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Abstract

We present a cavitation model based on Stokes’ equation and formulate adaptive
finite element methods for its numerical solution. A posteriori error estimates and
adaptive algorithms are derived, and numerical examples illustrating the theory
are supplied, in particular with comparison to the simplified Reynolds model of
lubrication.
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1 Introduction

The motivation for this work is the need for accurate computations of the
hydrostatic pressure in a lubricant entrapped between the tool and workpiece
in a metal forming process or in a sliding bearing. The ultimate goal is to
be able to optimize the surface structure so as to maximize the lift from the
pressure in the fluid. The usual tool for analyzing this problem is the Reynolds
model [8], which however has severe limitations in that it is not well suited for
handling large variations in the geometry of the lubrication layer. One way of
decreasing resistance between the tool and workpiece is to make pits in the
surface of the workpiece in order to generate cavitation with resulting pressure
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redistribution. If the pit geometry cannot be allowed to vary in an arbitrary
fashion, optimization of the pit geometry becomes untenable.

In this paper, we will present a model for Stokesian flow with cavitation and
formulate adaptive finite element methods for its solution. We will focus on
control of the error in energy-like norms, and present numerical results com-
paring the Stokes model with the Reynolds model. We note that Reynolds
model can be seen as a simplification of Stokes, cf. Bayada and Chambat [1],
so it is to be expected that the range of applicability will be improved in a
Stokes model (at the cost of computational complexity).

2 The continuous problem

Consider a domain Ω in Rn, n = 2 or n = 3 with boundary ∂Ω. We consider
a lubricant with viscosity µ. The Stokes equation can then be written

−µ∆u+∇p = f and ∇ · u = 0 in Ω, (1)

with, for ease of presentation, u = 0 on ∂Ω. Here, u is the velocity of the
lubricant, p is the pressure, and f is a force term. The lubricant cannot support
subatmospheric pressure, so an additional condition is p ≥ 0 in Ω. In order to
incorporate this condition into the model, it can be written as a variational
inequality as follows. Let

K = {p ∈ L2(Ω) : p ≥ 0},

and seek u ∈ [H1(Ω)]n and p ∈ K such that

∫
Ω
µ∇u : ∇v dΩ−

∫
Ω
p∇ · v dΩ =

∫
Ω
f · v dΩ, ∀v ∈ [H1(Ω)]n (2)

and

−
∫

Ω
∇ · u (q − p) dΩ ≤ 0, ∀q ∈ K. (3)

The well-posedness of this problem follows from the general theory presented
by Brezzi, Hager, and Raviart [2].
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3 Finite element approximation

3.1 Formulation

Let T = {T} be a locally quasiuniform triangulation of Ω into simplexes T of
local mesh size h and let

Vh := {v ∈ [H1
0 (Ω)]n : v|T ∈ [P 2(T )]n, ∀T ∈ T },

Qh := {q ∈ C0(Ω) : q|T ∈ P 1(T ), ∀T ∈ T },
i.e., we will use the well known Taylor-Hood element. We seek (uh, ph) ∈
Vh ×Qh such that∫

Ω
µ∇uh : ∇v dΩ−

∫
Ω
ph∇ · v dΩ =

∫
Ω
f · v dΩ, ∀v ∈ Vh (4)

and
−
∫

Ω
∇ · uh (q − ph) dΩ ≤ 0, ∀q ∈ Qh ∩K. (5)

In order to solve the discrete system (4–5), we apply an iterative algorithm of
Uzawa type [5]:

(1) Let k = 0 and choose an initial phk.
(2) Solve the linear system (4) for the velocity field uhk.
(3) Find the pressure corrector pd from the system∫

Ω
pdq dΩ = −

∫
Ω
∇ · uhk q dΩ, ∀q ∈ Qh.

(4) Update the pressure field phk+1 = PΛ(phk+pd), where the operator PΛ(ϑ) :=
max(0, ϑ).

(5) If the solution fails a given convergence criterion, set k = k + 1 and go
back to step (2).

The projection PΛ in (4) is applied pointwise on the nodal values for the
pressure, which by construction leads to ph ∈ K.

3.2 A posteriori error control and adaptivity

The question of error control for mixed variational inequalities has not been
extensively treated in the literature. Though it fits in the general framework
of Becker and Rannacher [9], the only paper the authors are aware of that
explicitly treats the case at hand is [10], where, however, the fact that there
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is a variational inequality not only for the multiplier, but also for the primal
variable, is used in a crucial way. We shall here instead explore a simple al-
ternative to [9,10] based on the observation that the cavitation problem is
reminiscent of the Hencky problem in elasto–plasticity, and then follow John-
son and Hansbo [6] in deriving a posteriori error estimates. We then first
consider the compressible case and consider the Stokes problem as the limit of
the corresponding slightly compressible problem with the bulk modulus tend-
ing to infinity. The problem in question can be formulated as follows: Find the
velocity u and the stress σ such that

σ = 2µεD(u) + Π(κ∇ · u) 1 in Ω,

−∇ · σ = f in Ω,

u = 0 on Γ.

(6)

Here, κ is the bulk modulus, 1 is the identity tensor, τD = τ − 1
3

tr τ 1 =

τ − 1
3

(∑3
k=1 τkk

)
1 is the stress deviatoric corresponding to τ ,

ε(u) =
1

2

(
∇⊗ u+ (∇⊗ u)T

)
is the symmetric part of the velocity gradient, and

Π (v) =


v if v ≤ 0,

0 if v > 0.

Finally, we use the notation

∇ · σ =

 n∑
j=1

∂σij
∂xj

n
i=1

.

To simplify the analysis, we shall consider a regularized version of (6) in the
form of a penalty method: Given γ > 0 small, find (σγ,uγ) ∈ H × V such
that

1

2µ
σDγ +

1

9κ
tr σγ 1 +

1

γ
(tr σγ − Π(tr σγ)) 1 = ε (uγ) in Ω,

∫
Ω
σγ : ε(v) dx =

∫
Ω
f · v dx ∀v ∈ V,

(7)

where (here we use n = 3 for simplicity)

V =
[
H1

0 (Ω)
]3
, H = {τ = (τij)

3
i,j=1 : τij = τji ∈ L2(Ω)}.
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Note that (7) formally tends to (6) as γ → 0. The regularization is only
introduced with the purpose of simplifying the statement and the proof of
the a posteriori error estimate, and the actual value of the regularization
parameter γ (small) will be insignificant. Introducing the notation

η(σγ) :=
1

γ
(tr σγ − Π(tr σγ)) 1,

we may write the problem on weak form as: find σ ∈ H and u ∈ V such that

a(σγ, τ ) + (η(σγ), τ )− (ε(uγ), τ ) = 0, ∀τ ∈ H

(σγ, ε(uγ))− (f ,v) = 0, ∀v ∈ V.
(8)

Here
(f ,v) =

∫
Ω
f · v dx, (σ, τ ) =

∫
Ω
σ : τ dx,

and a(σ, τ ) is the complementary energy functional

a(σ, τ ) :=
∫

Ω

(
1

2µ
σD : τD +

1

3κ
tr σ tr τ

)
dΩ. (9)

3.2.1 Error estimation in the complementary energy norm

We consider the following FEM formulation: find (σhγ ,u
h
γ) ∈ H×Vh such that

a
(
σhγ , τ

)
+
(
η(σhγ), τ

)
=
(
ε
(
uhγ
)
, τ
)

(10)

for all τ ∈ H, (
σhγ , ε (v)

)
= (f ,v) (11)

for all v ∈ Vh.

To obtain a first error estimate in complementary energy norm for the cavi-
tation problem, we subtract the finite element problem from the continuous
problem to obtain

a(σ − σhγ , τ ) +
(
η(σγ)− η(σhγ), τ

)
= (ε(u)− ε(uhγ), τ ) ∀τ ∈ H.

We define ‖σ‖2
a := a(σ,σ) and eu := u−uhγ , and set τ = σ−σhγ to find that

‖σ − σhγ‖2
a =

(
ε
(
u− uhγ

)
,σ − σhγ

)
−
(
η(σγ)− η(σhγ),σ − σhγ

)
≤
(
ε (eu) ,σ − σhγ

)
,

where the last step follows from the following easily checked monotonicity
relation:

(v − Π(v)− (w − Π(w))) (v − w) ≥ 0.
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Using the equilibrium equation, we note that(
σ − σhγ , ε (v)

)
= 0 ∀v ∈ Vh,

so that
‖σ − σhγ‖2

a ≤ (ε (eu − πheu) ,σ − σh) ,
where πh denotes an interpolant or projection onto the mesh. Since

eu − πheu = u− uhγ − πhu+ πhu
h
γ = u− πhu,

this can be written

‖σ − σhγ‖2
a ≤ (ε (u− πhu) ,σ − σh) . (12)

By integration by parts in (12) we find that

‖σ − σhγ‖2
a ≤

∑
K

∫
K

(
f +∇ · σhγ

)
· (u− πhu) dx

−1

2

∑
K

∫
∂K
nK · [σhγ ] · (u− πhu) ds,

(13)

where [σhγ ] denotes the jump in stress between elements and nK is the outward
unit normal vector to the element. The estimate (13) can thus be used for the
global error. To obtain an elementwise estimate to be used for mesh refinement
purposes, we use Cauchy’s inequality to obtain

‖σ − σhγ‖2
a ≤

∑
K

ωKρK , (14)

where, introducing the size hK of element K,

ωK = max


h−2
K ‖u− πhu‖L2(K)

h
−3/2
K ‖u− πhu‖L2(∂K)

and

ρK = h2
K‖f +∇ · σhγ‖L2(K) +

1

2
h

3/2
K ‖nK · [σhγ ]‖L2(∂K).

We approximate the weights ωK by

ωK ≈ Ci
K‖D2

huh‖L2(K)

where Ci
K ≈ 1 is an interpolation constant, and where D2

hu
h
γ denotes a discrete

approximation of the maximum second order derivative of uhγ . The estimate
(14) is not very sharp due to the fact that Cauchy’s inequality has been used
on each element. Thus it is better to use directly (13) when trying to assess
the size of the error, and to use (14) as a refinement marker only.
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Returning now to our original problem (4), we note that p = − limκ→∞ κ∇·u,
and thus it is natural to interpret

σh = µ(∇⊗ uh)T − ph1,

and use (14) with this stress. This is indeed what we have done in the following.
We remark, however, that the a posteriori estimate can then only be formally
correct if the space for the stresses is the same as that for the pressure, which
is of course not the case for the Taylor-Hood element. To be strict, we would
either need an element with ∇ · Vh ⊂ Qh (which can only be achieved with
nonconforming or stabilized methods) or use independent approximations for
the stresses in the same space as the pressure. Thus, our a posteriori estimate
can only serve as a roughly motivated guide for adaptivity for the kind of
approximation we will use in the numerical examples below. We leave this
point for future work.

For indication of which elements that are to be refined in the adaptivity pro-
cess, the size of the element integrals in (14) is used as an indicator. We refine
the 30% of the elements with the highest indicator in each adaptive step.

4 Numerical examples

In order to investigate the performance of the methods proposed, a few numer-
ical examples will be presented. Unfortunately, experimental results demon-
strating in detail the local behavior of the pressure and velocity images is, to
our knowledge, not published. Though some integrated experimental results,
such as lift, has been given by Etsion [3], [4] and Wang et. al. [11].

The object of our study is a single parabolic shaped oil pocket, see Figure 1.
A central longitudinal cut through the gap between the metal sheet and work
piece comprise our 2D computational model. The dimensions of the nominal
channel and a particular pocket can be seen in Figure 2. Our aim is to study
the behavior of the physics as the depth of the oil pocket increases while the
opening width of the pocket and channel height stays the same. Boundary
conditions used for the pressure is p = 0 at inlet and outlet. Velocity is set to
zero along the floor of the channel and pocket boundary. The flow is driven
by setting ux = 1, uy = 0 at the ceiling. The lubricant viscosity is µ = 1.

The initial mesh has a typical element side length of 0.2. In Figure 2 we
visualize the adaptive refinement progress yielding a sequence of meshes under
consideration for a particular pocket depth. In each step the elements that give
the largest third of the element contributions to the total error according to
relation (14) are subdivided along their longest side into two new ones. After
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refinement step 15 the area ratio is approximately 80 for the largest element to
the smallest. Likewise, the longest element side over the shortest one is found
to be about 20. The process gives a reasonable adaptivity taking place at the
two sharp corners of the oil pocket, which of course are the two regions of the
domain where a non-smooth solution can be expected.

The decrease of the total error according to refinement, measured by the num-
ber of nodes, is presented in Figure 3. Each dot indicates one adaptive step.

From a starting pressure p = 0 throughout the initial domain, the pressure
field is passed on to the next refined mesh using linear interpolation during
the adaptive process. Despite this, the typical number of iterations is 200,
however decreasing with refinement level, for the Uzawa algorithm to converge
according to ‖pk+1 − pk‖ < 10−9 for a particular mesh. All integrals involved
are integrated using a 4-point Gauss quadrature scheme.

In Figure 4 we present, row wise for increased pocket depth, pressure and
stream function contour lines. We can se from the stream lines that we have
recirculation in the pocket for a pocket depth somewhere between row two
and three. In the middle column the cavitation zone is identified as located at
the sharp upstream edge of the pocket. An important point of this method is
that we do not need to a priori define the boundary location between the fluid
and cavitation phases. This is automatically taken care of by the refinement
process.

A comparison of pressure at the ceiling between an adaptive Reynolds cav-
itation model, cf. [8], and the present Stokes cavitation model is given in
Figure 5. The former presents a sharper pressure peak value, while the Stokes
model shows a more smooth (and physically reasonable) variation. We remark
that the classical way to approach the cavitation problem in the Reynolds
community by first computing pR from a pure Reynolds solution, followed by
approximating p ≈ max(0, pR) (known as the half-Sommerfeld condition), is
not very accurate compared to the cavitation models.

If we define impact to be the ratio of maximal channel height over minimal
channel height Figure, 6 indicates that both models are capable of predicting
an oil pocket impact of ≈ 1.7 as the best in terms of producing lift. This is
in agreement with our earlier observation in Figure 4 indicating depth: we
observe that as recirculation appears, lift is lost. A sequence of Figures 7-10
presents the mesh after 15 refinements and state of the flow for this particular
pocket.

As the oil pocket depth increases the Reynolds model breaks down as can
be seen in Figures 11-12. This is of course due to severe recirculation in the
pocket, which does not conform with one of the basic assumptions (in our
case, that of Couette flow) for the Reynolds model. However the Stokes model
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remains stable.

5 Concluding remarks

We have presented an apparently novel approach to cavitation in Stokes flow,
as an alternative to the cruder Reynolds model often used in lubrication anal-
ysis. We focus on the pressure drop as the source of cavitation, which has been
criticized, e.g., by Joseph [7] as being dubious prom a physical point of view.
However, unlike the Reynolds model, in which an a priori assumption is that
the pressure drop is the source of cavitation, our approach has a wider range
of applicability and can in principle make use of other cavitation models, such
as those of [7]; it can also be used to model stretching of cavitation bubbles
due to convective phenomena.

We have shown that our model yields results comparable to those of Reynolds
in the range of flows for which the latter can be assumed to be valid, and that
it is capable of predicting lift beyond the range of Reynolds model.

Future research will focus on cavitating flows for the full transient Navier–
Stokes equations, for which a simple cavitation model such as ours can be an
alternative for some aspects of cavitation, compared to more elaborate models
incorporating several physical phenomena.
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Fig. 1. Oil pocket model.
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Fig. 2. Sequence of refined meshes.
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Fig. 5. Pressure at the ceiling for Reynolds and Stokes cavitation models for a
shallow pocket and a rather deep one.
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Fig. 6. Lift for Stokes and Reynolds according to impact of the oil pocket.
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Fig. 7. Element mesh zoom.
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Fig. 8. Pressure contour lines.
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Fig. 9. Velocity uy contour lines.
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Fig. 10. Stream function contour lines.
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Fig. 11. Stream function contour lines for a very deep pocket.
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Fig. 12. Pressure at ceiling for Reynolds and Stokes for a very deep pocket.
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