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On Super Saturated Experimental Design 

Sven Ahlinder Volvo (sven.ahlinder@volvo.com) 

Ivar Gustafsson Chalmers (ivar@math.chalmers.se) 

1. Abstract 
Design of Experiments (DoE) is the scientific topic of how to perform series of investigations of an 
arbitrary object. Normally in DoE, the number of observations is larger than the number of variables. This 
gives a possibility for estimate statistical properties about the coefficients that describe the influence of 
the variables. 
 
A modern vehicle is specified by a million parameters. The problem is that the companies can not afford 
to make a million experiments. This phenomenon has been identified already in the fifties and the 
answer was supersaturated designs.  
 
Suppose a system of equations Ax=b. Here x is the underlying coefficients that describe the studied 
object, A is a series of experiments on the object and b is the result of the experiments. 
 
A supersaturated experimental design is a plan to create an experimental series with fewer observations 
(corresponding to the rows of the matrix A) than unknown parameters (the elements of x). This leads to 
an underdetermined system of equations Ax=b. Solving an underdetermined system of linear equations 
could be done by a generalized inverse based on Singular Value Decomposition (SVD).  
 

In normal, non saturated designs, the bottleneck of information is to replicate the measured results, 
given by a vector b. This results in methods for estimating predictions, b̂ , which have given experimental 
series A that have orthogonal columns since this gives the possibility to estimate the elements in x 
independently of each other.  

 

In this paper a new method is introduced for creating supersaturated designs. It is simply assumed that 
the first order Taylor series describing the studied system is known. The first order Taylor series is the 
sum of all parameters, each multiplied by a coefficient. The coefficients are the elements of x. The 
coefficients give a steepest ascent direction to follow when optimizing the system. The method is 
focused on how to estimate the coefficients, the elements of a vector x̂ , using the experiments A on the 
“correct” vector x. For a non-saturated A, this is not a problem but in supersaturated A’s this is vital. 

 
If x lies in the row space of A, then the experimental series will be a success, but if x lies in the null 
space of A, it will be a complete failure. In all practical cases, x has components in both row space and 
null space. The best we can do is to take an A with a dimension of the row space as large as possible 
compared with the null space. This means that the rank, or the number of independent rows of A, should 
be as large as possible. This leads to the fact that in non-saturated designs, A should have linearly 
independent columns and in supersaturated designs, A should have linearly independent rows. 
 
The total gain in lean optimization is expected to be columnsofNumberrowsofNumber * . This 
means that investigating 4 times more parameters with the same amount of tests gives double the 
information. 

2. Symbols: 
A: The experiments conducted on a system, that is a matrix called the experimental design. 
x: The vector of coefficients of the linear approximation of the system 
b: The vector of results when conducting the experiments A on the system, i.e. b=Ax 
A+: (Generalized) inverse of A 
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x̂ : The estimated (calculated) coefficients of the linear approximation of the system, i.e. x̂ = A+b 

b̂ : The vector of results when conducting A on x̂ , i.e. b̂ =A x̂  

s: The saturation (number of columns)/(rank) 
||x||: A norm of a vector. ||x||2 is the 2-norm i.e. the Euclidian length. 
||A||:A norm of a matrix. ||A||2 is the 2-norm i.e. the norm corresponding to the vector norm ||x||2. 

3. Introduction 
Design of Experiments, DoE is a discipline in statistics. In year 1935 the famous statistician R. A. Fischer 
published a book called “The design of experiments” [Ref 1] about how to design experimental series to 
be able to estimate the coefficients in linear polynomials with several variables. Those polynomials then 
served as models to be able to maximize the yield of crops. His basic ideas were like this: 
 
Assume that the notation for a linear system of equations is Ax=b, where A is the left hand side, b is the 
right hand side and x are the coefficients to estimate. Then A is a list of which experiments we should 
perform to investigate our unknown system. If possible,A should have full rank and have orthogonal 
columns. This leads to independent estimation of the parameters in x, which is ideal. According to 
Fischer it is useful to add some extra rows to A, without destroying the orthogonality, to make the 
investigation less sensitive to measurement errors. Then the system of equations can be solved with the 
method of least squares, which will solve the problem min ||Ax-b||2. 
 
In vehicle industry, DoE is used in several disciplines such as fuel consumption, emissions, noise, 
durability, handling, welding, painting, vibrations, air resistance, cooling, heating etc. The main problem 
is that a vehicle is defined by about a million variables, and the industry can not afford to do a million 
experiments. Due to this there is a growing interest in super saturated designs, where one does fewer 
experiments than the number of parameters to estimate and one gets an underdetermined system of 
equations to solve. In this case the parameters in x can not be independently estimated. 
 

3.1 DoE and optimization 
A gradient optimizer calculates the gradient of a system, as if it was a function, in the starting point p0 
and goes in this direction, which is the steepest ascent when maximizing. The gradient could be 
approximated by taking a small step � from the starting point in each variable one at a time and calculate 
the influence on the function for each variable. In DoE terms all experiments of one gradient evaluation 
form a matrix A that is diagonal with diagonal elements �. Since A= �I is square, x=A-1b= �-1b which is 
the same as dividing all elements in b with �. 
 
Then a step, normally much larger than �, is taken in the direction of the gradient. The larger step is 
normally repeated several times until an optimum is reached. Then the system (function) is evaluated 
again and a new direction is set. 

 

Design of Experiments mainly works the same way as a gradient optimizer. You calculate the gradient 
x̂ =A+b and goes in that direction. The three major differences are: 

DoE does not take a small step � but gives the system a solid kick [2] 

In DoE, A is not I, but has balanced columns. 

A is mostly overdetermined in DoE, i.e. A has more rows than columns. 

Normally there is only one step for each system evaluation, but a reasonably large one. 
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“Balanced columns” means that in each column of A there are equally many steps in the positive 
direction, “ones”, as in the negative direction, “minus ones”. This leads to the fact that only certain 
combinations of rows and columns are orthogonal and those are called experimental designs. One 
purpose of balanced designs is that the influence of the experimental error is divided by the number of 
rows. [2]. 

 
If A is made nonsaturated or over determined by increasing the number of rows the influence of errors is 
further decreased. Overdetermined systems of equations are often solved by the method of least 
squares. 
 
The idea of a solid kick also relates to the errors in measurement. The longer step taken when 
investigating the gradient, the more exact the influence of the variable is estimated. On the other hand, if 
the step is too long, there may be an influential curvature and even a passed optimum. The gradient 
solver investigates only a small surrounding of the starting point and then takes a larger step. When 
taking the larger step you get into an area that is not investigated. One compromise is to let the step 
length in gradient investigation be as long as the planned step length in the improvement step. 
 
Note that here; A is the experimental design which should be chosen with regard to properties as cost of 
experiments and orthogonality. This means that in DoE you decide in advance which system of 
equations you should solve by deciding which experiments you should perform on your system. 
 

3.2 The Pareto principle 
In 1906, Vilfredo Pareto observed that 80% of the property in Italy was owned by 20% of the population. 
In 1941, Dr. Joseph Moses Juran expanded the observation to "80% of your sales come from 20% of 
your clients". This is also known as the 80-20 rule or the vital few and the trivial many [7]. 
 

3.3 Optimization with super saturated designs. 
A super saturated design, SSD, is an experimental series with fewer observations than variables. This 
leads to an underdetermined system of equations to solve. This can be done by a generalized inverse, 
x̂ =A+b. The most common generalized inverse for underdetermined system of equations is the Moore-
Penrose inverse, A+=AT(AAT)-1 for full rank, and A+ is based on SVD in the general case, see below. 
Here x̂  is the minimum norm solution of Ax=b, i.e. the solution with smallest norm || x̂ ||2 

 
Except for the generalized inverse, optimization with SSD does not differ from ordinary DoE. x̂  is 
estimated and a step along the steepest ascent is taken [3]. A reasonable step length should be chosen 
and the columns should be balanced as in normal DoE. One can hope that the direction of the step is 
good enough, at least compared to the limited effort of SSD. 
 
 

3.4 Present methods 
The traditional methods [4] studied for generating super saturated designs, mainly focus on low 
correlation between the columns. This is called E(s2) which means that the maximal correlation of the 
columns of A should be as small as possible. [4]. This is the typical case in Design of Experiments. 
However SSD is atypical in DoE as we will show later and the important concern in SSD is that A has 
linear independent rows. 
 

3.5 An example of SSD optimization 
Volvo has tested SSD optimizations on mathematical functions [3]. Some theoretical functions and a 
genuine engine model were tested. In all cases about 100 variables was used and 50 evaluations were 
performed. The 50 evaluations were divided into 3 steps with about 15 evaluations in each step. For 



 4

each step, centre of the investigation was moved in the direction of steepest ascent. In all cases the 
function value was improved for each step. Generally, 2000 random evaluations did not give such a 
good value as the 50 SSD evaluations which indicate that the method has a potential. 

4. Theory 

Assume a system with many variables to be optimized. This system could be a subsystem of a vehicle. 
Assume that in a reasonable small interval, the function could be approximated by a first order Taylor 
series. This means that a vector of linear coefficients, here called x, describes the interval reasonably 
good. To estimate x, we perform a list of experiments which are the rows of a matrix called A. The vector 
b is the result of the experiments and b=Ax. The estimation of x is denoted x̂  and is defined by x̂ =A+b 
where A+ is a generalized inverse to be defined below. 

4.1 Solving a system of equations 
A linear system of equations must in general be square and have full rank to be solved without 
assumptions. For over-determined (long and thin) systems of equations, the least square solution is 
mostly used. For underdetermined (short and fat) systems of equations, the minimum norm solution can 
be used. Using singular value decomposition is an expensive way of solving systems of equations but it 
gives both least square and minimum norm solution [5]. Since Super Saturated Designs are aimed for 
expensive experiments, the cost of solving the systems of equations is not a problem 

4.2 Singular Value Decomposition (SVD) 
Any matrix A can be expressed as the product of three matrices USVT, where U and V are orthogonal 
and S is quasi-diagonal. The diagonal elements of S are called the singular values. Since the inverse of 
an orthogonal matrix is its transpose, we may define a so called pseudoinverse by A+=VS+UT where S+ is 
the transpose of S with all non zero elements replaced by their inverses. Particularly there is a compact 
form for Singular Value Decomposition, SVD, where S is square which then may not be the cases for U 
and V. 
 

Suppose A has m rows and n columns. Then A+ is the Moore-Penrose pseudo inverse and x̂ =A+b is the 
exact solution to Ax=b if m=n (with full rank), least square solution if m>n and minimum norm solution if 
m<n. 

 

4.3 Estimations 
Suppose x is a first order Taylor expansion of the behaviour of an object and A is the experiments 
conducted on the object. Let b be the results of the experiments. Then b=A*x. 

If we want to estimate the first order Taylor expansion of the behaviour of the object, then x̂ =A+b 

If we then want to check if the object behaves linearly we may calculate b̂ =A x̂  and see if b̂ =b. 

The total calculation may be summarized as b̂ =AA+Ax. 

 

For m>n, A+ is a left inverse so A+A=I. This means that x̂ = A+Ax=Ix=x and b̂ =A x̂ =Ax=b if a first order 
Taylor expansion is a good description of the object that we let A operate on. 

 

For m<n, A+ is a right inverse so AA+=I. This means that b̂ =AA+Ax=IAx=Ib=b, which means that the 
estimations made of the model x̂  probably are correct. But note that A+A probably not is I. This means 
that x̂ =A+Ax probably not is x and the model is hard to interpret. Still A x̂ =Ax. If we have a new 
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observation O which is a linear combination of the rows of A, in the row-space of A, then O x̂ =Ox. Hence 
the quality of A is dependant of the (row) rank of A not the correlations of the columns that is indicated in 
[Ref 4]. 

 

4.3.1 Some properties 

The norm of a matrix A is defined as ||A||=sup ||Ax|| / ||x|| for a vector norm ||x||. Let the norms be 2-
norm. It follows that 0� ||Ax||� ||A||*||x||. ||Ax||=0 if x is in the null space of A and ||Ax||=||A||*||x|| if x is 
parallel to the column in VT that corresponds to the largest singular value of A. [Ref 5] 
 

Let C=A+A=VS+UTUSVT=VS+SVT. S+S is diagonal so C is symmetric. Furthermore the diagonal of S+S 
consists of zeroes or ones. Thus, by the spectral theorem, we conclude that the eigenvalues of C are 

zeroes or ones. It follows that ||C||= )( 2
max Cλ =1, where maxλ  is the largest eigenvalue. 

 

Since )()( CNulxANulx ∈�∈  we also get ||Cx|| = 0 if )(ANulx ∈  

 
Consider now the compact SVD of A=U1SrV1

T, where Sr is positive, diagonal of size rxr, where r=rank(A). 
Then AT=V1SrU1

T and the range spaces R(AT) of AT and R(V1)of V1 are the same. 

Further C=A+A=V1Sr
-1U1

TU1SrV1
T=V1V1

T is then the orthogonal projection on R(AT)=Row (A), the row 
space of A. In particular, if x belongs to Row(A), then x̂ =Cx=x. 

From C=V1V1
T, with V1 having r linearly independent columns, it follows that C has r eigenvalues equal to 

1 and n-r eigenvalues equal to 0. Thus r=rank(C) is the sum of the eigenvalues of C, i.e. r=trace(C), the 
sum of the diagonal values of C. 

5. Results 
In this paper we conclude: 

• Volvos data does not follow the Pareto principle. 

• In SSD the rows should be linearly independent, not the columns. 

• SSD is a bit of a chance, but a reasonably good one. 

• The expected relative gain per parameter with SSD is 1/sqrt(columns/rank), generally 

columnsofNumber
rowsofNumber

 for full rank. 

• The total gain in lean optimization is expected to be columnsofNumberrowsofNumber * . 

• SSD is good only for reasonably many variables. 

5.1 Volvo data and Pareto principle 

In Figure 1, the scaled accumulated coefficients of some massive investigations have been plotted in 
size order. The dot is the point that the Pareto principle indicates. The thick line is the normal probability 
distribution, i.e. xi is N(0,1). The analytic function behind this graph is given in Appendix 1. We can see 
that the data gathered here is more close to a normal probability distribution than the Pareto principle. 
Therefore we are going to use normal probability distributed x in the further reasoning. 
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Figure 1 Pareto principle 

5.2 Linearly independent rows 

Since x̂ =Cx and x̂  is the orthogonal projection of x on the row space of A, the important thing for a good 
design matrix A is to have full rank, m<n. The most common is to have as small correlation as possible 
between the columns of A, E(s2) [4], but x̂  has maximal norm if x is in the row space of A since then 
x̂ =x so for estimating x̂ in a supersaturated design, it is the independency of rows that is important, not 
the independency of the columns. 

 
Orthogonal rows can easily be created by transposing classical designs. Another way is to concatenate 
a suitable number of unit matrices I so A=[I,I,I,…,I]. This is equivalent to lumping variables together so 
the first row is ones for the probably most influential variables and zeros for the other, then the next row 
is ones for some of the less probable variables and zeros for the others and so on. 
 

5.3 Gain with Super Saturated Designs, SSD. 
Recall that C is a projection matrix that projects x on the row space of A. A meter of the efficiency of a 
design A is the correlation coefficient between x and x̂ =Cx. If the correlation coefficient is 0.5, the gain is 
half the distance we are going. Let s be the saturation, s=(number of columns)/(rank). Then the 
correlation coefficient goes to 1/sqrt(s) when the number of columns goes high. This statement is proved 
in Appendix 2. For instance, if we have twice as many columns than (independent) rows, then s=2 and 

the correlation coefficient is 7.0
2

1 ≈ . This means that we expect to gain 70% with 50% of the effort if 

we take a reasonably large step in the direction of x̂ . This is proven only for normally distributed x. 
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The relative gain per parameter is 
columnsofNumber

rowsofNumber
. The gain for more columns is proportional to 

the number of columns so the total gain for a full rank investigation with super saturated design on a 
linear system is columnsofNumberrowsofNumber * . This says that investigating some extra 
parameters is always a gain when doing an investigation. 
 
Figure 2 shows that the less experiment are done, the more gain per experiment. We can see for 
instance that with a saturation of 4 you get 50% of the gain instead of expected 0.25. 
 
 Figure 3 shows that it takes a rank of at least 5 to get full effect of the method.  
 
Figure 4 shows the spread in lean optimization compared to expected value, only simulations.21 rows is 
used for 184756 parameters or columns. We can see that in 10000 simulations the lowest value is 
0.0055 when the easiest idea, number of rows/number of columns, is about 0.0001. 
 
Since the null space of C has dimension at least n-m>0, there always is a possibility that ||Cx|| = 0. This 
happens if x is in the null space of A, and in this case you get no information of your experiments. The 
expected value of the information though is, relative to the number of experiments, higher than a full 
factorial experimental series. 
 

Gain with Super Saturated Designs
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Figure 2 Gain with SSD 
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Expected information for different saturations, s
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Figure 3 Rank for getting full gain 
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Figure 4 Equally distributed x 

6. Discussion 
It is some kind of symmetry that non saturated A:s should have independent columns and super 
saturated A:s should have independent rows. This follows from the idea of the information bottle neck 
which is the coefficients for non saturated designs and the observations for super saturated designs. 
 
One can understand the result as that the first observation gives the most information and then the 
information per observation decreases. 
 
The total gain in lean optimization is expected to be columnsofNumberrowsofNumber * . 
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In this study, perturbations have not been studied. Probably such a study would result in that the rows in 
a super saturated A should not only be independent but orthogonal to minimize the influence of the 
perturbations on b. 
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8. Appendix 1 

The thick line in Figure 1 is generated by reordering the elements of x in decreasing order of magnitude, 
defining a vector y by  

�
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        and then plot y. 

In order to find an analytical function behind this graph we consider 

( ) dttexF
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∞
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corresponding probability density. The values x and z should be related by 
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where the integrand now just represents the probability density and 
π2
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 is the required normalizing 

factor. 

By the normal distribution function 
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so we may write the desired function 
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For the inverse of this function we obtain a simpler, explicit formula. 
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so the inverse function of F is defined by 
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9. Appendix 2 

Here we prove that the expected value of mnsxx == 1ˆ ,n>m. We assume that the matrix A has 

full rank; otherwise m should be replaced by the rank of A. 

At first we recall some basic notations: 

x is the estimated vector 

x̂  is the estimation of x 

the norms are 2-norms 

A=USVT is the singular value decomposition 

A+=VS+UT is the Moore-Penrose inverse 

Ax=b and x̂ =A+Ax=Cx. 

Note that x̂ =Cx is the orthogonal projection of x on the rows of A, so x̂ T(x- x̂ )=0 i.e. x̂ Tx= x̂ T x̂ . 

Let � be the angle between x and x̂ . Then .ˆ)ˆ/(ˆˆ)ˆ/()ˆ()cos( xxxxxxxxxx TT ===α  
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Suppose that the components xj of nRx ∈  are independent normally distributed random variables with 
expectation 0 and variance 1, i.e. xj=N(0,1), j=1,…,n. 

In the proof to follow we determine the expected norms E(||x||) and E(|| x̂ ||) and then 
E(cos(v))=E(|| x̂ ||)/E(||x||). 

First we derive E(||x||) in the following lemma: 

9.1 Lemma 

The expected norm for nRx ∈  is 

�
�
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�

�

�

=
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−
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−=
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kn
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kn
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!)!22(2
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)(
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π
π    Here n!!=n(n-2)(n-4)… 

9.1.1 Proof 

Since the probability density for each component xj is 2/2

2
1

)( jx
j exf −=

π
 and the components are 

independent we get by standard probability analysis: E(||x||)= n
x

n dxdxex ...||||...
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By changing to spherical coordinates we readily get: 
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      (A2.1) 

For evaluating the integrals we use some standard definite integrals, see eg [Ref 6]: 
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and 
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By (A2.2 and A2,3) for the separate integrals in (A2.1) the formulas for the expected norm arise. 

 

Q.E.D. 
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9.2 Theorem 

Let nRx ∈  with xi=N(0,1), i=1,2,…,n. 

Then for x̂ =A+Ax we get the expected norm: 

(i)        E(|| x̂ ||)=E(||z||) where mRz ∈  and zi=N(0,1), i=1,2,…,m                                                                                                          
It follows that for the angle α between x and x̂  holds, for n and m even or n and m odd, 

(ii)        
!)!1(!)!2(
!)!2(!)!1(

)(cos
−−
−−=

nm
nm

E α                                                                                                                                                                                                                 

and for s=n/m we get 

(iii)        2
1

)(coslim
−

∞→
= sE

m
α  

A similar formula to (ii) is valid also for the mixed odd- even case. Before giving the general proof we 
consider two special cases. 

9.2.1 Example 1 

The case of n=2, m=1. x̂  is now the orthogonal projection of x on a line trough the origin. The norm is 
then || x̂ || =||x||cosα  and the value of the expected norm then becomes with r=||x||: 

E(|| x̂ ||)= ( ) drder r αα
π

π
2/

0

2

0

2
2

2

|cos|
2

1 −
∞

� � = 

= ��
−

∞ π

αα
π

2

0

2/

0

2 |cos|
2
1 2

ddrer r = drer r 2/

0

2 22 −
∞

�π
  

and by (A2,3) with k=1, n=2 we get  

E(|| x̂ ||)= π
π

π
2

2
22 =  

This value is the same as E(||z||) for RRz m =∈  for the lemma with k=0, n=1. Thus the part (i) of the 
theorem is valid for this example. 

9.2.2 Example 2 

The case n=3, m=2. Here we use spherical coordinates for x=(x1,x2,x3): 

θ
ϕθ
ϕθ

cosˆ
sinsinˆ
cossinˆ

3

2

1

rx

rx

rx

=
=
=

 

Assume x̂  is the orthogonal projection of x on the (x1,x2)-plane. Then  
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0ˆ
sinsinˆ
cossinˆ

3

2

1

=
=
=

x

x

x

ϕθ
ϕθ

          , with || x̂ ||=|rsin�| 

and then 

E(|| x̂ ||)= drddrer r ϕθθθ
π

π π

sin|sin|
2

1

0

2

0 0

22/
3

2

� � �
∞

−  

where r2sin� is the functional determinant. Further, 

 E(|| x̂ ||)= ( ) 2
2

sin
2

2 22/

0 0

3
3

2 πθθ
π
π π

=−
∞

� � drder r  

since 
2

sin
0

2 πθθ =�
∞

d  and, by (A2.3),        2
0

2/3 2

=�
∞

− drer r  

Finally, 2,1),1,0(,),(
2
2

)ˆ( 2 ==∈== iNzRzzExE i

π
 by the lemma with k=1, n=2. Thus for this 

example, the part (i) of the theorem is true. 

9.2.3 Proof of the theorem 

For simplicity, we restrict the proof to the case n even, the case n odd is treated similarly. 

At first let m=n-1. Then in a spherical coordinate system based on the subspace Row(A) with dimension 
n-1, we have  || x̂ || = |rsin�n-1|, compare with Example 2, and 

E(|| x̂ ||)= � � �
∞

−−
−−

0

2

0
1211

1
3

2
2

2/

02
...sin...sinsin...

)2(

1 2
π π

ϕϕϕϕϕϕ
π

drddder nn
nrn

n
=

drddder nn
nrn

n 2
0 0

311
1

3
2

2
2/

02
...sin...sinsin...

)2(

2 2

ϕϕϕϕϕϕ
π

π π π

� � �
∞

−−
−−  

By using the formulas (A2.2) and (A2.3) for the separate integrals we obtain 

!)!3(
!)!2(2

)ˆ(
−

−=
n

n
xE

π
π

 and this is equal to 

1,...,2,1),1,0(,),( 1 −==∈ − niNzRzzE i
n  by the lemma and the part (i) of the theorem is verified in this 

case.  

 

Secondly, we consider n even and a general m<n. By generalizing the idea above of building up a 
spherical coordinate system successively from Row(A) of dimension m we get: 

E(|| x̂ ||)= � � �
∞

−−
−

+
+−−

0 0
211

1
1

11
2

2/

02
...sin...sinsin...sin...

)2(

2 2
π π

ϕϕϕϕϕϕ
π

π
drdder nn

n
m

m
m

mrn
n
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and by using once more the formulas (A2.2) and (A2.3) and the lemma we can readily prove that 

miNzRzzExE i
m ,...,2,1),1,0(,),()ˆ( ==∈=  

i.e. part (i) of the theorem is proved. 

 

For part (ii) of the theorem we just conclude that 

 E(cos(�))=E(|| x̂ ||)/E(||x||)=E(||z||)/E(||x||) 
where nRx ∈  xj=N(0,1), j=1,…,n and mRz ∈  zi=N(0,1), i=1,…,m  
and from the lemma we then get for n and m even or n and m odd 

!)!1(!)!2(
!)!2(!)!1(

))(cos(
−−
−−=

nm
nm

E α  

For part (iii), let n/m=s. Then 

∏ −

= �
�

�
�
�

	

+
=

−−
−−= 1

12
2

!)!1(!)!2(
!)!2(!)!1(

))(cos(
sk

ki i
i

smm
smm

E α  where k=m/2 

Denote this product by Pk. Then { }∞
=1kkP  is an increasing series with upper limit 

z

ksk

k esk
sk 1

122
22

lim =�
�

�
�
�

	

+−
− −

∞→
    

where    
22 −

−=
sk

ksk
z  

So, ∞→→ mAPk , , where the limit A< ∞  exists. 

Let now ∏ −

=

−= 1

2
12

'
sk

kik i
i

P   Then 

∞→→
−
−= k

ssk
k

PP kk ,
1

12
12

'       A(2,7). 

One easily finds that ∞→→≤≤−
kAPsoPPP

k
k

kkkk ,''
2

12
 as well. By (A2.3) we then conclude that 

s
A

1=  and since k=m/2 the part (iii) is proven. 

 

Q.E.D. 


