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Abstract

We propose a new approach to cell centered finite volume discretization of elliptic prob-
lems, using triangular meshes in R2 as an example. In order to define derivatives of piece-
wise constant approximations, we first perform an L2–projection onto the nonconforming
Crouzeix–Raviart space of piecewise linear functions, and then define our discrete using a fi-
nite element approach. The resulting method has no strict limitations regarding the acuteness
of angles in the mesh.

1 Introduction

The finite volume method is used extensively for fluid flow problems because it can handle unstruc-
tured meshes and has a very natural way of defining upwind differencing necessary for stability in
the case of strong convection. A low order finite volume method can also be monotone (without
recourse to nonlinear diffusion operators necessary in the case of finite elements), which may be
desirable in some instances. However, the finite volume handling of diffusion, which is extremely
simple in the case of structured grids, is a problem on unstructured grids. If the same mesh is to
be used both for discretization of convection and diffusion, some (rather strong) condition on the
geometry of the cells typically must be imposed, e.g., that all angles must be smaller than π/2,
cf. [4]. An alternative is to mix finite element and finite volume technology and use two meshes
as in the box method [2], or to use two meshes in some other, more elaborate way, see, e.g. [5].

In this note we propose another way of using finite element ideas in order to construct diffusion
operators for piecewise constant approximations on triangles (or tetrahedra). The idea is to use
projections of the constants onto a finite element space defined on the same mesh, followed by
using the standard finite element weak form of the differential operator. This idea can then be
combined with standard finite volume approximations of convective terms. We provide numerical
experiments to show the properties of the resulting scheme.

2 Problem statement and finite volume discretization

We first consider the model problem of finding u such that

−∇ · (k∇u) = f in Ω,
u = uD on ∂ΩD,

kn · ∇u = g on ∂ΩN ,
(1)

where Ω is a domain in R2 with boundary ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅, ∇ is the gradient
operator, and k, f , g, and uD are given functions.
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We discretize Ω using a triangulation T consisting of triangles T and define a finite volume
(FV) space by

Wh := {v ∈ L2(Ω) : v|T ∈ P 0(T ), ∀T ∈ T }.

The FV approximation may be written using the basis {ψT }, where ψT is the characteristic
function on T , as

u0 =
∑
T∈T

UTψT (x)

so that each constant UT can be interpreted as an approximation of the mean value of u on T .
A standard finite volume method can then be constructed by multiplying (1) by a test function

taking the value 1 on T and zero elsewhere, and use integration by parts so that∫
T

f dx = −
∫
∂T

knT · ∇u ds,

where nT is the outward pointing normal on T , and the problem is to find a way of using u0 to
approximate nT ·∇u across element borders using a sufficiently accurate difference stencil in such
a way that neighbouring elements agree on what the normal derivative is. These requirements are
easy to fulfill on a structured grid, but turn out to be rather difficult to satisfy on arbitrary grids.

In this paper, we shall instead introduce an intermediate finite element (FE) space V h and
define our discrete approximation as

uh := Phu0 =
∑
i

UiPhψi, (2)

where Ph denotes the L2–projection onto Vh, defined by seeking Phu ∈ V h such that∫
Ω

Phu vh dΩ =
∫

Ω

u vh dΩ, ∀vh ∈ V h. (3)

It is desirable to select V h in such a way that the number of interconnections are as small as
possible. For example, if V h is the space of piecewise linear, continuous functions, then the mass
matrix is not diagonal and has to be inverted. It can be lumped, which alleviates this problem,
but in any case PhψT will be nonzero on all elements sharing a vertex with T . This number
changes from element to element in an unstructured mesh, making an efficient implementation
more difficult. For this reason, we choose to use a non-conforming FE space V h, more precisely
the Crouzeix-Raviart space [3]

V h := {v : v|T ∈ P 1(T ) :
∫
e

[v] ds = 0, ∀e ∈ EI},

where EI denotes the set of all internal element edges in the mesh and [v] denotes the jump across
the edge. We further split the boundary edges into two sets; edges on ∂ΩD make up the set ED,
and those on ∂ΩN make up the set EN .

Since the approximation is linear, this space can be easily constructed using nodes on the
midpoints of the edges in the mesh (faces in R3). Continuity in these nodes then guarantees that
the mean value of discrete functions are zero along internal edges. For this space, the mass matrix
is diagonal and PhψT is nonzero only on T and its neighbors. A typical patch consisting of T and
its neighbors together with the constant basis function and its projection is shown in Figure 1.

We remark that the only difference on tetrahedra in R3 is that the diagonality of the mass
matrix is lost. This can however be reintroduced by mass lumping, and thus the method extends
to this case.

Introducing the notation

(f, v)h :=
∑
T∈T

∫
T

f v dxdy, ah(u, v) :=
∑
T∈T

∫
T

∇u · ∇v dxdy,
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we now propose the following method: find u0 ∈Wh such that

ah(Phu0, Phv0)h +
∑
e∈ED

∫
e

γ k

h
Phu0Phv0 ds = (f, Phv0)h

+
∑
e∈ED

∫
e

γ k

h
uDPhv0 ds+

∑
e∈EN

∫
e

gPhv0 ds ∀v0 ∈Wh,
(4)

where h denotes the local element size and γ a dimensionless penalty parameter. Wee choose this
penalty formulation, first suggested by Babus̆ka [1], because of the intrinsic difficulty of prescribing
Phu0 strongly on ∂ΩD (an alternative, also used in the numerical examples, is to set the values
on the triangles bordering to the Dirichlet boundary strongly).

Regarding the practical implementation, one can use the standard FE technique of integrating
the bilinear form ah(·, ·) element by element. In doing so, one has to take into account all those
shape functions that interact on the element in question. The shape function of this element
interacts with itself and those of the element’s neighbours, and, unlike a standard finite element
method, the shape function of each neighbour also interacts with the shape functions of the
remaining neighbours. Apart from this last (minor) point, standard FE technology can be used.

3 Convection–diffusion

We finally consider the extension to convection–diffusion problems of the type

∇ · (cu− k∇u) = f in Ω,
u = uD on ∂ΩD,

kn · ∇u = g on ∂ΩN ,
(5)

where c is a given convective velocity field. The simplest way of obtaining a stable discretization of
the convective term is to use the standard finite volume upwind method. To this end, we identify
all sides of elements on the upwind side: on a given element T we define

∂Tupw := {∂T : nT · c < 0},

and seek u0 ∈Wh such that

ah(Phu0, Phv0)h +
∑
e∈ED

∫
e

γ k

h
Phu0Phv0 ds+

∑
T∈T

∫
∂Tupw

|c · nT | [u0] v0 ds

= (f, Phv0)h +
∑
e∈ED

∫
e

γ k

h
uDPhv0 ds+

∑
e∈EN

∫
e

gPhv0 ds ∀v0 ∈Wh,
(6)

where [u0] denotes the jump limε↓0 u0(x + εnT )− u0(x− εnT ) and we set u0(x + εnT ) := uD in
case ∂Tupw ∩ ∂ΩD 6= ∅.

4 Numerical examples

4.1 Convergence

The first numerical example concerns the convergence of the method using different balances
between diffusion and convection. We consider the domain Ω = (0, 1) × (0, 1) and the exact
solution u = x (1− x) y (1− y). Inserting this solution into the convection–diffusion equation (5),
we find that the corresponding right–hand side is

f = cx(2x− 1)(y − 1)y + cy(x− 1)(2y − 1)x− 2k(x(x− 1) + y(y − 1)).

Here the boundary conditions were imposed strongly by setting u0 = 0 on those element having
a side on the boundary. We run three test: first with c = 0 and k = 1, then with c = (2, 1) and
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k = 1, and finally c = (2, 1) and k = 10−6. We observe that for a pure diffusion case, we have
second order convergence of the projected solution, first order convergence in a broken H1−norm
of the projected solution, and first order convergence of the non–projected solution, see Figure
5. The second order convergence can probably not be guaranteed on all sequences of refined
meshes since we do not have a fully linear FE space to work with. It is likely that some sort of
local symmetry is necessary. The second order convergence of the L2–norm is anyway lost when
convection is introduced, while the first order convergence of the broken H1–norm remains until
the problem is convection dominated, in which case only convergence in L2 remains, see Figures
3–4. Finally, in Figures 5–6 we show elevations of the projected solution in the pure diffusion and
the convection dominated cases, shown on the same mesh. Note the oscillating character of the
projected solution in the second case, which precludes H1–convergence.

4.2 Stability

The diffusion discretization works on more general meshes than standard finite volume discretiza-
tions of diffusion, but it fails as the largest angle α → π. In order to illustrate the sensitivity to
the largest angle, we solve a problem on a variable rectangular domain Ω = (0, xmax)× (0, 1) with
exact solution

u =
x (xmax − x) y (1− y)

x2
max

,

using a fixed triangulation. By increasing xmax, we obtain triangles with increasing α. In FIgure
7 we show a log-log plot of the L2–error of the projected solution as a function of α/π. Though
the meshsize changes, and thus affects the L2–error, this plot nevertheless shows a loss of stability
in the solution as α → π. The stretch for the last datapoint corresponds to xmax = 256, and we
conclude that the method is capable of handling large angles as long as they are not too close to
π.

4.3 Resolution of layers

The final problem is a boundary layer problem where the boundary conditions are u = 0 at
x = 1and y = 0, u = 1 at x = 0 and y = 1. Here we used weak boundary conditions. The
convective velocity was set to c = (2, 1), and in Figures 8–9 we show the numerical results obtained
with k = 0.1, k = 0.01, k = 0.001, and k = 0.0001. The origin is in the upper left corner and the
perspective is from x > 1.

5 Concluding remarks

We have introduced a way of discretizing diffusion operators for finite volume methods that work
also on distorted meshes and which does not require dual meshes. Numerical examples suggest
first order convergence in L2 for a wide range of diffusion to convection ratio, using a first order
upwind scheme for the convection part.
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Figure 1: A patch surrounding T , with ψT and PhψT .

6



!7 !6 !5 !4 !3 !2 !1 0
!11

!10

!9

!8

!7

!6

!5

!4

log( h)

lo
g(

er
ro

r)

 

 

L2!error, DG space
L2!error, CR space

H1!error, CR space

Figure 2: Convergence in the pure diffusion case.
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Figure 3: Convergence in the diffusion dominated case.
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Figure 4: Convergence in the convection dominated case.

Figure 5: Elevation of the (projected) pure diffusion solution.
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Figure 6: Elevation of the (projected) solution in the convection dominated case.
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Figure 7: L2 error as a function of largest angle.
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Figure 8: Elevation of the solution for k = 1/10 and k = 1/100.

Figure 9: Elevation of the solution for k = 10−3 and k = 10−4.
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