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Abstract

This note considers a homogeneous SIR stochastic epidemic model in which new
infection occur at rate fn(x, y) where x and y are the number of susceptibles at
time of infection and fn is a positive sequence of real function. Threshold theorems
analogous to those of Whittle (1955) and Williams (1971) are fairly proved for this
model. Also we examine the shape of the total size distribution for various values
of removal rate and suitable value of other important parameters.

Keywords: Epidemic model; Generalized infection rate; Threshold theorems; Total size.

1 Introduction

The purpose of this note is to examine the qualitative properties of stochastic models
with generalized infection rate in which the population is divided into three classes of
individuals: susceptible, infective and removed individuals. This model can be used e.g.
to model the transmission of complex diseases. Mathematically, it is defined as follows. At
time t the X(t) describes the number susceptibles, Y (t) the infectives and n−X(t)−Y (t)
the removed with X(0) = n and Y (0) = a. The epidemic process is thus completely
determined by {(X(t), Y (t)); t ≥ 0}, which is supposed to be a continuous-time Markov
chain on the state space:

En,a = {(x, y), 0 ≤ x ≤ n, 0 ≤ y ≤ n + a− x},

with the transition probabilities





Pr{(X(t + δt), Y (t + δt)) = (x− 1, y + 1)(X(t), Y (t)) = (x, y)}
= fn(x, y)δt + o(δt),

Pr{(X(t + δt), Y (t + δt)) = (x, y − 1)(X(t), Y (t)) = (x, y)}
= µyδt + o(δt)

(1)

all other transitions having probability o(δt), and the parameter µ is known as the removal
rate. The process terminates when the number of infectives becomes zero, which will
almost surely happen within a finite time.

1Corresponding author : Tel : 212 63 77 44 03; fax : 212 23 48 52 01; E-mail address :
maroufy@fstbm.ac.ma; elmarouf@math.chalmers.se; (H. El Maroufy).

1



If fn(x, y) = βxy is chosen, where β is an infection parameter, the model is reduced
to the general model (see Bailey (1975, page 88)[1]). There are two threshold theorems
for general epidemics, Wittle’s theorem (see, e.g Wittle (1955)[24] and Williams theorem
(see, e.g William (1971)[25]), that govern the qualitative behaviour of the epidemic. These
two theorems are based respectively on the asymptotic approximation of the distribution
of the intensity of the epidemic, I = n−X(∞)

n
, and the total size distribution. These

results show that a small change in relative removal rate ρ = µ
β

leads to the qualitative

change of the epidemic, and are generalized by Ball and O’Neill (1993)[5] and O’Neill
(1995[18],1997[20]) to allow the case when fn(x, y) = β xy

x+y
.

The above theorems all require that the population size approaches infinity, then given
small finite size is so large that this limiting result is an acceptable approximation. In
this situation N̊asell (1995)[17], using numerical methods, studied the threshold of the
epidemic by illustrating the form of the total size distribution.
If we consider the SIR model with generalized infection rate, we claim that the classical
Williams’s theorem and a fairly proof of Wittle’s theorem are note yet obtained. Apart
from the paper of Gani and Purdue (1981)[14] that gives an intuitive proof of Wittle’s
result, our contribution aims to see how these results can be extended to the model as
described by (1). Under some condition on the infection rate fn(x, y) we give an algebraic
proof of Williams’s theorem in section 2; this proof outlined the explicit formula for
the Laplace transforms of the the transitions probabilities obtained by El Maroufy et al
(2002)[11]. In the third section we give a rigorous proof of Wittle’s theorem using the
coupling method. A qualitative study in the case of small size is examined in the fourth
section.

2 Williams’s threshold theorem

In order to establish the counterpart of William’s threshold theorem for our model, we
need to restrict the behavior of the infection rate fn(x, y). For a sufficiently large n and
a suitable choice of (x, y), fn(x, y) should be closer to β(n)y where β(n) is a positive
constant that may depend on n. To this end, we now define the class of sequences of
functions fn.

Definition 1 Let £ be the set of all real-valued sequences (xn, n ≥ 0) for which there
exists k ∈ IN such that | xn − n |< k for all n ∈ IN .

Definition 2 Let (fn)n≥0 be sequences of positive real-valued functions. Then (fn)n≥0 ∈
£0, if, for all (xn)n≥0 ∈ £,

fn(xn, y) ∼ β(n)y,when n →∞ and y ∈ IN. (3)

Let Pil(t) = Pr{X(t) = i, y(t) = l} : the probability that the epidemic with the state
(n, a) at time 0 passes to the state (i, l) at time t and for r = 0, 1, ...n, let Πr be the
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probability of an epidemic with final size r. By using the explicit form P̂r0(v) for the
Laplace transform of Pr0(t) derived by Elmaroufy et al (2002)[11], we see that, for any
r = 0, ..., n

Πr = Pr(n−X(∞) = r)

= lim
t→∞Pn−r,0(t) = µP̂n−r,1(0)

=
∑

L∈D̂0a+r

µa+ra!
r∏

w=1

fn(n− r + w, lw − w)

lw − w

∏

(w,k)∈D̂r

[
µ +

fn(n− r + w, k + lw − w)

k + lw − w

]−1

(4)

where

D̂0a+r = D0a+r ∩ {(l1, l2..., lr), l1 > 1, l2 > 2..., lr > r} and D̂r = Dr \ {(0, 0)}
with

D0a+r = {(l1, l2..., lr), 0 ≤ l1 ≤ l2 ≤ ... ≤ lr ≤ a + r}
and

D̂r = {(w, k)/w = 0..., r, k = 0, ..., lw+1 − lw}.
Since (w, k) ∈ D̂r and L = (l0, ..., lr) ∈ D̂0a+r then (xn)n≥0 = (n − r + w)n≥0 ∈ £.
Moreover, if we suppose that (fn)n≥0 ∈ £0, we obtain, for sufficiently large n,

µ +
fn(n− r + w, k + lw − w)

k + lw − w
∼ µ + β(n) and

fn(n− r + w, lw − w)

lw − w
∼ β(n).

By injecting the last two approximations in (4) and using the fact that the cardinal | D̂r |
of D̂r is equal to 2r + a, it follows that, for a sufficiently large n,

Πr ≈ | D̂0a+r | ρ(n)a+r(ρ(n) + 1)−(2r+a) (5)

where ρ(n) = µ
β(n)

.

Lemma 3 For any r = 0, ..., n

| D̂0a+r |= (2r + a− 1)!a

r!(a + r)!
. (6)

Proof Let α0, α1..., αr be the non-negative numbers such that

α0 = a + r − lr, ..., αw = lw+1 − lw..., αr = lr,

with l = (l0, ..., lr) ∈ D̂0a+r. Then the set of vectors α = (α0..., αr) has the same cardinal
as the set Ar defined in Rajarshi (1981)[19]. However, according to Foster (1955)[13], (see
also Ball and O’ Neill (1993)[5]), the Ar set is identical to the set of all paths from (n, a)
to (n − r, 0), when the epidemic process is viewed as a random walk on En,a. Then the
ballot theorem (Feller (1971)[12]) implies that

| Ar |= C2r+a−1
r

a

a + r
.
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It results from (5) and (6) that

Πr ≈ (2r + a− 1)!a

r!(r + a)!

(
ρ(n)

ρ(n) + 1

)a+r (
1

ρ(n) + 1

)r

, r = 0, 1, ... (7)

With the same algebraic techniques used by Bailey (1975, page 107), it may be seen

that the right member of (7) is the r-th term in the expansion of
({1+ρ(n)−|ρ(n)−1|}

2

)a
=

(min{1, ρ(n)})a, and
∞∑

r=0

Πr = (min{1, ρ(n)})a,

so the following result is obtained:

Theorem 4 Suppose that (fn)n ∈ £0. Then for n sufficiently large, the probability of a
minor epidemic is given by

Pr{T < ∞} ≈ (min{1, ρ(n)})a. (8)

If we suppose that fn(x, y) = βxy
(x+y)α for α ≥ 0 then (fn)n ∈ £0 then (8) becomes

Pr{T < ∞} ≈ (min{1, ρnα−1})a. In this case, if α = 0 and α = 1, the probability
above is the same as that obtained respectively by Rajarshi (1981) [19] for the general
epidemic and by Ball and O’Neill (1993) [5] for the modified epidemic.
The limiting distribution given by (7) is similar to that found by Ball and N̊asell(1994)[4]
and corresponds to the distribution of the final size of birth-death process with the extinc-
tion probability given by (8). This interpretation involves that, when n tends to infinity
and fn checks the conditions of definition 2, the epidemic process is approached by a birth
and death process with birth rate 1 and death rate ρ(n) and initial population size a. So
a major epidemic can occur with probability 1− ρ(n) if and only if ρ(n) < 1.

3 Whittle’s threshold theorem

In this section we restrict ourselves to the case fn(x, y) = βn(x, y).x.y with βn(x, y) = 0
if x or y = 0 where βn is a specified function that determines the type of infection mech-
anism, it comprises some infection mechanisms mentioned in epidemic literature. For
instance, Clancy (1999a)[8] took βn(x, y) = β

(x+y)α ; here β, as defined in Dietz (1988)[10],
is the product of the contact rate and the probability that a successive number of con-
tacts leads to infection. In this case, if α = 1, this gives the model considered by Gleißner
(1988)[15], Ball and O’Neill (1993)[5] and Sani et al (2007)[21]. When α = 0, the model
is reduced to the general epidemic model. the case α = 1

2
was considered by Saunders

(1980)[22].
In order to give a rigorous proof of Whittle’s threshold theorem, we begin by defining
our model using a construction due to Sellke (1983) [23] (see also Ball (1995)[3] Ball and
O’Neill(1999)[6]). Label the initial infectives −(a − 1), ..., 0 and the initial susceptibles
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1, ..., n. Let R−(a−1), ..., R0 and R1, ..., Rn be independent sequences of independent neg-
ative exponential random variables with mean µ−1. For j = −(a − 1), ..., 0 the initial
infective remains infectious for a period Rj and it is then removed, while for j = 1, ..., n
Rj is the infectious period of the j-th susceptible to become infected. For j = 1, ..., n let
Qj denote the infection tolerance of susceptible j, the Qj

′s are independent copies of some
non-negative exponential random variables having mean 1 and denoted by Q(1)..., Q(n) the
order statistic associated to (Qj, 1 ≤ j ≤ n).
For i = −(a− 1)..., 0, 1, ..., n, let τj be the time of individual j′s infection, with τj = 0 if
j = −(a−1)..., 0, and τi = +∞ if susceptible j avoids infection. For t ≥ 0, any remaining
infective accumulates exposure to infection at rate βn(X, Y ). Our epidemic now proceeds
as follows : knowing that j infections occur beforet, the j +1 susceptible becomes infected
when its total exposure to infection (see Ball and O’Neill (1993[5], 1999[6]))

χj(t) =
∫ tj

0
βn(X(u), Y (u))Y (u)du, with tj = min

{
t, max
−(a−1)≤i≤j

(τi + Ri)

}
(10)

reaches Q(j+1). The epidemic ceases as soon as no more infectives are left in the population.
With these arguments, the final size of the epidemic is equal to

T = min{r ∈ [0, n] : Q(r+1) > χr(∞)} (11)

thus

{T ≥ k} =
k⋂

r=1

{Q(r) ≤ χr−1(∞)}, ∀k ∈ [0, N ]. (12)

By using the intensity of epidemic defined in section 1 we have, for t ≥ 0,

n(1− I) ≤ X(t) ≤ n and 0 ≤ X(t) + Y (t) ≤ n + a.

Let AI = {(x, y); n(1 − I) ≤ x ≤ n and 0 ≤ x + y ≤ n + a} and let mI and M be
respectively suitable lower and upper bounds of βn(x, y) and βn(x, y).x over the set AI

and En,a respectively. Then for t ≥ 0 we obtain for (X(t), Y (t)) ∈ AI

n(1− I)mIY (t) ≤ βn(X(t), Y (t))X(t)Y (t) ≤ MY (t) (13)

These inequalities show that the process can be sandwiched between two other epidemic
processes each having removal rate µ. The first is slow and the second is fast with the
total exposure to infection, such that j infections occur beforet, respectively equal to

χ̆I
j(t) = (1− I)mI

∫ tj

0

Y (u)

X(u)
du (14)

and

χ̂j(t) = M
∫ tj

0

Y (u)

X(u)
du. (15)

From (10), (14) and (15), and using(13), we deduce that:

χ̆I
j(∞) ≤ χj(∞) ≤ χ̂j(∞). (16)
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Let

T̆ I = min{r ∈ {0..., n} : Q(r+1) > χ̆I
r(∞)} and T̂ = min{r ∈ {0..., n} : Q(r+1) > χ̂r(∞)}

the final sizes of the two epidemics respectively. Then, using (12) and applying (16), we
find that

{T̂ ≤ k} ⊆ {T ≤ K} ⊆ {T̆ I ≤ K}, ∀k ∈ IN (17)

the second inclusion of (17) implies, for i ∈]0, 1[, that

Pr{T ≤ ni} = Pr{T ≤ ni, T̆ I ≤ ni} = Pr{I ≤ i, T̆ I ≤ ni}
≤ Pr{I ≤ i, T̆ i ≤ ni} ≤ Pr{T̆ i ≤ ni} (18)

where T̆ is the final size of the epidemic with infection rate n(1− i)mi.
Combining (17) and (18), we obtain Pr{T̂ ≤ ni} ≤ Pr{T ≤ ni} ≤ Pr{T̆ i ≤ ni} on the
other hand Pr{T̂ ≤ ni} = Pr{T̂ < ∞} − Pr{ni < T̂ < ∞} and, when n is sufficiently
large , Pr{ni < T̂ < ∞} ≈ 0. Moreover, Pr{T̆ i ≤ ni} ≤ Pr{T̆ i < ∞}. Consequently, by

considering the following distribution πi = Pr{I ≤ i} = Pr{T ≤ ni} =
∑[ni]

r=0 Πr and using
Theorem 4, the following result is obtained:

Theorem 5 For sufficiently large n

(
min{ µ

M
, 1}

)a

≤ πi ≤
(

min{ µ

n(1− i)mi

, 1}
)a

(20)

The statement in (20) constitutes Whittle’s stochastic threshold theorem. It may be
interpreted by saying that if µ > M then πi = 1, so there is zero probability of an
epidemic exceeding any intensity i ∈ ]0, 1[.

In a particular case as βn(X(t), Y (t)) = βnα−1

(X(t)+Y (t))α where α is defined as previously, we

obtain mi = βnα−1

(n+a)α and M = β. The statement in (20) becomes, for sufficiently large n:

(min{ρ, 1})a ≤ πi ≤
(

min{ρ(n + a)α

nα(1− i)
, 1}

)a

(21)

We see that, in this case, the probability that an epidemic exceeds the size ni is approxi-

matively 1−ρa. When α = 1, the upper boundary in (20), is greater than
(
min{1, ρ

1−i
}
)a

,

which is obtained by Gani and Purdue (1984) and Ball and O’Neill (1993) then the meth-
ods outlined here give approximation bounds of πi for large n.

4 The Shape of the total size distribution

In this section we are concerned with the shape of the distribution curve of the total size
considering the following particular infection rate

fn(x, y) =
βxy

(x + y)α
, α ≥ 0, (22)
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where β and α are as previously defined. Bailey(1975), Ball and O’Neill(1993)[5], N̊asell
(1995)[17] and Clancy(1999)[9] give, for an epidemic model with particular infection rate
functions, the total size distribution for various values of the removed rate ρ, remarking
that the distribution curve can for a small number of initial infectives take one of the two
shapes called J-shape and U-shape. The J-shaped curve can be interpreted as describing
a minor epidemic, while a U-shaped curve is associated to a minor or major epidemic.
More extensive results are shown in Figure 1-3 over a suitable range of α.
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Figure 1: Distribution of the final sizes, n = 1000, −− ρ0 = 600 (representing general
model), ···· ρ1/2 = 54.7 (Saounders’s model), ·−·ρ1 = 5 (modified model), −− ρ2 = 0.041
(our proposed model).
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Figure 2: Distribution of the final sizes , n = 1000, −− ρ0 = 120 (representing general
model), ····ρ1/2 = 11 (Saounders’s model), ·−·ρ1 = 1 (modified model), −−ρ2 = 0.008.(our
proposed model)
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Figure 3: Distribution of the final sizes, n = 1000, −− ρ0 = 60 (representing general
model), ···· ρ1/2 = 5.54, (Saounders’s model) ·−·ρ1 = 0.5, (modified model) −− ρ2 =
0.0041. (our proposed model)

All the probabilities used here were originally calculated using the following two-dimensional
recursive equation of the Laplace-transform gi,l = lim

v→0
P̂il(0), where the quantities P̂il(0)

for i = 0, 1, ..., n and l = 1, ..., n+a−i given by (4) verify the following recursive equations

gn,l = µa−l a!

l!

a∏

k=l

(fn(n, k) + µk)−1, l = 1, ..., a

and

gi,l =
∑

max(2,l)≤h≤n+a−i

µh−l h!

l!
fn(i + 1, h− 1)

gi+1,h−1

h∏
k=l

(µk + fn(i, k))
l = 1, ..., n + a− i.

The above two-dimensional system is perfectly adequate for computing purposes. Since
the threshold behavior of the four epidemics is controlled respectively by ρ0

n
,

ρ1/2√
n

, ρ1 and

ρ2n, then if we set ρα = n1−αρ1, ρα will be above its threshold value ρα = n1−α if and
only if ρ1 is above its threshold ρ1 = 1. Under this condition, the curves of the total size
distribution have the same shape for all four models.
It is clear that, from Figure 1, when ρα = n1−α, α = 0, 1/2, 1, 2 is above its threshold
then all curves fall rapidly and tend to be null as the total increases. In other words, the
curve is J-shaped (Figure 1); this illustrates the fact that the epidemic dies out quickly
and becomes minor. However, on one hand, when the relative rates ρ0

n
,

ρ1/2√
n

, ρ1 and ρ2n

are respectively below their thresholds n, n1/2, 1 and n−1 then the curves are U-shaped
(Figure 3) but not more pronounced (Figure 2, a =10). On the other hand, Figure 3
illustrates the fact that the epidemic is major with increasing the degree α, in the sense
that there is higher probability of none of the initial susceptibles contracting the disease
in the general epidemic and Saunder’s epidemic than in others.
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5 Conclusions

In this note we have examined the qualitative properties described for an SIR epidemic
model with a generalized infection mechanism. We may obtain the same result by con-
sidering a more generalized removal rate µn(xn, y) with µn(xn, y) ∼ µ(n)y when n is
sufficiently large for all sequences (xn)n≥0 ∈ £. As illustrated in sections 2 and 3, the
method used to prove rigourously Wiliam’s and Wittle’s threshold theorems is versa-
tile, and can be adapted to variaous multipopulation SIR epidemic models. this will be
investigated in future research.
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