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Abstract
Gani and Perdue outlined a matrix-geometric method for determining the total size
distribution of an epidemic in a recursive manner. In this paper, we explore how this
method can be used to study an SIR epidemic model with a generalized mechanism
of infection. We are able to obtain an explicit formula for the Laplace transform of
the transition probabilities. Using this we derive various other quantities explicitly.
Examples of such quantities are the transition probabilities and the expectation of the
duration of the epidemic.
Keywords: SIR model; Generalized infection mechanism; Matrix-geometric; Transi-
tion probabilities; Duration of an epidemic.

1 Introduction

In this note, we are concerned with the problem of solving the Kolmogorov forward
equations of the SIR stochastic epidemic model with a generalized infection mechanism.
In such a process, each individual can be in one of three possible states: susceptible,
infected or removed. Billard [3] and Krysco [10] considered this problem in the case of
the so called general stochastic epidemic model (cf. [1]). Billard’s solution is obtained
by explicitly generating the components of the off-diagonal elements of Severo’s matrix
solution (cf. [17]), while the diagonal elements of the matrix are recursively defined.
Krysco’s solution is obtained by enumeration of all possible paths that the process can
follow until absorption. Ball and O’Neill [2] adapted Krysco’s method to the so called
modified stochastic epidemic.
The method proposed by Gani and Purdue [8] was applied by Booth [4] to an SIR
model with one homogeneous population. That model was later generalized by El
Maroufy in [7] to the case of an epidemic in a population consisting of two interacting
subpopulations. The method in question is the matrix-geometric technique introduced
by Neuts in [11] in a different context. We notice that the focus of these authors was
recursively on the total size distribution of the epidemic. In this work, we investigate
how this method applies to obtain an explicit time-dependent solution to the forward

1Corresponding author : Tel : 212 63 77 44 03; fax : 212 23 48 52 01; E-mail address :
maroufy@fstbm.ac.ma; elmarouf@math.chalmers.se; (H. El Maroufy).
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Kolmogorov equations of the stochastic model described in section 2. It turns out that
the resulting solution is similar in form to those proposed by Krysco [10] in the case of
the general epidemic and by Ball and O’Neill [2] in the case of the modified epidemic.
However, our solution is explicitly defined and algebraically simpler. Moreover, the
approach we use, in contrast to the methods proposed the the previous works, generates
explicitly all components of the useful matrices.
The paper is structured as follows: The model under consideration is described in
section 2; the proposed solution is presented in section 3; and the distribution and
mean of the epidemic duration are derived in section 4. In section 5, we discuss
some possible applications. Finally some of the derivations call for tedious algebraic
manipulations that are presented in the appendix.

2 The model

The stochastic epidemic model that we consider here was proposed by Gani and Purdue
[8] and was generalized and discussed in detail by Elmaroufy [7]. In this model we
assume that at time t ≥ 0 there are X(t) susceptibles, Y (t) infectives and n−X(t)−Y (t)
removed individuals where X(0) = n and Y (0) = a. The epidemic process is thus
completely determined by {(X(t), Y (t)); t ≥ 0}, which is supposed to be a continuous-
time Markov chain on the state space:

En,a = {(x, y), 0 ≤ x ≤ n, 0 ≤ y ≤ n + a− x},
with the following transition probabilities :





Pr{(X(t + δt), Y (t + δt)) = (x− 1, y + 1)|(X(t), Y (t)) = (x, y)}
= fxy,x−1y+1δt + o(δt),

Pr{(X(t + δt), Y (t + δt)) = (x, y − 1)|(X(t), Y (t)) = (x, y)}
= µyδt + o(δt)

(1)

all other transitions having probability o(δt), and the parameter µ, being known as
the removal rate. The process terminates when the number of infectives becomes zero,
which will almost surely happen in finite time.
The infection rate considered above comprises different infection rates mentioned in
epidemic literature. For instance, Severo [18] took fxy,x−1y+1 = βx−bya−1, with β, a
and b constants. Another possibility would be to take fxy,x−1y+1 = βxyxy (see. [?]),
where βxy = β

(x+y)α with β is defined in [6] as the product of the contacte rate and
the probability that a successive number of contacts lead to infection. In this case,
α = 1, will give the infection mechanism considered by Gleissner [9], Ball and O’Neill
[2], O’Neill [13] and Sani and all [15], while when α = 0, the model is reduced to the
general stochastic epidemic model. The case α = 1

2
was studied by Saunders in [16].

Throughout this paper, we use the notation fx,y = fxy,x−1y+1 and adopt the convention
that

f0,y = fx,0 = 0 and fx,y > 0 for x > 0 and y > 0. (2)
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For (i, l) ∈ En,a, we define Pil(t) = Pr{X(t) = i, Y (t) = l}. It follows directly from (1)
that these transition probabilities satisfy the following set of Kolmogorov equations:

∂Pil(t)

∂t
= fi+1l−1Pi+1l−1(t) + µ(l + 1)Pil+1(t)− (µl + fil)Pil(t), (3)

for (i, l) ∈ En,a, with Pil(t) ≡ 0 if (i, l) /∈ En,a and Pna(0) = 1.

3 The time-dependent solution

The Kolomogorov equations (3) can be solved by using the matrix geometric method.
For i = 0, ..., n, let Ai and Di be the diagonal matrices with l-th diagonal elements
equal to µl and fil respectively for l = 0, .., n + a− i. Let further Ci be the matrix of
the same dimension with (l, l + 1)− th entries equal to µ(l + 1), l = 0, .., n + a− i− 1
and all other entries equal to 0. In addition, for i = 0, 1, ..., n, take the column vector

Pi(t) = (Pi0(t), Pi1(t), ..., Pin+a−i(t))
T .

Furthermore, for each matrix M of order n+a−i−p+1 for 0 ≤ i ≤ n and 0 ≤ p ≤ n−i
we define an augmented matrix

Mi+1(p) =


 Θp

i 0

0 M


 ,

where Θp
i is the zero matrix of order p; and for each vector U(t) of dimension (n +

a− i− p + 1), we also define U(t, p) = ((θp
i )

T , UT (t))T , where θp
i is the p zero column

vector.
Using the previous notations and arguments, equation (3) takes now the following form:

∂Pi(t)

∂t
= (Ci − Ai −Di)Pi(t) + Di+1(1)Pi+1(t, 1), for i = 0, 1, ..., n− 1 (4)

and
∂Pn(t)

∂t
= (Cn − An −Dn)Pn(t). (5)

The transition probabilities can now be studied using the Laplace Transformation

P̂i(v) =
∫ +∞

0
e−vtPi(t) dt. Using (4) and (5), we can formulate the following result :

Theorem 1
For l = 0, ..., a we can show that

P̂nl(v) = µa−l
1

a!

l!

a−l∏

k=0

(v + µ(l + k) + fn,l+k)
−1 (6)
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and for (i, l) ∈ En,a and v ≥ 0,

P̂il(v) = µn+a−i−l a!

l!

∑

L∈D̂n−i
ln+a−i

n−i∏

w=1

(lw − w + 1)fi+w,lw−w

∏
(w,k)∈Dn−i

(v + µ(lw − w + k) + fi+w,lw−w+k)
(7)

where
Dj

lh = {(i1, i2, . . . , ij)/ l ≤ i1 ≤ i2 ≤ . . . ≤ ij ≤ h} (8)

D̂j
lh = Dj

lh ∩ {(i1, i2, ..., ij)/i1 > 1, ..., ij > j} (9)

and
Di = {(w, k)/w = 0, ...., i, k = 0, ..., lw+1 − lw}. (10)

with L = (l1, l2, ..., ln−i) and (l0, ln−i+1) = (l, n + a− i).

Proof By letting Fi = Ci − Ai −Di, equations (4)-(5) become

P̂n(v) = (vIn − Fn)−1Pn(0), (11)

and
P̂i(v) = (vIi − Fi)

−1Di+1(1)P̂i+1(v, 1) (12)

for 0 ≤ i ≤ n− 1, where Ii denotes the identity matrix of order n + a− i + 1.
In order to determine the Laplace transform of Pil(t), we have to determine the entries
of (vIi−Fi)

−1 explicitly. First we show that (vIi−Fi)
−1 has an upper triangular form

(cf. The Appendix) i.e.

[(vIi − Fi)
−1]lh =





Ci(v, l, h) if 0 ≤ l ≤ h ≤ n + a− i

0 otherwise,
(13)

where

Ci(v, l, h) = µh−l
1

h!

l!

h∏

k=l

(v + µl + fik)
−1, for i = 0, ..., n. (14)

Using (14) for h = a, i = n and since Pn(0) = (0, ..., 1)T we deduce directly from (11)

that P̂nl(v) = µa−l
1

a!
l!

a∏

k=l

(v + µk + fn,k)
−1 which implies (6). To determine P̂il(v) for

i = 0, ..., n− 1, we need the following quantities:

Xi(v, w) = (vIi+w − Fi+w)−1

and

Yi =


 Θw 0

0 Xi(v, w)Di+w+1(1)


 (15)
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where (v, w) ∈ IR∗
+×{0, ..., n− i}, Θw is the null matrix of rank w and where Di+w+1 =

In if w = n− i if w = n− i and for w 6= n− i

[Yi(v, w)]mk =





[Xi(v, w)]m′k′fi+w+1,h−w−1 if m = w + m′, k = w + 1 + k′

with m′ = l − w, k′ = h− w

w ≤ l ≤ h ≤ n + a− i

and w + 1 ≤ h,

0 otherwise.

(16)

As for w = n− 1

[Yi(v, w)]mk =





[Xi(v, w)]m′k′ if m = n− i + m′, k = n− i + 1 + k′

0 otherwise.

For i = 0, ..., n and v > 0, we deduce from equations (11), (12) and (15) that

P̂i(v) = Yi(v, 0)P̂i+1(v, 1) =

[
n1−i∏

w=0

Yi(v, w)

]
En (17)

where En = (0, ..., 0, 1)T is the column vector of dimension n + a− i + 1.
Since P̂il(v) =

∫ +∞
0 e−vtPil(t)dt, for (i, l) ∈ En,a, it corresponds to the l-th (after zero)

element of the vector P̂i(v). Then, using (16) and (17) we obtain

P̂il(v) =
n+a−i−1∑

k1,...,kn−i=0

n−i∏

w=0

[Yi(v, w)]kwkw+1

=
n+a−i−1∑

k1,...,kn−i=0

n−i∏

w=0

[Xi(v, w)]kwkw+1

n−i−1∏

w=0

fi+w+1,lw+1−w−1 (18)

with kw = lw −w, l = l0 ≤ l1 ≤ ... ≤ ln−i+1 = n + a− i and lw ≥ w for w = 1, ..., n− i.
Injecting (15) in (18) we find, by considering the sets defined in (8)-(10) and after some
tedious manipulations, that for v ≥ 0 and (i, l) ∈ En,a

P̂il(v) =
∑

L∈D̂n−i
ln+a−i

n−i∏

w=0

Ci+w(v, lw − w, lw+1 − w)
n−i∏

w=1

fi + w, lw − w

(14)
=

∑

L∈D̂n−i
ln+a−i

n−i∏

w=0

µlw+1−lw
(lw+1 − w)!

(lw − w)!

n−i∏

w=1

fi+w,lw−w

n−i∏

w=0

lw+1−lw∏

k=0

(v + µ(lw − w + k) + fi+w,lw−w+k)

= µn+a−i−l a!

l!

∑

L∈D̂n−i
ln+a−i

n−i∏

w=1

(lw − w + 1)fi+w,lw−w

∏
(w,k)∈Dn−i

(v + µ(lw − w + k) + fi+w,lw−w+k)
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In order to derive an expression for P̂il(v) which will be used to obtain a simple
explicit expression for Pil(t), the following formula will be useful. Let ai, x ∈ IR. If
ai 6= aj for i 6= j, then it can be proved that

∏

i

1

ai + x
=

∑

i

bi

ai + x
(19)

where bi =
∏

k 6=i

(ak − ai)
−1.

We now assume that µ and fxy have been chosen to satisfy

µl + fil 6= µh + fjh, if (i, l) 6= (j, h), for (i, l), (j, h) in Ena, with h 6= 0. (20)

Notice that the above restriction is similar to the one placed on the relative removal
rate by Krysco [10] and Ball and O’Neill [2]. It is a necessary and sufficient condition
to ensure that the solution to (3) is a linear exponential combination of terms with
constant coefficients. But by straightforward computations, one can prove that the
assumption (20) is always verified for the cases fxy = βxy and fxy = β xy

x+y
considered

by the above authors when β
µ

is in IR+\IQ. The requirement in (20), together with (6),

(7) and (19), imply that

P̂il(v) = µn+a−i−l a!

l!

∑

L∈D̂n−i
ln+a−i


 ∑

(w,k)∈Dn−i

g(i, w, k)

v + f(i, w, k)


×

×
n−i∏

w=1

(lw − w + 1)fi+w,lw−w, (21)

with the convention that

∏

p∈B

Ap = 1 and
∑

B

1 = 1 if B = ∅ and Ap > 0. (22)

where
f(i, w, k) = µ(lw − w + k) + fi+w,lw−w+k, (23)

and
g(i, w, k) =

∏

(w′,k′)6=(w,k)

[f(i, w′, k′)− f(i, w, k)]−1. (24)

Finally, by applying the Laplace transform inversion formula to (21), we can readily
show the following theorem:

Theorem 2
Let i = 0, ..., n and l = 0, ..., n + a− i. Assume that (20) is satisfied. Then for t ≥ 0

Pnl(t) = µa−l a!

l!

a∑

k=l

∏

k′ 6=k

[µ(k − k′) + fn,k − fn,k′ ]
−1e−(µk+fn,k)t, (25)
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and if i = 0, ..., n− 1 then

Pil(t) = µn+a−i−l a!

l!

∑

L∈D̂n−i
ln+a−i

∑

(w,k)∈Dn−i




g(i, w, k)
n−i∏

w=1

(lw − w + 1)fi+wlw−w

ef(i,w,k)t




(26)

where for w = 0, ..., n− i and k = 0, ..., lw+1− lw, the quantities f(i, w, k) and g(i, w, k)
are defined by (23) and (24) respectively with (l0, ln+a−i) = (l, n + a− i).

In particular, if we replace fxy by βxy and βxy/(x+y) in (25) and (26), we will obtain
two expressions similar in form to those required by Krysco [10] and Ball and O’Neill
[2]. However, the exact relationship between Krysco’s or Ball and O’Neill’s solutions
and (26) is more difficult to determine.

4 Duration and number of infectives

Let
Tna = inf{t ≥ 0, Y (t) = 0}

be the duration of the epidemic defined as the duration of the time between the start
of the epidemic and the moment at which the number of infectives becomes zero. From
Theorem 2, we can obtain the distribution of Tna explicitly by considering he convention
(22)

Pr {Tna ≤ t} = Pr{Y (t) = 0} =
n∑

i=0

Pr{X(t) = i, Y (t) = 0} =
n∑

i=0

Pi0(t)

(25)−(26)
= a!

n∑

i=0

∑

L∈Di
0,a+i




∑

(w,k)∈D̂i

g(n− i, w, k)

ef(n−i,w,k)t




i∏

w=1

(lw − w + 1)fn−i+w,lw−w.

On another hand, if we suppose that E(Tna) < ∞, then we have

E(Tna) = −
n∑

i=0

∂(vP̂i0(v))

∂v
|v=0

= a!
n∑

i=0

∑

L∈D̂i
0,a+i




∑

(w,k)∈D̂i

g(n− i, w, k)

(f(n− i, w, k))


×

i∏

w=1

(lw − w + 1)fn−i+w,lw−w.

Using similar, but more complicated, arguments we get the following expression for
E(T 2

na),

E(T 2
na) = −2×

n∑

i=0

∂2(v2P̄i0(v))

(∂v)2
|v=0
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= 2× a!
n∑

i=0

∑

L∈D̂i
0,a+i




∑

(w,k)∈D̂i

g(n− i, w, k)

(f(n− i, w, k))2


×

i∏

w=1

(lw − w + 1)fn−i+w,lw−w.

where P̄i0(v) =
∫ +∞

0
e−vttPi0(t) dt and D̂i = Di \ {(0, 0)}.

Finally we can derive the mean and variance of the number of infectives easily from
(26).
To illustrate these results, we consider the modified model (see [2] and [15]) used for
AIDS modelling in which the infection rate is written as fil = βil

i+l
.

Figure 1 shows how the mean and standard deviation of Tna vary as functions of ρ = µ
β
,

the relative removal rate (a : number of initial infectives). In Figure 2 we plot the mean
and standard deviation of Tna as function of the initial number of infectives. Figure
3 illustrates the expectation number and the standard deviation of the number of
infectives. In this case some, quantities of interest are plotted over time.
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Figure 3: mean : −− , standard deviation :−−, n = 60, ρ = 0.2, 1 and 10.

5 Discussion

This note is devoted to the problem of evaluating the time-dependent transition prob-
abilities of the SIR stochastic model in the case of a generalized infection mechanism.
The method considered here can be generalized to include the SIR epidemic in a pop-
ulation consisting of two interacting groups of individuals. Also the quantities derived
here can be used to solve algebraically many problems related to threshold behavior
of the epidemic as it is the case, under some conditions, with the convergence in dis-
tribution to birth-death processes. One can also show the threshold theorem (see, for
instance, [19] and [14]). Other quantities of interest in the model are often expressible
in terms of these functions. For example, Billard ([3], section 4) indicates how the
transition probabilities might be used to evaluate the factorial moment of the number
of susceptibles. As another example, suppose that fxy = βf(x, y) and that we are in-
terested in estimating the contact rate β and the removal rate µ when the epidemic is
observed on a finite number of fixed time points. Then Severo [18] and Omari [12] show
that the likelihood function of the unknown parameters may be expressed in terms of
the transition probabilities of the process. Thus, at least in principle, the search for
the maximum likelihood estimates of the unknown parameters β and µ is just a matter
of computation.

Appendix

In what follows we give a proof of (13). We define 4i as the off-diagonal matrix
of the rank n + a − i + 1, with the (k, k + 1 = 1) element is equal to 1 for k =
1, ..., n + a− i + 1. By using the matrices defined in section (3) we see that Ci = 4iAi

and Fi = −(Di + Ai) +4iAi so it follows that

(vIi − Fi)
−1 = (vIi + Di + Ai −4iAi)

−1

= (Ii − (vIi + Di + Ai)
−1 4i Ai)

−1 × (vIi + Di + Ai)
−1. (A.1)
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The off diagonal of 4i and the diagonal form of Mi(v) = (vIi + Di + Ai)
−1 imply that

[vIi + Di + Ai)
−1 4i Ai]

l = 0 for all l > n + a− i. Hence,

(Ii −Mi(v)4i Ai)
−1 =

n+a−i∑

l=0

[Mi(v)4i Ai]
l = Ri(v).

Let [Ri(v)]lh and[Mi(v)]lh be respectively, the (l, h) − th entries of the matrix Ri(v)
and Mi(v) of rank n + a− i + 1. Since for k = 0, ..., n + a− i, the (l, h)− th elements
of (Mi(v)4i Ai)

k are equal to

[Mi(v)]ll+1(Ai)l+1,l+1[Mi(v)]ll+1(Ai)l+1,l+1...[Mi(v)]l+k−1l+k+1(Ai)l+k,l+k

if h = l + k and are equal to zero otherwise, then for 0 ≤ l ≤ h ≤ n + a− i we obtain

[Ri(v)]lh =
h−1∏

k=l

[Mi(v)]kk(Ai)k+1,k+1. (A.2)

Finally, by injecting (A.1) in (A.2), we have for l ≤ h ≤ n + a− i

[(vIi − Fi)
−1]lh = [Ri(v)]lh(v + µh + fih)

−1

=
h−1∏

k=l

(v + µk + fik)
−1µ(k + 1).(v + fih + µh)−1

= µh−l h!

l!

h∏

k=l

(v + µk + fik)
−1

= Ci(v, l, h).
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