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ENVELOPE AND ITS DISTRIBUTIONSKRZYSZTOF PODGÓRSKI AND IGOR RYCHLIKAbstract. We review the concept of envelope of a random signal and discuss the most recentadvances on the subject. In an approach to approximate the �rst passage probability for theunderlying response the average number of envelope crossings is used to obtain an upperbound. We give a brief account of the method. The envelope �eld is a generalization of theenvelope process for which we discuss its sampling distributions. One intrinsically multivariateproblem is studying velocities of moving spatial records. Sampling properties of the envelopevelocity measured at the level contours has been developed for the Gaussian model. We alsodiscuss how the results known in the Gaussian case can be extended to non-Gaussian modelsthat are constructed using as moving averages with respect to Laplace motion. This reviewpaper is based on the recent contributions by the authors and their collaborators.1. INTRODUCTIONThe decomposition of traveling random waves into the envelope (low frequency varyingamplitude) and the carrier (high frequency oscillations) has been introduced in [11]. Thecomplex envelope has the underlying signal as its real component and the Hilbert transformas its imaginary part. The real envelope process which is the norm of the complex one smoothsthe underlying process and at high levels it generally follows its height.The average number of envelope upcrossings gives a more precise upper bound for the prob-ability that the maximum of the process exceeds a certain level than the averaging upcrossingsof the original signal. The idea was �rst explored in [16] and later in [7], [6], where the Slepianmodel of the process at the envelope upcrossing was used to approximate more accurately theproportion of empty excursions.One of the risks in o�shore operations is the possibility of undesired responses of the vesselswhich can result in capsizing. This events have higher chances to occur if the speed of thevessel is comparable to the wave velocity and the time spend in a large wave group is long. It isoften reported that groups of waves do more damage than waves of the same size but separatedDate: February 25, 2008.Research supported by the Swedish foundation for Strategic Research through GMMC, the GothenburgMathematical Modelling Centre. 1
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Figure 1. Examples of directional spectra: swell spectrum (left); JONSWAPspectrum used in examples (right).by smaller waves (see, for example, [5]). This is partially explained by the fact that energypropagate with the rate corresponding to the speed of waves groups. For deep water wavesthis rate is slower than the speed of individual waves and it can be demonstrated by physicalarguments that for waves having narrow band spectra it is the envelope that is responsiblefor the transport of energy. Therefore statistical properties of wave groups are important forocean engineers and some aspects of these problems can be studied by analyzing the wavegroup velocity in the manner as it is presented in this paper.Despite that in the original work of Longuet-Higgins the envelope was proposed for movingrandom surface, most of the future work was done for the envelope of univariate randomprocesses with the notable exception of [2] and [3], where the de�nition and some propertiesof the bivariate envelope �eld were discussed. In [12], this original work has been extendedwith a focus on applications to studies of Gaussian sea surfaces. We present the summary ofthe obtained results.In truly two dimensional set-up where even individual waves are hard to describe in aformal manner, the notion of wave groups escapes a precise de�nition. On the other hand theenvelope �eld is de�ned in an arbitrary dimension and its properties naturally extend fromthe one-dimensional case. Take for example the sea surface given by the swell spectrum shown



ENVELOPE AND ITS DISTRIBUTIONS 3in Figure 1. The di�erence between dynamics of surface and envelopes can be illustrated byrecording contour movements in two time instants within 5[s]. For each of the �eld, let usconsider the contours crossing the signi�cant crest height level (the signi�cant wave height, inthis case, is 2.2[m], thus the crossing level or the signi�cant crest height is 1.1[m] above themean sea level). The following important features are observed in Figures 2:
• the envelope �eld is grouping the waves,
• the envelope appears to move slower than the sea surface,
• the level crossing contours for the envelope are more stable, appearing mostly to driftwith no rapid change in shape or size,
• waves entering the envelope contours are growing while these which are leaving arediminishing � expected behavior when the waves group are moving slower then theindividual waves.The above example and other numerical computations contributing to the paper have usedthe MATLAB toolbox WAFO � Wave Analysis in Fatigue and Oceanography � containing acomprehensive package of numerical programs for statistical analysis of random waves. Thistoolbox is available free of charge at http//www.maths.lth.se/matstat/wafo.Extensions and analysis of the envelope beyond Gaussian processes and �elds are of interestas many real signals (for example, severe sea states) show considerable non-Gaussian features.In [1], non-Gaussian random processes that are moving averages with respect to Laplacemotion have been proposed as an alternative models that allow for skewness and heavier thannormal tails. This class of second order processes is reviewed and the envelope process forthese non-Gaussian models is discussed including possible directions of future research.2. GLOBAL MAXIMUM AND ENVELOPE EXCURSIONSIn engineering applications such as safety analysis of o�shore structures, the distribution ofmaximum of a signal X(t) is of interest. The Rice method uses the following upper bound forthe distribution of the maximumP(MT > u) ≤ P(X(0) > u) +P (

N+
T (u) > 0

)

≤ P(X(0) > u) + µ+(u) · T, (1)where MT = max0≤t≤T X(t), N+
T (u) = #{t ∈ [0, T ] : X(t) = u, Ẋ(t) > 0} and the upcrossingintensity µ+(u) = E (

N+
T (u)

)

/T . For a stationary process X the celebrated Rice formulastates that
µ+(u) = E (

Ẋ+(0) X(0) = u
)

fX(0)(u), (2)
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Figure 2. Motion of level crossing contours for sea surface (top) and envelop(bottom) � the principal direction of wave movement is from the right to theleft.where x+ = max(0, x) and fX(0) is the density of X(0). In the Gaussian zero mean case
µ+(u) =

1

2π

√

λ2

λ0
e
− u2

2λ0 ,where λi's are the spectral moments of the process.An apparent wave group is di�cult to de�ne rigorously although for a narrow band process(swell) groups of waves are clearly seen in the records. They can be fairly well identi�ed



ENVELOPE AND ITS DISTRIBUTIONS 5through subsequent crossings of high level by the envelope that is de�ned as
E(t) =

√

X2(t) + X̂2(t),where X̂(t) is Hilbert transform of X(t).The envelope E(t) is always above the process X(t) thus we have an obvious relationP(N+
T (u) > 0) ≤ P(E(0) > u) +P(N+

T (u) > 0),where N+
T (u) stands for upcrossings of the envelope. The above can be improved using thenumber N+

0,T (u) of empty envelope excursionsP (

N+
T (u) > 0

)

= P(E(0) > u,N+
T (u) > 0) +P (

N+
T (u) −N+

0,T (u) > 0
)

≤ P(E(0) > u) +E (

N+
T (u)

)

−E (

N+
0,T (u)

)

.In view of the preceding comments, the following may be an improvement over (1):P(MT > u) ≤ P(E(0) > u) +P(X(0) > u) + (ν+(u) − ν+
0 (u)) · T, (3)where ν+ and ν+

0 are intensities of upcrossings and empty upcrossings, respectively.The intensities of upcrossings of the envelope can be evaluate from Rice's formula and isgiven by
ν+(u) =

√

2π(1 − ρ2)

λ0

· u · e
− u2

2λ0

T2

,where T2 = 2π
√

λ0

λ2
and ρ2 = λ2

1/(λ0λ2).Evaluating ν+
0 (u) that is used in (3) is a more challenging task. An approach that allowsfor simpli�cation of this computationally di�cult problem has been successfully implementedin [7]. The method is based on the Slepian model at envelope upcrossing. In [7] using Taylorexpansions of this process for the Slepian model at the exit form the circle by the complexenvelope the following approximation has been obtained

ν+
0 (u)

ν+(u)
≈ 2

∫ u

0

φ(η)



1 −
√

2π
Φ

(

γπ u
2−η2

u
− 1

2

)

γπ u
2−η2

u



 dη. (4)where φ and Φ are the standard normal density and distribution function, respectively.



6 K. PODGÓRSKI AND I. RYCHLIK3. ENVELOPE FOR NON-GAUSSIAN PROCESSESGeneralized Rice formulas remain valid for quite arbitrary processes � for example (2) canbe computed as long as joint distribution of Ẋ(0) and X(0) is known. Thus in principle thesampling distribution and crossing intensity problems for envelope can be studied in a fairlygeneral situation. However, the envelope distributions has not been considered except formodels based on Gaussian processes. In the sea surface elevetion it is partially due to thefact that until recently very few essentially non-Gaussian models has been found adequate. In[1], the model based on Laplace distributions has been proposed to model such non-Gaussianfeatures observed in the sea elevation as asymmetry and heavy tails. Using this model asuccessful analysis of the fatigue caused by such non-Gaussian loads to an o�shore structurehas been performed. This motivates studies of the envelope for this model and here after abrief introduction to the model, the envelope for such processes is described and an approachto computing sampling distributions is discussed.Let us consider independently scattered random measure Λ such that Λ(A) has the gen-eralized asymmetric Laplace distribution (see [9]). This random measure is parametrized by
ν, µ, σ γ, controlling shape, asymmetry, scale, and location, respectively. It follows from thegeneral theory that if f and f 2 are integrable the following process

X(t) =

∫ ∞

−∞

f(t− x) dΛ(x), (5)is strictly stationary, second order and ergodic. We refer to it as the Laplace driven movingaverage (LMA).One can show that the spectrum S(ω) of LMA is given by
S(ω) =

σ2 + µ2

ν
|Ff(ω)|2, (6)where F denotes the Fourier transform. This means that by choosing f one can in principlemodel any spectrum. Two extra parameters as compared with its Gaussian counterpart canbe used to �t skewness s and excess kurtosis κ of the marginal distribution of X(t). Note thatfor a Gaussian process both skewness and excess kurtosis equal zero, i.e. s = κ = 0. In fact,a Gaussian process can be obtained from the Laplace driven MA as a limiting case as s = 0and κ→ 0, see [9] (page 183).



ENVELOPE AND ITS DISTRIBUTIONS 7In order to compute the upper bound (1) for LMA one can evaluate the upcrossing intensityusing the inverse Fourier transform
µ+(u) =

1

(2π)2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

z e−i(v1u+v2z)φX(0),Ẋ(0)(t1, t2) dv1 dv2 dz.Thus the upcrossing intensity is not given by an explicit formula and must be evaluatednumerically. Nevertheless, it can be done quite e�ectively by the means of the FFT and thusin many practically important situations the sampling distributions for LMA can be e�ectivelyobtained.The envelope process, if intended to follow the original signal along both maxima andminima, applies only to symmetric records. If we de�ne h(s) = 1/(πs), then the Hilberttransform X̂(t) of the signal X(t) is de�ned through the convolution
X̂(t) = X ∗ h(t) =

∫ ∞

−∞

X(t− s)

πs
ds.For a moving average process it leads to

X̂(t) =

∫ ∞

−∞

f̂(t− x)dΛ(x),where f̂ stand for the Hilbert transform of f . The Hilbert transform has the same spectrumas the original one and at a �xed point t the original signal X(t) is uncorrelated with X̂(t).However, X(t) is no longer independent of X̂(t). but Nevertheless, since the Hilbert transformof a LMA is again a LMA and that their joint distributions can be obtained through invertingcharacteristic functions. Therefore the distributions of envelope that is de�ned by E(t) =
√

X2(t) + X̂2(t) can be also obtained and its crossing distributions studied as in the Gaussiancase, although one should not expect explicit formulas for the crossing intensities. For asymmetric LMA, i.e. when µ = γ = 0, this usual de�nition of envelope should lead to similarproperties as in the Gaussian case.For an asymmetric signal, it would more appropriate to use upper and lower envelope thatcorrespond to maxima and minima of the signal, respectively. One can do it by consideringthe positive and negative part of the centered signal and their envelopes. In the case ofLMA, one can utilize for this purpose the following representation of the Laplace motion
Λ(u) = B(Γ(u)) + µΓ(u) + γu, where B is the Brownian motion with the scale parameter
σ and Γ(u) is the gamma process. Then one can consider the envelope of symmetric signal
∫

f(t−u) dB(Γ(u)) which corresponds to the symmetric LMA and treat separately the signal
∫

f(t−u) dΓ(u). An alternative approach can utilize the representation Λ(u) = Γ1(u)−Γ2(u),



8 K. PODGÓRSKI AND I. RYCHLIKwhere Γi are independent gamma processes with di�erent scale parameters. Here one canconsider Λ1(u) = Γ1(u)− Γ̃1(u) and Λ2(u) = Γ2(U)− Γ̃2(u), where Γ̃1 and Γ̃2 are independentversions of Γ1 and Γ2, respectively. Then the envelope for ∫

f(t−u) dΛ1(u) could be considerthe upper envelope while the envelope for ∫

f(t− u) dΛ2(u) as the lower envelope. Which ofthis approaches is more appropriate may depend on the application in hand and the formalapproach to the envelope of asymmetric signals requires some further studies.4. ENVELOPE FIELD FOR GAUSSIAN SEA SURFACELet {X(τ )}
τ∈R3 be a stationary Gaussian �eld, where τ = (p, t) = (x, y, t) is a point in R

3.The covariance function R(τ ) = Cov(Xτ0+τ , Xτ0
) can be written in the form

R(τ ) =

∫

R3

exp(iλT
τ )σ(λ)dλ = 2

∫

Λ+

cos(λT
τ )σ(λ)dλ, (7)where σ(λ) is the spectral density of X(τ ).The process X(τ ) has the following spectral representation

X(τ ) =

∫

R3

exp(iλT
τ )dζ(λ) = 2<

(
∫

Λ+

cos(λT
τ )dζ(λ)

)

, (8)where the process ζ(λ) is complex valued with zero mean, orthogonal increments, and suchthat E(|ζ(A)|2) =
∫

A
σ(λ)dλ, Λ+ is any set in R

3 such that −Λ+ ∩ Λ+ has measure zero and
−Λ+ ∪ Λ+ = R

3. An example of such a set is Λ+ = {(x1, x2, x3) ∈ R
3 : x3 ≥ 0}.The spectral moments λijk, if they are �nite, are de�ned as

λijk = 2

∫

Λ+

λi1λ
j
2λ

k
3 dσ(λ), (9)where λ = (λ1, λ2, λ3). The variance of the �eld can be expressed in terms of spectral momentsas the zero moment λ000. If i + j + k is even, then λijk does not depend on a choice of Λ+because of the symmetry of σ. However for odd i + j + k, di�erent Λ+ can, in general, leadto di�erent λijk which is important when the distribution of the envelope �eld is discussed.In oceanography coordinates of τ corresponds to spatial and temporal coordinates, i.e.

τ = (x, y, t), while for the sea surface instead of X(τ ) we use the notation W (x, y, t).The problem with spectra for the sea surface is that they are degenerated in the full threedimensional space. This is due to the dispersion relation which reduce dimension of thespectral domain by one and its spectrum is de�ned by the unitary directional spectrum S(ω, θ).



ENVELOPE AND ITS DISTRIBUTIONS 9The symmetry of σ translates to S(T (ω, θ)) = S(ω, θ), where
T (ω, θ) =

{

(−ω, θ − π) if θ ∈ [0, π],

(−ω, θ + π) if θ ∈ [−π, 0).
(10)The set Λ+ corresponds in the reduced domain to Γ+ = λ

−1(Λ+) and a choice of Λ+ ⊆ R
3is equivalent to a choice of Γ+ ⊂ R × (−π, π] such that the intersection T (Γ+) ∩ Γ+ has zeroLebesgue measure and T (Γ+) ∪ Γ+ = R × (−π, π].De�ne ĥ(λ) = i(1Λ+(−λ) − 1Λ+(λ)) and the Hilbert transform of X(τ ) by

X̂(τ ) =

∫

R3

exp
(

iλT
τ
)

ĥ(λ)dζ(λ).The (real) envelope process is de�ned by
E(τ ) = |E(τ )| =

√

X2(τ ) + X̂2(τ ).Let us turn to the special case of the process X(τ ) = W (x, y, t) which represent the seasurface. Note that because of the symmetry of σ the statistical distributions of W (or itsHilbert transform when considered separately) do not depend on the choice of Λ+. However,one has to bear in mind that the choice of Λ+ a�ects distributional properties of the envelope.For example, the values of spectral moments λijk are a�ected by Λ+ and, as a result, alsothe joint distributions of W , Ŵ . In a given application it maybe important to choose Λ+in such a way that the envelope process will possess natural or desirable properties. Whilein general there are in�nitely many such choices some additional symmetries of random seasurface suggest the following �natural� one Λ+ = {(x1, x2, x3) ∈ R
3 : x3 ≥ 0}.The Hilbert transform has the same unitary spectrum and thus the same distribution asthe original �eld W . Also evaluated at the same �xed point (p, t) the two random variables

W (p, t) and Ŵ (p, t) are independent. However stochastic �elds W and Ŵ are dependent.For example, the covariances between derivatives of W and Ŵ are given through the spectralmoments of W . We have already remarked that these covariances are a�ected by a choice of
Λ+ and thus so is the dependence structure of W and Ŵ .Note that the real envelope �eld E(p, t) is positive and always stays above the sea surface.It is also depending on a choice of Λ+ because of the dependence between W and Ŵ . Thefollowing subsection illustrate the importance of a choice of Λ+ for modelling the sea-surfaceelevation.Let us consider the intensity of up-crossings of a u-level by the envelope in the direction
y = 0. We note that the intensity crossing is dependent on a chosen direction on the plane



10 K. PODGÓRSKI AND I. RYCHLIKTable 1. VERSIONS OF ENVELOPE IN TERMS OF Λ+ and Γ+.
Λ+ Γ+ Comment
x1 ≥ 0 θ ∈ [−π

2
, π

2
] Maximizes ρ2, minimizes crossing intensity

x2 ≥ 0 θ ∈ [0, π] Maximizes crossing intensity, ρ2 = 0

x3 ≥ 0 ω ≥ 0 Natural choice for the sea surface.although we will not indicate it in our notation and thus we will �reuse� the notation ν+(u)for this intensity. Thus
ν+(u) = E(E+

x (0)|E(0) = u) · u

λ000

e
− u2

2λ000 ,

=

√

λ200

2π

√

1 − ρ2 · u

λ000
e
− u2

2λ000 , u > 0,where ρ2 = λ2
100/(λ000λ200) (see also [10]). The highest intensity is reached for the level

u =
√
λ000 often called the reference level for the envelope, and is equal

ν+
max =

√

λ200

2π · e · λ000

√

1 − ρ2.We observe that the intensity of envelope crossing in the direction y = 0 depends on the choiceof Λ+ only through λ100 and in such a way that larger |λ100| (larger the squared correlation
ρ2) corresponds to lower crossing intensity. If one is interested in an envelope that is smootherthan the sea surface and following closer to the local extremes, then a reasonable choice of Λ+is the one that minimizes crossing intensity and thus maximizes λ100. Clearly, the choice willdepend on the form of a spectrum in hand. Some properties of diferent choices for JONSWAPspectrum of Figure 1 are presented in Table 1.5. DISTRIBUTIONS OF WAVE AND ENVELOPE VELOCITIESThere is a variety of ways to introduce velocity for dynamically changing surface (see [4]).Here for simplicity we focus on the velocity describing the motion of a contour level in thespeci�ed direction given by an azimuth α. We de�ne this velocity by the equations

[

Ex Ey

− sinα cosα

]

Vα = −
[

Et

0

]

, (11)where the �rst equation in the system guarantees that the motion following Vα stays on thesame envelope level and in this sense describes motion of the constant level contours, whilethe second equation implies that the velocity points always in the direction α. Further assume



ENVELOPE AND ITS DISTRIBUTIONS 11that α = 0, i.e. that we are interested in the constant direction coinciding with the principledirection of waves.Here we obtain the statistical sampling distributions of the velocity V for general spectraand discuss how they are in�uenced by di�erent sampling schemes. Three cases are considered:a) unbiased sampling,b) sampling at the points of u-level crossings of the envelope �eld cross-section in theprincipal wave direction, i.e. at the crossings of E(x, 0, 0),c) sampling at the u-level crossings contours of the envelope �eld.It follows from the generalization of Rice's formula that the distributions in b) and c) aredi�erent and given by
−1

a

(

b+
√
a · c− b2 · X

Y

)

, (12)where the constants are given by a = λ200(1 − ρ2), b = λ101 − λ100λ001/λ000, c = λ002 −
λ2

001/λ000S and variablesX and Y are independent, X having the standard normal distributionwhile the distribution of Y isa) the standard normal,b) the Rayleigh distribution,c) a complex but explicit density expressed by the means of Bessel functions (see [12]).In the above, λijk are spectral moments of W (p, t) as de�ned by (9). Additionally for thepart c) it assumed (as in all our examples) that the directional spectrum is symmetric withrespect to the principal wave direction and thus λ010 = λ011 = λ110 = 0.For comparison, the velocity of the sea surface has the same template (12) but with theconstants a = λ200, b = λ101, and c = λ002. Notice that for JONSWAP spectra and for thesecond choice in Table 1 (λ100 = 0) the template constants a and b for the waves coincide withthe ones for the envelope. Thus statistically velocities of the envelope and of individual wavesare centered at the same values which again demonstrates how counter intuitive things cango for certain choices of the envelope.It is interesting that the considered velocity under the both biased sampling distributionson u-level contours does not depend on the level u, i.e. they are the same independently ofthe elevation at which the velocity is measured.Consider the directional Gaussian sea surface obtained from the JONSWAP spectrum
S̃(ω, θ) = S(ω)D(ω, θ), where

S(ω) = g2 α

ω5
e−1.25ω4

p/ω
4

ρψ(ω),
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p), where σ is a jump function of ω:
σ =

{

0.07 if ω/ωp ≤ 1,

0.09 if ω/ωp > 1.and α is a scale, ρ controls the shape, and ωp is the peak frequency. The spreading function isgiven by D(ω, θ) = G0 cos2c(θ/2). The spectrum is shown in Figure 1 (right). For the envelopewe have chosen Λ+ that corresponds to Γ+ = [0,∞) × (−π, π].In Figure 3 (left), we present the unbiased and biased sampling distributions of velocitiesboth for the envelope and for the sea surface. The solid lines represent the unbiased densitiesand the dashed-dotted ones corresponds to the biased sampling densities. We see that thebiased sampling distribution which are more important for applications, are more concentratedaround its center. The group velocity is smaller than that of individual waves as it is observedin the real life records. The peaks are at −5.58[m/s] and −10.98[m/s]. Thus waves areroughly twice as fast as groups, the result in agreement with conclusions of the �narrowbanded� example. References[1] Åberg, S., Podgórski, K., Rychlik, I. (2008) Fatigue damage assessment for a spectral model of non-Gaussian random loads. Work in progress.
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