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Nonlinear Maps between Besov- and Sobolev spaces

Philip Brenner, Peter Kumlin

Abstract

Our main result shows that for a large class of nonlinear local map-
pings between Besov- and Sobolev space, interpolation is an excep-
tional low dimensional phenomenon. This extend previous results by
Kumlin [13] from the case of analytic mappings to Lipschitz and Holder
continuous maps (Corollaries 1 and 2), and which go back to ideas of
the late B E J Dahlberg [8].

Classification: 35L70, 46T20, 46T25
Keywords: Holder continuous mappings, Nonlinear interpolation,
Sobolev spaces.

1 Main result

Our main result shows that for a large class of nonlinear local mappings
between Besov- and Sobolev space, interpolation is an exceptional low di-
mensional phenomenon. We give results which are extensions of previous
results by Kumlin [13] from the case of analytic mappings to Lipschitz and
Holder continuous maps (Corollaries 1 and 2), and which goes back to ideas
of the late B E J Dahlberg [8].

First an important definition in this context: In the formulation of the
Main Theorem we use a notion of “a set of mappings F admitting interpo-
lation on a scales of Banach spaces” which is given by

Definition 1 Let A = {Ag}oco—[sy,s;] and A' = {Ag,}ye@/:[si)’sa] be ordered
scales of Banach spaces, i.e. Ag, C Ay, whenever 61 > 0 and A;;,,1 C A’,2

whenever 0] > 0!, respectively. We say that a family F admits interpolation
on the ordered scales (A, A’) if for every F € F

1. F(u) € A;f) for all u € Ay,

2. F(u) € A'S,1 for all u € As,, and
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3. the increasing function s'y(s) = sup{t € [sp, s}] : F(u) € A} all u €
Ag} is a mapping of (s, s1) onto (sp, s)).

In the following we look at scales of interpolation spaces as the scales of
Banach spaces and, in particular, we consider scales of Sobolev and Besov
spaces. Here and the following we assume that 1 < p < 2 < p' are dual
exponents, i.e. % + 1% = 1, and that 1 < r < oco. The Besov space (we refer
to section 3 for those unfamiliar with these spaces) B,?(2) will be written
simply Bp? in case @ = R™. The same convention will be used for the
Sobolev spaces H3 discussed below.

Notice the space dimension n which will play an important role
in the results. All functions u below are definer on R".

Definition 2 A family F of mappings is said to admit interpolation on a
/

scale of Besov spaces (B§+1’T,B;,’T), 0<s<a, 0<s <d if for every

FeF

1. F(u) € Ly for allu € By,
2. F(u) € B;,”T for all u € B;,’“”", and

3. there ezists a realvalued function r' = r7(s), riz(s) > r, such that the
the increasing function

s (s) = sup{t € [0,0'] : F(u) € B;’,’"’ all u € B3t}
is a mapping of (0,0) onto (0,0").

In the linear case, familiar interpolation methods give r = r’ and with
s = fo that s’ = 6o’ for 0 < § < 1. In case of nonlinear mappings, the
interpolation may result in s/.(s) < s even when o = o' as we will see
in Theorem 3 below. We will (as in the references above) study the case
when F = {F'} is a singleton set. Here F is a local mapping consisting
of the composition u +— f(u) with a reasonably smooth function f. If as
above F admits interpolation we say, for short, that the mapping F admits
interpolation. Notice that in the case of compositions, necessarily o/ < o+1.
Here, and in the following [z] denotes the integer part of z € R.

Theorem 1 (Main Theorem) Let f € ClI! where o’ > h;ﬂ and
1 <p <2< p with dual exponents p,p'. Assume that the mapping

F: uw f(u)



admits interpolation on the scale of Besov spaces (Bf,fH’r,B;:’r), 0<s<ao,
0 < s’ < o'. Moreover assume that there exists a 3 > 0 such that

sha(s) > Bs for 0 < s <o,

where s (s) is defined above. Set ¢(p) = 2(p — 1)(1 + 2p) and let n(p,B) =

max(%, 2+ 2p) — 1. Then either the space dimension n < n(p,S) or else
f(z) = Dz for some constant D.

Notice that the result is independent of the interpolation method used.

Remark 1 The proof of the Main Theorem provides more detailed infor-
mation: There is a strictly increasing function p(8) of B, 1 < p(B) < %

such that
¢(p)

n(paﬁ) 27_1’ forp(,@) SPSZ

and
n(p,8) =1+ 2p, for 1 <p <p(B).
In addition p(f) =1+ O(B) as B — 0.

In particular n(2,3) = 1‘70 and we get the following important special case:

Theorem 2 (Main Theorem L, case) Let f € ClO1+! | with o' > %, be
a function such that the mapping

F: uw f(u)

admits interpolation on the scale of Sobolev spaces (HS™, HS'), 0 < s < o,
0 <s' <o'. Assume that there is a B > 0 such that s, the function defined
above, satisfies the inequality

sw(s) > Bs for 0 < s <o.

Then either the space dimension n < 1’70 — 1 or else f(z) = Dz for some

constant D.

Remark 2 In the Main Theorems Lo case the existence of a B > 0 such
that
sw(s) > Bs for 0<s<o

follows for, say, f sufficiently smooth satisfying |f(z)| < Clz|, |f'(z)] < C
for all z € R™. Here clearly s',(s) > %3 holds for 0 < s < o.



For local mappings, the Main Theorem applies to the interpolation re-
sults of Heintz and von Wahl for analytic mappings [11], those of Peetre
[18] for Lipschitz mappings and of Maligranda [16] for Holder continuous
mappings. In all cases, the Main theorem tells that for a large class of
nonlinear mappings interpolation is an exceptional, low dimensional phe-
nomenon. We demonstrate this in two corollaries, which are consequences
of the main theorem and Theorem 3 in section 2.

We say that that the mapping Hy > u +— f(u) € Ly is Hélder continuous
of order a, Lipschitz continuous if a = 1, if

1 (w) = F @)z, < gllull gy, ol gpllu — vl for u,ve Hy, (1)

where g(.,.) is a locally bounded function on R?, increasing in each of its
arguments.

Corollary 1 Let o >0, o' > g and let f € ClIH1. Assume that
Hi >uwes f(u) € Ly
is Lipschitz continuous and that
o+1
1f @ g < Cllull g for u e HH (2)
Then either n < 10 or else f(z) = Dz for some constant D.

We may weaken the assumptions on the mapping properties of f and
still get results that are consequences of the Main Theorem, as we will prove
below.

Corollary 2 Let o >0, o' > g and let f € Cl11. Assume that
Hi >uwes f(u) € Ly
is Holder continuous of order a, 0 < a < 1 and that the mapping
HI 5 ues fu) € HY
has at most power growth, i.e.

1f (@)l gy < Cllullye s, for ue Hy . (3)

Assume that p > «. Then there exists an integer n(a) such that either
n < n(a) or else f(z) = Dz for some constant D. Moreover n(a) < O(1)
as a — 0.



In (2) and (3) the constants C can be allowed to depend in a locally
bounded way on [|ul| ;-
The growth condition (3) can in many cases in low dimensions be derived
from (a possibly local version of) the inequality

sup 107 f(u)z, <
|v|=[s']
Cmax(||fO )|z, lu§ " :1<1< [s'])l oo Nzl @)
v|=[s"]+

valid for r > n. Here we denote 87 = 071072 ... 03" withy = (v1,72,---,7n)
and |y| = X7 ;7. The inequality (4) follows from the Sobolev lemma and
the Gagliardo-Nirenberg inequality (see [9], [17], and also e.g. Hormander
[12], Corollary 6.4.5). Conditions under which v + f(u) is bounded as
a mapping between Besov spaces (or between Lizorkin-Triebel spaces) are
given e.g. in Bourdaud et.al. [4] (see also Kumlin [13] and Dahlberg [8], and
the references given in [4]).

Examples of nonlinear, non-local mappings between Besov- and Sobolev
spaces generated by local nonlinear maps have been extensively studied (3)
in the context of initial value problems for nonlinear Klein-Gordon and Wave
equations:

Otu — Agu+m?u+ f(u) =0,t>0, z € R™.

In the case of not necessarily small initial data, f is usually assumed have at
most polynomial growth of the form f(u) ~ |u|?"lu. In the subcritical and
critical case (i.e. p < 1+-%5), the solution operators are Lipschitz continuous
mappings from HJ to Lo (cf. [10], [5] and [1]). Using constructions and ideas
similar those of Theorem 5 in the present paper, the authors proved in [6]
that the solution operators for these nonlinear equations are not Lipschitz
continuous as mappings from H2 to Lo for supercritical exponents p (p >
1+ ﬁ) Related results for polynomial nonlinearities f has been obtained
by Lebeau [14], [15].

2 Nonlinear maps and nonlinear interpolation

In order to prove our results for « < 1 we have to introduce and use the
Besov-spaces By, Bs:’q’ and real interpolation based on Peetre’s K-function
(see [2], [3] and [7]), in fact mainly for p = p’ = 2. In general p and p’ are
assumed to be dual exponents, % +4 =1, 1 < p <2 and the standard
inclusions (again see [3] pp. 142 and 152-153) between Besov- and Sobolev



spaces
ByP CH$ C By
/
B¥ SHy OB

make the Lo-results below to be consequences of the corresponding Besov
space results.

The following is a variation of results by Peetre [18] (for &« = 1) and
Maligranda [16].

Theorem 3 Let 0 < a < 1, and let f satisfy (1) and also the conditions of
either Corollary 1 or Corollary 2, so that

H''(R™) 3 u s f(u) € HS (R")
with the estimate (2) for a =1, i.e.
o+1
||f(u)||Hgf < C||u||Hg+1 for we H3 ",
or the estimate (3) in case 0 < a < 1, i.e.

1f (@)l gy < Clullyygrn for u € Hy*
with p > a. For 6 € (0,1) let s =00, s =0'0 and let v > 1. Then

BT (R™ 3 u o f(u) € BET® (RY)
where p =1 if a = 1.
Corollary 3 Under the assumptions of Theorem 1, with o = o',
H™ (R™) 3 u — f(u) € Hs (R") ()
for0<s<sog=2%—1andanys < %s for a <1, and with s' = s if a = 1.
The corollary follows as mentioned directly from Theorem 1 and the

inclusions between Besov-spaces above. Notice that in general, o' < o + 1,
and scaling gives the result in this slightly more general case.

Remark 3 The result of Theorem 3 is sufficient for our purposes, places in
our context natural restrictions on f, and allows a simple proof. The results
of Maligranda will in our context replace %5 with &s where

S

d=aly——(u-a) >
50

=R



again by assumption with p =1 if a = 1.

Correspondingly, in Corollary 3 s’ < %s can be replaced by s' < as. This
can be used to give more detailed asymptotic estimates of n(a) as a — 0 in
Corollary 2.

The Ly-version of the following result due to Kumlin [13] is the main
ingredient in the proof of the Main Theorem.

Theorem 4 (Kumlin [13]) Assume that n is a positive integer and s, s’ > 0
satisfy

1.0<s+1<3,
2. 3<d <,

458’ —25—2
3. n> T os'—3 and

4. there exists an integer k > 2 such thatn > 2s + 2 + 2%.
If under these assumptions f € CI¥1H1 and
H ' (R™) 3w f(u) € Hy (R") (6)
then fis a polynomial of degree min([s'],k — 1) and f(0) = 0.
Statement 4. in Theorem 4 is motivated by the following observation:

Proposition 1 Let ® € C°(R"), ®(0) # 0 and define H (z) = |z|"®(z).
Then H, € Hj if and only if 5§ < 7+ 3.

We refer the reader to [7] (Proposition 4.2) for the straightforward proof of
the proposition and give a sketch of the proof of Theorem 4. For a complete
proof we refer to the appendix.

PROOF: (of Theorem 4): Assume that f(z) is a polynomial of order %k in
z. Take z = H, € HJ™' such that H,(z)* ~ |z|"*®(z)* ¢ HS. By the
proposition this is the case if

n
Tk+g—81<0<7'+§—8—1

which follows from 4) with a suitable choice of 7, however. It remains to

prove that 1) through 3) imply that f is a polynomial of degree at most

[s']. We construct a function v (to use as a counterexample) as follows. Let



y/ = (104,0,...,0) € R™ and let v € C§° with support in {|z| < 2} and
such that u(z) = z1 in {|z| < 1}. Define

T —y

v(z) = ZAJ-U( ), = €R" (7)

€j
where 0 < A; T oo and ¢; = Aj_)‘ with A > 0 to be choosen later. We note

that v € C*°. If
—2(s+1
ZA?G;L 5+ < 0 (8)
J

then a straightforward computation (at least for integers s) shows that v €
HSTL(R™). Tf f is not a polynomial of degree at most s’, then there is an
interval [a,b], a < b, such that |f{51+1(#)] > 0 for a < ¢ < b. If we use the
special form of our function u, we find that

28’1 _n—2s'
7@y > €3 a2 e
J

If then
AT TG =00 (9)
J

this contradicts the mapping property (6), i.e.
f(HSTHR™) C H (R")

and our Theorem will be proved. Now assumptions 1) through 3) imply
that we can satisfy (8) and (9) with {A;} and X suitably. This completes
the proof of Theorem 4. O

In the proof of Theorem 4 above, it is easy to see what happens if we
replace the Hy-spaces by Hj,, Hy-spaces. Using the definition of the Besov
spaces in terms of moduli of continuity below (again, see [3],[2] and section
3), the construction and the proof via the L, versions of (8) and (9) is
essentially the same, although more technical (see Appendix or [13]) as that
already given of Theorem 4.

Theorem 5 (Kumlin [13]) Assume that n is a positive integer, 1 < p <

2<p where%+l% =1,9g>1 and s,s" > 0 satisfy

1.0<s+1<%,

1+ !
2. p,p <s <]%,



3. n> (p—l)s‘;’{%;l, and

pl
4. there exists an integer k > 2 such that n(zl—7 - %pi) >s+1- %’
If under these assumptions f € CIEIH1 and if
B3PY(R™) 3w f(u) € B Y(RY) (10)
then f is a polynomial of degree min([s'],k — 1) and f(0) =

We are now in position to give the proof of the Main Theorem.

PROOF: Since conditions in Theorem 5 are all strict inequalities, it is enough
to prove the result with s’ replaced by ﬁs with 0< ﬂ <1,in 1) through

4) Take s = % so that s’ = 1’;27’
142p

Let us now refer to Theorem 5 conditions 1) through 4). With our choice of
s', and with ¢(p) = 2(p — 1)(1 + 2p) and k = 2, by elementary computations
these are satisfied if

Lon>¢i(p,f) =48 +p
2. n>d¢a(p)=1+2p

3. n>¢3(p716)5%_1

40> gulp.f) = ks + (0~ P52

Here 1),2) and 4) are exact reformulations of the corresponding inequalities

(p)

in Theorem 5, while in 3) the exact expression - ~=5 have been replaced

by ¢3(p,8) = % — 1. This more restrictive ch01ce will simplify the compu-
tations and results below.

Notice that ¢, and so ¢1, ¢2 and ¢3 are strictly increasing functions of p.
We first concentrate on the inequalities 1) through 3). Straightforward com-
putations show that ¢; = ¢o = ¢3 for p = p(B), 1 < p(B) < 2 the solution

of
1+5
2
Differentiating, we see that p(f) is strictly increasing, and so

1+v5
2

p*=(1+p)

1 <p(B) <p(1) =



We also have p(8) = 1+0(8) as § — 0. Since ¢ is a second order polynomial
in p with zeros —% and 1, we get

$3 > 1 > ¢ for p(B) <
¢3 < ¢1 < ¢ for p(B) >

Thus 1) through 3) hold if n > max(¢3,p2). We next show that ¢4 <
max(¢s, ¢2), and hence also 4) holds if n > max(¢s, ¢2). If we use that

p < 2,
p> 1

<2+2pforl<p<p(B),

>2+2pfor p(B) <p <2,

>|e ™IS

straightforward computations show that

b1 =285+ (p— BHE) <142p = ¢y, for 1 <p < p(B),
$s = (3¢_(f,gﬂ+(p—pz§+’;_l) <% —1=¢s, forp(B) <p<2.

Thus 1) through 4) hold for

n > max(¢s, ¢2) = max(%E — 1,1+ 2p) = max(2%,2 + 2p) — 1.

Since we have assumed that the mapping u — f(u) admits interpolation,
the condition (10) in Theorem 5 is also satisfied, and the main theorem is
proved. O

For the convenience of the reader we will in next section give a proof
of Theorem 3 and in that context also a very short introduction to the
necessary concepts from real interpolation and Besov spaces.

3 Besov spaces, real interpolation and the proof
of Theorem 3

In this section we will shortly remind of the basic definitions and properties
of real interpolation and Besov spaces. The basic references are [2], [3] and
[7], to which we refer the reader for additional information.

Let C; C Cp be a Banach space couple. Then the K-functional
K (t, ¢; Cy, Cy) is defined by

K(t, ¢; Co, C1) = inf{||¢ol|c, + tlld1llc, = ¢ = do + ¢1,¢; € Ci},

10



where ¢ € C and t > 0. Notice that
K(t,¢;Co, C1) < [|9llc, for > 1. (11)

We define Cy 4 = (Co, C1)g,q as the completion of C in the norm

[T -0 _ dt\y
Idllco, = (|~ (K (t.6:Co, )1 .

If C1 = Hy',Co = Hy°,51 > 0, then Cp 4 defines the Besov space By”,
where s = (1—6)sg+0s;. By the definition, the family of Besov spaces have
a number of natural convexity and inclusion properties, as mentioned earlier,
for which we refer the reader to the already given basic references, and in
particular to [3]. Let us in this context remind of the following well-known
interpolation result: This is important in the proof of Theorems 4 and 5,
when we want to translate the effect of a lower bound of the derivatives of f
in bounds of Besov space norms. Bp’? has the intrinsic norm (among many)

1
—s r o dt\a
Il = 3 (/ a2 ) ol (12

lal=

where [s] = sup{m € Z : m < s} and r > 1 and we let wz(,r) (t,v) denote the
r-th modulus of continuity of v in L,, i.e.

w" (t,v) = sup || Z ( ) ) Fu(- + kh)| 1, - (13)
Ih<t o
We may now begin the proof of Theorem 3.

PROOF: In the following we let ¢ denote a locally bounded function of the
Hi-norm of u, or a constant, where ¢ may be different at each occurence.
Similarily we let C' denote constants that may vary from line to line. Set
K(t,v) = K(t,v; HY, HJ™') and K'(t,v) = K(t,v; Ly, HJ ). Chose e(t) €
HJ'! such that

lu —e@)|| gg+1 < 2K (¢, u)

In particular, by (8) we have
le@ll gy < 3llullg - (14)
By (1) and (3) we get
K'(t", f(u)) < |If(w) = f(e)ll, + t*If (e)ll g
< g(llullmys le@llmy)llu = ellzy + Ct(llell gg+1)*

A
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and by the bound (9) and since by assumption, g is a locally bounded
increasing function,

9(llull s lle@llmy) < ¢

where c, as remarked above, denotes a locally bounded function of |lul[;.
Then by the choice of e(t),

K'(t", f(u)) < cK(t,u)* + CK (t,u)"

Thus we get

< c/oo( )

t

+ C/ uKtu))w%

A change of variable in the first integral yields integral gives

% —ba g gﬂ_l * —02 7ot %ﬂ
| emre s =< [T e E R fw)a S
and hence we obtain
J A O Ly A
0

+ C/ #Ktu))w%

By the definition and the inclusions between the Besov spaces, noting that
% < 1 with equality only if « = y = 1, this finally end up as

IF @l gz < elllull ggrar)® + Cllull gk )t
2
< cf[full ggrrr)® +C(IIUI|B;+1,T)“-
This completes the proof of Theorem 3. O

Before we end, let us notice that we have wasted information in a number
of places in the proof of Theorem 3, in order to avoid technical arguments
involving advanced properties of real interpolation. For a more careful and
complete discussion see Maligranda [16].
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4 Appendix

In the appendix we supply the full proof of Theorems 4 and 5, where we
use the formulation of the Besov norm given in (12). Theorem 4 is a special
case of Theorem 5 so it is enough to prove the later one. Moreover we use
the embeddings

Byt C By
for 1<p<o0,1<¢g<g<ooands>35. See[3].

PROOF: Since conditions 1)-4) in Theorem 5 only involve strict inequalities
we can without loss of generality assume that s,s’ € Ry \ N due to the
embeddings above.

Set (as already mentioned in section 3)

v(z) = Z Aju(

z—y’

), z€R",

€j

where v € C§° with support in {|z| < 2} such that u(z) = z; in {|z| < 1},
y/ = (104,0,...,0) € R" and with 0 < A; 1 co and ¢; = AJT)‘, A >0, to be
choosen later. We note that v € C°. It remains to prove that if f is not a
polynomial of degree at most [s'] there exists a A > 0 such that

v e C®R" N B P(R)
f(v) ¢ B," (R)
provided conditions 1)-3) in Theorem 5 are fullfilled. Note that we have used

the first embedding result above here. The full statement of the theorem is
then a direct consequence of Proposition 1.

Claim 1: E;?’;IAge?_(sH)p < oo implies that v € ByTHP(R™).

Proof: Consider wél)(t, %) = supyy <; [[0%(- +n) — 0%v(:)||r, where
ol =[s+1]=s+1—0.

For 0 <t <1 we have

(t_”wl(,l) (t, 8°0))P = sup|yi<s fzn |95“L’Q_6M|pda: <

o u(TH ) ogu(* ")

< E?ilAg SUP|p| <t fRn ‘ ! 7 L Pdz =

%u x—yj—_q —9%u a:—}’l
e Ot
(g)"

— y0o AP [st1lp—op
= 2 Aje

SUPjy|<t Jre |

13



where

8§ux—w;" —8§u$—£
/ @275 ) B9 by < Grmin(( Ly, (L)-on)
n (a)a 6]' 6]'

sup
[n|<t JR

by the mean value theorem. This yields
Jo (0w (1, 000)P 4 <

< 52, A5G TCTP [Hmin((L) 0w, (L) 7Py & <

p n—(s+1)p
< CE;?’;IAJ-GJ- .

For 1 <t we have

W) (t, %) < 32, 245¢7 /R [Ou(@)lP da)¥ < CTE Aje]

_ . ) 2 —[s+1
But Z;?‘;IA;;G? (P - o implies that Z;-";IAJ-EP [o+1]

] < o0 assuming that
€ = A;)‘ =27V for some A > 0. Thus

/ (7w, a%))?% < 0.
1

This gives

p dt

[l g+ 2= [Jv]|z, + 2|a|:[s+1](/0 (¢ wi! (¢, 0%0)) )P < oo

Claim 2: Z;-";IA;IP ’—16?—5’;0 < implies that f is a polynomial of degree
at most [s'].

Proof: Set s’ = [¢] + o’. Assume that f is not a polynomial of degree at
most [s']. Then there exists a and b, a < b, such that

d(ab) = inf [7ETV(@0)] >0

Set

. A ,
Si(n) ={zeR":|z+n—-9y|<e¢anda< 6—'](:1:1+7)1—y{) < b}.
j

14



oA . .
Since ;ji 1 00 as j — oo it follows that the volume measure of S;(0) () .S;(n)
is > %TZ_" where || <t; = %bl_—oa, for j large enough, say j > jo. Then we
get for t;,1 <t <tj, j > jo,

(t~ (1)(1& 9(['1,0.0,:0) £ () ))P' =
63(3[‘?’] O)f(zoo Au(w+ﬂ*y]))_aa(;[sl],010 O)f( LA (w;L])) ,
:SUPWStfRn‘ 1 = 1o : P dx >
! T 21—k
[s'lp' —[s']p fs ])(AkW) f([s (A 15 yl) ,
> supjy <; Sf Ak e Jsaoynsem | — kP dy >
+p' - '—p' (11— )y €%
>CZJ A[ s'lp’ pk[]p P )pA_];'
Thus we get
’ 1
1F @ 2 (7 Wi (2, 80510020 f ()P’ dLyer >
C(Eoo1 i l(t_glwl(),l)(t,8([31]’0’0"“’0)]"( )))p cit)*/ >

> OB (S, AL WP Iy () 0= — ()=o) >

j Aj1

i
P

7
-1
Asp nsp) = 0.

2 C( j=jo+1 €

This yields a contradiction by the assumption

B;'H’p Sv f(v) € B;:’p’
in the theorem. Hence d(a,b) = 0 for all ¢ < b and f is a polynomial of
degree at most [s']. O
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