is a business unit within the Volvo group responsible for product plan-
ning, product development, and purchasing for the four brands Volvo Trucks, Mack
Trucks, Renault Trucks and Nissan Diesel. The work presented in this thesis has
been carried out within the product development of Volvo 3P, whose interest in this
project comes from the belief that a structured and controlled approach to a process
that today is very complicated and hard to grasp is important in order to maintain a
long-term competitiveness in an increasingly complex and global truck market.

1.2 Differentiation and Pareto optimality

Volvo is a global company whose products are used in markets with very different
characteristics concerning operating environments, legislations, and transport mis-
sions. This fact, together with a stiff competition, has led to a high degree of special-
ization and truck customization for individual customers. Thus, to be able to fulfil
the demands of the customers, a great variety of truck configurations must be of-
fered, illustrated in the Figures 1 and 2.

Around 200,000 trucks are produced within the Volvo group each year. The aver-
age number of completely identical trucks is very small.
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Figure 1: Many different operating environments, many different transport missions,
and many different (driver dependent) vehicle utilizations require a wide range of
differentiated vehicle configurations.

Figure 2: A number of different superstructures illustrating various transport mis-
sions.
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Each individual configuration has a certain perceived quality for each specific
customer. By assuming that quality can be divided into a number of components
one can illustrate the quality of a configuration as a polygon in a diagram of the type
drawn in Figure 3. (Note that the term “quality” is used for all objectives, it should
not be confused with the classical “product quality”).

Further, if we assume that each customer measures the different quality com-
ponents principally equivalently, but that they possibly appreciate them differently
depending on their operating environment, transport mission, financial strength,
etcetera, then it becomes obvious that one is not interested in producing a truck that
is worse than some other possible truck in all of the quality components.

Formally, this is denoted “Pareto optimality”, a concept which is defined mathe-
matically in Section 5. In Figure 3, a Pareto optimal solution corresponds to a polygon
which is not entirely enclosed in any other polygon.

Figure 3: The quality of each configuration (in the figure there are two) can be repre-
sented as a polygon intersecting each axis at the numeric measure of the correspond-
ing quality. The gray region represents possible values of the quality measures. Good
values of a quality correspond to values far from the center of the diagram.

1.3 Purpose

The vision of the project is to design a procedure for reducing the size of the as-
sortment of variants used for configuring the population of trucks consistently and
systematically in such a way that each customer is guided towards a configuration
that is at least as good as the one that he/she would have chosen without using the
procedure. The drive is essentially to satisfy as many customers (in selected market
segments) as possible using the least number of technical solutions, and by this in-
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crease the profitability for the company. The resulting set of configurations should be
optimal with respect to a suitable measure. The expected goal for the company is a re-
duction of costs related to product development, production, maintenance, and sales
of trucks. We envisage a computer environment in which an optimal set of variants of
technical solutions together with a controlled configuration management guides the
customer towards the most suitable specification in a set of available truck configu-
rations. Another goal is to create an understanding of what a company can gain from
the use of mathematical optimization and what it requires from the company in or-
der to work (e.g., numerical measures of quality parameters). The expected goal for
academia is an increased insight into complex product development, and how math-
ematical models and methods could be adapted to such an environment. Through
feedback from the product planning process, academia will learn more about where
the biggest differences lie between real, “dirty”, industrial problems and academic,
“clean”, ones. Finally, the expected goal for the customers is guidance towards and
within the set of available and verified appropriate vehicle configurations.

The full title of the project, in which this thesis is a part, is “Product configura-
tion with respect to multiple criteria in a heterogeneous environment within an extended
enterprise”. The “multiple criteria” is directly related to the different qualities of a
truck, the “heterogeneous environment” represents the large number of different
customers, and “extended enterprise” symbolizes that interdependence with other
actors outside of the company, e.g., system suppliers, are of importance.

1.4 Outline

The theme of the thesis is to interpret the practical problem mathematically and to
make some technical contributions to selected parts. In the view of modeling the
problem in mathematical language, approaches are suggested on how to move to-
wards the aims of the vision.

In the thesis, the scientific areas needed for illuminating the configuration prob-
lem are described. We intend to give a description as complete as possible of the
configuration problem. It should, however, be pointed out that even though we de-
scribe the complete problem, we do not claim to be able to solve it without a major
delimitation of the scope. There is too much knowledge missing about the product
and the customers that has to be taken into consideration for the complete problem
to be solved.

In Section 2 the current structure of the product development is described. This
is our starting point, which also defines the framework that we have to adapt to.
Section 3 takes a complex systems view on the configuration problem and Section 4
presents the different systems that have to be discretized or aggregated for an ef-
ficient configuration management. In Section 5, multi-objective optimization is re-
viewed with a special focus on the configuration problem. Then, in Section 6, the ob-
jective functions, the variables, and the constraints used to model the configuration
problem as a multi-objective optimization problem are discussed. In Section 7 the
issue of clustering the configurations is discussed. Finally, in Section 8, we summa-
rize the main parts of the problem and collect and review the scientific areas needed
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to describe and to solve it. We indicate where we—by interpreting the true problem
and by lifting out subproblems, formulating these as general mathematical problem
and treating them as such—have made contributions to the field of complex product
development. The most critical limitations are also highlighted. Section 9 summa-
rizes the appended papers, in which generalizations of selected parts of the complete
problem are studied.

2 The current conditions at Volvo

2.1 The organization

There is a working product development process. If it was shown by a mathemat-
ical modeling of the actual problem that revolutionary changes should be carried
through, then it is not clear that such changes should be performed directly. First, it
would be naïve to believe that a mathematical model can capture the reality perfectly
and find solutions that are truly optimal for the practical problem. It is probable that
some characteristics of the true problem—handled by the current process—are miss-
ing in the model. Second, revolutionary changes hardly would be accepted by the
organization. Third, it is a dynamic process and if changes are introduced, then so
are the surroundings defining the problem.

The conclusion is that the mathematical model used should be formulated such
that it, by construction, does not lead to totally different solutions from what are
utilized in the current process. Changes from the current situation should be intro-
duced gradually, making it possible for the organization to adapt and learn, and to
take care of possible problems, not known in advance, as soon as possible.

2.2 The product structure: variant families, variants and restrictions

The managing of different configurations of trucks has led to an evolution of the
product structure over time. An organized product structure can be utilized in many
ways: It makes it possible for different departments to develop different parts of the
truck. It enables the company to ensure that the right physical material is produced
and assembled. It also makes it possible to secure that each truck fulfils the legisla-
tions that are valid at the market in which it is sold. At Volvo, a truck is described by
its so called variants, each of which belonging to a variant family. The variant fami-
lies describe a vast variety of entities, some of which represent physical choices such
as engine type or frame width, while others describe, e.g., the type of roads that the
truck is aimed for or in which market it is to be used. The product type is a very coarse
division of the truck configurations, e.g., specifying the axle configuration, the type
of cabin, and whether the truck is a tractor (to which a semi-trailer must be con-
nected, cf. the upper-most configuration to the left in Figure 2) or a rigid (everything
else). In principle, a certain truck configuration is completely defined by its variants,
where in most cases exactly one variant has to be chosen from each variant fam-
ily valid for that product type. Thus, the truck specification—a list of all the variants
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chosen—can be regarded as a fingerprint of the truck. Figure 4 shows a part of such a
list. A few of the entries are highlighted to give some examples of actual variants and
variant families; they are described in Table 1. Figure 5 contains pictures of different
rear spring types, each corresponding to a variant in one of the variant families.

Figure 4: A part of a truck specification. Each entry is a code for a variant in some
variant family.

Variant Variant family Description of the variant
RC-ROUGH Road condition Badly maintained road
6*2 Axle arrangement 6 wheels thereof 2 driving
RFUEL490 Fuel tank at the RHS 490 litre right side fuel tank

Table 1: Examples of items in the truck specification shown in Figure 4.
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(a) RST-MUL

(b) RST-PAR

(c) RST-AIR2

Figure 5: An illustration of different rear spring types, defined by one of the variant
families. a) has a multi-leaf spring, b) has a parabolic spring and c) has an air spring.
The captions above are the names of the corresponding variants.
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For a certain product type there are about 500 valid variant families, each contain-
ing two or more variants. Thus, the number of possible configurations—if we define
a unique configuration by the selection of one variant from each variant family—is
huge (much larger than 2500 ≈ 10150). In reality, however, not all variants can be com-
bined just anyhow, due to geometrical, physical, functional, and legislative reasons.
In the product structure this is documented by so called restrictions, which represent
disallowed combinations of two or more variants. This way of defining feasible and
infeasible configurations is sometimes denoted as using a system of positive variants.
The opposite, negative variants, presupposes that all configurations are infeasible ex-
cept the ones that are explicitly defined as feasible. Which of the systems to use is a
fundamental strategic decision for the company. The advantages of using a system
of positive variants are that the flexibility increases and that in practice it leads to
more configurations and thus more possibilities for customer adaptations. A serious
disadvantage is, however, that positive variants impose a large complexity due to
the large number of restrictions. In addition, the set of restrictions is dynamic in the
sense that restrictions are added over time whenever infeasibilities are discovered,
and it is a huge task to maintain the set of restrictions and to adapt it to newly de-
veloped variants and to changes in the legislations. The number of restrictions are in
the order of 100,000. Since each restriction represents an prohibited combination of
variants, it might cut off a large number of configurations from the feasible set.

What drives different customers not preferring identical configurations is their
objective and subjective preferences. The objective category comprises the transport
mission and the geographical location (directly related to the operating environment
and the legislation to adapt to). Subjective preferences are the feature profile wanted
(wishes in the objective space Z, cf. Section 5) and opinions about the technical so-
lutions (i.e., in the design space X , cf. Section 4.1). Intuitively, it seems like the only
important thing is how the truck behaves and not how the actual technical solution
is constructed (i.e., the location in the design space). However, there might be un-
derlying requirements such as that the customer may wish to reduce the variety in
his/her vehicle fleet, or that an old superstructure should be used also on a new
truck. Furthermore, the customer might have strong feelings for a certain design,
such as the size of the engine. A reasonable assumption is that the customer presets
the transport mission of the truck (including what kind of superstructure that will
be used), the cabin type, the engine (or driveline), and the axle configuration. This is
in principle equivalent to defining the product type.

Figure 6 illustrates how the vehicle specification is defined. First, objective and
subjective design requirements preset some of the main characteristics. Then the cus-
tomer feature requirements yields the specification.
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Figure 6: The gray silhouette to the left symbolizes the main characteristics of the
truck that are preset by the customer requirements. Together with a preferred feature
profile, the vehicle specification, illustrated to the right, should be defined.

3 The complexity of product development

A complex system can be defined as a collection of interacting parts whose collective
behavior cannot be understood by studying the parts separately [5]. When incorpo-
rating the daily meaning of complexity as something being very large and incom-
prehensible into the definition, the product development of trucks can be viewed
as a complex environment in at least three dimensions. These dimensions represent
functional, combinatorial, and dynamic complexity; they are illustrated in Figure 9 on
page 12.

3.1 Functional complexity

With functional complexity, we mean that the functional or feature requirements
cannot be partitioned into independent measures, each of which could be controlled
individually.

The feature structure of a truck is at Volvo divided into 8 feature areas. These are
illustrated in Figure 3. The areas are broken down into 32 customer features, such as
e.g., durability, ride comfort, exterior noise and fuel economy. The customer features are
further divided and translated to technical features (and technical subfeatures), which
should be quantitatively measurable. However, the measurable quantities are not
independent of each other; this constitutes the functional complexity: the truck has
a large number of functionalities that are to be controlled and steered against and
the connections between the functionalities can be very complicated, see Figure 7.
For this reason, it is hard to construct a configuration with a wanted feature profile
by analyzing the features separately. This is no real issue when the problem is ap-
proached by optimization, however it might be hard when using traditional systems
engineering techniques [36].

Let the features of a certain product be numbered from 1 to N feat and define the
symmetric matrix A of size N feat × N feat by aij = 1 if function i is connected to
function j and 0 otherwise . The functional complexity of the product is related to
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Figure 7: The features of a truck are connected and cannot be broken down into
independent entities. The dotted arrowed symbolize connections between the sub-
features, where a design against one of subfeature inevitably also affects some of the
others.

the density (the portion of 1:s) of A. A product with the lowest possible functional
complexity corresponds to the unit matrix.
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Figure 8: The density of the feature-feature connection matrix is related to the func-
tional complexity of a product.

In the thesis [33] an aspect of functional complexity is studied. Here, the top-
level functionality retardation is investigated. For an efficient retardation system, a
number of subsystems are interconnected, providing subfeatures that together build
up the top-level function. (Optimization techniques are used, and it is shown that
there is a trade-off between different objectives.)

3.2 Combinatorial complexity

As noted in Section 2.2, Volvo works with highly combinatorial products, where
parts are used in different combinations such that a large number of configurations
becomes possible. With the notation used in [5] this type of complexity is called com-
plication, where the main issue is the incomprehensibly large number of parts of a
system and not the unknown relations between them.

Since the configurations share building blocks, there is a permanent balancing
between creating designs that are good for a single configuration (an individual cus-
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tomer) and creating designs that are good for a collective of configurations (a popu-
lation of customers).

At Volvo, all of the variant families, variants and restrictions are documented
in databases. In addition, also links are documented, steering which physical parts
that should be used for the manufacturing including which holes in the frame that
should be drilled, depending on the variants chosen. The so called bill of material,
given by the variants through the links, is like a recipe for constructing the truck1.
However, both the sets of restrictions and links are dynamic, and it is a huge task to
keep them up to date when changing the assortment of variants. In the organization,
this problem is generally called the problem of handling the documentation.

3.3 Dynamic complexity

The truck market is dynamic with a constant demand for the development of new
technical solutions, partly to satisfy new legal requirements, partly to meet the com-
petition. The product development is a dynamic process, and it is important not to
box into a corner, but to choose a way of action that is likely to be accessible also
in the future. In principle, one would like to design a product structure and a de-
velopment process that is robust, meaning that it can quickly adapt and provide the
market its requirements at reasonable cost levels, and with respect to possible trans-
port scenarios of the future.

The dynamic complexity concerns the time axis of the development process,
where the scale is from slow evolutionary changes to drastic revolutionary changes.
Evolutionary changes corresponds, e.g., to the tuning of current variants to increase
the quality of the truck population, while revolutionary changes corresponds to
topological changes in the form of new variants and variant families representing
completely new technologies forced by legislation or innovations.

3.4 The complexity space

We define the complexity space as the three dimensional space spanned by the func-
tional, combinatorial and dynamic dimensions. Figure 9 illustrates the complexity
space, illustrating the high complexity of the product development of trucks, with
its substantial contributions in all three components.

The complete problem is located deep along each axis in the complexity space.
The thesis [18] deals with computer aided design (CAD) and management of geo-
metrical data for combinatorial products, where common parts are to be used in a
large number of different configurations. The thesis takes a large step along the com-
binatorial complexity axis. In this work, we focus on the combinatorial as well as the
functional complexity dimensions. With a higher concentration on how the different
transport scenarios would affect product development and with a larger focus on
robustness in several meanings, the dynamic complexity dimension could also be

1Continuing the cooking metaphor, one of the beliefs in this project is that if the customers would
specify the taste, the nutrients and the cost of a dish instead of the ingredients, then the customers would
get tastier, healthier and cheaper dishes, and the company would not need as many different ingredients.
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Figure 9: A complex environment. Product development of trucks comprises com-
plexity components in all three dimensions (functional, combinatorial, and dy-
namic), thereby making the total product development complexity very high. (This
thesis focuses on the functional and the combinatorial dimension.)

included in the analysis. Figure 10 roughly illustrates where other types of products
are located in two components of the complexity space.

Figure 10: An illustration of the location of some products of different types in the
complexity space projected onto the functional and combinatorial dimensions.

The notations of functional and geometrical building blocks, respectively, are intro-
duced as being different descriptions of the parts building up the complex truck
structure. The truck itself is a complex system, in which it is not possible to deter-
mine the overall behavior by studying the individual building blocks separately. The
correspondence between the functional and geometrical building blocks varies de-
pending on the scale on which the truck is viewed. In the geometrical description
of the parts, the building blocks are the physical parts, e.g., screws and bolts on a
fine scale, and axle installations and engines on a larger scale. In the functional de-
scription, the building blocks are, e.g., different signals and movements on a fine
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scale, turning and braking on a large scale. On a very fine scale, the functional and
the geometrical descriptions coincide, with each physical part having its own func-
tionality. On an intermediate scale, the geometrical building blocks are connected to
many functionalities, and similarly the functional building blocks depend on many
geometrical parts. On a very large scale, where the truck is one physical entity with
the function of moving from A to B, the descriptions coincide again.

Figure 11 illustrates how different building blocks in the truck (and in neighbor-
ing systems) interact. (Another feature of complex systems is that it is hard to define
the system boundaries.)

Figure 11: The truck is a complex system in itself. It is constituted by interacting
building blocks determining the overall behavior. Different types of edges symbolize
different strengths of connections.

It is not easy to say how the functional as well as the geometrical building blocks
are connected to each other. What is known, at least partly, is one aspect on how vari-
ants are connected, namely through the restrictions. A small study of the distribution
of restrictions over the variants has been performed. We define a graph G = (V,E),
where the set of nodes, V , represents the valid variant families for a certain product
type, and where the set of edges, E, represents the pairs of nodes representing vari-
ants present in the same restriction. One interesting observation is that the graph is
almost connected with only a few exceptions. Hence, any configuration optimization
must be performed over a large non-separable feasible set.

4 Model discretization/aggregation

In the global market, the number of customer types is very large. Also, the number
of possible configurations is huge. The company is not the only actor profiting from
a limitation of the number of configurations. The cost of a truck is one of the quality
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measures of a configuration and a coarser discretization (to fewer elements) of the
available set of configurations can imply that a large number of customers will get
better (in all objectives) configurations at a fixed price level. This is because a coarser
discretization leads to an increased cost-effectiveness and, in the end, to lower prod-
uct prices. In Appendix A we present an example illustrating this phenomenon. We
claim that it is of advantage both for the company and for its customers to discretize
the sets of customers and available configurations by lumping them together into (a
suitable number of) representative groups.

What is in it for the company?

• Economics of scale

An increased part volume leads to lower costs for, e.g., purchasing. A de-
creased number of variants leads to reduced costs not only for the total de-
velopment, but also for, e.g., spare parts handling. By synergy effects, cost-
effectiveness is created. If the company, also with fewer variants, manages
to supply the market with technical solutions corresponding to the mar-
ket requirements, the company will be able to offer competitive products
in all quality segments.

• Better control of the market

By discretization of the customers it is easier to control whether the dif-
ferent market segments are covered by the available configurations.

What is in it for the customers?

• Economics of scale

In the long term, the economics-of-scale advantage for the company will
lead to products at the same quality levels, but with lower product prices
or, equivalently, products at the same price levels but with increased qual-
ities.

• Better quality control

With a larger number of variants and configurations, the product verifica-
tion (the control of whether a product fulfils its requirements) will natu-
rally be worse than with a small number. Computer simulations, rig tests,
and proving ground tests are made on a relatively small number of dis-
tinct configurations, and the measured results are “extrapolated” to sim-
ilar configurations. With fewer variants and configurations, the control
will be better.

Discretization/aggregation should take place in three structures: the product, the fea-
tures and the operating environment. Each is described in the following sections.
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4.1 Discretization of the product and the decision spaces for the
optimization problem

In Section 2.2 the current product structure is discussed. The structure is already now
discretized; the variant families with their variants constitute a discretized version
of the space of all possible trucks.

Let us now disregard the actual product structure at Volvo for a while and re-
turn to our configuration problem. In the space of all possible truck configurations,
the company wish to produce the ones that are at least close to Pareto optimal. In
addition, the company wants to use common parts for the configurations that are
constructed. To enable a well-functioning product development process and to facil-
itate an efficient specification of the product itself, the product must be partitioned
into groups or subsystems. This is what the present product structure describes, al-
though it is not clear that the present structure is the best one. Therefore, we identify
the different groups with the different variant families and let Xi be the set of all
technically possible variants in variant family i, i = 1, . . . ,m. Further, we let the
actual variants of today define the sets X̄i ⊆ Xi, i = 1, . . . ,m.

Based on the actual conditions, we define three alternative decision spaces, in
which the configurations are located. The configuration space, or X̄ , consists of all
configurations (feasible or not) that can be defined using the current variants, i.e.,
X̄ = X̄1 × . . . × X̄n. By allowing new variants in each variant family we define the
design space, or just X , as the Cartesian product of all possible variants (feasible or
not) in the current variant families, i.e., X = X1× . . .×Xn. Also, we define the set of
all feasible trucks as the full design space, or X tot. This set consists of just anything that
can be called a truck, or even that can perform certain transport missions; only the
imagination puts boundaries on X tot (e.g., all of the competitors’ trucks are members
of this set.)

It is clear that X̄ ⊆ X and that both X̄ and X can be partitioned into feasible and
infeasible parts, i.e.,

X̄ = X̄feas ∪ X̄infeas, X̄feas ∩ X̄infeas = ∅

and

X = Xfeas ∪Xinfeas, Xfeas ∩Xinfeas = ∅.

Also, the relations X̄feas ⊆ Xfeas ⊆ X tot hold.
The principle behind the product development strategy used is to, instead of search-

ing in X tot when developing, search in X . Though, the basis of X , i.e., the variant
families, is now and then altered such that the, for the moment, interesting part of
X tot becomes reachable. When using X as the decision space, the need for complicat-
ing restrictions (cf. Section 2.2, 6.3) is introduced. This is, however, necessary in order
to obtain a manageable mass-market product. If the company’s mission instead was
to create a moon-lander—a one-time-product without combinatorial complexity—it
would be natural to search within the corresponding set X tot of all spaceships.
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An important point is that in reality the development work lies somewhere in be-
tween the configuration space, the design space, and the full design space. There is a
continuous product development, mostly of variants and now and then introduction
of new variant families, but also many carry-over-effects where old technical solu-
tions and concepts for different reasons are to be used also in the future. Two well-
defined isolated formulations of the configuration problem can be defined, one in
which the decision space is the configuration space X̄ and one in which the decision
space is the design space X . We denote the former problem as the mode 1 problem,
and the latter as the mode 2 problem. The mode 1 problem is more of an operational
type while mode 2 is more of a strategic or development type. One obvious differ-
ence between the two modes is that the restrictions/constraints are only formulated
for mode 1 (they are unknown for mode 2). Furthermore, the mode 1 formulation is
completely discrete whereas the mode 2 formulation contains continuous portions.

If we could start from an empty sheet, how should the product be structured? It
seems natural to use a similar product structure as is used today, however with some
alterations. One alternative would be to separate variant families corresponding to
physical design alternatives from those corresponding to the operating environment.
In addition, the number of redundant variant families (i.e., containing the same in-
formation as—or being a direct consequence of—another variant family) should be
kept as low as possible. Further, the product structure should be (without specifying
how) constructed in a way that it makes the objective functions as well-behaving as
possible in the resulting decision variables (cf. Section 6.1 for a discussion about the
quantification of the objectives).

There is also a balance between the number of variant families used and how well
the interesting (near-Pareto optimal, cf. Section 5) region of the full design space
X tot is approximated by solutions in X , see Figure 12. One example could be if a
company produces rectangular boxes with the objectives to maximize the volume
and to minimize the surface area. Then only cubes are interesting (the Pareto optimal
set consists of all cubes). Instead of using a structure with one variant family each for
describing the length, the depth and the height of the box, respectively, a structure
where the box is required to be a cube, and where only the diagonal of the cube is
specified can be used to represent all Pareto optimal designs.

4.2 Aggregation of features

It is natural to utilize a number of different quality measures when evaluating a
product. Thus, the quality of the truck must be partitioned into a number of “ob-
jective functions”. An important question is how many objectives that are needed.
When each customer chooses between different configurations, he/she might only
use three or four objectives. For the whole collection of customers, however, many
more objectives are needed.

It is important how the customers evaluate the quality of a configuration. If a cus-
tomer cannot experience the difference between two technical solutions, then there is
no point in separating these as different in the technical description. Harshly speak-
ing, the cheapest solution within a group evaluated as incomparable should be the
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Figure 12: A rough illustration of a situation where by using one single variant family
Y instead of two variant families X1 and X2, the Pareto optimal set of all possible
solutions, PX tot

, can still be reasonably good represented.

one used. We denote the values of the quality measures that are recognized as dif-
ferent by the customers by perceived feature steps. These are however hard to model
since they can vary between different customers.

The quality of a truck must be discretized or aggregated for a number of reasons.
One is to get well-defined measures such that the global organization can compare
results of different analyses. Another is to get a descriptive language to be used in
the sales process. Moreover, management of the product range, making it match
the different markets and transport missions, is much more straightforward if there
are well-defined subqualities. Finally, a well-defined set of objectives is an essential
requirement for being able to apply optimization to the configuration problem.

4.3 Discretization of environments

The components defining the operating environment are continuous sets, the ele-
ments of which are hard to measure. However, previous work has been done to
create well-defined subsets of these sets in order to discretize the market. The rea-
son for this work is the emergent possibility of differentiated products. Instead of
designing against the worst-case solutions (e.g., such that the truck will hold even
when driving on the worst roads imaginable), one creates an opportunity to design
solutions adapted to the actual customers.

The parameters that determine in which subset a certain customer is located are
called the GTA (Global Truck Application) parameters [14]. These parameters clas-
sify the transport mission, the operating environment, and the vehicle utilization, all
split down into more well-measured parameters.
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The resolution of the discretization should not be finer than which enables a clas-
sification of the customers without sources of errors dominating their differences.
Neither is there any point in discretizing finer than the resolution in the feature lev-
els in the technical solutions being perceivable by the customers.

The thesis [30] deals with topics related to discretizations of the operating envi-
ronment. Parametric models are constructed describing the lateral loads acting on a
truck for different types of customers in different operating environments. The aim is
partly to create input signals for computer simulations for fatigue analyses adapted
to the specific use of the truck.

Concluding this section, it is important to make discretizations to enable an ef-
ficiently solvable optimization formulation of the configuration problem. The dis-
cretizations of the features and of the environments can be seen as inputs to the
configuration problem. Given these, we wish to find the best discretization of the
product. The discretization of the product is divided into two steps, where in the
first step the “dimensions of the grid”, i.e., the variant families are defined, and then,
when solving the problem, the elements in these dimensions, i.e., the variants, are
found. Discretization is one of the main components of the configuration problem.
Another one is Pareto optimality, which is treated in the next section.

5 Pareto optimality

A (single-objective) optimization problem is traditionally written as to

minimize f(x), (1a)

subject to x ∈ X, (1b)

where X ⊆ ℜn and f : ℜn → ℜ. Note that the set X in this section is a general
set of decision variables, not necessarily the same as the defined design space X in
Section 4. The goal is to find an x ∈ X (the feasible set of points) that minimizes the
objective function f over X . In multi-objective optimization there are, instead of just
one objective, a vector f = {f1, . . . , fk} of objective functions, f : ℜn → ℜk, that are to
be minimized simultaneously. This problem is not well-defined in the common sense
if there is a conflict between the objectives, i.e., if there exists no x ∈ X minimizing
all fi, i = 1, . . . , k, over X . The reason for this is that vectors are not totally ordered,
e.g., (1, 1) < (2, 2) but how does one order the vectors (1, 2) and (2, 1)? The goal in
multi-objective optimization is to find the Pareto optimal subset P ⊆ X , which is
defined according to the following.

Definition 5.1 Given a set X of feasible vectors and a set {f1, . . . , fk} of objective functions
to be minimized, a vector x

∗ ∈ X is defined as Pareto optimal if there exists no vector x ∈ X
such that fi(x) ≤ fi(x

∗), i = 1, . . . , k, and fj(x) < fj(x
∗) for at least one j ∈ {1, . . . , k}.

An objective vector z
∗ = f(x∗) is called Pareto optimal if the corresponding vector x

∗ is
Pareto optimal. The set of all Pareto optimal vectors x

∗ ∈ X is denoted P ⊆ X .
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We define the Pareto operator P : ℜn×Ω → ℜn by P (X, f) = P , where Ω denotes the
collection of all functions f : ℜn → ℜk. (For the special case when f is scalar-valued,
i.e., when f = f , P (X, f) extracts all global optima in X given the objective function
f .) We adopt the convention of extending the minimization operator by allowing it
to apply to vectors and write a multi-objective optimization problem (MOOP) as that
to

minimize {f1(x), . . . , fk(x)} , (2a)

subject to x ∈ X. (2b)

An illustration of Pareto optimality for a MOOP with k = 2 is shown in Figure 13.
This picture motivates that the Pareto optimal set, because of the geometrical inter-
pretation in the objective space, sometimes is called the Pareto front.

X Z

f1

f2

P

f(P)

f = {f1, f2}

Figure 13: The decision space X with the Pareto optimal set P ⊆ X , the objective
functions f = {f1, f2}, the objective space Z, and the image, f(P), of P .

The Pareto optimal set for a problem with k objective functions is in general (if
n ≥ k), for a (continuous) MOOP a collection of hypersurfaces of dimension k − 1.
The more objective functions there are, the computationally more intense it is to find
P . In the appended Paper 1—Approximating the Pareto Optimal Set using a Reduced Set
of Objective Functions—a procedure is given for reducing the number of objectives
such that the precision lost when approximating the set P in a certain sense is kept
at a minimum. We refer to Paper 1 for more ideas on and references to problem
reduction.

5.1 Classifications of multi-objective optimization problems

The purpose of this subsection is to describe different classes of multi-objective opti-
mization problems and to locate the multi-objective problem we study within these.

Consider the multi-objective optimization problem (2). If X is a polyhedron and
all objective functions {f1, . . . , fk} are linear then (2) is called a multi-objective linear
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optimization problem, or MOLP in brief. If any of the objectives is non-linear or if X is
not a polyhedron then (2) is called a non-linear multi-objective optimization problem, or
MONP. The special characteristics of MOLP problems are studied in, e.g., [43]. The
more general problem MONP is treated in the textbooks [15] and [35].

As well as for the single-objective optimization problem (1), convexity is a crucial
concept for problems with multiple criteria. The problem (2) is convex if all fi, i =
1, . . . , k, are convex and if X is a convex set. Otherwise, it is a non-convex problem.
Convex problems possess many nice characteristics. One of them is exploited in [32]
where linear interpolations are made between Pareto optimal design points. Due to
convexity, using corresponding interpolations of the objective points is guaranteed
to underestimate the true objective values. This has made it possible to construct a
useful tool for navigation within the Pareto optimal set.

If integrality constraints are part of the specification of X then (2) is called a
discrete multi-objective optimization problem. A large part of the literature on dis-
crete multi-objective problems focuses on the subset of multi-objective combinatorial
problems (MOCP) which are multi-objective generalizations of traditional single-
objective combinatorial optimization problems, e.g., traveling salesman, spanning
tree, and knapsack problems. An extensive survey of MOCP is given in [16]. Often,
the focus is on problems with only a few (often two) objectives (cf., e.g., [23]) and/or
with an evident structure of the decision space X (cf., e.g., [27, 17]). One special fea-
ture of problems with two objectives (bi-criteria problems) that can be exploited in
solution algorithms is that a total ordering of the Pareto optimal set can be defined.

One special type of discrete variables is the categorical type (cf. Section 6.2), repre-
senting variables that have no natural ordering (in the decision space). By consider-
ing this type of variables, a distinction between numerical and categorical problems
is defined.

One can also separate between problems possessing simulation-based objective
functions and problems in which the objective functions have analytical expressions.

When solving MOOP’s the aim is not always the same. Often one wish is to find
a single solution x

∗ ∈ X that is optimal for a certain decision maker (DM). Thus it
is really a (hidden) single-objective problem, with the DM’s utility (or value) func-
tion u : ℜn → ℜ measuring his/her overall preference of the design points as the
single objective function2. However, the utility function is often hard to specify, and
a common belief is that it is easier to decide on the components of the utility and to
formulate a multi-objective problem using these components as objective functions.
In other cases one searches for the whole Pareto optimal set P .

The underlying multi-objective optimization problem in the configuration prob-
lem studied in this thesis is non-linear with simulation-based objective functions that
are not convex in general. Some of the variables are discrete and many of the discrete
variables are categorical. There is no obvious structure of the decision space. It is a
true multi-objective problem, where we are interested in the entire P .

2The utility function is sometimes defined as a function u : ℜk → ℜ of the objective components
fi(x), i = 1, . . . , k. We let it be a function of the design itself to handle the problem that otherwise arises
if the assumption of identical objectives is invalid.
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5.2 Solution methods for the configuration problem

The suitable solution method for a MONP is of course heavily depending on the aim
of solving the problem at hand.

If the aim is to search for one optimal vector x
∗ ∈ X , the solution methods for

MONP can be divided into four major classes (originally presented in [25]):

1) no-preference methods

2) a priori methods

3) a posteriori methods

4) interactive methods

For all of these four classes [35] gives many examples of solution methods. Briefly,
in class 1 the utility function of the DM is roughly guessed and a single objective
problem is solved. The optimal solution is presented for the DM who can either ac-
cept or reject (whence a new updated guess for the utility function is made). The
a priori methods of class 2 are similar to those in class 1; the difference is that the
DM is explicitly asked to give an accurate mathematical expression of his/her utility
function. The a posteriori methods of class 3 and the interactive methods of class 4
are fundamentally different from the former ones. Here, the fact that it is hard (or
even impossible) for the DM to express his/her utility function is accepted. Thus,
in the a posteriori methods the goal is to produce the whole Pareto optimal set, or
a sufficiently good approximation of it, and then present it for the DM who then
selects his/her most preferred solution. A posteriori methods might be very time
consuming and it is possible that a lot of time is spent on describing a part of P that
is not interesting for the DM. This is the reason for developing interactive methods.
Here, the DM is participating in the whole solution process, making it possible for
him/her to specify and correct his/her preferences along the process when he/she
gets a feeling for the opportunities and the limitations of the problem. Many exam-
ples of interactive methods can be found in [35]. A positive aspect of the interactive
methods is that focus is only on the interesting part of the (a priori unknown) set P .
A negative one is, however, that interactive methods might be very time consuming
for the DM if the objective functions are expensive to compute.

Concluding the classes of methods above, it is only the a posteriori methods that
search the entire P , and thus is applicable to our problem. However, parts of the
ideas used in interactive methods could be exploited for a problem reduction, such as
using engineering expertise and experience to decide on which solutions that cannot
be interesting to any customers.

Examples of a posteriori methods are the traditional weighting method (where a
weighted sum of the objectives is minimized), the ǫ-constraint method (where one of
the objectives is minimized while the other objectives are constrained from above),
and the method of weighted metrics, or compromise programming (minimization
of a weighted Lp-distance from the solution vector to a reference point). Another
method in the a posteriori class is the normal-boundary intersection method [10].
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One class of solution methods that is sometimes overlooked is the class consist-
ing of evolutionary methods. These are of heuristic nature and therefore often lack
guarantee measures on optimality. However, they are easy to implement, they do not
require many assumptions on the problem (e.g., convexity, differentiability, or con-
tinuity), and they have shown success in many real-world applications. A thorough
overview of different evolutionary methods can be found in the textbook [11]. Two
of the evolutionary methods most used are the Neighborhood cultivation algorithm
(NCGA) [45] and the Nondominated sorting genetic algorithm II (NSGA-II) [12].
This type of algorithms also belongs to class 3 above.

One could think that the weighting method—the first intuitive method to use when
dealing with a MONP—is suitable for the configuration problem. In the weighting
method, a sequence of single-objective problems of the form

minimize
k

∑

i=1

wℓ
ifi(x), (3a)

subject to x ∈ X, (3b)

is solved with different weight vectors w
ℓ ∈ W = {w ∈ ℜk|

∑k

i=1 wi = 1, wi ≥
0, i = 1, . . . , k}, using a single-objective optimization method. Denote the set of
solutions to (3) for all w ∈ W by PS , the supported Pareto optimal set. Using the
Pareto operator (defined on page 19, and here applied to scalar objectives) we can
write PS = {x∗ ∈ ℜn | x∗ = P (X,

∑k

i=1 wℓ
ifi(x)),wℓ ∈ W}. It is easily shown that

PS ⊆ P . One major drawback of the weighting method is, however, that it can be
guaranteed that PS = P only when the MONP is convex. Figure 14 illustrates the
supported and the non-supported parts of the Pareto optimal set of a non-convex
MONP.

Even if one would argue that solutions to (3) only for w ∈ W are the interesting
solutions to (2)3 or if we really have a convex problem at hand, whence PS ⊆ P and
the solution sets coincide, the weighting method still have drawbacks. One is that the
interpretation of the weights used is unclear (the problem of comparing apples and
oranges). Another is that the mapping from the weights to the solutions to (3), i.e.,
ℜk ∋ w 7→ P (X,

∑k

i=1 wifi(x)) ∈ ℜn, is non-linear and strongly depending on the
properties of the actual functions involved. This is nicely shown by an example in [9]
where (3) is solved with equidistant weight vectors leading to a highly non-uniform
distribution of points in PS . A third disadvantage comes from the fact that it might
be hard (at least for engineering applications) to assign absolute numbers to the ob-
jectives (qualities) for different design solutions. That is, for each objective, it might
be possible to order the different solutions but impossible to state how much better
one is than another and what the underlying functions look like. Two collections of

3The most preferred solution of a MOOP for a certain DM is the decision point maximizing his/her
utility function, i.e., x∗ = arg max

x∈X u(x). All objective points that are evaluated as equally desirable
by the decision maker are said to be situated on the same indifference curve. These curves represent the
marginal rate of substitution, or indifference trade-off, between the objectives locally around the most
preferred point. If the slopes of the indifference curves, for all DM’s, are constant in the whole of the
objective space for every pair of objectives, then only supported Pareto optimal solutions can be preferred.
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f(PS)

Figure 14: The image of the supported Pareto optimal set PS is marked in black. The
dark gray region is the image of the non-supported Pareto optimal set, i.e., P \ PS .

functions ordering X identically (i.e., collections {f1, . . . , fk} and {g1, . . . , gk} such
that fi(x

1) < fi(x
2) ⇔ gi(x

1) < gi(x
2),∀i ∈ {1, . . . , k},∀x1,x2 ∈ X) lead to the

same Pareto optimal set, but there might be great differences in the corresponding
supported sets PS . The following example illustrates this behavior.

Example 5.2 Assume that our original MONP is defined as that to

minimize {x, 1− x} , (4a)

subject to x ∈ X = [0, 1]. (4b)

The corresponding Pareto optimal set is P1 = X . Consider next the problem to

minimize
{

x, 1− x2
}

, (5a)

subject to x ∈ X = [0, 1]. (5b)

Clearly, the objectives in (5) individually order the decision space as in the problem (4). Since
P2 = X , the problems (4) and (5) are equivalent in the sense that P1 = P2. However,
(due to the non-convexity of the second objective in (5)) the supported subsets of P1 and
P2, respectively, are very different: PS

1 = P1 = [0, 1] but PS
2 = {0, 1}, as illustrated in

Figure 15.
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(b) The supported subset of the Pareto set consists
of two single points.

Figure 15: The supported set PS ⊆ P is not only defined by the ordering of the
decision space by each objective function, but also on the absolute function values.

Within the configuration problem there are instances of (2) of strongly varying
nature. The reason for this is that the configuration problem can be viewed on dif-
ferent scales, with decision variables of totally different types. On the largest scale,
the decision variables represent the variants in the variant families. On the small-
est scale—if one can find (relatively) isolated subsystems of the truck (such that the
design parameters do not significantly affect the rest of the truck)—the decision vari-
ables can represent continuous design parameters such as, e.g., spring constants or
lengths.

There are no methods or algorithms that are efficient for all types of multi-objec-
tive optimization problems; it is important to design solution algorithms for the
actual problems at hand. On the large scale, evolutionary algorithms in combina-
tion with metamodeling (where approximate models are constructed and used in-
stead of the true models, cf. Section 8.1) is one option. Another is to solve sequences
of single-objective optimization problems using pattern search algorithms [3]. This,
however, requires a definition of local neighborhoods in the decision space, which
in turn requires a well-defined product structure. On the small scale, the optimiza-
tion problems are numeric and it should be possible to use some of the a posteriori
algorithms, such as the ǫ-constraint or the compromise programming methods, men-
tioned above.

5.3 Approximations of the Pareto optimal set

In practical applications usually one cannot expect to find the whole Pareto optimal
set P . For general non-linear non-convex problems it neither possible to find P in
finite time without some further assumptions on the problem (such as Lipschitz con-
tinuity with known constants). Approximating methods, i.e., methods for creating
good approximations of P , are developed for this reason. A survey of such methods
is contained in [40]. In principle, the methods are from the a posteriori class, where
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the different parameters of the algorithms are controlled systematically. When an
approximating method is used, it is important to get some sort of quality measure
for the resulting set of solutions. Note that the issue of measurement is simple for
single-objective problems, where the objective values for two solutions can be com-
pared directly. From the literature, it is clear that there is no standard measure for
evaluating an approximate Pareto optimal set. The subject is discussed and proposi-
tions are given in, e.g., [38, 8, 44, 41, 6, 46].

When discussing approximate sets, there is need for two kinds of measures. First,
a measure describing the distance between two points is needed; the point measure.
This measure is then utilized in a second measure, the set measure, describing the
distance between two sets of points.

The measures should ideally be defined both in the decision space and in the
objective space. Since the objective space contains only numeric vectors, it is easier
to define the measures in that space. However, from a practical point of view the
distances in the decision space are also important. For the current situation at Volvo,
the decision space defined by the product structure is heterogeneous with variants
and variant families representing totally different entities. Moreover, there is no clear
understanding of the hierarchies in the product structure which makes it hard to
define a suitable measure in the decision space.

In the objective space we notice that if the objectives measure completely different
entities (such as, e.g., safety and cost, or stress and volume) then it is not obvious how
to scale the objectives such that the units (e.g., if measuring cost in Euros or cents)
does not affect the result. One way to handle this [35] is to normalize the objectives
such that their values vary between 0 and 1 over P .

For the application we study, the point measure should reasonably be defined
asymmetrically. One natural choice for comparing a point x2 ∈ X with another point
x

1 ∈ X is to use some norm of the components in f(x2) being larger than the corre-
sponding components in f(x1), i.e.,

c(x1,x2) = ρ(max
{

f(x2)− f(x1), 0
}

), (6)

where the max{·, ·} is defined element-wise and ρ(·) is some suitable norm. The rea-
son for only selecting the components being larger is that we do not want to punish
objectives that are improved. The Figure 16 illustrates the indifference curves, i.e., the
sets of points that are evaluated as equally good, induced by the point measure (6)
where ρ(·) is chosen as the L2-norm defined by ||u||2 =

√

u2
1 + . . . + u2

n. The distance
measure (6) is open to certain objections. As can be seen in the figure, one does not
earn anything if an objective value is improved if it already is at least as good as for
the reference point. The distance measure should be developed further such that it
better adapts to real customer behavior.
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Figure 16: Indifference curves when comparing f(x1) = (0.5, 0.5) to all points
f(x) ∈ Z = [0, 1]2 induced by the point measure c(x1,x) = ρ(max

{

f(x)− f(x1), 0
}

)
with ρ(·) being the L2-norm. A darker color means a larger distance. White color
corresponds to zero distance.

The set measure can be either symmetrically or asymmetrically defined depend-
ing on the aim of the comparison. If we want to compare the Pareto optimal sets for
two problems (e.g., if one problem is a computationally easier but an approximate
version of the other), then a symmetric measure might be the right choice. Such a
measure is defined and used in the appended Paper 1, Approximating the Pareto Op-
timal Set using a Reduced Set of Objective Functions. Here, we measure the distance
between the sets as the largest (point measure) distance between any of the points in
each of the sets to their respective nearest point in the other set.

If instead we want to evaluate how good representation of the Pareto optimal set
is achieved by an approximate method, then an asymmetric measure might be a bet-
ter choice. This is common, e.g., when evaluating new evolutionary algorithms for
MONP’s. Such an asymmetric measure is also used in the appended Paper 2, Multi-
objective Design of a Combinatorial Structure. Here, a good solution set to an underlying
MONP is searched under the constraint that the solutions have certain similarities
in the decision space. Quality measures of the solution set, comparing it with the
Pareto optimal set for the corresponding problem where these constraints are re-
laxed, are used. When searching for a good representation R of a Pareto optimal set
P one wants the points in R to be (at least) near-Pareto optimal and also well dis-
tributed along the Pareto optimal front. One (non-unique) measure capturing both
these wishes is, with c(·, ·) being the point measure,

d(R,P) = max
x

1∈P

min
x

2∈R

c(x1,x2), (7)

illustrated in Figure 17. This is the Dist2 measure from [8].
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Figure 17: The distance between R and P defined by (7) is illustrated with an arrow.

Furthermore, for our application in which we search for the entire set P but are
content with a discrete subset of P , it seems reasonable to use a point measure that
depends on the region of Z where the points are. Sales volumes and/or other strate-
gical issues could be incorporated in the measures, e.g., by using region-dependent
weights. By using such, it would be possible to steer against approximations that
are focusing on a certain set of designs, e.g. trucks with a high profitability or trucks
whose features are validated carefully with simulations and tests.

6 Quantification of the problem

Optimization in industry is an iterative process where, in each iteration, a model of
the true problem is formulated and solved. Then the outcome should be evaluated
by experts, using experience and “implicit” knowledge (which is known but cannot
be explained with rational statements) with the probable conclusion that something
is missing in the model. The model is then adjusted and a new iteration takes place.
The major benefits of using optimization for industrial problems are:

• that it yields a better understanding of what is affecting the properties of a
design or a system4, and

• that it provides good results in short time that an expert may modify locally
(i.e., change to solutions that lie near in the decision space).

That is, multi-objective optimization in industry has two applications; to learn the
problem at hand, and to create basic data for decision making.

We now return to the configuration problem that Volvo is heading and regard
this problem as a multi-objective optimization problem. This section quantifies the

4For non-linear problems there can be intricate dependencies within the design that are hard to get
a clear understanding of generally. Optimization together with sensitivity studies around near-optimal
points can help to illuminate the dependencies in interesting regions.
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problem and places it into an optimization context. The important ingredients of
an optimization problems are the objective(s) which measure(s) the quality(ies) of a
solution and is (are) to be minimized (or maximized), the variables which are to be
selected within some given sets, and the constraints which corresponds to design or
feature requirements that has to be fulfilled for a solution to be acceptable. The aim
of this section is to describe these three components for the configuration problem.

6.1 The objective functions

Engineers often use a combination of experience (or, rules-of-thumb), computer sim-
ulations of different levels-of-detail together with rig testing, proving ground test-
ing, and actual field verification to decide on which designs are good and which
are not. For an optimization approach to be valid, we must assume that there are
real-valued functions (possibly outputs from black-box simulations) assigning qual-
ity measures to each single truck configuration. This requirement poses a number of
practical problems. First, it is hard to gather all the knowledge and transfer it into
functions. Another problem is that it is hard to put scalar values on output from, e.g.,
computer simulations or proving ground tests. For example, it is difficult to assign a
fair scalar quality measure to a spectrum (representing, e.g., the acceleration at some
point in the cabin over a frequency interval). The author of the thesis [20] devotes his
whole work to investigate how drivers perceives (different combinations of) sounds
in truck cabins. It is hardly an easy task to define an objective to be minimized mea-
suring the driver’s sound experience as a function of the design variables.

Further still, it is difficult to keep the total computer work at a reasonable level,
managing the different levels-of-detail of the simulations. Large-scale problems can
seldom be solved exactly, and to get a good solution in the end, the accuracy of each
model must be weighed against the simulation time required. It is not easy to decide
on a suitable balance. Of importance is that the final decisions based on the models
developed in this work are good enough compared to if the models described the
problem in reality perfectly and, furthermore, if they were solved exactly. Important
issues for simulation-based optimization are described in Section 8.1.

The Figures 18 and 19 illustrate models with different levels-of-detail. Figure 20
shows output of an actual simulation, measuring vibrations in the cabin induced
by the engine. To incorporate such a simulation into an optimization framework,
it is required to set a scalar value (or possibly a number of scalar values) on the
simulation outcome, which is not a straightforward task.

Figure 18: A simple model of a truck.
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Figure 19: A detailed model of a truck.

Within our approach to reach the ultimate goal of making the best set of configu-
rations (i.e., configurations matching the customer demands and designed in a cost-
efficient way) available we create a model of the real problem and solve this model
(as well as possible). In our case, we do exactly as described in Section 1.2, that is
assume that the quality perceived by each customer can be separated into a number
of objective functions (see also Section 4.2) which are identical for all customers, but
whose combination can be appreciated differently. Consequently, we need functions
measuring the concepts on the axes of Figure 3. For some of the concepts there exist
mature measures; e.g., for Driver environment there are standard ways of measuring
the ride comfort in the cabin based on accelerations in certain frequencies. For other
measures, such as Product design, there is no know suitable function. Ideally, there
should be functions available for all possible quality measures of the truck to be cho-
sen as {f1, . . . , fk}. In reality though, the process must be to start with a small set
of reasonable functions, and then modify and complement this set based on the re-
sult (the Pareto optimal set of configurations) from using these functions. That is, to
use engineering experience to decide on a good problem formulation, in the same
way as experience is used to decide which simulations that should be used for the
evaluation of new designs.

It is important to keep the true purpose of the actual problem in mind such that
the consequences of the explicit or implicit (by the approach) assumptions made
are not overlooked. The validity of the multi-objective optimization approach—that
all customers measure quality in the same way—is in no way obvious. Furthermore,
the objective functions used will be more or less inexact, both their modeling and the
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Figure 20: An outcome of an actual simulation regarding engine induced vibrations
in the cabin over a frequency interval for different rotation velocities in the engine.
It is not straightforward to translate this result to a (number of) scalar value(s).

computing simulations. We use metamodeling to get reasonable computation times.
The metamodels will be constructed in such a way that the decisions they lead to
are as similar as possible to those that would have been the result of using the orig-
inal functions. It is not yet clear how to translate this target into analytical terms.
To sum up, we wish to create a robust system, where robust means that by using
the system the customers will choose configurations that are (near-)optimal to them,
and that these configurations are constructed as cost-efficiently as possible, even if
there are uncertainties and/or approximations in the model and the computations.
Also, we wish to use a robust design approach in its traditional meaning [37] where
elements such as manufacturing variations, component deterioration, and environ-
mental variation over time are considered.

6.2 Variables in the configuration problem

Many optimization models contain only continuous decision variables, i.e., variables
whose values lie in intervals on the real line. Other models, e.g., for problems involv-
ing fixed costs or different routing problems, require the use of discrete or integer
variables, representing on/off decisions or indivisible quantities. Large engineering
design optimization problems often involve a certain type of discrete decision vari-
ables that cannot be naturally ordered. These variables are denoted categorical [3].
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These variables typically represent choices from some unordered list, such as vari-
ables corresponding to totally different technical solutions or to various materials
with different properties. This is the case also in our configuration problem, where
many of the variants in the variant families represent technical solutions that are
incomparable, e.g., the family representing whether air springs, conventional leaf
springs, or multi-leaf springs are used in the rear axle installation (cf. Figure 5).
When an optimization problem contains such variables, the standard methodology
for solving discrete problems using relaxation of the integrality constraints is no
longer usable.

In [3], a method for solving problems modeled with categorical variables is pre-
sented. Here, the notion of local optimality is adapted to the categorical variables by
the construction of a distance measure between design solutions and by the defini-
tion of a user-specified local neighborhood based on this measure. Then a pattern
search algorithm is used leading to a local minimum with respect to the neighbor-
hood defined. Another approach to solve mixed-variable problems, i.e., problems
containing categorical variables, is to use evolutionary algorithms [42, 1]. Also here,
a measure is required to specify the distances between solution points.

An observation to be made is that the scale on which the configuration problem is
viewed affects the distribution of the types of variables that appears in the resulting
optimization problem. By looking at the “clean” problem in the configuration space
X̄ (see Section 4.1) almost every variable is categorical, since almost every variant
affects more than one physical parameter which in turn affects the vehicle behav-
ior. If we instead look at the problem in the design space X , then by looking at a
finer scale more of the variables become continuous (or at least orderable discrete).
Looking at the finest possible scale, letting all parameters in the simulations for the
objective values be decision variables, the problem will not be mixed. However, a
large number of constraints would have to be added to make sure that the feasible
solutions correspond to trucks that can be defined using the variant families.

6.3 Formulation of the restrictions/constraints

One difficulty of viewing the problem comprehensively on a large scale, where the
variables represent variants in the variant families, is that many of the variables are
categorical, that is, not well-ordered. A natural way of formulating the restrictions
(cf. Section 2.2) is to use binary variables, assuming that the number of possible vari-
ants is finite:

xjℓ =

{

1, if variant ℓ in family j is chosen,

0, otherwise.

By letting R denote a list of variants in variant families that are not allowed to be
used all of them together, the packing type constraint (8) excludes all designs not
fulfilling the restriction, since it is not possible to have xjℓ = 1, ∀(j, ℓ) ∈ R.

∑

(j,ℓ)∈R

xjℓ ≤ |R| − 1. (8)
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However, due to the categorical variables, the objective functions do not possess
any nice properties with respect to the variables when applying this formulation.
The reason for this is that when the scale is increased to a level where categorical
variables must be used, then a physical interpretation of the variables is not longer
possible.

7 Clustering the configurations

The scientific area of clustering, or data clustering, concerns the classification of a set
of objects into more or less homogeneous groups, such that the objects assigned to
the same group are similar according to some suitable distance measure. The area
is widespread with applications within a large number of domains, such as pat-
tern recognition, image analysis, marketing, and machine learning. The textbook [19]
gives an overview of the subject.

It is clear from Section 4 that our application fits into a clustering context, where
all customer wishes (i.e., wanted configurations) are to be partitioned into a number
of groups, each corresponding to a certain truck configuration. It is clear that Volvo
wishes to produce trucks that are good in the sense of Pareto optimality, however
the Pareto optimal set may be very large and it is not reasonable to offer all of these
configurations to the customers. Instead, the wish is to reduce the offer to a limited
discrete set of technical solutions. But our application possesses special characteris-
tics leading to aggravating circumstances. First, due to the combinatorial complexity
we cannot cluster the designs using only using information from the objective space
Z. Second, since the quality of the configurations is the central property, neither it
is possible to cluster the solutions in a good way using information from the design
space X only. Clustering using a combination of the two is necessary.

Below, in Section 7.1, we briefly present some traditional clustering techniques
which may be adapted to our application. In Section 7.2 we present a new method-
ology which clusters the design solutions implicitly using optimization. This proce-
dure by construction takes care of the difficulties of treating the two spaces X and Z
simultaneously.

7.1 Explicit clustering

Assuming that all customers possess objective functions ordering the configurations
identically, then without considering the product structure, the only configuration
designs that are interesting to produce are the ones in the Pareto optimal set P .
However, P (or f(P) which is the interesting set since the quality of a configura-
tion is measured in the objective space), is a very large set and it is not motivated
to make all these configurations available for the customers. Instead, f(P) should be
clustered to a limited set ZD of points each corresponding to a point in the design
space X such that to every customer wish, i.e., a point z

∗ ∈ f(P) (corresponding to a
point x

∗ ∈ X), there is an available configuration x ∈ XD (where XD is the available
set of configurations, i.e., f(XD) = ZD) at some small enough distance c(x∗,x). Such
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a clustering is illustrated in Figure 21. This clustering lacks an important property
which is crucial for our application; it does not consider how XD is structured in X .

X Z

fi

fj

f = {f1, . . . , fk}

f(P)

P

Figure 21: A clustering of the Pareto optimal set P into the set XD, such that f(XD)
is “evenly” distributed over f(P).

The above description can be denoted as explicit clustering in the Z space. The
clustering is done of f(P) which is a numeric set. This is fairly simple since there
are natural distance measures between pairs of numerical points (e.g., the Euclidean
distance). There are, however, a large variation of clustering algorithms that could
be used. In [19] many of these are described, examples of well-known algorithms
are, e.g., k-means clustering, and single-link-clustering. What is common to the explicit
algorithms is that they try to partition the set into subsets, where the distances from
the points in each subset to its representative solution are small and where the dis-
tances between points in different subsets are large. The way towards this goal and
the definitions of distances are varying depending on the actual clustering technique.
There are hierarchical techniques that iteratively updates the clusters (e.g. single-link
clustering), and there are partitional techniques that establishes all clusters at once
(e.g. k-means clustering).

It is also possible to define an explicit clustering in the X space, possibly with the
aim of partitioning P ⊆ X into groups. However, then it is not clear how to control
that the set of representative points ZD = f(XD) is a good representation of f(P) (cf.
Section 5.3). But even more serious is that it is hard to control the structure of XD,
such that the number of contained variants are of reasonable size. A third difficulty
is that it is needed to define distance measures between points in the X space, which
is hard when it consists of categorical variables.

Possibly, explicit clustering in the composition of the two sets, i.e., in X×Z, could
be used. How such a clustering should be defined is however not known to us. In-
stead, we propose what we call Implicit clustering, in which we solve an optimization
problem whose solution represents a clustering both with good structure in X and
representing a good approximation of f(P) ∈ Z. Further, the problem of defining a
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suitable distance measure in the design space is not there.

7.2 Implicit clustering

Presupposing the existing product structure with Xj , being the set of possible vari-
ants in variant family j = 1, . . . , n, we can write X = X1 × X2 × · · · × Xn (cf.
Section 4.1). We have that X = Xfeas ∪ Xinfeas, and Xfeas ∩ Xinfeas = ∅, where Xfeas

is the subset of X fulfilling all of the restrictions. By restricting |ZD| ≤ N , explicit
clustering of f(P) ∈ Z may lead to up to N variants in each variant family, since
there is no control of the resulting structure of XD. To get around this problem we
instead propose a clustering of the whole objective space Z, not just f(P), under the
constraint that the configurations chosen in the design space lie in a “grid” where the
size restriction lies on each variant family, i.e., |Xj | ≤ mj , j = 1, . . . , n. The objective
for the “implicit” clustering is now to select a limited set Xj

D ⊆ Xj , j = 1, . . . , n,
such that the “quality” of the product set XD = X1

D × · · · ×Xn
D is as good as possi-

ble. Mathematically, this is expressed as to minimize the set measure (7) between P
and P (XD, f) (the non-dominated part of the resulting configurations). The implicit
clustering is studied in the appended Paper 2, “Multi-Objective Design of a Combina-
torial Structure”. Figure 22 illustrates a clustering where the available configurations
belong to the product set of the variants chosen. An arrow in the bottom part of the
objective space in the picture illustrates the distance for one such vector x

∗ (f(x∗) is
marked as a white dot) to its nearest vector x ∈ P (XD, f).

X Z

fi

fj

f = {f1, . . . , fk}

f(P)

P

Figure 22: An illustration of an “implicit” clustering of the Pareto optimal set where
XD is required to be a product set. The dark dots represent XD and ZD in the design
and the objective space, respectively. The arrow between a white dot and one of the
elements of ZD represents the distance from one Pareto optimal vector to its nearest
available solution.

It is clear that we, using implicit clustering, do not require that XD ⊆ P , i.e., that
the clustered objectives are Pareto optimal. Often, e.g., in industrial applications, or
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when there are large uncertainties in the models, this is not a necessary requirement.

8 The scientific area — a multi-domain

A thesis like this, driven by a concrete application, naturally has to make use of
theory from a number of separate but interconnected scientific areas or domains.
One difficulty is to decide on how deep to go into each domain. It is necessary to gain
sufficient knowledge in each domain in order to decide which parts in the respective
domains to combine such that the resulting path leads towards the goal.

The most obvious domains needed for this work are Multi-objective optimization
(cf. Sections 5 and 6.1), Simulation-based optimization (cf. Sections 5 and 8.1) and pos-
sibly also Clustering analysis (cf. Section 7), Complex systems (cf. Section 3), Decision
theory, Combinatorial optimization and Constraint programming. However, also areas
like Behavioral sciences (e.g., to analyze driver behavior, apprehension of qualities,
perceived feature steps etc.) and Mathematical statistics (to analyze uncertainties in
the models and data) are needed (but not considered in this thesis).

An underlying assumption defining an important delimitation of this work is
that the actual configuration problem constitutes a well-defined optimization prob-
lem with multiple objectives. Such a problem formulation requires that all customers
use the same set of objective functions to evaluate the quality of a certain configura-
tion, although different customers assign different valuations of the individual ob-
jectives. If this is not the case, then Pareto optimality makes not much sense. Within
this delimitation, we already indirectly assumed that to each quality there is some
function associating a certain real number to each configuration, thus creating a total
ordering of the configurations with respect to that quality.

In the following sections, we give a quick overview of the areas not yet described
that are the most important ones for our application.

8.1 Simulation-based optimization

Simulation-based optimization is a generic term for optimization in which the objec-
tive function(s) and/or constraint function(s) are in some sense “expensive” to eval-
uate. When solving such problems the number of function calls should be kept to a
minimum. The functions could be, e.g., outcomes of computationally intense simu-
lations or practical experiments. Often there are no analytical derivatives available
from the simulations. One standard approach when solving simulation-based prob-
lems is to sample the expensive functions iteratively and to create cheap approxima-
tions, or surrogate models, of them. A review of such methods, often called Response
surface methods, can be found, e.g., in [28]. The surrogate models are often linear or
quadratic approximations (see e.g. [39]), or some sort of interpolations, e.g., Krig-
ing [28] or Radial basis functions [22], of the actual simulated functions. Other ap-
proaches use neural networks [2] or combine models of different fidelities [4]. Many
simulation-based algorithms in the literature focus solely on single-objective prob-
lems (although some of them can be generalized to the multi-objective case). One
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reason for this is that single-objective problems are much easier from an approxi-
mation perspective since the region of interest, in which the approximation must be
good, in general is much larger for multi-objective problems. This is illustrated in
Figure 23. Also, for approximations in multi-objective problems it is harder to de-
fine what is good. As mentioned earlier, it is important that the decisions based on
the approximate models are good also if the true models would have been used. To
interpret this statement into a performance metric is, however, not easy. It is directly
relating to how approximate Pareto sets should be evaluated (cf. Section 5.3).
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(a) The near-optimal region for a single-objective
minimization problem.
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(b) The near-Pareto optimal region for a multi-
objective minimization problem.

Figure 23: For the single-objective case it is enough that the approximate function is
similar to the true function in a small region. For the multi-objective case, a larger
region is interesting, so the respective approximations of the functions need to be
good in a larger environment.

Examples of algorithms handling multiple objectives with expensive function
evaluations are, e.g., parEGO [31], which is an extension of the Kriging-based single-
objective algorithm EGO [29], and qualSolve [26], in which radial basis functions
are used for approximations and where points to evaluate are found with an exter-
nal optimization maximizing a certain quality measure. The algorithm qualSolve
also handles noisy objective functions, where noise refers to both stochasticity and
unpredictable highly non-linear contributions, which in engineering applications is
due to, e.g., re-meshing in finite elements simulations.

8.2 Engineering design

A physical problem can be viewed in different ways depending on what is given
and what is to be achieved. Figure 24, reproduced from [13], illustrates different
possibilities.
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Figure 24: Different viewpoints of a physical system with various aims.

The design of trucks falls into the fourth category, Engineering Design. The inputs
to the system are the environment in which the truck will be used and its usage or
transport mission. The outputs are the behavior of the truck under excitation of the
inputs. Given the inputs, the outputs depend on the (fixed) laws of nature together
with the design of the system (the truck).

Engineering design deals with the identification of a need at the market, and the
design of a system satisfying that need. If the need can be quantified then optimiza-
tion might be the right tool to tackle the problem. The scientific area of applying
optimization to engineering problem is often denoted Engineering optimization. Nat-
urally, engineering optimization problems often possess expensive function evalua-
tions. The subject is therefore strongly connected to simulation-based optimization
(cf. Section 8.1). Engineering design, however, is a broader subject than engineer-
ing optimization. Areas such as, e.g., aesthetics, collaborative design and knowledge
management belong to engineering design as well.

Let us now return to engineering optimization, which is not limited to single-
objective optimization design problems. For a designer, it is important how the users
evaluate the outputs of the system. This is related to value, a central concept of deci-
sion theory (cf. Section 8.3). Each user can attach a value measuring how well each
design meets his needs. When comparing two designs of an engineering system, a
user probably has one preference. Assuming that the users have rational preferences,
i.e., they will never prefer A to B, B to C, and C to A, then, for each user there exists a
perfect ordering of all possible designs. However, when explaining why one design
is preferred to another, the user would probably need more than one measure. The
overall judgement (value) is an aggregation of a number of value components. This
characteristic fits well within a multi-objective optimization context, which makes a
multi-objective formulation of the design problem natural. The thesis [1] deals with
engineering optimization where there are multiple objectives. This topic is also sur-
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veyed in [34].

8.3 Decision theory

Decision theory is concerned about the decisions that humans should make and what
they do make when facing choices. The subject is related to optimization in a natural
way, since the purpose of optimization often is to create basic data for making deci-
sions. Knowledge about decision making is required both for formulation of suitable
objective functions to use in the optimization (perhaps especially when the problems
invokes multiple objectives), and the subject is also connected to how the output
from the optimization is actualized.

In [24], a non-technical overview of the subject is presented. Some areas of de-
cision making that are studied are, e.g., how humans make decisions under uncer-
tainty (or stochastics) in the model, decisions in choices carrying too much complex-
ity to be grasped, decision making by groups of people, and how decisions are made
when the outcome of the decision is realized at different points in time. One branch
of the area of decision theory is Multi-criteria decision making (MCDM), where it is ex-
plicitly assumed that competing criteria are involved. Obviously, MCDM is closely
related to multi-objective optimization.

One area of decision theory concerns decision support tools. These are systems
that present the different possibilities and trade-offs for the human decision makers
and help them to select the solutions most suitable for their needs (the truly opti-
mal solutions). This is not straightforward, since it can mean searching in a multi-
dimensional space that cannot be visualized geometrically (cf. Section 5 where the
Pareto optimal set is a subset of ℜk). Inspired by the navigation tool developed and
used by ITWM [32] for continuous and convex problems, we have developed our
own navigation tool applicable to discrete and non-convex problems. The tool takes
a database of objective vectors as input. Then it is based on taking step along some
selected objective at the same time as the deviations in the other objectives are mini-
mized. In this way, the axes of the multi-dimensional Pareto optimal objective space
can approximately be followed towards a final most preferred point. A screenshot of
the tool is presented in Figure 25.

For the configuration problem studied, a decision support tool should be incor-
porated within a sales tool, helping the customers to find the available configuration
in the available set of configuration, giving them the largest utility. A remark is that
such a tool must not be relying on the assumption of identical objective functions.
The important feature of the tool is that it effectively helps the customer to find the
solution x ∈ XD maximizing his/her utility function u.

In some current work, we take a mathematical approach to decision theory in an
attempt to define and study concepts that are crucial for using optimization to solve
the configuration problem. The purpose of taking such an approach is, in the long
run, to better understand how customers behave, so that the quality measures and
performance metrics defined, e.g., for evaluating approximate Pareto optimal sets
become adapted to what is requested by the market.
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Figure 25: A screenshot of the tool developed for navigation in a Pareto optimal set
of a discrete and/or non-convex problem. The actual problem in the Figure has five
objective functions. The upper and lower bounds on the objectives have been modi-
fied and are represented by the polygons defining the lighter region. The polygon in
the interior of the lighter region represents the current solution.

8.4 Constraint programming

Constraint programming (CP) is a discipline originally developed within the Com-
puter science community. However, over the last years there has been a progress
towards a merging with Operations research and (mathematical) optimization, see
e.g. [21]. Traditionally, CP has mainly dealt with finding feasible solutions to dif-
ferent combinatorial (optimization) problems, and it has successfully been applied
to, e.g., scheduling, resource allocation, and packing problems. References can also
be found on application of CP to configuration management [7]. The configuration
management is in this case mostly related to computer software development (e.g.,
to track changes of source code), and further, it does not consider the configuration
of a population of products with an optimization focus.

Consider a system defined by design variables and a large set of constraints on
these. An important solution method used in CP is constraint propagation, where,
iteratively, the domains of the design variables are reduced for one constraint at a
time with the aim of finding values on the decision variables such that all constraints
are fulfilled. This filtering method is often combined with a backtracking technique,
which is necessary to guarantee that a feasible solution, if one exists, will be found.
While it is straightforward to incorporate any types of constraints into the problem
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formulation, it is not trivial to introduce costs or an objective function in the CP
solution procedure.

Techniques within CP could be used to (quickly) find feasible configurations that
fulfil all the restrictions (at least for the mode 1 problem defined on the configura-
tion space). The constraint propagation techniques could also be used as a preprocess
for the search for a population of solutions for customers in some environment seg-
ment (cf. Section 4.3). Here, if the actual environment segment implies that certain
variants in certain variant families must be selected, then these selections could be
propagated through the restrictions, while decreasing the domains for the rest of the
variant families. Moreover, if the environment segment implies that some variants
cannot be selected, then this information could be used to reduce the set of restric-
tions for the resulting problem.

It is clear from above that some parts of CP can be applied to the configuration
problem. However, further research is needed for adapting the techniques to our
configuration problem such that only “good” feasible solutions are found.

8.5 The intersection of the domains

In the engineering optimization literature, simulation-based as well as multi-objec-
tive optimization problems are widely studied. What is missing for our application is
the combinatorial part, where, instead of creating one single design, we are to design
a whole population of designs.

Clustering analysis, on the other hand, is about reducing some (finite or infinite)
set to a smaller set of clustered points. Clustering analysis is connected to optimiza-
tion in a sense, since the clustering objective (e.g., maximum homogeneity within
groups and maximum heterogeneity between groups) can be viewed as optimiza-
tion. However, what seems to be missing in the literature is a clear connection to
an underlying (multi-objective) optimization problem, and also what comes with a
such, clustering in one space (the objective space) with restrictions in another (the
decision space).

With this said, it seems to us that in the previous literature, the intersection of
all the domains required to describe and solve the configuration problem with the
proposed approach is empty.

9 Summary of appended papers

9.1 Paper 1 — Approximating the Pareto Optimal Set using a Re-
duced Set of Objective Functions

In this paper, we describe a reduction procedure for multi-objective optimization
problems when the number of objective functions is large. Through this method, one
creates a new optimization problem with fewer objectives and with a Pareto optimal
set that is approximately the same as the Pareto optimal set of the original prob-
lem. The smaller number of objectives in the reduced problem makes it, in general,
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computationally easier to solve.
We introduce concepts such as τ -Pareto optimality, which relaxes the concept of

Pareto optimality, and ρ-centrality, which leads to a focus on the (probably most)
interesting part of the Pareto optimal set. Our approximation goal is to minimize
the distance between the ρ-central part of the original Pareto optimal set and the
ρ-central τ -Pareto optimal set of the reduced problem.

Utilizing a new characterization of Pareto optimality (valid for finite decision
spaces) which gives Definition 5.1 an explicit formulation, we derive a program
whose solution represents an optimal reduction with respect to the approximation
objective. We also propose an approximate formulation, computationally tractable
contrary to the ideal formulation, which utilizes correlations between the objectives
and separates the program into two parts. We demonstrate the method by applying
it to a small industrial instance.

The motivation behind the method developed is that industrial problems often
require computer intensive simulations and that they often possess a large num-
ber of objective functions. These characteristics make them computationally hard to
solve. In addition, in practice it is not necessary to find the exact Pareto optimal set;
it might be well motivated to lose some precision if the problem to solve becomes
significantly smaller, and if the size of the error can be estimated. We have not found
any other method in the literature suitable for our aim. Often, very strong assump-
tions are required for allowing a reduction of the set of objective functions.

A main contribution of this paper is the new explicit characterization of Pareto
optimality, which might also be utilized in other applications. Another contribution
is the actual method developed which can be used as a preprocess for large-scale
multi-objective optimization problems. Here, a subset of the decision space consist-
ing of a finite set of points (small enough to enable an exhaustive search for the Pareto
optimal set) must be selected. Using this finite subset, a reduced problem can be con-
structed using the proposed method, and then the reduced problem formulation can
be applied to the original problem.

9.2 Paper 2 — Multi-Objective Design of a Combinatorial Struc-
ture

In this paper, we approach the problem of incorporating the combinatorial complex-
ity of product development (cf. Section 3.2) into a multi-objective optimization con-
text and study the procedure denoted by “implicit clustering” and which is defined
in Section 7.2.

In the mode 2 configuration problem of Section 4.1, variants are to be selected
within variant families such that the resulting set of feasible configurations approxi-
mates the Pareto optimal set of the underlying multi-objective optimization problem
in a good way. In this paper, we consider a simplification of this configuration prob-
lem where the design variables are assumed to be continuous and subject to box
constraints only.

A (single-)objective optimization problem, the Multi-Objective Combinatorial De-
sign Problem (MOCDP), is introduced. In MOCDP, an underlying multi-objective op-



42 9 SUMMARY OF APPENDED PAPERS

timization problem (MONP) is used, to which a population of solutions is wanted,
approximating its Pareto optimal set P (cf. Section 5.3 for a discussion on approxi-
mations Pareto optimal sets). The decision space is assumed to be combinatorial, i.e.,
a product set for which a solution is composed by one component in each dimen-
sion. Thereby, letting mj denote the number of variants (i.e., decision variables) in
dimension j = 1, . . . , n,

∑n

j=1 mj decision variables characterize the (much larger
number)

∏n

j=1 mj possible configurations (i.e., solutions).
MOCDP is non-convex and non-differentiable even under very strong assump-

tions on the underlying MONP. A two-step solution method is proposed for solving
MOCDP. In the first step a representation of P is computed and in the second step,
global and local optimization algorithms are combined to find a good approximation
of the representation from the first step. The method is demonstrated on instances
constructed from a standard test problem from the literature. Suggestions are also
made on how to adapt the methodology for problems with expensive function eval-
uations.

The main contribution of the paper is the methodology of implicit clustering,
which yields desired outcomes both in the decision space (a certain structure) and in
the objective space (a population of solutions well approximating P).

Two main issues that have to be addressed for the current methodology to apply
to practical configuration problems are how to incorporate other variable types (in-
teger and categorical) and how to handle more general constraints (or restrictions).
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Appendix

A Discretization is a win-win concept

We provide an illustration of the fact that limiting the number of available trucks (to
a number of suitable magnitude) might be advantageous for both the producer and
the customers. The configuration problem is modeled as a multi-objective optimiza-
tion problem. The idea is to show that a reduction of the number of configurations
(which naturally decreases the indirect product costs) might lead to (independent
of the preferred point on the Pareto front) better solutions at the same cost level.
The example assumes a simple, yet reasonable, model of how costs enter into the
multi-objective configuration problem.

A.2 An example

Assume that the problem comprises two objective functions to be minimized repre-
senting two (partially) conflicting performance measures. The product cost is then
added to the problem as a third objective to minimize; this cost is a sum of the direct
product cost and the indirect product cost. Assume that the indirect product cost (rep-
resenting, e.g., product development costs, spare parts warehousing etc.) increases
with the number of distinct configurations to be produced. Assume also that by in-
creasing the direct product cost the two performance measures can be improved. An
instance complying with these assumptions is given below.

The decision variables are

x1 ∈ [0, 1],

x2 ∈ [π, 3π/2] ,

x3 ∈ [0, 100],

where x3 represents the direct product cost. The objective functions to be minimized
are

f1(x) = x1 cos(x2)− k1x3,

f2(x) = x1 sin(x2)− k1x3,

f3(x) = x3 + k2D,

where f1 and f2 represent the performance measures and f3 represents the total
product cost. The parameters k1 and k2 are positive constants and D is the number
of distinct configurations produced.

Assume that it is possible to realize 40 distinct variants of each decision vari-
able, corresponding to 403 possible configurations. The customer preferences are not
known a priori, and are assumed to be spread uniformly along the Pareto front. With
k1 = 1

1000 , k2 = 60
403 , and D = 403, the realizations in the decision and the objective
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spaces are as illustrated in Figures 26(a) and 26(b). For this problem we have the
Pareto optimal set

P =
{

x ∈ ℜ3 | x1 = 1, x2 ∈ [π, 3π/2] , x3 ∈ [0, 100]
}

, (9)

and the image of the Pareto optimal set

f(P) =

{

f ∈ ℜ3

∣

∣

∣

∣

f1 = cos(x2)−
1

1000
x3, f2 = sin(x2)−

1

1000
x3, f3 = x3 + 75,

(10)x2 ∈ [π, 3π/2] , x3 ∈ [0, 100]

}

.

(a) (b)

Figure 26: The realized solutions in (a) the decision space and (b) the objective space
for the example. The non-dominated (Pareto optimal) solutions in both spaces are
marked in black and the dominated part of the feasible set and its image in the ob-
jective space are marked in gray.

The total product cost of a configuration lies between 60 and 160 monetary units.
We assume that a customer is interested in buying a truck in the middle of this price
range (f3 = 110 ⇔ x3 = 50). Provided that all 40 non-dominated optimal config-
urations at the actual cost level f3 are produced and available to the customer, the
set in the objective space to choose from (depending on the appreciation of the two
performance measures) is illustrated in Figure 27(a).

Suppose further that the producer wishes to produce fewer than the 40 possible
Pareto optimal trucks. The question then is whether this can be done such that most
(or possibly all) of the customers (representing all possible preferences between the
performance measures) will benefit.

Obviously, if the discretization is too coarse, then original points in the extreme
regions of the Pareto front cannot be covered (dominated) by the discretized points.
Also if the discretization is made too fine, then the cost improvement will not be that
large and the fewer points will not be able to cover a large part of the original Pareto
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front. In the Figures 27(b)–(d) the part of the original Pareto front with the design
restriction x3 = 50 where the 40 configurations are located5 is shown together with
the representatives for the limited sets (represented by + signs). The black regions of
the original front correspond to customer choices which are not dominated by any
of the representatives, whereas the gray regions correspond to dominated choices.
In the Figures 27(b)–(d) the size of the limited sets are chosen to be 1, 39 and 7,
respectively.
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(a) The set of solutions (in objective space) to
choose from provided that all 40 configurations
are available.
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(b) With few solutions in the limited set a small
part of the original Pareto front will be domi-
nated.
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(c) With many solutions in the limited set a small
part of the original Pareto front will be domi-
nated.

−1 −0.8 −0.6 −0.4 −0.2 0

−1

−0.8

−0.6

−0.4

−0.2

0

f1

f
2

(d) A large part of the original Pareto front is
dominated by a limited set of cardinality 7.

Figure 27:

For the stated example it is in fact possible to choose discretizations, equally dis-
tributed over the Pareto front, such that each original point is dominated by some
point in the limited set. Yet, it is not clear that such a coarseness in the discretization
is the best one for the whole population of customers, since the subset of customers

5Observe that the original Pareto front is continuous and equal to f(P) from (10) intersected with f3 =
110 given that 40 solutions are produced for each cost level. When the solutions are spread equidistant
they are located as in 27(a), but they can be located wherever in the original Pareto front.
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whose original choices become dominated will get configurations with indisputably
higher quality than otherwise. Thus, there is a trade-off situation between pleasing
the average customer and pleasing the worst-case customer.

Customers with preferences corresponding to the gray regions of the Pareto front
will unambigously benefit from the discretization. This might be true also for cus-
tomers in the black regions who would possibly change their preferences if they had
to choose between configurations in the union of the black regions and the limited
set6.

Figure 28 shows how the proportion of customers (who are assumed to be equally
spread along the Pareto front) who can be offered trucks dominating their original
choices varies with the size of the limited set. An important remark, as noted above,
is that this measure is a worst-case measure and is therefore possibly underestimat-
ing. Also for a considerably lower proportion than 100% of the population can the
improvement on average be positive.
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Figure 28: The proportion of the original Pareto front that is dominated by points in
the limited set as a function of the size of the limited set.

A.3 Conclusions

The example above shows how a limitation of the number of available configura-
tions can be motivated by domination. The resulting set of configurations to choose
between may have better properties than the full set, in the sense that the solutions
in the limited set may dominate several of the original solutions at a given product
price. In some cases all original solutions are dominated, which can be interpreted
as: regardless of a customers preferences, he/she will find a better configuration in
the limited set than what would be possible in the original set.

6In the example when the size of the discretized size is equal to seven this is true for all customers
if they evaluate the different configurations by weighing the two quality measures. This because of that
the supported (cf. Section 5.2) non-dominated set of the decision points corresponding to the union of the
black regions and the limited set is equal to the decision points corresponding to the limited set.
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Approximating the Pareto Optimal Set using a
Reduced Set of Objective Functions

Peter Lindroth Michael Patriksson Ann-Brith Strömberg

Abstract

Real - world applications of multi - objective optimization often involve a large
number of objective functions. But while such problems are computationally very
difficult in general, it is often not necessary to find the Pareto optimal set exactly.
It is therefore motivated to lose some precision if the computational burden be-
comes significantly smaller and the size of the error can be estimated. We describe
a method for an optimal reduction of the set of objectives yielding a smaller prob-
lem whose Pareto optimal set, in a Hausdorff distance sense, is as similar as pos-
sible to the Pareto optimal set of the original problem. Our focus lies only on the
part of the decision space that is interesting in the sense that it is (near-)Pareto
optimal. Using a new characterization of Pareto optimality, we derive a program
whose solution represents an optimal reduction. We also propose an approxi-
mate formulation, computationally less demanding, which utilizes correlations
between the objectives and separates the program into two parts. The method is
illustrated with a graphical example, in which the obtained results can be viewed
graphically. Numerical results for an industrial instance concerning the config-
uration of heavy-duty trucks are also reported, demonstrating the usefulness of
the developed method. The results show that multi-objective problems can be
simplified with an inducing error of which there is a measure.

1 Introduction

Engineering design problems typically deal with the construction of designs han-
dling a number of more or less conflicting criteria. Such problems can mathemat-
ically be formulated as a multi-objective optimization problem with the standard
notation

min
x∈X

{f1(x), . . . , fk(x)} , (1)

where x ∈ ℜn denotes a vector of decision variables, X ⊆ ℜn is the set of feasi-
ble decision vectors (or the decision space), and each fi : X → ℜ, i = 1, . . . , k, is
an objective function to be minimized. The vector of objective functions is denoted
f = {f1, . . . , fk}. The objective space, Z, is defined as being the image of the decision

1



2 1 INTRODUCTION

space, i.e., Z = f(X) = {z = f(x) | x ∈ X}. If the objective functions are at least
partially in conflict, i.e., there is no feasible decision vector minimizing all objectives
simultaneously, then the optimal solution to (1) is not well-defined since there exists
no natural complete ordering of vectors. However, there exists a set of decision vec-
tors in which the best solution by rational judgments must be contained regardless
of the relative importance of each single objective, namely the Pareto optimal set (or,
equivalently, the efficient or non-dominated set).

Definition 1.1 (Pareto optimality) Given a set X of feasible decision vectors and a set
{f1, . . . , fk} of objective functions to be minimized, a vector x∗ ∈ X is defined as Pareto
optimal if there exists no vector x ∈ X such that fi(x) ≤ fi(x

∗), i = 1, . . . , k, and
fj(x) < fj(x

∗) for at least one j ∈ {1, . . . , k}. An objective vector z∗ = f(x∗) is called
Pareto optimal if the corresponding vector x∗ is Pareto optimal. The set of all Pareto optimal
decision vectors x∗ ∈ X is denoted P ⊆ X .

Definition 1.2 (Domination) A vector x ∈ X is said to dominate a vector y ∈ X if
fi(x) ≤ fi(y), i = 1, . . . , k, and fj(x) < fj(y) for at least one j ∈ {1, . . . , k}.

The Pareto optimal set (in the objective space) is bounded from below by the ideal
vector, zideal, and from above by the nadir vector, znad, both defined below.

Definition 1.3 (Ideal/nadir vector) The ideal vector zideal ∈ ℜk is the vector consisting
of the component-wise minimum of each objective over the Pareto optimal set,

zideal =
(

min
y∈P

f1(y), . . . ,min
y∈P

fk(y)
)

. (2)

Likewise, the nadir vector znad ∈ ℜk is the vector consisting of the component-wise maxi-
mum of each objective over the Pareto optimal set,

znad =
(

max
y∈P

f1(y), . . . ,max
y∈P

fk(y)
)

. (3)

Definition 1.4 (Weak Pareto optimality) A vector x∗ ∈ X is defined as weakly Pareto
optimal if there exists no other vector x ∈ X such that fi(x) < fi(x

∗), i = 1, . . . , k. An
objective vector z∗ = f(x∗) is called weakly Pareto optimal if the corresponding vector x∗

is weakly Pareto optimal. The set of all weakly Pareto optimal vectors is denoted Pw.

We are interested in instances of the problem (1) for which the feasible set X is finite.
For such problems, it is possible to give an equivalent formulation of Pareto opti-
mality that appears to be new. We start by introducing this characterization, which
is more explicit than Definition 1.1 and which is in some cases better suited for mod-
eling actual problems.
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Proposition 1.5 (Pareto system) Let N ≥ 1 be an arbitrary integer, X = {x1, . . . ,xN},
and M ≫ 1. Then a vector x∗ ∈ X is Pareto optimal with respect to the objective functions
{f1, . . . , fk} if and only if the system (4) below is consistent.

fi(x
∗) < fi(x

j) +M(1− uij), j = 1, . . . , N, i = 1, . . . , k, (4a)
k

∑

i=1

fi(x
∗) ≤

k
∑

i=1

fi(x
j) +M(1− u0j), j = 1, . . . , N, (4b)

k
∑

i=0

uij ≥ 1, j = 1, . . . , N, (4c)

uij ∈ {0, 1}, j = 1, . . . , N, i = 0, . . . , k. (4d)

Proof. The Definition 1.1 of Pareto optimality can be restated as follows: for x∗ ∈ X
to be Pareto optimal, it is required that there is no x ∈ X such that fi(x) ≤ fi(x

∗), i =

1, . . . , k, and
∑k

i=1 fi(x) <
∑k

i=1 fi(x
∗) hold. Equivalently, for each x ∈ X , no more

than k out of these k+1 constraints may be fulfilled for x∗ ∈ X to be Pareto optimal.
Equivalently, by expressing the complement, for each j = 1, . . . , N , there must be at
least one out of the k+ 1 constraints fi(x

j) > fi(x
∗), i = 1, . . . , k, and

∑k
i=1 fi(x

j) ≥
∑k

i=1 fi(x
∗) that is fulfilled. This is equivalent to the system (4) being consistent.

Remark 1.6 Pareto optimality can be replaced by weak Pareto optimality in Proposition 1.5
if the strict inequality in (4a) is replaced by a (non-strict) inequality and if the inequali-
ties (4b) are removed.

By solving (1), we mean to find the set P ⊆ X . As the number k of objectives in-
creases the task of finding (a good approximation of) P in general becomes compu-
tationally increasingly difficult (cf. [8]; cf. also [3] in which the claim is the opposite
for some special problems). The number k of objectives is large in the instances of (1)
that we are interested in, and therefore our approach to solve these problems is based
on the selection of a smaller set of objective functions. We next present an overview
of such approaches.

1.1 Previous work

The notion of redundant (or non-essential) objectives was introduced in [12], referring
to objective functions that would not affect the Pareto optimal set if they were re-
moved from the problem formulation. It is proved that for linear multi-objective pro-
grams (problems of type (1) with all fi linear and X polyhedral) an objective whose
cost vector is a positive linear combination of some other cost vectors is redundant.
From an application point of view, however, it is noted in [11] that dropping redun-
dant functions often will affect the final solution(s) obtained from standard multi-
criteria decision making methods. In [17] it is stated that for non-linear problems,
and especially in connection with interactive solution methods, it is more suitable to
define redundancy on the basis of “conflicts” between the objectives, where no con-
flict between a pair of objectives means that all feasible decision vectors are sorted



4 1 INTRODUCTION

equally by the two objectives. Agrell [1] proposes a different definition of conflict,
only requiring the sorting to be equal over the efficient set. More definitions of con-
flict can be found in [4]. Measures of interdependencies are defined in [5]. Equal or
opposite sorting over the decision space is required for two objectives to be interde-
pendent. In [8], a method is proposed on how to reduce the set of objectives based
on the Principal Component Analysis technique (PCA), where, roughly speaking,
the objectives in the reduced problems are the ones that retain as much variation of
the original objective space Z as possible.

The above-mentioned works aim at a reformulation of the problem (1) such that
the Pareto optimal set is retained. However, after a reduction of redundant objectives
their number may still be too large. We construct a measure of “partial redundancy”
among objectives. Based on this measure we construct models with less than k ob-
jectives, having a lower computational complexity, and for which the Pareto optimal
sets are similar to that of (1).

In [4] a method for reducing the set of objectives is presented. The focus lies on
keeping the dominance structure in the whole of the decision space X .That is, the
aim is to drop objectives such that for all x,y ∈ X ; x dominates y in the reduced
problem if and only if x dominates y in the original problem. The method is in [4]
extended to allow some changes in the dominance structure leading to a change
in the Pareto optimal set. The aim of this method is similar to ours, however the
focus lies on the dominance structure in the complete decision spaceX (which might
contain parts with completely uninteresting points) instead of on the minimization
of the differences between the respective Pareto optimal sets (where it is important
that the reduced problem is a good approximation of the original one).

The concept of partial weighting is introduced in [14]. This can be seen as a gen-
eralization of the traditional scalarization technique [17] for solving multi-objective
optimization problems: some of the objectives are replaced by their weighted sum,
thereby reducing the dimension of the problem. How the objectives should be group-
ed is however not clearly proposed. It is shown that the Pareto optimal set Pβ for the
reduced problem is a subset of P , but the authors do not analyze or characterize the
vectors of P that are lost. We contribute both with a method for the selection of ob-
jectives for the reduced problem and characterizations of the Pareto optimal vectors
in the original and reduced problems.

1.2 Motivation

The main contribution of this work is a practical method for simplifying a multi-
objective optimization problem without losing too much information. Noted in the
literature is that usually very strong assumptions are made for allowing the number
of objective functions to be reduced; it is often required that the Pareto optimal set is
retained after the reduction (i.e., Pβ = P). Practical engineering problems often in-
voke many objective functions and it may be well motivated to lose some precision
of the Pareto optimal set if the problem to solve becomes significantly smaller and
if there is some measure on the size of the error made. We mean to find a smaller
representation—in terms of objective functions—of the problem such that Pβ and P
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are as similar as possible. The method can be used at a preprocessing stage when
solving optimization problems with many objectives and with a large set X ′ of fea-
sible decision vectors. By studying a subset X ⊆ X ′, small enough to enable an
exhaustive search for the Pareto optimal set P , the method developed reduces the
problem in such a way that the difference between P and the Pareto optimal set of
the reduced problem, Pβ , are held at minimum. This reduced problem formulation
can then be applied to the complete decision space X ′.

1.3 Outline

In Section 2 we investigate some relations between P and Pβ (when modifying the
set of objective functions) and propose several measures of the distance between
them. By showing that P shrinks when using certain reduction rules we motivate
the introduction of a dominance tolerance parameter to increase Pβ . We will also in-
troduce a centrality parameter, aiming at focusing the approximation on the most
important part of the resulting set. The number of objective functions and the value
of the centrality parameter are to be fixed in the model, whence the variables defin-
ing the objectives in the reduced problem together with the tolerance parameter are
the decision variables for which we search optimal values.

In Section 3 we utilize the above parameters and Proposition 1.5 to develop a
binary linear program (an ideal model) whose solution represents the optimally re-
duced problem, i.e., the reduced problem whose Pareto optimal set is, with respect
to the measures developed in Section 2, as similar as possible to the original Pareto
optimal set. The complexity of this model is far too high for a problem of practical
size to be solved in reasonable time. Therefore, in Section 4 we consider an approx-
imation of the ideal model based on the separation of the decision variables. The
approximate model can be solved effectively, and its solution represents an approxi-
mation of the optimally reduced multi-objective optimization problem.

In Section 6 the approximate model is applied to both an academic example
which can be viewed graphically and also to a realistic problem concerning con-
figurations of heavy-duty trucks.

2 Reducing the set of objective functions

In this section we study how the Pareto optimal set varies with the set of objective
functions. We propose a quality measure for the Pareto optimal set of the reduced
problem,Pβ , and introduce a parameter with the purpose of maximizing the similar-
ity between the possibly most important regions, the central regions (cf. Section 2.1),
of P and Pβ .

Reducing a multi-objective optimization problem by dropping objectives may in-
duce an error in the sense that the Pareto optimal setP of the original problem differs
from that of the reduced one. In [6], a review of quality measures for an approximate
Pareto optimal set, here denoted P̂ , is presented. These are mostly used to evaluate
new metaheuristics. Noted is that there exists no standard measure or even set of
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measures. Further, most proposals aim at evaluating the performance of proposed
heuristics for which the size of P̂ is significantly smaller than the size of P . A good
approximation normally means that P̂ is well spread over P and that the points in P̂
are also near-optimal, meaning that each point in P̂ is close to some point in P . One
measure, introduced in [7] and also used in [20], is defined by the metric

Dist2(P̂) = max
x∈P

{

min
y∈P̂

c(x,y)

}

, (5)

where c(·, ·) is some function measuring the closeness of a pair of points. In words,
Dist2 is the largest deviation of a point in P from its nearest point in P̂ . We wish to
find out how well Pβ approximates P but also the opposite; how well P approxi-
mates Pβ . Therefore we extend the Dist2 measure to the well-known Hausdorff dis-
tance measure, which measures how distant two non-empty compacts sets are in a
certain metric. With d(·, ·) denoting the distance metric, the Hausdorff distance, also
illustrated in Figure 1, between the closed, discrete, and non-empty sets E and F is
defined as

dH(E,F ) = max

{

max
u∈E

min
v∈F

d(u,v);max
v∈F

min
u∈E

d(v,u)

}

. (6)

E

F

dH

Figure 1: Illustration of the Hausdorff distance between the two sets E and F .

Given the multi-objective optimization problem (1), the question of how many objec-
tive functions that are required to define P is raised in [9]. For strictly quasi-convex
functions fi it is shown that for a problem with n = 2, a maximum of three objectives
are enough. However, without assuming convexity, or even continuity, of the objec-
tive functions it is clear that, in principle, only one objective function is required, e.g.,
the indicator function

ξ(x) =

{

1, if x /∈ P,
0, if x ∈ P.

Since our method is intended to be used on a subset of the complete decision space—
hoping that the reduced set of functions are good also in the complete decision
space—the indicator function is not a wise choice. In machine learning language; the
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wish is to find a hypothesis (a set of new objective functions) that fits the entire data
(X ′) well (leads to approximately the same Pareto optimal set), and not just the data
measured (X). For this reason, hypotheses that over-fit the data must be avoided,
meaning that there exists an alternative hypothesis that explains the measured data
worse but explains the entire data better. Choosing a simpler hypothesis instead of
a more complicated one sometimes goes under the name Occam’s razor [18]. In our
application, the set of all hypotheses are all functions {g : X → ℜr}, where r < k is
the number of objectives in the reduced problem. In this set of functions we want to
find the function g that approximates the Pareto optimal set the best over the entire
set of data. We have chosen to limit the set of hypotheses to those for which the ob-
jective functions of the reduced problem are allowed to be linear combinations of the
original ones. This leads to a fairly simple hypothesis that still seems reasonable. Fur-
thermore, we have restricted the weights of the linear combinations to be uniform
so that a set of two or more objectives may be replaced by their mean only. Thus, we
end up with a procedure similar that introduced in [14]: a partial weighting of the
original objectives.

Let the power set, i.e., the set of all subsets, of {1, . . . , k} be denoted by R =
{R1, . . . , R2k}. Our aim is to find a subset of R with maximal cardinality r defining
which collections of original objective functions to aggregate as objectives in the re-
duced problem. In other words, the aim is to reduce the set of objective functions
{f1, . . . , fk} to {gs1

, . . . , gsr
} , r < k, where gsj

= 1
|Rsj

|

∑

i∈Rsj
fi, and where each

Rsj
indicates which of the original objectives that are included in the j:th chosen

objective gsj
in the reduced problem. We also require that each objective function

fi must be included among the terms of some linearly combined function gsj
, i.e.,

∪r
j=1Rsj

= {1, . . . , k}. As indicators of which elements in R that are chosen we in-
troduce the binary variables

βp =

{

1, if collection p of objectives is chosen,
0, otherwise,

p = 1, . . . , 2k. (7)

Let A ∈ Bk×2k

be the incidence matrix indicating whether or not a certain objective
is included in a certain collection, i.e., its elements are

aip =

{

1, if objective fi is contained in collection p,
0, otherwise,

i = 1, . . . , k, p = 1, . . . , 2k.

The feasible choices of collections, for a prescribed maximal number r of objectives
in the reduced problem, are then defined by all binary vectors β ∈ {0, 1}2k

fulfilling

Aβ ≥ 1k,

β
T 12k ≤ r, (8)

β ∈ {0, 1}2k

.
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Now we return to a general case of problem modification, which is not restricted by
our requirements above. It is interesting to investigate how the set of Pareto opti-
mal decision vectors varies with the set of objective functions. Dropping an objec-
tive function (disallowed by our rules) will reduce the set of weakly Pareto optimal
points for problems with convex objective functions; this is a consequence of, e.g.,
Corollary 1 in [15]. It is true also for a general problem, guaranteed by the following.

Proposition 2.1 Consider the problem (1). Let K = {f1, . . . , fk} be the set of objective
functions and Kβ ⊂ K be the remaining set when some of the objective functions have been

removed. Let Pw ⊆ X (Pβ
w ⊆ X) be the set of weakly Pareto optimal vectors corresponding

to the set K (Kβ). Then, Pβ
w ⊆ Pw.

Proof. Assume without loss of generality that Kβ = {f2, . . . , fk}. Suppose y∗ ∈ Pβ
w.

This implies that ∄y ∈ X such that fi(y) < fi(y
∗), i ∈ {2, . . . , k}. Hence, ∄y ∈ X

such that fi(y) < fi(y
∗), i ∈ {1, . . . , k}, and thus, y∗ ∈ Pw.

Remark 2.2 Note that the analogous statement to Proposition 2.1 where weak Pareto opti-
mality is replaced by Pareto optimality is false. Consider the case to minimize {f1(x), f2(x)}
over X , with f1(x) = x1, f2(x) = x2, and X = {(1, 2); (2, 1); (3, 1)}. Then the Pareto
optimal set P = {(1, 2); (2, 1)}. By dropping f1 we obtain Pβ = {(2, 1); (3, 1)}, i.e.,
(3, 1) ∈ Pβ but (3, 1) /∈ P .

0 1 2 3
0

1

2

3

 

 

X
P
Pβ

f1

f
2

Figure 2: Illustration of the fact that weak Pareto optimality cannot be replaced by
Pareto optimality in Proposition 2.1.

However, Proposition 2.3 below guarantees that by replacing a subset of the ob-
jective functions with a positively weighted sum of themselves the set of Pareto op-
timal solutions is reduced. Thus we conclude that if constructing a reduced problem
by replacing certain subsets of objective functions with their respective weighted
means, then Pβ ⊆ P holds.
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Proposition 2.3 Consider the problem (1). Let K = {f1, . . . , fk} be the set of objective
functions and Kβ = {w1f1 + w2f2, f3, . . . , fk}, w1, w2 > 0, be the reduced set where the
first two objectives are replaced by a positively weighted sum. Let P ⊆ X (Pβ ⊆ X) be the
set of Pareto optimal vectors corresponding to the set K (Kβ). Then, Pβ ⊆ P .

Proof. See [14].

2.1 Centrality

Reducing the set of objective functions through partial weighting leads to the loss of
extreme Pareto optimal solutions, i.e., solutions with very good values in one objec-
tive but arbitrarily poor values in the others. These are probably not very attractive
anyway when a final solution is picked from the set of Pareto optimal solutions be-
cause of their extreme nature. In order to obtain a set Pβ that differs from P as little
as possible for the solutions that are likely to be chosen as final solutions, a centrality
parameter ρ ∈ [0, 1] is defined, and the vectors x ∈ E ⊆ X , where E is any subset of
X (e.g. P or Pβ), are partitioned into a ρ-central and a non-ρ-central part.

Definition 2.4 (ρ-centrality) Consider the multi-objective optimization problem (1). The
ρ-central part Eρ ⊆ E of a set E ⊆ X is defined as

Eρ =
{

x ∈ E
∣

∣

∣
fi(x) ≤ (1− ρ)znad

i + ρzideal
i , i = 1, . . . , k

}

. (9)

Proposition 2.5 For any subset E ⊆ X it holds that Eρ = E ∩Xρ.

In words, the ρ-central part of the Pareto optimal set, Pρ = P ∩ Xρ, consists of the
Pareto optimal vectors that have no objective function value relative to the span of
that objective over P , closer than ρ to any component of the nadir vector. As spe-
cial cases we have for a set E ⊆ X , E0 = {x ∈ E

∣

∣ f(x) ≤ znad } and E1 = {x ∈
E

∣

∣ f(x) ≤ zideal } (= ∅ if the objectives are partially in conflict). Figure 3 illustrates
the concepts.

2.2 Dominance tolerance

We want to approximate the Pareto optimal set as well as is possible using the prin-
ciples described above. Therefore, a non-negative tolerance parameter, τ ≥ 0, is in-
troduced, with the task of enlarging the Pareto optimal set of the reduced problem
to obtain a central part (with respect to the objectives in the reduced problem), Pβ,ρ,
as similar as possible to the central part of the original Pareto optimal set, Pρ. We
define the τ -Pareto optimal set, Pτ , as follows.

Definition 2.6 (τ -Pareto optimality) For τ ≥ 0, a set X of feasible vectors and a set
{f1, . . . , fk} of objective functions to be minimized, a vector x∗ ∈ X is defined to be τ -
Pareto optimal if there exists no vector x ∈ X such that fi(x) + τ ≤ fi(x

∗), i = 1, . . . , k,
and fj(x) + τ < fj(x

∗) for at least one j ∈ {1, . . . , k}. An objective vector z∗ = f(x∗)
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f(X)

f(Pρ)

f(P\Pρ)

f(P\Pρ)

f1

f2 z
nad

z
ideal

f(Eρ)

f(E\Eρ)

f(E\Eρ)

Figure 3: An illustration of the ρ-centrality concept in the objective space for a multi-
objective optimization problem with two objective functions. The concept is shown
for ρ ≈ 0.2 both for the Pareto optimal set P and for another subset E ⊂ X . Shown
are also the ideal and the nadir vectors for the problem.

is called τ -Pareto optimal if the corresponding vector x∗ is τ -Pareto optimal. The set of
τ -Pareto optimal decision vectors x∗ ∈ X is denoted Pτ ⊆ X .

By construction, P ⊆ Pτ̃ ⊆ Pτ holds for all τ ≥ τ̃ ≥ 0.
We now summarize our goal: Given the original multi-objective optimization

problem defined by the set X of feasible vectors and the set {f1, . . . , fk} of objective
functions together with the number r < k of objective functions in the reduced prob-
lem and the value ρ ∈ [0, 1] of the centrality parameter, we wish to find the optimal
set of collections {s1, . . . , sr} ⊂ R (defining the set {gs1

, . . . , gsr
}), and the value of

the tolerance parameter τ ≥ 0, such that the Hausdorff distance dH(f(Pρ), f(Pβ,ρ
τ )),

illustrated in Figure 4 (where we indicate that the sets we study are discrete), is min-
imized. The problem can be stated as that to

minimize
β,τ

δ(β, τ) := dH(f(Pρ), f(Pβ,ρ
τ )),

subject to Aβ ≥ 1k,

βT 12k ≤ r, (10)

β ∈ {0, 1}2k

,

τ ≥ 0.
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f(X)

f(Pρ)

f(Pβ,ρ
τ )

dH

Figure 4: An illustration of the Hausdorff distance (using the Euclidean metric) be-
tween the (discrete) sets f(Pρ) and f(Pβ,ρ

τ ).

3 The ideal model

Starting from the characterization of Pareto optimality in Proposition 1.5, we here
construct a binary linear program, the “ideal” model, for solving the problem (10).

3.1 An explicit formulation of Pareto optimality

Clearly, Pβ,ρ
τ depends on the choices of β and τ . Thus, a well-posed optimization

problem requires an explicit formulation of Pareto optimality. Such a formulation is
provided through Proposition 1.5. In the following sections we develop explicit con-
straints that distinguish τ -Pareto optimal vectors from non-τ -Pareto optimal ones.
We start with a formulation for the general problem (1) and then in Section 3.2
we apply it to the reduced problem (the problem (1) with {gs1

, . . . , gsr
} instead of

{f1, . . . , fk}) as objectives) incorporating β and τ in the formulation.
We construct, using the system (4), a consistent system of inequalities, which par-

titions the set X into a Pareto optimal and a non-Pareto optimal set. Consistency
of (4a), (4b) and (4d) is required (which is always feasible, e.g., with uij = 0, ∀i, j)
and binary variables wℓ, ℓ = 1, . . . , N , are introduced indicating if also (4c) holds
together with (4a), (4b) and (4d) for a certain vector xℓ. Below, the auxiliary variables
u and v are introduced in order to set the right values on w. The vectors xj and xℓ

are two specific vectors in X.
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Let

uijℓ =

{

1, if fi(x
ℓ) < fi(x

j),

0, otherwise,
j, ℓ = 1, . . . , N, i = 1, . . . , k,

u0jℓ =

{

1, if
∑k

i=1 fi(x
ℓ) ≤ ∑k

i=1 fi(x
j),

0, otherwise,
j, ℓ = 1, . . . , N,

vjℓ =

{

1, if xj does not dominate xℓ (i.e., if
∑k

i=0 uijℓ ≥ 1),

0, if xj dominates xℓ, j, ℓ = 1, . . . , N,

wℓ =

{

1, if xℓ ∈ P (i.e., if vjℓ = 1 ∀j),
0, if xℓ /∈ P, ℓ = 1, . . . , N.

These variable declaration can be formulated as the following system of inequali-
ties1.

−Muijℓ ≤ fi(x
ℓ)− fi(x

j) < M(1− uijℓ), j = 1, . . . , N, i = 1, . . . , k,

(11a)

−Mu0jℓ <

k
∑

i=1

fi(x
ℓ)−

k
∑

i=1

fi(x
j) ≤M(1− u0jℓ), j = 1, . . . , N, (11b)

vjℓ ≤
k

∑

i=0

uijℓ ≤ (k + 1)vjℓ, j = 1, . . . , N, (11c)

Nwℓ ≤
N

∑

j=1

vjℓ ≤ wℓ +N − 1, (11d)

uijℓ, vjℓ, wℓ ∈ {0, 1}, j = 1, . . . , N, i = 0, . . . , k. (11e)

Thus, we have the following result:

Proposition 3.1 For the multi-objective optimization problem (1), the system (11) of in-
equalities partitions the vectors xℓ ∈ X, ℓ = 1, . . . , N , into a Pareto optimal and a non-
Pareto optimal set.

Remark 3.2 The strict inequalities in (11a) can be replaced by (non-strict) inequalities if a
positive constant

υ = min
{

|fi(x
j)− fi(x

ℓ)| : i ∈ {1, . . . , k}, j, ℓ ∈ {1, . . . , N}, |fi(x
j)− fi(x

ℓ)| > 0
}

,

is added on the left-hand side of the respective inequality. The same is true with analogous
definitions for the strict inequality in (11b) and for the strict inequalities in the following
inequality systems.

1Unlike in Proposition 1.5 we here use constraints “in both directions”. The reason is that (4c) is not
required here, whence wℓ = 0 is feasible for a Pareto optimal point with uijℓ = 0, ∀ijℓ, if not the “extra”
constraints are added. See further Remark 3.3.
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Remark 3.3 If the goal is just to find the Pareto optimal set P ⊆ X , half of the inequalities
in (11) can be dropped and, as in (12) below, be replaced by an objective function.

maximize
N

∑

ℓ=1

wℓ,

subject to fi(x
ℓ)− fi(x

j) < M(1− uijℓ), j, ℓ = 1, . . . , N, i = 1, . . . , k,
(12a)

k
∑

i=1

fi(x
ℓ)−

k
∑

i=1

fi(x
j) ≤M(1− u0jℓ), j, ℓ = 1, . . . , N, (12b)

vjℓ ≤
k

∑

i=0

uijℓ, j, ℓ = 1, . . . , N, (12c)

Nwℓ ≤
N

∑

j=1

vjℓ, ℓ = 1, . . . , N, (12d)

uijℓ, vjℓ, wℓ ∈ {0, 1}, j, ℓ = 1, . . . , N, i = 0, . . . , k.
(12e)

3.2 The explicit formulation of Pareto optimality applied to the re-
duced problem

There are 2k possible objectives in the reduced problem; the ones chosen are indi-
cated by the values of βp, p = 1, . . . , 2k. However, we are interested in τ -Pareto
optimality for the reduced problem, wherefore {f1, . . . , fk} in (11) cannot be directly
replaced with {β1g1, . . . , β2kg2k}. The reason for this is that if some objective function
hi maps all x ∈ X to the same value, then for any x∗ ∈ X there exists no x ∈ X such
that hi(x) + τ ≤ hi(x

∗) if τ > 0; thus all x ∈ X will be τ -Pareto-optimal. This will be
the case for every objective function corresponding to a βp = 0 (since if so, βpgp ≡ 0).
Therefore the system (11) must be modified so that all inequalities involving terms
of an objective gp such that βp = 0 become redundant. We redefine the u, v and w
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variables according to

upjℓ =

{

1, if gp(x
ℓ) < gp(x

j) + τ , and collection p is chosen,
0, otherwise, j, ℓ = 1, . . . , N, p = 1, . . . , 2k,

u0jℓ =

{

1, if
∑2k

p=1 βpgp(x
ℓ) ≤ ∑2k

p=1(βpgp(x
j) + τ),

0, otherwise, j, ℓ = 1, . . . , N,

vjℓ =

{

1, if xj does not τ -dom. xℓ (i.e., if
∑2k

p=0 upjℓ ≥ 1),
0, if xj τ -dominates xℓ, j, ℓ = 1, . . . , N,

wℓ =

{

1, if xℓ ∈ Pβ
τ (i.e., if vjℓ = 1 ∀j),

0, if xℓ /∈ Pβ
τ ,

ℓ = 1, . . . , N.

For ℓ = 1, . . . , N , the system (13) has a solution with wℓ = 1 if and only if xℓ ∈ Pβ
τ .

Observe that βp, p = 1, . . . , 2k, are constants, not variables, in (13).

−Mupjℓ ≤M(1− βp) + βpgp(x
ℓ)− βpgp(x

j)− τ < 2M(1− upjℓ),

j = 1, . . . , N, p = 1, . . . , 2k, (13a)

−Mu0jℓ <
2k

∑

p=1

βpgp(x
ℓ)−

2k

∑

p=1

(

βpgp(x
j) + τ

)

≤M(1− u0jℓ),

j = 1, . . . , N, (13b)

vjℓ ≤
2k

∑

p=0

upjℓ ≤ (r + 1)vjℓ, j = 1, . . . , N, (13c)

Nwℓ ≤
N

∑

j=1

vjℓ ≤ wℓ +N − 1, (13d)

upjℓ, vjℓ, wℓ ∈ {0, 1}, j = 1, . . . , N, p = 0, . . . , 2k. (13e)

The main difference between the systems (11) and (13) is that the parameter τ is
introduced in (13) to define the τ -Pareto optimal set. Note also the difference between
the inequalities (11a) and (13a), where terms are added to make sure that upjℓ = 0
whenever βp = 0. Also, in inequality (13c), the constant k + 1 from (11c) is replaced
by r+ 1; this number is large enough since no more than r+ 1 of the u-variables can
take the value 1. From the arguments above we have the following result.

Proposition 3.4 Let the set {g1, . . . , g2k} consist of the potential objective functions for a

modified version of the multi-objective optimization problem (1) and let β ∈ {0, 1}2k

be the
unknown binary vector indicating which of the (at most r) objectives that are used. Then the
vectors xℓ ∈ X, ℓ = 1, . . . , N , are partitioned into a τ -Pareto optimal and a non-τ -Pareto
optimal set by the system of inequalities (13).
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3.3 An explicit formulation of centrality

The objective function dH(f(Pρ), f(Pβ,ρ
τ )) to minimize over the decision variables

β and τ depends on the centrality parameter ρ. Therefore, centrality according to
Definition 2.4 must also be characterized explicitly using constraints. In the follow-
ing sections we derive a system of linear inequalities which partitions the set X
into a ρ-central and a non-ρ-central part. By assuming that the objective functions
fi, i = 1, . . . , k, are non-negative (i.e., f(X) ⊆ ℜk

+), Proposition 3.5 guarantees the
existence of a linear inequality system characterizing ρ-centrality. Given that P has a
spreading in each dimension, i.e., znad

i > zideal
i , i = 1, . . . , k, the assumption is valid

for the resulting functions when replacing each fi(x), i = 1, . . . , k, with

fi(x)− zideal
i

znad
i − zideal

i

. (14)

A similar characterization to that in Proposition 3.5 can be formulated without the
assumption of non-negativity (through addition of more large constants); however,
the scaling (14) may also be a numerically wise choice.

Proposition 3.5 In the problem (1), suppose that fi : X → ℜ+, i = 1, . . . , k. Let P ⊆ X
be indicated by the binary variables wℓ = 1 if and only if xℓ ∈ P and let ρ ∈ [0, 1]. Then a
vector xℓ ∈ X is ρ-central if and only if ∃j ∈ {1, . . . , n} such that

fi(x
ℓ) ≤ (1− ρ)wjfi(x

j) + ρfi(x
m) +M(1− wm), i = 1, . . . , k, m = 1, . . . , N.

(15)

Proof. First, observe that the definition (9) of centrality can be rewritten as follows:
For a vector xℓ ∈ X to be ρ-central, a necessary and sufficient condition is that for
each i = 1, . . . , k, the inequality

fi(x
ℓ) ≤ (1− ρ) max

j: wj=1
fi(x

j) + ρ min
m: wm=1

fi(x
m), (16)

holds. Now, (15)⇔(16) by the following arguments, in which the terms involving xj

and the terms involving xm are studied separately.

⇐ If (16) holds for ĵ ∈ arg max{fi(x
j) | wj = 1} then (15) holds for at least

one j ∈ {1, . . . , N}. If (16) holds for m̂ ∈ arg min{fi(x
m) | wm = 1} then

(15) holds for all m = 1, . . . , N , since for all m such that wm = 1, fi(x
m) ≥

minm′: wm′=1 fi(x
m′

) and also it holds whenever wm = 0.

⇒ If (15) holds for some j ∈ {1, . . . , N}, it must hold for ĵ ∈ arg max{fi(x
j); wj =

1} since for all j, maxj′: wj′=1 fi(x
j′) ≥ wjfi(x

j). For m, the right-hand side of
(15) is smallest for the m̂ corresponding to a minimal fi(x

m) with wm = 1. If
the inequality holds for all m = 1, . . . , N , it holds for m̂ and thus (16) holds.
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We introduce a number of binary variables with the aim of creating a system of linear
inequalities whose feasible solutions are such that a binary variable aℓ equals 1 if and
only if xℓ ∈ X is ρ-central (i.e., if xℓ ∈ Xρ), ℓ = 1, . . . , N . Let

bijmℓ =

{

1, if fi(x
ℓ) ≤ (1− ρ)wjfi(x

j) + ρfi(x
m) +M(1− wm),

0, otherwise, j,m, ℓ = 1, . . . , N, i = 1, . . . , k,

cijℓ =

{

1, if
∑N

m=1 bijmℓ ≥ N,

0, otherwise,
j, ℓ = 1, . . . , N, i = 1, . . . , k,

eiℓ =

{

1, if
∑N

j=1 cijℓ ≥ 1,

0, otherwise,
ℓ = 1, . . . , N, i = 1, . . . , k,

aℓ =

{

1, if xℓ ∈ Xρ (i.e., if
∑k

i=1 eiℓ ≥ k),

0, if xℓ /∈ Xρ,
ℓ = 1, . . . , N.

The variable declarations above are equivalent to the inequality system (17) below,
which for each ℓ = 1, . . . , N , has a solution with aℓ = 1 if and only if xℓ ∈ Xρ.

−2Mbijmℓ < fi(x
ℓ)−

(

(1− ρ)wjfi(x
j) + ρfi(x

m) +M(1− wm)
)

,

j,m, ℓ = 1, . . . , N, i = 1, . . . , k, (17a)

M(1− bijmℓ) ≥ fi(x
ℓ)−

(

(1− ρ)wjfi(x
j) + ρfi(x

m) +M(1− wm)
)

,

j,m, ℓ = 1, . . . , N, i = 1, . . . , k, (17b)

Ncijℓ ≤
N

∑

m=1

bijmℓ ≤ cijℓ +N − 1, j, ℓ = 1, . . . , N, i = 1, . . . , k, (17c)

eiℓ ≤
N

∑

j=1

cijℓ ≤ Neiℓ, ℓ = 1, . . . , N, i = 1, . . . , k, (17d)

kaℓ ≤
k

∑

i=1

eiℓ ≤ aℓ + k − 1, ℓ = 1, . . . , N, (17e)

bijmℓ, cijℓ, eiℓ, aℓ ∈ {0, 1}, j,m, ℓ = 1, . . . , N, i = 1, . . . , k. (17f)

Proposition 3.6 For a multi-objective optimization problem (1) with non-negative objective
functions, the vectors xℓ ∈ X, ℓ = 1, . . . , N , are partitioned into a ρ-central and a non-ρ-
central part by the system of inequalities (17).

Combining the partitioning systems (11) and (17) and introducing the binary vari-
ables

ηℓ =

{

1, if xℓ ∈ Pρ,

0, if xℓ /∈ Pρ,
ℓ = 1, . . . , N,



3.4 The explicit formulation of centrality applied to the reduced problem 17

and the constraints

wℓ + aℓ − 1 ≤ ηℓ ≤ wℓ + aℓ, ℓ = 1, . . . , N, (18a)

ηℓ ∈ {0, 1}, ℓ = 1, . . . , N, (18b)

finally yields a system with feasible solutions such that ηℓ = 1 for vectors xℓ ∈ X
that are both Pareto optimal and ρ-central (xℓ ∈ Pρ) and ηℓ = 0 for vectors xℓ ∈ X
that are not (xℓ ∈ X \ Pρ).

3.4 The explicit formulation of centrality applied to the reduced
problem

We wish to decide which vectors x ∈ X that are ρ-central with respect to the (un-
known) set of objectives {gs1

, . . . , gsr
}. Let us denote this set by Xβ,ρ ⊆ X . The

construction of centrality in Definition 2.4 implies that we can instead set up the cen-
trality inequalities for the (known) set of objectives {β1g1, . . . , β2kg2k}, since for all p
with βp = 0 the corresponding inequality in (9) is fulfilled. However, it is not possi-
ble to use the same variable definitions, since that would lead to a non-linearity in
the constraints due to the multiplication of w and β (in the inequality correspond-
ing to (17a)). Instead, we rewrite the inequality (15), equivalent to the definition of
ρ-centrality, as follows:

fi(x
ℓ) ≤ (1− ρ)fi(x

j)−M(1− wj) + ρfi(x
m) +M(1− wm), (19)

which should hold for all i = 1, . . . , k, all m = 1, . . . , N , and for at least one j ∈
{1, . . . , N}. For the partially weighted objectives the inequality (19) becomes

βpgp(x
ℓ) ≤ (1− ρ)βpgp(x

j)−M(1− wj) + ρβpgp(x
m) +M(1− wm), (20)

and should hold for all p = 1, . . . , 2k, all m = 1, . . . , N , and for at least one j ∈
{1, . . . , N}.

As in Section 3.3, we use the following variable declarations for p = 1, . . . , 2k, and
j,m, ℓ = 1, . . . , N . The first definition is modified in order to avoid the non-linearity,
whereas the other three are analogous:

bpjmℓ =

{

1, if βpgp(x
ℓ) ≤ (1−ρ)βpgp(x

j)−M(1−wj) + ρβpgp(x
m) +M(1−wm),

0, otherwise,

cpjℓ =

{

1, if
∑N

m=1 bpjmℓ ≥ N,

0, otherwise,

epℓ =

{

1, if
∑N

j=1 cpjℓ ≥ 1,

0, otherwise,

aℓ =

{

1, if xℓ ∈ Xβ,ρ (i.e., if
∑2k

p=1 epℓ ≥ 2k),

0, if xℓ /∈ Xβ,ρ.
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For the partially weighted objectives {β1g1, . . . , β2kg2k} the centrality system corre-
sponding to (17) is then expressed as:

−2Mbpjmℓ < βpgp(x
ℓ)−

(

(1−ρ)βpgp(x
j)−M(1−wj)+ρβpgp(x

m)+M(1−wm)
)

,

j,m, ℓ = 1, . . . , N, p = 1, . . . , 2k, (21a)

M(1−bpjmℓ) ≥ βpgp(x
ℓ)−

(

(1−ρ)βpgp(x
j)−M(1−wj)+ρβpgp(x

m)+M(1−wm)
)

,

j,m, ℓ = 1, . . . , N, p = 1, . . . , 2k, (21b)

Ncpjℓ ≤
N

∑

m=1

bpjmℓ ≤ cpjℓ +N − 1, j, ℓ = 1, . . . , N, p = 1, . . . , 2k, (21c)

epℓ ≤
N

∑

j=1

cpjℓ ≤ Nepℓ, ℓ = 1, . . . , N, p = 1, . . . , 2k, (21d)

2kaℓ ≤
2k

∑

p=1

epℓ ≤ aℓ + 2k − 1, ℓ = 1, . . . , N, (21e)

bpjmℓ, cpjℓ, epℓ, aℓ ∈ {0, 1}, j,m, ℓ = 1, . . . , N p = 1, . . . , 2k. (21f)

As before, by combining the systems (13) and (21) and introducing the binary vari-
ables

ηℓ =

{

1, if xℓ ∈ Pβ,ρ
τ ,

0, if xℓ /∈ Pβ,ρ
τ ,

ℓ = 1, . . . , N,

and the constraints

wℓ + aℓ − 1 ≤ ηℓ ≤ wℓ + aℓ, ℓ = 1, . . . , N, (22a)

ηℓ ∈ {0, 1}, ℓ = 1, . . . , N, (22b)

a consistent system is formed such that ηℓ = 1 if and only if a vector xℓ ∈ X, ℓ =
1, . . . , N , is ρ-central and τ -Pareto optimal in the reduced problem (i.e., if xℓ ∈ Pβ,ρ

τ ).

3.5 Formulating the ideal model

Using the explicit formulation of Pareto optimality together with ρ-centrality, the
ideal formulation of the total problem (10) can now be stated. Assume that the num-
ber of ρ-central Pareto optimal points in the original problem (1) is Q. Then, without
loss of generality we assume that Pρ =

{

x1, . . . ,xQ
}

. The pairwise distances in the
objective space between all pairs of points xq ∈ Pρ and xℓ ∈ X are constants and
are denoted by dql = ||f(xq) − f(xℓ)||, q = 1, . . . , Q, ℓ = 1, . . . , N . Introducing an
auxiliary variable θ ∈ ℜ+ the objective in (10), minβ,τ dH(f(Pρ), f(Pβ,ρ

τ )) can be for-
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mulated as that to

minimize θ,

subject to θ ≥ min
ℓ∈{1,...,N}:

ηℓ=1

dqℓ, q = 1, . . . , Q, (23)

θ ≥ min
q∈{1,...,Q}

dqℓ, ℓ ∈ {1, . . . , N} : ηℓ = 1,

where the η-variables are implicitly depending on the decision variables β and τ .
The problem (23) can be expressed as

minimize θ,

subject to θ ≥ min
ℓ∈{1,...,N}

(

(1− ηℓ)M + dqℓ

)

, q = 1, . . . , Q, (24)

θ ≥ min
q∈{1,...,Q}

(

dqℓ − (1− ηℓ)M
)

, ℓ = 1, . . . , N,

where M ≥ max
{

dqℓ | q ∈ {1, . . . , Q}, ℓ ∈ {1, . . . , N}
}

. The min-operators can be
replaced by the binary variables

yqℓ =

{

1, if θ ≥ (1− ηℓ)M + dqℓ,

0, otherwise,
q = 1, . . . , Q, ℓ = 1, . . . , N,

zqℓ =

{

1, if θ ≥ dqℓ − (1− ηℓ)M,

0, otherwise,
q = 1, . . . , Q, ℓ = 1, . . . , N,

and, finally, the complete problem (10) for the ideal model can be formulated as the
binary linear program to

minimize θ,

subject to (1− ηℓ)M + dql − θ ≤ 2M(1− yqℓ), q = 1, . . . , Q, ℓ = 1, . . . , N, (25a)

−(1− ηℓ)M + dql − θ ≤M(1− zqℓ), q = 1, . . . , Q, ℓ = 1, . . . , N, (25b)
N

∑

ℓ=1

yqℓ ≥ 1, q = 1, . . . , Q, (25c)

Q
∑

q=1

zqℓ ≥ 1, ℓ = 1, . . . , N, (25d)

yqℓ ∈ {0, 1}, q = 1, . . . , Q, ℓ = 1, . . . , N, (25e)

zqℓ ∈ {0, 1}, q = 1, . . . , Q, ℓ = 1, . . . , N, (25f)

τ ≥ 0, (25g)

β satisfies (8), (25h)

(u, v, w,β, τ) satisfies (13), (25i)

(b, c, e, a) satisfies (21), (25j)

(w, a, η) satisfies (22). (25k)
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The problem (25) has in the order of N32k variables and constraints, the explicit for-
mulation of centrality defining the magnitude. A binary linear program of such a
size is impossible to solve in reasonable time for practical values of N and k. In the
following section an approximate model is formulated that separates the optimiza-
tion over β and τ , resulting in two easily solved sequential problems.

4 The approximate model

The underlying characteristic of the ideal model (25) that yields the high complex-
ity is that the optimization is made simultaneously over β and τ . For this, τ -Pareto
optimality as well as ρ-centrality must enter the model through constraints, as pre-
sented in Section 3. This leads to an explosion of binary variables and constraints. In
an approximate model to be presented we separate the optimization over β and τ .
The only constraints from the ideal model that are kept intact are (8). The rest of the
constraints—including the large sets of constraints (13) and (21)—are or no longer
necessary (and neither are the introduced variables in these systems). Instead a cer-
tain objective function is used in a first problem (cf. (I) on page 22) which is aimed at
evaluating and deciding on a good choice of β without making use of τ . Then simple
polynomial algorithms are used to find the (0-)Pareto optimal ρ-central part of X for
the reduced problem and after that a second problem (cf. (II) on page 23) is solved to
find the optimal value of τ given the already chosen value of β.

Obviously, a solution found with the approximate model might not be optimal
in (25), since decisions are made before all information is known, i.e., β is selected
before it is known exactly how τ will affect the Pareto optimal set. Also, there is no
measure of optimality provided for the approximate solution. However, the mech-
anism for selecting β is sensible, and the complexity of the problem formulation
decreases enormously. This motivates the use of the approximate formulation.

4.1 Correlation between objectives

The correlation coefficient of two objective functions fi and fj over a set of vectors
X = {x1, . . . ,xN} is defined as

ρ̂(fi, fj) =
sij√
siisjj

∈ [−1, 1], i, j ∈ {1, . . . , k}, (26)

where

sij =
1

N

N
∑

ℓ=1

(

fi(x
ℓ)− 1

N

N
∑

m=1

fi(x
m)

)(

fj(x
ℓ)− 1

N

N
∑

m=1

fj(x
m)

)

, i, j ∈ {1, . . . , k}.

In Figure 5 we illustrate some correlations between pairs of functions using scatter
plots.

The value of the pairwise correlation coefficients between two objective functions
gives a measure of how similar the functions evaluate the set X = {x1, . . . ,xN}. If
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Figure 5: Illustration of correlations between a pair of functions.

the correlation is perfect, i.e., ρ̂(fi, fj) = 1, then the Pareto optimal set P would be
unchanged if the pair of objectives was replaced by its mean; one of the objectives in
the pair would actually be redundant2. Using this reasoning we identify a relatively
redundant objective function as a function which together with some other objective
function has a large correlation coefficient. With this as a starting point we will in
Section 4.2 derive the first problem to solve in the approximate model.

The objective when deciding on the optimal β is to maximize the least corre-
lation coefficient between each original objective function fi ∈ {f1, . . . , fk} and its
most similar (in the correlation meaning) objective function in the reduced set of ob-
jectives {gs1

, . . . , gsr
}. A rough illustration of this objective is given in Figure 6 by

representing {f1, . . . , fk} with vectors with small angles between positively corre-
lated fi’s and large angles between negatively correlated fi’s. The objective is then
to find up to r sets in the power set of {1, . . . , k}, each corresponding to a collection
of objectives, such that to each collection there is an fi, i ∈ {1, . . . , k}, making an
angle as small as possible with the mean of the vectors in the collection.

∆ρ

Figure 6: Original objective functions (black), optimally aggregated objective func-
tions (gray) and a representation of the “correlation error”, ∆ρ.

2Note that ρ̂(fi, fj) = 1 is not a necessary condition for P to remain intact; e.g., if fi(x) = x is
redundant in a multi-objective optimization problem, then so is fj(x) = x2, but in general ρ̂(fi, fk) 6=
ρ̂(fj , fk).
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4.2 Finding the optimal collections

In the ideal model, R denotes the power set of {1, . . . , k} in which each element
represents a set of original objectives that may be dropped from the system and be-
ing replaced by an aggregation of them. To reduce the computational burden of the
model, we introduce a threshold, α, and only allow collections of original objectives
such that all the correlation coefficients between the original objectives in the collec-
tion and its aggregated objective are larger than α. For any α ∈ [−1, 1] we then have
the restricted set of collection candidates

Rα =
{

R̃ ∈ R
∣

∣

∣
ρ̂(fi, fj) ≥ α, ∀i, j ∈ R̃

}

. (27)

As before we want to reduce the set of original objectives {f1, . . . , fk} to the smaller
set {gs1

, . . . , gsr
}, where each gsj

= 1
|Rsj

|

∑

i∈Rsj
fi, i.e., equal to the mean of the

original functions in the collection Rsj
∈ Rα = {Rα

1 , . . . , R
α
|Rα|}. As in Section 2 the

decision vector β ∈ {0, 1}|Rα| indicates which collections to choose and the incidence
matrix A ∈ Bk×|Rα| defines which original objectives that belong to each collection.

Let ψp := mini∈Rp
ρ̂(gp, fi), and introduce an auxiliary variable z ∈ ℜ and a

scalar M ≥ 2. The problem of choosing the best collections then is the binary linear
program to

maximize z,

such that z ≤ ψp + (1− βp)M, p ∈ Rα,

Aβ ≥ 1k, (I)

βT 1|R
α| ≤ r,

β ∈ {0, 1}|Rα|.

This problem, which is close to a set partitioning-problem [19] has, for α = −1,
2k binary variables. However, the number of variables can be reduced substantially
with a larger value of α, whence the complexity of (I) will not be a serious issue.

An observation to be made is given in Proposition 4.1, whose result is quite ob-
vious from Figure 6.

Proposition 4.1 Let the set of optimal solutions to (I) be denoted by B. Then for some β∗ ∈
B, exactly r objectives are used, i.e,

∑

p∈Rα β∗p = r.

Proof. Assume the result does not hold, i.e., ∄β∗ ∈ B such that
∑

p∈Rα β∗p = r. Let β

be optimal to (I) with
∑

p∈Rα βp < r and assume that a collection p corresponding to
z = ψp consists of {fi1 , . . . , fit

}. We now extend the collection to {fi1 , . . . , fit
, fit+1

},
which leads to that ψp will not increase. Since we are still feasible and thus optimal,
the result follows by contradiction.
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4.3 Finding the optimal dominance tolerance

Solving (I) yields the optimal solution β = β∗, which defines the objectives to use
in the reduced problem. Observe that we by optimal mean with respect to the ap-
proximate model, β

∗ is sub-optimal with respect to (25). By pairwise comparisons
between all the points in X , the Pareto optimal set with respect to the selected ob-
jectives, Pβ∗

, is then extracted. Further, by checking the ρ-centrality characterization
from Definition 2.4 for all vectors x ∈ Pβ∗

the ρ-central part Pβ∗,ρ ⊆ Pβ∗

is extracted.
The idea is then in a second problem (II) , starting from Pβ∗,ρ(= Pβ∗,ρ

τ=0), to increase the
value of the tolerance parameter τ and find the value τ∗ that minimizes the Haus-
dorff distance between f(Pρ) and f(Pβ∗,ρ

τ ), i.e., the second problem is that to

minimize
τ

dH(f(Pρ), f(Pβ∗,ρ
τ )), (II)

such that τ ≥ 0.

In Figure 7 the solution process of the approximate model is illustrated. Included in
the figure are the inputs and outputs of the two problems (I) and (II).

{

X
{f1, . . . , fk}

=⇒ =⇒

=⇒=⇒

=⇒

=⇒ =⇒Solve

(I)

Solve

(II)

β∗

τ∗(β∗)

{Pρ

Pβ∗,ρ

Pairwise

comparisons

Figure 7: Solution procedure for the approximate model showing the inputs and
outputs of the two sequential problems.

Different values of τ changes the Pareto set that ρ-centrality is relating to in Defi-
nition 2.4. This implies a difficulty since the value of τ will not be known until after
problem (II) has been solved. The ρ-centrality partitioning could be done in each iter-
ation in the solution process for (II) (cf. Algorithm 4.1), but to get an easy optimiza-
tion problem for τ (which will be presented in the next section) we make another
approximation. We fix the set to relate to for ρ-centrality by approximating Pβ∗

τ —
the set we ideally want to use—by P in the ρ-centrality partitioning, i.e., we use (cf.
Definition 2.4)

Pβ∗,ρ
τ :≈

{

x ∈ Pβ∗

τ

∣

∣

∣

∣

gp(x) ≤ (1− ρ)max
y∈P

gp(y) + ρmin
y∈P

gp(y), ∀p ∈ Rα

}

. (28)

From Section 2 it is clear thatPβ∗ ⊆ P . It is also clear from Definition 2.4 thatPρ ⊆ P .
From our decision to let the centrality operator relate to P when deciding on Pβ∗,ρ

we can also conclude that Pβ∗,ρ ⊆ Pρ, since Pβ∗,ρ = Pβ∗∩Xρ ⊆ P∩Xρ = Pρ. What is
not obvious is the first equality, which does not hold without our approximation (28)
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sinceXρ depends on the objective functions. The relations are, in the objective space,
illustrated in Figure 8.

f(X)

f(Pρ)

f(Pβ∗,ρ
τ=0)

dH

Figure 8: Originating from a subset of Pρ, problem (II) enlarges the inner set by
increasing the value of τ .

Remember the definition of Hausdorff distance between two sets A and B as
being the maximum of the largest distance from any point in A to its nearest point
(with respect to some distance metric d(·, ·)) in B and the largest distance from any
point in B to its nearest point in A. We define φ1(τ) as the maximum distance from
a point in Pρ to its nearest point in Pβ∗,ρ

τ and φ2(τ) as the maximum distance from a
point in Pβ∗,ρ

τ to its nearest point in Pρ, i.e.,

φ1(τ) = max
x∈Pρ

(

min
y∈Pβ∗,ρ

τ

d
(

f(x), f(y)
)

)

, (29)

φ2(τ) = max
y∈Pβ∗,ρ

τ

(

min
x∈Pρ

d
(

f(y), f(x)
)

)

. (30)

Then, our objective function in (10) to minimize can, for a fixed β∗, be rewritten as

dH(f(Pρ), f(Pβ∗,ρ
τ )) = δ(β∗, τ) = max {φ1(τ), φ2(τ)} . (31)

Since increasing the value of τ will increase the size of Pβ∗,ρ
τ and thus there will

be more alternate points that can be nearest for each point in Pρ, φ1(τ) is a mono-
tonically decreasing lower semi-continuous function. Conversely, φ2(τ) describes a
monotonically increasing upper semi-continuous function. The sets Pρ and Pβ∗,ρ

τ are
discrete whence the functions φ1(τ) and φ2(τ) are piecewise constant. Thus, δ(β∗, τ)
is a piecewise constant quasi-convex [2] function. Figure 9 illustrates the functions
φ1(τ), φ2(τ), δ(β

∗, τ) and the monotonically increasing upper semi-continuous func-
tion

φ(τ) := φ2(τ)− φ1(τ). (32)
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Figure 9: Typical appearances of the three functions (a) φ1(τ) and φ2(τ) from (29),
(30), (b) δ(β∗, τ) from (31) and (c) φ(τ) from (32). For visibility reasons, the graphs of
all functions have been closed.

We are interested in finding

τ∗ ∈ arg min
τ

δ(β∗, τ). (33)

Assuming that φ1(0) > φ2(0) (otherwise τ∗ = 0), the function φ(τ) can possess three
different characteristics around the value where it changes sign. We will demonstrate
that no matter which of the characteristics, a bisection technique can be defined to
solve (II), i.e., to find a τ∗ solving (33). Let

T = arg min
τ
{φ(τ) | φ(τ) ≥ 0}. (34)

There can be three possible cases as presented below and illustrated in Figure 10.

1) T is a singleton and φ1(T ) = min
τ<T

{φ1(τ)},

2) T is a singleton and φ1(T ) < min
τ<T

{φ1(τ)}, (35)

3) T is an interval.
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φ1(τ)

φ2(τ)

T
(a) Case 1

φ1(τ)
φ2(τ)

T
(b) Case 2

φ1(τ) φ2(τ)

T
(c) Case 3

Figure 10: An illustration of the three cases in (35).

For ε > 0 sufficiently small, we can in each of the three cases define an interval
T̃ ⊆ arg minτ δ(β∗, τ) according to:

1) T̃ = [T − ε, T ),

2) T̃ = [T, T + ε],

3) T̃ = T.

Hence it suffices to find one τ∗ ∈ T̃ . This is done using a simple bisection technique
on φ(τ) where a termination criterion is set on the maximum size of the remaining
interval with the parameter εterm. In principle, since X is a discrete set of points,
there exists a positive value of εterm that guarantees an optimal solution to (II) using
the bisection technique, however this value is a priori unknown3. The algorithm in
pseudo-code is given in Algorithm 4.1. The first output from the algorithm is τ∗,
the (approximate) optimal value of the tolerance parameter τ together with the the
already chosen value of β∗ from Section 4.2. The other outputs are δ(β∗, τ∗(β∗)), the
Hausdorff distance given the chosen τ∗, and errorub, the maximum error in δ(β∗, τ)
due to a possibly too large choice of εterm.

Of course, instead of solving over τ for only one value of β, it is possible to create
a pool of candidate β’s (e.g. by solving the program (I) repeatedly, and in each it-
eration add a constraint cutting away the previous solution) and compute τ∗(β) for
each β in the pool. By comparing δ(β, τ∗(β)) for all β’s in the pool, the pair (β, τ)
yielding the lowest value of δ(β, τ) can be selected as an approximate solution to the
main reduction problem (10). By increasing the pool, the objective function value de-
creases monotonically, and for a sufficiently large pool (given that εterm is not chosen
too small), the optimal solution to (10) will be found.

3A lower bound on the, for optimality necessary, value of εterm is given by ε̄ = mins,t{|G(s) − G(t)| :
|G(s) − G(t)| > 0}, where G is the union of the function values of all objectives in the reduced problem,
i.e., G = ∪i=1,...,rgi(X). The explanation behind this expression is that the lengths of the piecewise

constant segments of φ(τ) are at most ε̄ since the set f(Pβ∗,ρ
τ ) will not, from the Definition 2.6 of τ -Pareto

optimality, change more than once if τ is increased with ε̄. However, the tightness of the upper bound is
unknown, whence it is not used in the algorithm.
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Algorithm 4.1 Pseudo-code for the τ -optimization algorithm.
pick tau_1 = 0
pick tau_2 big enough s.t. phi(tau_2) > 0
until tau_2 - tau_1 < e^term {

let tau_3 = (tau_1 + tau_2)/2
if phi(tau_3) < 0 {

let tau_1 = tau_3
}

elseif phi(tau_3) > 0 {
let tau_2 = tau_3
}

else {
output tau_star = tau_3
delta_star = phi1(tau_star)
error^ub = 0
}

}
output tau_star = argmin_{tau_1,tau_2} max(phi1(tau),phi2(tau))
output delta_star = max(phi1(tau_star),phi2(tau_star))
error^ub = phi(tau_2) - phi(tau_1)

5 An illustrating example

In this section the results are illustrated for an application of the approximate model
to a small pedagogical example before we in Section 6 apply it to a larger industrial
problem. To make the results visually interpretable, the dimension of the decision
space in the first example is chosen to be n = 2. The example indicates that “similar”
objectives may be aggregated with only a small loss of precision of P , whereas the
loss will be large if “non-similar” objectives are forced to be aggregated. However,
it also indicates that the utilization of the tolerance parameter τ can substantially
repair the damages from unsuitable aggregations.

The model has been implemented in MATLAB [16] in combination with AMPL [10]
and the CPlex solver [13] for solving of problem (I).
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Example 5.1 The example instance of (1) is defined by

f1(x) := (x1 − 6)2 + 4 (x2 − 4)2,

f2(x) := 4 (x1 − 5)2 +
9

4
(x2 − 5)2,

f3(x) := 4 (x1 −
11

2
)2 + 4 (x2 + 3)2,

f4(x) :=
25

4
(x1 − 4)2 +

9

4
(x2 + 5)2,

f5(x) := (x1 + 3)2 + (x2 + 3)2,

and

X := {x1 × x2 | xi ∈ {−10,−9.75,−9.5, . . . , 10}, i = 1, 2}.

Figure 11 shows level curves of the objective functions and the (convex hull of) Pareto optimal
subset P ⊆ X .

−10 −5 0 5 10
−10

−5

0

5

10

x
1

x 2

 

 

P

Figure 11: Level curves of the objective functions and the Pareto optimal subset P ⊆
X .

The pairwise correlations, defined in (26), of the objective functions f1, . . . , f5 are shown
in Table 1.
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f1 f2 f3 f4 f5
f1 1 0.74 0.13 0.11 -0.28
f2 1 0.63 0.69 -0.35
f3 1 0.97 0.15
f4 1 0.09
f5 1

Table 1: Correlation coefficients for the objective functions in the example.

Solving the approximate model for the example problem and with the number of objectives
in the reduced problem restricted to 4, 3, 2 and 1 leads to the results in Figure 12. Shown
are level curves for the respective aggregated objective functions, and the resulting (convex
hulls of) Pareto optimal sets for the respective reduced problems, with and without a tolerance
τ > 0, as compared to the originalP . We have used the value 0.15 for the centrality parameter
ρ. Note that the Hausdorff distance is not measured in the 2-dimensional decision space but
in the 5-dimensional objective space.

The figures clearly indicate that as long as it is possible to create a reduced problem where
each objective function is aggregated by original objectives with large pairwise correlations,
the loss of precision of the Pareto optimal set will not be too large. We also see that by allowing
a tolerance τ > 0, the similarities of the original and the reduced Pareto optimal sets are
increased significantly.

6 An industrial application

The approximate model has been applied to an industrial problem regarding the
configuration of heavy-duty trucks. Typically, trucks are very customer adapted de-
pending on differences in the environment in which the truck is to be used and for
what transport mission. For this reason, the trucks are highly modularized, making
an enormous number of configurations possible. The background to the problem ap-
proached is that there is no wish to produce a truck configuration that is worse than
some other truck configuration in all possible quality measures for the truck. How-
ever, different customers may appreciate the quality measures differently. Thus, the
target for the truck company should be to offer the customers a number of configu-
rations that are in some sense well distributed over the Pareto optimal set of trucks.
The first step is to identify this Pareto optimal set.

Here, a simple linear multi-body system model of a truck has been used pro-
grammed in MATLAB [16]. The model is illustrated in Figure 13. The complete deci-
sion (or, configuration) spaceX ′ is for this problem assumed to consist of all possible
combinations of a number of cabs, front axle installations, rear axle installations, and
superstructures. In this example |X ′| = 1296.

From the outputs of the model, 12 quality measures (i.e., objective functions in
the multi-objective optimization problem) have been defined, concerning, e.g., dura-
bility, driver environment, load comfort, and exposition of road wear.
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(a) r = 4, dH = 0.11, τ∗ = 0.00068
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(b) r = 3, dH = 0.19, τ∗ = 0.0037
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(c) r = 2, dH = 0.39, τ∗ = 0.15
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(d) r = 1, dH = 0.41, τ∗ = 0.26

Figure 12: Illustration of results for different numbers of objective functions in the
reduced problem.

Solving the original multi-objective optimization problem (1), where {f1, . . . , f12}
represent the 12 quality measures and where X consists of the 1296 feasible config-
urations showed that the proportion of originally Pareto optimal solutions is |P|

|X′| ≈
0.19. The pairwise correlations between the objectives are shown in Table 2, where
it is clear that some of the objectives are positively correlated, some are negatively
correlated, and some are rather independent of each other.
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Figure 13: The truck model used. A configuration is defined by the positions lx and
lz, the spring constants k, the damping constants c, the massesm and the moments of
inertia J . Inputs to the model are road excitations z0 and outputs are displacements,
velocities, accelerations and forces in the degrees of freedom x, z and ϕ.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1 -0.24 0.29 -0.06 0.19 0.78 -0.15 0.25 -0.31 0.39 -0.08 -0.21
f2 1 0.63 -0.40 0.19 -0.17 0.22 0.37 0.13 -0.45 -0.22 0.09
f3 1 0.06 0.77 0.39 0.11 0.61 -0.18 -0.19 -0.29 -0.10
f4 1 0.68 -0.03 0.13 0.05 0.15 0.14 0.18 0.11
f5 1 0.28 0.18 0.49 -0.03 -0.04 -0.09 0.01
f6 1 -0.24 0.22 -0.45 0.39 -0.07 -0.28
f7 1 0.44 0.80 0.08 0.50 0.81
f8 1 0.06 -0.39 -0.32 0.19
f9 1 0.22 0.73 0.81
f10 1 0.76 0.21
f11 1 0.58
f12 1

Table 2: Correlation coefficients for the objective functions in the industrial applica-
tion.

For the definition of τ -Pareto optimality to make sense it is important that the
objective functions are of approximately the same magnitude. As already introduced
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in Section 3.3, the objective functions are scaled, where each fi(x) is replaced by the
expression in (14), leading to the range [0, 1] of each scaled objective function over P .

The default parameter setting that has been used is given in Table 3.

r 6
ρ 0.15
α 0
Distance measure Euclidean
εterm 10−4

Table 3: Default algorithm settings.

To simulate a real application of the method developed, X ′ is partitioned ran-
domly into two equally large parts X and Xref. The set X is the set for which we
find β and τ , which defines the reduced problem. Xref is a reference set, to which we
apply the reduced problem defined and where the quality of the resulting ρ-central,
τ -Pareto optimal set Pβ,ρ

τ is measured. Through this procedure we decrease the risk
of over-fitting the data (cf. Section 2). In Table 4 the results for different values of r
are shown. We present the Hausdorff distances and also what is defined in (36), the
mean distance over all points in Pρ and Pβ∗,ρ

τ∗ to their respective nearest points in
Pβ∗,ρ

τ∗ and Pρ respectively (cf. the Hausdorff distance (6)).

dmean(E,F ) = mean
{

min
v∈F

d(u,v); min
u∈E

d(u,v)

}

(36)

The results are presented both for X and Xref. Also the optimal tolerance value, τ∗,
and the optimal objective value, z∗, in problem (I) are presented. All values in the
table are averaged over 10 runs.

r dH dmean dref
H dref

mean τ∗ z∗

11 0.18 0.002 0.29 0.005 0 0.95
10 0.23 0.004 0.38 0.009 0 0.93
9 0.26 0.011 0.44 0.015 0 0.93
8 0.36 0.021 0.47 0.022 0 0.92
7 0.46 0.034 0.76 0.068 0.008 0.91
6 0.46 0.041 0.75 0.103 0.016 0.89
5 0.56 0.068 1.05 0.170 0.033 0.77
4 0.53 0.085 0.98 0.207 0.078 0.69
3 0.58 0.113 0.93 0.216 0.105 0.55
2 0.56 0.106 0.83 0.213 0.190 0.44
1 0.52 0.099 0.75 0.152 0.236 0.18

Table 4: Numerical results for varying numbers of aggregated objectives.
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There is no sharp transition point where the error increases dramatically when r
is decreased, thus it is hard to draw any general conclusions on how many objective
functions that are needed for a reasonable error size. Also, it is not possible to draw
any clear conclusions on how the errors will turn out based on the correlation matrix.

To enable a better interpretation of the numbers in the tables, we present in Ta-
ble 5, in the first two columns the objective values (non-scaled) for the active pair
(x̂, ŷ) of solutions defining the maximum distance (cf. Figure 14) for a particular run
resulting in a Hausdorff distance dH = 0.585.

f(Pρ)

f(Pβ,ρ
τ )

dH
f(x̂)

f(ŷ)

Figure 14: Illustration of the active pair of points (x̂, ŷ) defining the Hausdorff dis-
tance.

The third column contains the span,

Span
i
= max

x∈X
fi(x)− min

x∈X
fi(x),

i.e., the difference between the largest and the smallest value of each function over
the configuration space. In the fourth column the difference between the active pair
relative to the span is presented:

Diffi =
|fi(x̂)− fi(ŷ)|

Span
i

.
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Pρ Pβ∗,ρ
τ∗ Span Diff

f1 1.905 1.990 0.69 0.12
f2 2.251 2.380 0.58 0.22
f3 1.280 1.338 0.79 0.07
f4 2.721 2.783 1.15 0.05
f5 1.447 1.546 1.29 0.08
f6 1.632 1.662 0.88 0.03
f7 -15550 -15550 1000 0.00
f8 27460 27440 3940 0.01
f9 189.8 191.3 43.8 0.04
f10 738.6 822.9 303 0.28
f11 1.061 1.100 0.39 0.10
f12 2.486 3.267 3.42 0.23

Table 5: Difference between the pair
defining the maximum difference (dH =
0.585).

Pρ Pβ∗,ρ
τ∗ Span Diff

f1 1.893 1.896 0.69 0.01
f2 2.275 2.257 0.58 0.03
f3 1.338 1.302 0.79 0.04
f4 2.741 2.750 1.15 0.01
f5 1.416 1.392 1.29 0.02
f6 1.556 1.530 0.88 0.03
f7 -15550 -15550 1000 0.00
f8 27620 27647 3940 0.01
f9 191.2 190.9 43.8 0.01
f10 732.6 739.6 303 0.02
f11 1.057 1.068 0.39 0.03
f12 2.427 2.539 3.42 0.03

Table 6: Difference between the pair clos-
est to the mean distance (dmean = 0.093).

Table 5 shows that the difference between a point in the ρ-central part of the orig-
inal Pareto optimal set and a point in the ρ-central part of the τ -Pareto optimal set
of the reduced problem may be quite large. For the two points in the table defining
the largest distance in the objective space (ℜ12), in this case 0.0585, the relative differ-
ences between the points are over 20% for three of the objectives. However, Table 6
indicates that even though the maximum difference may be large, the differences for
a pair with a distance close to the mean distance are small. For the pair in Table 6 the
relative differences are only a few percent in each objective with a maximum value
of 4.4% and a mean value of 1.9%.

Table 7 shows how the value of the centrality parameter ρ affects the results (by
varying ρ while keeping the other parameters in Table 3 fix).

ρ dH dmean dref
H dref

mean τ∗

0 0.53 0.044 0.69 0.051 0.017
0.05 0.49 0.050 0.89 0.131 0.022
0.10 0.48 0.047 0.81 0.117 0.021
0.15 0.46 0.041 0.75 0.103 0.016
0.20 0.37 0.034 0.65 0.092 0.015
0.25 0.34 0.028 0.77 0.147 0.014
0.30 0.22 0.018 0.78 0.195 0.007

Table 7: Numerical results when varying the centrality parameter.

As might have been expected, the errors tend to decrease with an increased cen-
trality parameter, since the more extreme Pareto optimal solutions, hard for the re-
duced problem to catch, are filtered out. However, the pros of using a larger value of
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ρ must be balanced against the cons, where a large value means that a smaller part
of the Pareto optimal set is assumed to be interesting. We also see in the table that
the values for the reference set Xref do not decrease as nicely as in X . A plausible
explanation is that for larger values on ρ, |Pρ| is smaller, which increases the risk of
over-fitting the decision variables when finding the reduced problem.

7 Conclusions

The motivation behind this work is the fact that industrial multi-objective optimiza-
tion problems often are computationally hard to solve and that it might not be very
important to find the true Pareto optimal set. We have created two models that re-
duce the original problem by decreasing the cardinality of the set of objective func-
tions using aggregations and such that the precision lost is minimized. The first
model, leading to an exact solution given the stated problem, is based on an explicit
characterization of Pareto optimality. However, the complexity of this model is far
too high for it to be solved for a practical case. The second model solves the problem
approximately by separating the optimization into two sequential problems in a way
such that the practical complexity is substantially reduced.

The second model has been applied to an industrial application showing that it is
possible to reduce the problem and to get a measure on how large the induced errors
are. We have not found any clear a priori indicators, e.g., in terms of the correlation
matrix for the objective functions, on how many objectives that are required for a
reasonably small error. It is hard to say a priori how much could be earned in prob-
lem reduction for a certain error level. The error seems to increase rather smoothly,
suggesting that the model should be applied for different values of the number of
objectives in the reduced problem before deciding on a suitable reduction. We leave
it to the decision maker (or, the problem owner) to decide on how large error that is
tolerable for the specific application and how much the problem-specific improve-
ment in computation time by the reduction is worth. The numerical experiments
also show that even if the distance between the worst pair (defining the Hausdorff
distance) is large, the distance between an average pair might be small.

To summarize, we have provided a method for problem reduction that can be
applied to any multi-objective optimization problem. The approximation is focused
to the interesting part of the decision space, i.e., the part that is (near-)Pareto optimal.
The outcome of the reduction is both a simplified problem formulation to use instead
of the original one, and also a measure of the induced error by using it.
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Multi-Objective Design of a Combinatorial

Structure

Peter Lindroth Michael Patriksson Ann-Brith Strömberg

Abstract

Engineering design problems are often formulated as multi-objective optimiza-
tion problems. We consider the problem of designing an optimal population of
configurations, where the configurations are composed by common elements.
Searching for a population of solutions that are good with respect to different
combinations of the multiple objectives can be seen as a search for a clustering
of the Pareto optimal set to the multi-objective optimization problem. Further,
a natural wish is to use common parts to construct the population of design so-
lutions. This paper proposes a (single-objective) optimization problem through
which the clustering is performed in a way such that the resulting solutions ap-
proximate the Pareto optimal solution well, while at the same time the variables
in the decision space are, by construction, required to be common. The procedure
is applied to instances constructed from test functions from the literature with
interesting results. The usefulness of applying the procedure to practical prob-
lems and what types of sensitivity analyses that can be performed are discussed
and demonstrated. Suggestions are also made on how to adapt the developed
methodology to simulation-based multi-objective optimization problems.

1 Introduction

A frequent wish in engineering design of mass-market products is to create a large
variety of product configurations using just a few variants of each part. One example
is trucks, another is kitchen cupboards.

In this paper we tackle the problem of deciding which variants to create by using
a mathematical modeling approach with a strategy based on an underlying multi-
objective optimization problem. We assume that the quality of a configuration is
measured by a number of objective functions, each to be optimized, and that each
configuration comprises a number of parts, each to be selected from a specific set
of possible designs. The goal is to maximize the quality of the total product variety
given the sets of possible parts. To our knowledge this approach is not apparent in
the literature.

1
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1.1 Motivation

A common property of engineering design problems is that they invoke a number
of more or less conflicting criteria (or, objectives). Examples are weight ↔ durability
and cost ↔ feature level. The objectives may be appreciated differently by different
customers, for example depending on how and in which environment the product
should be used and on the financial strength of the customer. This makes a multi-
objective approach for solving such problems natural. Further, for cost and flexibility
reasons, it is advantageous to design a small number of variants of each of the parts
to be combined, forming a large number of possible configurations. Moreover, it
is not enough to require that each configuration is good in itself; due to synergies
of scale, the set of all produced configurations must be evaluated as a collective.
We study the problem of how to systematically design the different variants such
that the resulting collection of variants yields an, in a certain sense, optimal set of
configurations.

We denote the technique to be introduced by Implicit clustering. Through tra-
ditional clustering or Explicit clustering, one partitions a set into groups, where ob-
jects belonging to the same group are similar, whereas objects belonging to different
groups are dissimilar. An extensive overview of clustering techniques is found in [8].
Explicit clustering cannot be applied directly to our problem, since there is both a de-
cision space and an objective space, both in which it is important where the resulting
configurations are located. Clustering in the decision space only leads to no control
of the distribution in the objective space, and clustering in the objective space only
leads to a set of configurations without structure in the decision space. The tech-
nique presented in this paper resolves these problems by considering both spaces
simultaneously, by the construction of a certain optimization problem.

1.2 Outline

In Section 2 we give a mathematical formulation of the design problem, discuss how
to measure the quality of a set of configurations, and investigate the mathematical
properties of the problem. We present a solution procedure in Section 3. In Section 4
we discuss the type of sensitivity analyses that can be performed for a practical prob-
lem and in Section 5 we solve some instances of the design problem using test func-
tions from the literature. Then, in Section 6 we propose a procedure to be added to
the solution process, which is reasonable if the objective functions are computation-
ally intense. Finally, in Section 7 we conclude the paper and give some propositions
for future work. These intend to make the solution strategy applicable to a larger
class of design problems than that originally considered.

2 A mathematical formulation of the problem

We begin this section by defining multi-objective optimization. We then formulate
our design problem, which, since it utilizes an underlying multi-objective optimiza-
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tion problem in its objective function, is called the Multi-Objective Combinatorial De-
sign Problem (MOCDP). The objective function to use is discussed and some mathe-
matical properties of MOCDP are analyzed.

2.1 Multi-objective optimization

A multi-objective (non-linear) optimization problem (MONP) can mathematically be
formulated by the standard notation

min
x∈X

{f1(x), . . . , fk(x)} , (1)

where x ∈ ℜn is a vector of decision variables, X ⊆ ℜn denotes the decision space,
and each function fi : X → ℜ, i = 1 . . . , k, is an objective function to be minimized.
We adopt the convention of letting the minimization operator apply to vectors. If
the objective functions are at least partially in conflict, i.e., there exists no x ∈ X
that simultaneously minimizes all k objectives, then an optimal solution to (1) is
not well-defined since there exists no natural complete ordering between vectors.
However, there exists a set of decision vectors, in which the best solution by rational
judgements, provided the mathematical formulation, must be contained regardless
of the relative importance of each single objective. This is the Pareto optimal set (or,
equivalently, the efficient or non-dominated set).

Definition 2.1 Given a set X of feasible vectors and a set {f1, . . . , fk} of objective functions
to minimize, a vector x∗ ∈ X is defined as Pareto optimal if there exists no other vector
x ∈ X such that fi(x) ≤ fi(x

∗), i = 1, . . . , k, and fj(x) < fj(x
∗) for at least one

j ∈ {1, . . . , k}. An objective vector z∗ = f(x∗) is called Pareto optimal if the corresponding
vector x∗ is Pareto optimal. The set of all Pareto optimal vectors is denoted P ⊆ X .

Definition 2.2 Given a set X of feasible vectors and a set {f1, . . . , fk} ∈ Ω = {f | f :
ℜn → ℜk} of objective functions to minimize, the Pareto operator P : ℜn × Ω → ℜn is
defined by P (X, f) = P .

2.2 The multi-objective combinatorial design problem

Initially, we assume that the decision variables are continuous and that X ⊆ ℜn is
defined by box constraints: X =

∏n

j=1 Xj , where Xj = [lj , uj ] , j = 1, . . . , n, with
−∞ < lj < uj < ∞. The assumption that each configuration consists of a fixed
number of parts that are combined then translates to that each variant xj of part j
is to be selected from the interval Xj = [lj , uj ], and that each configuration has the
representation x = (x1, . . . , xn) , xj ∈ Xj , j = 1, . . . , n.

Assume that part j may have mj different variants, and let the variants selected
be represented by the variables xjℓ, ℓ = 1, . . . ,mj . The available configurations are
then defined by the product set XD =

∏n

j=1

{
xj1, . . . , xjmj

}
. Such a configuration

set is illustrated in Figure 1 where n = 2,m1 = 3, and m2 = 2.
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X XD

l1

l2

u1

u2

x11 x12 x13

x21

x22

Figure 1: Illustration of a set of configurations XD ⊂ X .

We wish to select the values of the variables xjℓ, ℓ = 1, . . . ,mj , j = 1, . . . , n, such
that the product set of configurations is, in a certain sense, optimal. We collect the
decision variables in the vector

y = (x11, . . . , x1m1
, x21, . . . , x2m2

, . . . . . . , xn1, . . . , xnmn
) ∈ Y ⊆ ℜ

∑ n
j=1

mj , (2)

where

Y = X1 × · · · ×X1

︸ ︷︷ ︸

m1 factors

×X2 × · · · ×X2

︸ ︷︷ ︸

m2 factors

× · · · · · · ×Xn × · · · ×Xn

︸ ︷︷ ︸

mn factors

, (3)

and denote the resulting set of available configurations as XD(y). The motiva-
tion behind the problem formulation is that with just m :=

∑n

j=1 mj decision vari-

ables we decide on (the much larger number)
∏n

j=1 mj configurations. Further, let

QR : ℜ
∑ n

j=1
mj → ℜ be a function measuring the negative collective quality of a set

of configurations (negative quality is utilized in order to obtain a minimization prob-
lem). The subscript R on the quality function represents a possible reference set for
the configurations to be compared to.

We next introduce the (single-)objective optimization problem, the Multi-Objec-
tive Combinatorial Design Problem (MOCDP):

Q∗
R
(m1, . . . ,mn) = minimize

y

QR (y) (4a)

subject to lj ≤ xjℓ ≤ xj,ℓ+1 ≤ uj , ℓ = 1, . . . ,mj − 1, (4b)

j = 1, . . . , n.

The constraints (4b) ensure that the value of each decision variable is chosen from its
feasible interval, i.e., y ∈ Y and thus XD ∈ X ; they also exclude solutions that are
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equivalent due to symmetry. For mj = 1, the constraints (4b) should be replaced by
lj ≤ xj1 ≤ uj , j = 1, . . . , n.

The above formulation uses exactly mj variants of part j (however not necessar-
ily distinct). One could think that “at most” mj variants would be more appropriate.
These two formulations are, however, equivalent in the sense that their optimal QR-
values are the same. The latter formulation is a relaxation of the former, and the
optimal objective function Q∗

R
(m1, . . . ,mn) is monotonously decreasing with each

mj , j = 1, . . . , n, for all reasonable quality functions QR(·).

Remark 2.3 The formulation (4) can, with a suitable definition of QR(·), also be used for
single-objective optimization design, with the aim of finding a combinatorial set of solutions
which, as a collective, is robust with respect to variations or uncertainties in the underlying
optimization problem.

We next present an instance of MOCDP (without specifying the quality measure
QR(·)), which will be used for illustrative purposes in the paper.

Example 2.4 Let the underlying MONP be defined by the decision space X = [0, 1]2 and
the objective functions f(x) := {f1(x), f2(x)}, where

f1(x) =

(

x1 +
1

4

)2

+

(

x2 +
1

4

)2

, (5a)

and

f2(x) =

(

x1 −
3

4

)2

+

(

x2 −
3

4

)2

. (5b)

The Pareto optimal set P =
{
x ∈ ℜ2 | 0 ≤ x1 = x2 ≤

3
4

}
. Let now m1 = m2 = 2, which

leads to the vector y = (x11, x12, x21, x22) of decision variables and the configuration set
XD(y) = {(x11, x21), (x11, x22), (x12, x21), (x12, x22)}. We get the MOCDP

minimize QR (y) , (6a)

subject to 0 ≤ xj1 ≤ xj2 ≤ 1, j = 1, 2. (6b)

Figure 2 illustrates (a) the decision space and (b) the objective space of the underlying
MONP.
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(a) The decision space, X , level curves for the two
objective functions, and the Pareto optimal setP ⊆
X .
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(b) The objective space, Z = f(X), and the im-
age, f(P), of the Pareto optimal set.

Figure 2: Illustration of the design and objective spaces of the MONP in Example 2.4.
The Pareto optimal set P ⊆ X , and the image of the Pareto optimal set f(P) ⊆ Z =
f(X), are marked in black in the respective figures.

2.3 Measuring the quality of the set of configurations

It is not obvious how to define the quality function QR(·), but it is clear that f(P)
in some suitable sense should be approximated by f(XD). As noted e.g. in [16,
18, 3, 21] there is no standard technique in the literature for measuring the quality
of approximate Pareto sets, and for many of the intuitive measures one can easily
construct examples that shows good results for obviously bad approximations and
vice versa.

Two measures that have been designed for evaluation of metaheuristics for multi-
objective optimization problems, and which make sense also in our application, are
Dist1R and Dist2R, proposed in [4] and also used in e.g. [19]. We give the definitions
of Dist1R and Dist2R below. We will replace QR(·) by Dist1R, Dist2R, or with a
combination of these. These two metrics reward approximate sets (in our case XD)
that comprise points that are near-Pareto optimal while being evenly distributed
over the Pareto set. For the evaluation of the approximate set XD, both Dist1R and
Dist2R require a reference set R ⊂ X , which should be a discrete approximation
of the true Pareto optimal set P . If P is known, R can be an evenly spread discrete
subset ofP , which is the ideal situation. IfP is not known,Rmay consist of (a subset
of) the non-dominated points found using any solution method for multi-objective
optimization.

A high quality of a set XD means that to each vector xr ∈ R there is a vector
xd ∈ XD close to xr. The closeness, cw(xr,xd), of the vectors xr ∈ R and xd ∈ XD is
a non-symmetric measure defined as

cw(xr,xd) = max
i∈{1,...,k}

{

max
{

0, wi

(
fi(x

d)− fi(x
r)

)}
}

, xr ∈ R, xd ∈ XD, (7)
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where wi ≥ 0 is the weight assigned to objective i, i = 1, . . . , k, and w={w1, . . . , wk}.
In contrast to the original definition in [4] we will from now on replace XD in the
definition (7) of closeness by PD = P (XD, f), since a dominated solution is never
preferred to a non-dominated solution by a rational decision maker. Thus, the close-
ness of a point xr ∈ R to a point xd ∈ XD, where xr is (weakly) dominated by
xd, (i.e., f(xd) ≤ f(xr)), is defined to be zero. Otherwise, the closeness is given by
the maximum weighted deterioration of an objective value over the set of objective
functions. The weights in the expression (7) are set to

wi =
1

max
x∈R

fi(x)−min
x∈R

fi(x)
, i = 1, . . . , k, (8)

i.e., inversely proportional to the range of fi overR 1. An illustration of the closeness
between two points xr and xd is given in Figure 3.

f(xr)

f(xd)

cw(xr,xd)

fi

fj
denotes the set XD

denotes the setR

Figure 3: An illustration of the closeness between two points xr and xd according to
the definition (7). Here, wi = wj = 1.

The Dist1R measure yields information on the average distance from a point
xr ∈ R to its closest point in XD, and is defined as

Dist1R(y) =
1

|R|

∑

xr∈R

(

min
xd∈XD(y)

cw(xr,xd)

)

. (9)

Correspondingly, Dist2R yields information on the maximum distance and is de-
fined as

Dist2R(y) = max
xr∈R

{

min
xd∈XD(y)

cw(xr,xd)

}

. (10)

Note that if the points inR are more dense in some region of X , Dist1R will lead to a
biased result, since the denser part of the approximation will possess a larger weight
in the sum.

1Assumed is that the range is non-zero which is a reasonable assumption for practical problems. If
this assumption is not valid, then a positive constant could be added to the denominator in (7) or an
estimation could be made of the “scale” of each objective over the interesting region.
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Remark 2.5 The Dist1R and Dist2R measures are adopted from the evaluation of meta-
heuristics for applications for which P is not known. If there exists an explicit expression for
P one can choose R = P and replace the sum in Dist1R with an integral. This is also pos-
sible if there exists a function describing R, e.g. by interpolating the non-dominated points
found by some (approximate) solution method.

2.4 Some mathematical properties of MOCDP

We are interested in MOCDP applied to practical problems. The purpose of this
section is to analyze enough mathematical properties of MOCDP such that a suitable
solution method can be proposed for such problems.

Proposition 2.6 MOCDP with the quality functionQR(·) being either Dist1R or Dist2R
is continuous if the underlying MONP is continuous.

Proof. All fi’s are continuous since MONP is continuous and the max- and min-
operators in Dist1R, Dist2R are continuous. A composition of continuous function is
continuous. The feasible set of MOCDP is continuous and, hence, so is the problem.

Since the closeness function defined in (7) is non-differentiable for y ∈ Y such
that cw(xr,xd) = cw(xs,xd), r, s ∈ R for some xd ∈ XD(y) (i.e. when xd changes its
nearest point in R), we have the following result:

Proposition 2.7 If R a discrete set of points then MOCDP is non-differentiable.

We continue with investigating convexity properties of MOCDP. If MOCDP is
convex, then a local optimum is a global optimum and the problem can be solved
to global optimality using a local optimization algorithm. Unfortunately, as shown
below, this is not the case, even under very strong assumptions on the underlying
MONP.

Example 2.8 Recall Example 2.4. The underlying MONP is convex since both objective
functions are convex and the feasible decision space X is a convex set. Let the reference
set be R = {( 1

10 , 1
10 ), ( 6

10 , 6
10 )}. Then R ⊂ P =

{
(x1, x2) ∈ ℜ

2| 0 ≤ x1 = x2 ≤
3
4

}
. A

globally optimal solution to MOCDP is then y∗ = (x∗11, x
∗
12, x

∗
21, x

∗
22) = ( 1

10 , 6
10 , 1

10 , 6
10 )

withQR(y∗) = 0 since the number of decision variables is enough to meet all elements inR
2. However, experimenting with a local optimizer shows that it is possible to end up in a local
minimum with a positive quality measure. The instance of MOCDP is clearly non-convex
which is exemplified below. Let

y1 = (0, 0.50, 0.35, 0.70)T,

y2 = (0, 0.70, 0.35, 0.70)T,

λ = 0.5.

2This is always true when each mj , j = 1, . . . , n, is larger than the number of distinct values in R in
the corresponding dimension.
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A necessary condition for a function to be convex is that a linear interpolation of two function
values never is lower than the function itself at the corresponding interpolation between the
decision variables. We have a counterexample for convexity of MOCDP for both Dist1R and
Dist2R, since

0.149 ≈ QR(λy1 + (1− λ)y2) � λQR(y1) + (1− λ)QR(y2) ≈ 0.117

for QR(·) = Dist1R and

0.150 ≈ QR(λy1 + (1− λ)y2) � λQR(y1) + (1− λ)QR(y2) ≈ 0.148 (11)

for QR(·) = Dist2R.

The disappointing non-convexity result is obviously true also when the quality
functionQR is a convex combination of Dist1R and Dist2R. As far as we know there
exists no reasonable quality function that preserves the convexity property.

Assuming that the underlying MONP is continuous, we conclude that MOCDP
is in general continuous, non-differentiable, and non-convex; we conclude that some
suitable global optimizer is needed to solve it.

Our interest in the following result is motivated by the fact that we intend to use
penalty-based methods in the solution procedure to handle constraints. The result
requires some weak assumptions that are quite vaguely formulated. The important
point is that it is likely to hold for practical problems, which are of our interest.
Figure 4 helps to understand the result.

Proposition 2.9 Let X =
∏n

j=1[lj , uj ] be a box-constrained decision space to the underly-
ing MONP to a MOCDP. Assume that MOCDP has a reference set R which is sufficiently
large compared to the cardinality of the configuration set XD. Assume further that R is
sufficiently spread in X , that f(R) is sufficiently spread in f(X), and that the objectives
f1, . . . , fk, are sufficiently well-behaved. Then to MOCDP, there exists optimal solutions
y∗ ∈ int(Y ) or, equivalently, XD(y∗) ⊂ int(X).

Proof. IfR is sufficiently large and spread, then at an optimal solution y∗ ∈ Y , many
xr ∈ R will share the same xd ∈ XD(y∗) as their nearest point in XD. In particular,
each xr ∈ ∂X has other vectors x̂r ∈ int(X) with the same nearest point xd ∈ XD.
Then, if f1, . . . , fk, are sufficiently well-behaved there will be an optimal solution y∗

where each xd /∈ ∂X , or, equivalently, y ∈ int(Y ). This because a small movement of
a xd ∈ ∂X out from the boundary will not decrease the maximum closeness between
each xr ∈ R to its nearest xd ∈ XD.

Remark 2.10 A similar result as in Proposition (2.9) with an analogous proof can be for-
mulated for the symmetry-breaking constraints xjℓ ≤ xj,ℓ+1 in (4b). In an optimal solution
to MOCDP, there are (likely to exist) optimal solutions where the constraints are not active.
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X XD

R

li

lj

ui

uj

Figure 4: A rough illustration of the fact that the optimal configuration likely will lie
in the interior of the decision space X to the underlying MONP for most practical
problems. For sufficiently well-behaved objective functions, the closeness between
the upper-left-most xd ∈ XD and its neighbor xr ∈ int(X) to the right, will not be
minimal if xd is moved to the left onto the boundary.

3 A solution procedure

First, observe that for a real application the numbers mj , j = 1, . . . , n, of variants
may often be decision variables. We suggest to treat them as input parameters, and
to solve the problem for different values of mj to study the sensitivities, i.e., how the
optimal solution to MOCDP varies with changes in mj (cf. Section 4).

We propose a two-step method for solving MOCDP. If there is no problem-speci-
fic distance measure known for the evaluation of an approximate Pareto optimal
set, we suggest using either of the functions Dist1R, Dist2R or a combination of
these. In the first step of the procedure, a representation of the Pareto optimal set
of the underlying MONP should be found. The method for this is arbitrary, and
should be chosen with respect to the actual MONP. If this is a non-convex problem
with unknown problem characteristics, some evolutionary method [5] might be a
reasonable choice.

In the second step of the procedure some global optimization method should be
used to find the optimal decision variables y∗ ∈ Y given the reference set found in
step 1. Figure 5 illustrates the two steps of the solution process.

To handle the box and symmetry-breaking constraints (4b) we have used a mod-
ified barrier method where linear/logarithmic penalties are added to the objective
instead of using constraints. An illustration of modified linear/logarithmic penalty
functions is given in Figure 6. By “modified” we mean here that the logarithmic
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{
X
{f1, . . . , fk}

=⇒

=⇒=⇒

=⇒

Step 1

Step 2

R
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Y
R
QR
[m1, . . . ,mn]

Figure 5: The solution process is divided into two steps. In step 1 , the underlying
MONP is solved using some multi-objective optimization solver and R is defined.
In step 2 a global optimizer is used to minimizeQR over Y given the reference setR
and the number of allowed variants mj in each dimension j, j = 1, . . . , n.

penalties which lead to the objective function being undefined in parts of the do-
main, are replaced by linear functions near and outside the boundaries. For example,
the optimization problem

minimize f(x),

subject to x ≤ u, (12)

x ∈ ℜ,

is replaced by

minimize f(x)− ν

(

1(−∞,u−ǫ}(x) log(u−x) + 1(u−ǫ,+∞)(x)

(
x−u

ǫ
+ 1− log ǫ

))

,

subject to x ∈ ℜ, (13)

where 1S(x) is an indicator function, i.e., equal to one if x ∈ S and zero otherwise,
and ǫ is the distance from the boundary where the logarithmic function is replaced by
a linear function. ν is a penalty parameter. For a sufficiently well-behaving function
f a globally optimal solution to (13) converges towards a globally optimal solution
to (12).

Due to the result in Proposition 2.9 we have good reasons to believe that an opti-
mal solution y∗ lies in the interior of Y and where the symmetry-breaking constraints
are non-active. Here, the added penalty does not affect the objective function that
much even for a penalty parameter with a positive value of significant size.

Since neither step 1 nor step 2 in general will reach a point, where it is not pos-
sible to improve anymore, the maximum allowed computational time of both steps
must be set. In step 1, the longer time the algorithm is permitted to work, the more
accurate representation of P is generally obtained. In step 2, the longer the global
algorithm is applied, the higher the probability of finding a good solution. However,
for sensitivity studies (cf. Section 4) step 1 only has to be performed once.

The fact that the solution algorithm is partitioned into two steps can be taken
advantage of for problems with expensive function evaluations, e.g., given by com-
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Figure 6: Example of a penalty function using a modified barrier method added to
a problem with box constraints, x ∈ [0.1, 0.9]. The logarithmic function transcends
smoothly into a linear function at a distance ǫ from the borders. Here ǫ = 0.008.

putationally intensive simulations. The evaluations of the objective function made
in step 1 can then be used for the computation of explicit response surfaces to be
used in step 2, cf. Section 6 for more details.

So far we have not specified which quality function to use. The two possibilities
Dist1R and Dist2R seem reasonable for general MOCDP’s. However, it is possible
that the MOCDP concerns some special application for which there is some other
better measure, i.e., leads to solutions that are more attractive from a practical stand-
point.

The main disadvantage of Dist1R is its sensitivity for the distribution of the
points in R. It is a well-known fact that evolutionary algorithms often output so-

lution sets P̂ (approximate Pareto optimal sets) whose “density” varies heavily and
possesses an a priori unknown distribution. Hence, Dist1R might not be a good
choice for the quality measure. The main disadvantage of Dist2R is that it is a worst-
case measure, only considering the point in R with the largest distance (closeness)
to a point in PD. As a special case, it assigns the same quality to a set PD from which
every point in R lies at distance d as to a set where PD that coincides with R but for
a single point in R at distance d from PD.

The two proposed quality functions Dist1R and Dist2R are obviously correlated;
their characteristics are, however, different. By using a convex combination of the
quality functions, their disadvantages can be diminished.

4 Sensitivity analysis

When modeling and solving a practical problem as a MOCDP, an important and in-
teresting analysis is to study how the number mj of variants, j = 1, . . . , n, in the n
decision dimensions of the MONP affects the optimal solution. For example, if there
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is a limitation on the total number of variants allowed, then it is critical to investigate
how sensitive the resulting objective value is to the distribution of the variants in the
respective dimensions. For the example in Figure 1, could it be favourable to use
three variants in the x2 dimension and just two in the x1 dimension? Or perhaps it
might be best to use only one variant in the x1 dimension and four in the x2 dimen-
sion. Further, if the costs of adding a new variant, or the savings of removing one, in
a certain dimension, is known, then this information could be used when designing
a good set of configurations.

Assume that the set of variants at some point in time is given by the vector ŷ

and that the cost of adding a variant in dimension j is δj . Observe that the optimal
objective value to MOCDP, Q∗

R
, is a function of the underlying MONP (defined by f

and X) together with the number of allowed variants mj , j = 1, . . . , n:

Q∗
R

= Q∗
R
(f ,X,m1, . . . ,mj , . . . ,mn).

The decision to make is whether the quality increase is worth the extra cost, i.e., if
the profits gained by reducing the quality measure with

Q∗
R
(f ,X,m1, . . . ,mj + 1, . . . ,mn)−Q∗

R
(f ,X,m1, . . . ,mj , . . . ,mn)

is larger than the cost δj . An analogous study can be made for a possible removal of
variants by comparing the savings for removing the variants with the difference of
the quality measure when decreasing mj .

An assumption made above, which may not be valid in many real applications,
is that the cost for modifying the current set of variants is zero. For many practical
problems, there is a fixed set of current variants and costs arise when adding variants
to the fixed set. A sensitivity analysis of MOCDP could be used for this case as well.
The QR measure has to be computed for the current setup. Then MOCDP is solved
with mj equal to the number of added variants in each dimension where the current
variants specified by ŷ are added to y in the computation of the configurations. The
improvement in Q∗

R
must now be compared to the cost of adding variants.

To investigate whether an existing variant should be removed is not possible
without calculating QR for all possible choices variant removals. That is to say, to
analyze whether one variant should be added, n problems need to be solved, one for
each dimension. To analyze whether one variant should be removed, m =

∑n

j=1 mj

problems have to be solved, one for each current variant. The latter problems, how-
ever, are very easy since there are no decision variables at all. What has to be done is
to compute the quality function QR for the

∑n

j=1 mj reduced configuration sets.

5 Numerical experiments

The purpose of this section is to exemplify how the MOCDP can be utilized, by
presenting some selected numerical experiments. By using the standard vector-
valued test function kursawe [15] as the underlying MONP, MOCDP has been for-
mulated and solved with the procedure proposed in Section 3 for different values of
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mj , j = 1, . . . , n. We have used a box constrained variable space of dimension three
in the MONP.

The objective functions and the feasible region are given by (14).

f1(x) =

n−1∑

i=1

(

−10 exp

(

−0.2
√

x2
i + x2

i+1

))

,

f2(x) =

n∑

i=1

(
|xi|

0.8 + 5 sin3(xi)
)
, (14)

x ∈ [−5, 5]n.

The kursawe function is a standard test function for the evaluation of multi-objective
evolutionary algorithms (see [11] for an extensive review).

In step 1 of the solution procedure—to find a representation R of the Pareto op-
timal set—we have used multiOb [10], a population-based evolutionary algorithm.
Examples of other evolutionary-based algorithms for solving MONP’s that could be
used are NCGA [20] and NSGA-II [6].

In step 2 of the solution process—in which a global optimization is to be perfor-
med—we have chosen the algorithms DIRECT [14, 7] and NEWUOA [17] to be used
in sequence. The former is a space-filling algorithm sampling the decision space
around points that either have low objective values or are far from already sampled
points. The termination criterion for DIRECT can be the number of space-dividing
iterations or the number of function evaluations. The output from the algorithm—
the best point measured so far—is then provided as a starting point for NEWUOA. This
is a local optimization algorithm for unconstrained derivative-free single-objective
optimization based on quadratic approximations of the objective function.

An approximation of the image of the Pareto optimal set (found by applying
multiOb with 2000 generations and with a population size of 4000) is shown in
Figure 7.
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Figure 7: An approximate Pareto front for the test problem kursawe with n = 3.

Many other test problems in the literature are limited to two decision variables
and/or have a Pareto optimal set that has a special structure in X that seems un-
natural for a practical problem. To generate more test problems we have kept the
objectives of (14) but chosen to rotate the decision space for the first objective. That
is, we let the objectives be {f1(A

px), f2(x)} , p = 0, . . . , 3, where Ap denote the rota-
tion matrices

A
0

=





1 0 0

0 1 0

0 0 1



 (no rotation), A
1

=





1 0 0

0 0 1

0 −1 0



 (rotation around x1),

(15)

A
2

=





0 0 1

0 1 0

−1 0 0



 (rotation around x2), A
3

=





0 1 0

−1 0 0

0 0 1



 (rotation around x3).

This yields four corresponding MONP’s, denoted by MONPp, p = 0, . . . , 3. In the
numerical experiments we have for each MONPp tested all combinations of numbers

[m1,m2,m3] of allowed variants in the set M = {m ∈ N3 | 1 ≤
∑3

j=1 mj ≤ 8}. We
assume here that the variants in the three dimensions are equally expensive and that
the important issue is the total number of variants used.

For all numerical results presented below the quality measure

QR = 0.01Dist1R + 0.99Dist2R.

The first step of the solution procedure is to find a reference set R to use in the
second step and in the sensitivity analyses. We applied multiOb to each MONPp
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using 2000 generations and a population size of 4000 to generate the corresponding
reference set Rp, selected to be all found non-dominated points.

In the second step of the procedure we applied DIRECT with a termination cri-
terion defined as a maximum number of function evaluations. The best point found
by DIRECT was then used as a starting point for NEWUOA.

The Figures 8 (a) and (b) show the objective values for the solutions found to
MOCDP for MONP0 using m = [2, 2, 2] and m = [3, 3, 3], respectively. It is interest-
ing to note that, even if this it not the aim, our algorithm in the second solution step
manages to find solutions that dominate parts of R (at (f1, f2) ≈ (−18,−3) both in
Figure 8 (a) and (b)). It is not a large part ofR that is dominated. However, the com-
putational time for finding R in the first solution step was around 10 minutes while
the time for the second step of solving the MOCDP was only around 20 seconds.
It may be possible to create a new class of algorithms for solving multi-objective
optimization problems based on ideas similar to ours. Another interesting observa-
tion is that the resulting solutions in XD seem to form a good approximation at the
“knee” regions of f(R) which have the character that a small improvement in either
objective will cause a large deterioration in the other (see Figure 8(a)). The knee re-
gions are the most interesting solutions for decision makers whose evaluation of the
trade-offs between the conflicting objectives are relatively constant.
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(a) 2 variants in each dimension.
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(b) 3 variants in each dimension.

Figure 8: The objective space with the solutions found using MONP0 as the under-
lying problem and with m = [2, 2, 2] and m = [3, 3, 3], respectively.

The Tables 1–4 contain results on the quality measures found together with their
corresponding variant distributions. Due to space limitations we present the results
for the subset of combinations for which maxi,j{|mi −mj |} ≤ 1 only. In each row,
i.e., for each value of m, the best solution(s) is (are) written in bold face.
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∑

j mj m Q∗
R

m Q∗
R

m Q∗
R

3 [1 1 1] 0.555
4 [1 1 2] 0.344 [1 2 1] 0.344 [2 1 1] 0.344
5 [1 2 2] 0.222 [2 1 2] 0.331 [2 2 1] 0.222
6 [2 2 2] 0.100
7 [2 2 3] 0.064 [2 3 2] 0.081 [3 2 2] 0.063
8 [2 3 3] 0.058 [3 2 3] 0.046 [3 3 2] 0.058
9 [3 3 3] 0.046

10 [3 3 4] 0.048 [3 4 3] 0.045 [4 3 3] 0.048
11 [3 4 4] 0.040 [4 3 4] 0.042 [4 4 3] 0.048
12 [4 4 4] 0.040

Table 1: Numerical results for the solution of MOCDP with different numbers of
variants of the three underlying decision variables. The underlying multi-objective
problem is MONP0.

∑

j mj m Q∗
R

m Q∗
R

m Q∗
R

3 [1 1 1] 0.558
4 [1 1 2] 0.345 [1 2 1] 0.344 [2 1 1] 0.344
5 [1 2 2] 0.221 [2 1 2] 0.221 [2 2 1] 0.329
6 [2 2 2] 0.104
7 [2 2 3] 0.072 [2 3 2] 0.061 [3 2 2] 0.061
8 [2 3 3] 0.061 [3 2 3] 0.061 [3 3 2] 0.046
9 [3 3 3] 0.046

10 [3 3 4] 0.047 [3 4 3] 0.046 [4 3 3] 0.046
11 [3 4 4] 0.046 [4 3 4] 0.045 [4 4 3] 0.041
12 [4 4 4] 0.041

Table 2: Numerical results for the solution of MOCDP with different numbers of
variants of the three underlying decision variables. The underlying multi-objective
problem is MONP1.
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∑

j mj m Q∗
R

m Q∗
R

m Q∗
R

3 [1 1 1] 0.551
4 [1 1 2] 0.342 [1 2 1] 0.342 [2 1 1] 0.342
5 [1 2 2] 0.220 [2 1 2] 0.331 [2 2 1] 0.220
6 [2 2 2] 0.104
7 [2 2 3] 0.064 [2 3 2] 0.076 [3 2 2] 0.064
8 [2 3 3] 0.064 [3 2 3] 0.049 [3 3 2] 0.064
9 [3 3 3] 0.053

10 [3 3 4] 0.049 [3 4 3] 0.053 [4 3 3] 0.049
11 [3 4 4] 0.049 [4 3 4] 0.049 [4 4 3] 0.050
12 [4 4 4] 0.049

Table 3: Numerical results for the solution of MOCDP with different numbers of
variants of the three underlying decision variables. The underlying multi-objective
problem is MONP2.

∑

j mj m Q∗
R

m Q∗
R

m Q∗
R

3 [1 1 1] 0.557
4 [1 1 2] 0.344 [1 2 1] 0.344 [2 1 1] 0.344
5 [1 2 2] 0.329 [2 1 2] 0.221 [2 2 1] 0.221
6 [2 2 2] 0.101
7 [2 2 3] 0.065 [2 3 2] 0.065 [3 2 2] 0.084
8 [2 3 3] 0.049 [3 2 3] 0.065 [3 3 2] 0.065
9 [3 3 3] 0.058

10 [3 3 4] 0.049 [3 4 3] 0.048 [4 3 3] 0.058
11 [3 4 4] 0.041 [4 3 4] 0.049 [4 4 3] 0.048
12 [4 4 4] 0.046

Table 4: Numerical results for the solution of MOCDP with different numbers of
variants of the three underlying decision variables. The underlying multi-objective
problem is MONP3.

An important point that has to be kept in mind is that this optimization problem
is non-convex and non-linear. Thus, there is no guarantee for the optimality of the
solutions found. Study Table 4 and compare for m = [3, 4, 4] and m = [4, 4, 4].
The latter corresponds to a relaxed MOCDP compared to the former; however it
possesses a higher objective value. This shows an optimality gap, i.e., a relative
distance from the global optimum, of at least 0.046−0.041

0.041 ≈ 12% for the latter problem.
The explanation for the similarity of the results in the four problems and for the

frequent non-unique solutions found for a certain number of variants comes from
the symmetries in the underlying MONP’s. One interesting point is that it is not
always advantageous to use the largest number of variants in a certain dimension.
See Table 4 and compare the rows corresponding to m = 5 and m = 8. In the
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former, an optimal distribution of variants is m = [1, 2, 2] however m = [2, 3, 3]
is not an optimal choice in the latter. Another point which might be interesting in a
real application is that (however, we state no generality of this), it is possible to reach
optimal variant distributions at all m-levels by local steps, adding one variant at a
time, moving to the optimal distribution.

From the Tables 1–4 it seems like the solution sets are being “saturated”, meaning
that adding more variants do not decrease the objective value significantly. One
algorithmic reason for this is that the larger m, the higher dimensional space has to
be (globally) searched. Since the global search is limited by the number of function
evaluations, this means that the quality of its output decreases when the dimension
of the decision space is increased.

6 Extending to simulation-based MOCDP’s

The purpose of this section is to is propose how to adapt the procedure developed
to MOCDP for the case when MONP belongs to the class of simulation-based opti-
mization problems.

A general simulation-based optimization problem has expensive objective (or
constraint) function(s), e.g., involving computationally intense simulations. Such
problems require special treatment since the total number of function evaluations
is limited. A simulation-based MOCDP is a problem in which at least one of the
objective functions {f1, . . . , fk} of the underlying MONP is expensive.

When solving MOCDP, a very large number of function evaluations is required
in step 2 of the solution process, since for each variable vector y, a total number of
|XD| =

∏n

j=1 mj configurations must be evaluated.
The good thing, however, is that the solution procedure is divided into two steps

and that step 1 can be used not only for finding a good reference set R. Simultane-
ously, it can be used for constructing explicit, computationally cheap response sur-

faces {f̂1, . . . , f̂k} (see [13, 2]) that can be used instead of the expensive simulation-
based functions in step 2. The response surfaces can be continuously updated dur-
ing step 1, such that, by using the response surfaces within step 1, the number of
expensive function evaluations also in this step is limited. In [12] the algorithm
qualSolve is described. This algorithm uses radial basis functions [9] with the aim
of approximating the expensive functions that are sampled iteratively such that a cer-
tain quality measure is maximized. The algorithm can be applied to multi-objective
optimization problems, and the quality measure is then related to how good the ap-
proximations are in regions near the Pareto optimal set of the approximating prob-
lem. qualSolve, or a similar algorithm, can be used in step 1, producing response
surfaces to use in place of the original functions from there on.

As already stated, for sensitivity analyses, which might constitute a large part of
the computation time for a real application of the MOCDP-procedure, the expensive
functions must only be used once, since only step 2 is repeated when these analyses
are carried through. Furthermore, even in step 1 the number of expensive function
calls must not be that large, since the algorithm (e.g., qualSolve) mostly uses its
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current response surfaces and only now and then samples the original functions.

7 Conclusions and future work

We have presented a two-step procedure which can be regarded as an implicit clus-
tering of points in the objective space of a multi-objective optimization problem such
that the structure of the points in the decision space is controlled.

We have demonstrated the procedure on some test problems and discussed the
potential of using different types of sensitivity analyses to perform depending on the
actual application.

We have also proposed how the procedure can be adapted to simulation-based
problems for which the number of (expensive) function evaluations must be kept
low. The solution procedure consists of two steps and we have discussed how the
first step can be used for finding computationally cheap approximate functions to
use instead of the original ones in the second step. Thus, by construction of the
method, the large number of function calls that have to be made in the second step
is not a bigger issue for simulation-based MONP’s than for regular MONP’s with
explicit objective functions.

The results are encouraging and we see a potential to apply the methodology to
many real-world problems in industry.

There are some issues that should be addressed in order to adapt the current
methodology to a larger class of problems such that it will apply to more real-world
problems. One improvement would be to develop the procedure presented such that
it can handle more general constraints than box constraints in MOCDP. Examples of
such are general linear and non-linear constraints on the decision variables. Other
examples are constraints on the objective function values in the underlying MONP.
Finally, constraints in the decision space that are more connected to real configura-
tion applications are important to govern, e.g., that combinations of certain values of
the decision variables are forbidden.

In the original formulation of MOCDP, the decision variables are required to be
continuous. For many real-world applications, the decision variables are required to
be discrete. Also, the incorporation of the special type of discrete variables, categorical
variables [1], that can be assigned a discrete number, but where this number has no
physical meaning (e.g., representing a certain material, a certain suspension type,
etcetera), would substantially increase the range of applications for the procedure
presented.
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