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A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDSSOFIA ÅBERG AND KRZYSZTOF PODGÓRSKIAbstract. Non-Gaussian stochastic �elds are introduced by means of integrals with re-spect to independently scattered stochastic measures that have generalized Laplace distri-butions. In particular, we discuss stationary second order processes that, as opposed totheir Gaussian counterpart, have a possibility of accounting for asymmetry and heaviertails. Additionally to this greater �exibility the discussed models continue to share mostspectral properties with Gaussian processes. The models extend directly to random �eldsand thus can be suitable for modeling empirical data that are used in environmental andengineering sciences. Distributions of spatio-temporal characteristics can be obtained usingthe generalized Rice formula and e�ectively computed by numerical methods. The potentialfor stochastic modeling of real life phenomena that deviate from the Gaussian paradigm isexempli�ed by a stochastic �eld model with Matérn covariances.1. INTRODUCTIONSpectral theory or frequency domain analysis is at the center of stochastic modeling inengineering sciences. Because of elegant mathematical properties, the Gaussian processesare the most popular second order models for which the relation between the frequency andtime domain is well understood. The ability to model spatio-temporal phenomena throughessentially the same framework as for time only dependent data contributed signi�cantlyto the popularity of Gaussian �elds in geostatistics. Over the years however, there hasgathered increasing empirical evidence that the Gaussian models often do not properly �tthe phenomena they are intended to describe. These discrepancies are ampli�ed additionallyby non-linearity of deterministic models that describe the physics behind the observed data.Among the most often quoted features that are observed in the data but cannot be modeledby Gaussian distributions are asymmetry and heavy tails. For example, the skewness of sealevel data is well documented and is a result of the non-linearity of the governing equations forwater surface elevations as discussed in [1]. The need for non-Gaussian models for mechanicalDate: September 3, 2008.1991 Mathematics Subject Classi�cation. 60G10, 60G15, 60G17, 60G18.Key words and phrases. spectral density, covariance function, stationary second order processes, Riceformula. 1



2 S. ÅBERG AND K. PODGÓRSKIloads has also been acknowledged on many occasions. An extensive critical discussion ofvarious approaches to handling non-Gaussian loads and their simulations has been presentedin [11]. It has been pointed out that non-Gaussian models are necessary either if the inputloads are non-Gaussian or it is dealt with a non-linear system and thus the response even tothe Gaussian input is non-Gaussian. This interest in alternative stochastic models extendsbeyond mechanical engineering. In [14], it was observed that measurements of soil propertiesin geotechnical engineering problems and seismic ground motion are highly skewed data(see also references therein). The heavier than Gaussian tails were reported from suchspatial phenomena as topographic data, temperature (see [16]), or well log data in petroleumapplications (see [19]).All this exempli�es the growing need for models featuring asymmetry and heavy-tails. As aresult, in probability theory, considerable e�orts have been put toward studies of such models.There is a well-developed theory of distributions and variables that are so heavy tailed thattheir second moment does not exist. Prominent examples hereof are stable and other relatedin�nitely divisible processes. However, the non-existence of �nite second moments makesthese processes di�cult to adopt in an engineering context where the spectral theory andthe frequency domain is a well-established tool for data analysis. Therefore, the lack of simpleand conveniently parameterized second order non-Gaussian models appears to be a void inthe modern stochastic modelling that asks to be �lled. Among interesting candidates thatcan serve this purpose are processes linked to the Laplace distributions. Here we proposea general model of non-Gaussian signals that is based on these distributions. The model isrelatively easy to simulate from and thus enables analysis through Monte Carlo studies. Itis also advantageous over the static methods and their modi�cations, as proposed in [11], inparticular because they allow for simultaneous matching of both spectra and higher ordermoments of the data.These properties make generalized Laplace distributions interesting alternatives to theGaussian and stable distributions. In a sense they combine good properties of both, they haveall moments, but still the tails are much heavier than in the Gaussian case and, additionally,they allow for asymmetry. Since they belong to in�nitely divisible processes, there existsa stochastic Lévy motion with independent and homogenous increments that has Laplacedistributions as marginals. Morover, the general second order properties are shared withGaussian counterparts although some analytical formulas have to be replaced by numericalapproximations.



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 3This paper gives methodological foundations to applied work using non-Gaussian mod-els by providing a systematic presentation of the theory, giving fundamentals of statisticalinference, and presenting tools for modeling studies. By the standard extension procedurewe de�ne stochastic integrals with respect to a random measure that relates to this motion.After establishing basic distributional properties of such integrals we follow the general the-ory of stationary processes and the same path as in the Gaussian case to develop the theoryof second order stationary Laplace processes. The main model is introduced by consider-ing a continuous time moving average process obtained by integration with respect to theLévy processes that arise from the asymmetric Laplace distributions. Further we proposestatistical methods of estimation and �tting Laplace processes to real life data. Extention tostochastic �elds and multivariate processes is fairly straightforward as the above mentionedproperties of th Laplace distributions are shared by their multivariate counterparts. Afteraccounting for the fundamental properties of the so introduced stochastic �elds, we presenttwo speci�c topics that may be of interest for an applied researcher. In the �rst one, it ispresented how sample distributions of characteristics at the level crossings can be evaluatedbased on Rice's formula. Then we show implementation of a class of spatial models basedon Matérn covariances. For them e�ective simulation techniques are presented illustratingasymmetry and high extremes. The proposed processes and their studies could have a sub-stantial impact for analyzing stochastic phenomena in engineering and other areas of appliedresearch. Here we focus more on their fundamental properties while their modeling potentialhas already been explored in work oriented toward applications in mechanical engineeringand environmental sciences, see [5], [15], [2].For example in [2], Laplace moving averages are e�ectively applied to analysis of the fatiguedamage caused by sea waves on an o�shore structure. While wave heights are typicallymodeled by means of a stationary Gaussian model, real ocean waves are often asymmetricwith higher crests and shallower troughs than predicted by the Gaussian model. Thereforethe Gaussian model is sometimes "corrected" by introducing a quadratic component in themodel, allowing for interaction between di�erent frequencies. In this context a non-centralchi-square process is frequently considered as a more accurate model of the sea surface. Wediscuss an alternative description of the asymetric sea surface by means of the Laplace movingaverages. By doing so, in analogy with the Gaussian model, one still has the interpretationof the sea surface as a sum of cosine waves with uncorrelated amplitudes and random phases,which is very attractive from a physical point of view. At the same time the moving average



4 S. ÅBERG AND K. PODGÓRSKIprocess allows for a greater �exibility when it comes to describing the marginal destributionof the sea since there is a possibility of �tting both the right covariance structure and alsothe correct skewness and kurtosis. However, the advantages of the model goes beyond this.
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Figure 1. Left: Quantile-quantile plots for the sea elevation data and the �ttedLaplace moving average process; Right: Empirical (solid irregular curve) crossingintensity in comparison with the one obtained by the Gaussian (dotted) and movingaverage model (dashed).In this particular application the intensity of level crossings plays an important role. Itis given by Rice's formula and takes a simple form for Gaussian processes whereas for thequadratic model or the Laplace driven moving average model it must be approximated and/orcomputed numerically. In the quoted paper, it has been demonstrated that the Laplacemoving averages models hold several advantages over the Gaussian or quadratic methods.In particular, they allow for more accurate estimation of the level crossing intensities, providewith a useful tool of studying the in�uence of kurtosis and skewness for the fatigue damage,and are very convienient if the loads are passing through linear �lters such as a sti� structureor a linear oscilator. For example, for the sea elevation measurements recorded at an oilplatform o� the west Africa coast, the marginal distributions and the crossing intensitiesare presented in Figure 1. It can be clearly seen that the Laplace driven moving averagegives a good �t both the marginal disstribution and to the observed crossing intensity. Itis also observed that the damage, although sometimes not so di�erent on average, has morevariability for the models with heavier tails. Additionally, it has also been demonstratedthat the damage is more severe for non-Gaussian models when it is represented as a highpower of rain�ow cycles.



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 5The above is one of many potential utilizations of stochastic models based on Laplacemoving averages and this work gives an account of methodological tools that should make italso possible in other future applied research.2. Integrals with respect to Laplace random measuresThe focus of this paper is on stationary stochastic processes and �elds but in this section weoverview random variables and distributions that correspond to marginal distribution of themodels discussed in the following sections. These random variables arise from integratingindependently scattered stochastic measures with generalized Laplace distributions. Thelatter are also known as the Bessel function distributions and for completeness we providewith their de�nition and basic properties. The monograph [13] is a good reference for furtherproperties of this class.De�nition 1 (Generalized Laplace Law). The generalized Laplace laws are best de-scribed by their characteristic functions that in the one dimensional case are given by
φ(u) =

(
1 − iµu+

σ2u2

2

)−1/ν

,where µ ∈ R and σ > 0. We use L(µ, σ, ν) for the above distribution, with the standardvalues of the parameters: µ = 0 (symmetric case), scale σ = 1, and shape ν = 1. By default,if any of the parameters is dropped from the notation it is assumed to be set to its standardvalue.There are two representations of L(µ, σ, ν) that are worth to mention in the present con-text. The �rst one is by factorization of the characteristic function
φ(u) =

(
1 − i

√
2

2
· σ
κ
· u
)−1/ν (

1 + i

√
2

2
· σκ · u

)−1/ν

, (1)where κ =
√

2
2

(
√

2 + µ2/σ2 − µ/σ), which is the distribution of a di�erence of two indepen-dent gamma random variables with shape parameter 1/ν and scale parameters √
2

2
σ/κ and

√
2

2
σκ, respectively. It is also possible to represent the Laplace distribution as a normal ran-dom variable with stochastic mean and variance. More precisely, if Z is a standard normalvariable and Γ is an independent gamma variable with shape 1/ν (and scale equal to one),then L(µ, σ, ν) is the distribution of σ√ΓZ + µΓ.In the symmetric case (µ = 0), it follows that the Laplace distributions belong to themore general class of type G distributions. These are discussed for example in [4] and many



6 S. ÅBERG AND K. PODGÓRSKIproperties of the symmetric case could be deduced from the properties presented in thatwork. Instead, we opted here for the direct derivations in order to cover simultaneously theasymmetric case and thus to have a more coherent presentation. This derivations can befound in the Appendix.The Laplace distributions are in�nitely divisible and one can construct stochastic mea-sures with values distributed according to generalized Laplace distributions. This work is astudy of stochastic models and processes that arise from stochastic integrals obtained fromsuch measures. Stochastic Laplace measures and integrals are de�ned through a genericmethod that was used on various occasions in the literature, whenever particular classes ofdistributions have been considered: for example, stable in [12], in�nite divisible in [17], andgeneral Hilbert space based approach for weakly stationary processes in [9]. In the appendixwe provide with some further details of the method, while here we list basic properties ofintegrals of a deterministic function with respect to Laplace stochastic measures.Let us consider a measure space (X ,B, m) and a probability space (Ω,F ,P). By L2 =

L2(Ω,F ,P), we denote the Hilbert space of random variables X on Ω for which EX2 is �nite.De�nition 2 (Stochastic Laplace Measure). A stochastic Laplace measure Λ, withparameters µ ∈ R, σ > 0 and controlled by a measure m, is a function that maps A ∈ B,
m(A) <∞ into L2 such that Λ(A), A ∈ B, has generalized Laplace distribution given by thech.f.

φΛ(A)(u) =

(
1 − iµu+

σ2u2

2

)−m(A)

.and for disjoint Ai ∈ B, Λ(Ai) are independent and with probability one
Λ

(∞⋃

i=1

Ai

)
=

∞∑

i=1

Λ(Ai).By the standard measure extension arguments, it is obvious that by taking su�ciently`rich' (Ω,F , P ) one can de�ne Λ for an arbitrary measure space (X ,B, m).A special and important case of the stochastic Laplace measure can be associated with aLévy motion corresponding to the Laplace and generalized Laplace distributions. Namely,the symmetric Laplace motion de�ned next can be identi�ed with the Laplace stochasticmeasure on the Borel sets of the hal�ine [0,∞) with the control measure being the Lebesguemeasure.



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 7De�nition 3 (Laplace Motion). A Laplace motion L(t) with the asymmetry parameter
µ, the space scale parameter σ and the time scale parameter ν, LM(µ, σ, ν) is de�ned by thefollowing conditions(i) it starts at the origin, i.e., L(0) = 0;(ii) it has independent and stationary increments;(iii) the increments by the time scale unit have a symmetric Laplace distribution with theparameter σ, i.e.,

L(t+ ν) − L(t)
d
= L(µ, σ).If µ = 0, σ = 1 and ν = 1 the process L(t) is called the standard Laplace motion.The relation between motion and the measure is given for an interval (a, b] ⊆ [0,∞) by

Λ(a, b] = L(b) − L(a). We also note that
EL(t) = µ · t; Var L(t) =

σ2

ν
· t.The following proposition tells that the Laplace motion can be represented by Brownianmotion subordinated to a gamma process. Recall that a stochastic process Γ(t) is called agamma process if it starts at zero, has independent and homogeneous increments and thedistribution of the increment Γ(t + s) − Γ(t) is given by a gamma distribution with shapeparameter s/ν and the scale β. The case β = ν = 1 is referred to as the standard gammaprocess and below we always assume that β = 1.Proposition 1 (Representation of Laplace Motion). Let B(t) be a Brownian motionwith scale σ and drift µ. Further assume that Γ(t) is a gamma process with parameter ν,independent of B(t). Then LM(µ, σ, ν) can be represented as

L(t) = B(Γ(t)), t > 0.Due to this representation the Laplace motion is often called variance-gamma process, sinceit can be viewed as a Brownian motion with the variance randomized by a gamma process.A slightly more general set-up for gamma variance models is presented in Subsection 4.1 ofthe Appendix.We also have the representation of the random Laplace measures as a di�erence of thegamma measures (see the Appendix, Subsection 4.1 for the de�nitions).Proposition 2 (Difference of Random Gamma Measures). Let Γ1 and Γ2 be inde-pendent gamma measures with parameters √
2

2
·σ/κ and √

2
2
·σκ, respectively and both controlled



8 S. ÅBERG AND K. PODGÓRSKIby a measure m on an arbitrary measurable space (X ,B). Then the Laplace measure Λ withparameters µ = σ√
2
( 1

κ
− κ) and σ that is controlled by m can be represented as

Λ(A) = Γ1(A) − Γ2(A).Proof. Since both sides of the equation obviously represent random measures, it is enoughto check the equality of distributions of Λ(A) and Γ1(A) − Γ2(A) which follows easily fromthe factorization (1). �The models discussed in this work are based on the standard constructions of integrals ofdeterministic functions with respect to random measures. We skip any detail of this standardmaterial and limit ourselves only to the basic properties. Most of them and some derivationsare located in the Appendix, Subsection 4.2.For a Laplace measure Λ we note
VarΛ(A) = (σ2 + µ2)m(A),and thus we can utilize the standard Hilbert space approach with control measure m tode�ne integrals of f ∈ L2(X ,B, m) with respect to Λ.The stochastic integral of f with respect to Λ is de�ned through the isometry of L2(X ,B, m)into L2(Ω,F ,P) that relates the indicator functions 1A(x) with the variables Λ(A). Thisisometry is denoted by

X =

∫

X
f(x) dΛ(x),that is often shortened to ∫ f dΛ, and is de�ned as the value of this isometry at f . In theAppendix, Subsection 4.2, the argument is given for the following form of the characteristicfunction (see also Proposition 2.1 in [3]).Proposition 3 (Characteristic Function). Let both ∫ fdm and ∫ f 2dm be �nite and

Λ be a stochastic Laplace measure. Then the integral X =
∫
fdΛ has the characteristicfunction

φX(u) = exp

(
−
∫

X
log

(
1 − iµuf(x) +

σ2f 2(x)u2

2

)
dm(x)

)
. (2)The random variable X de�ned by the above integral can be considered as a semi-parametric with two numerical parameters µ ∈ R and σ ≥ 0 and two �semi-parameters�

f and m that run through in�nitely dimensional spaces. Such a semi-parametric distribu-tion, as well as any random variable that has it, will be referred to by LSI(µ, σ;m, f). The



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 9standard values of the parameters are µ = 0, σ = 1 and these are default if the parametersare dropped from the notation.Using the characteristic function from Proposition 3, we obtain a recurrence for the mo-ments.Proposition 4 (Moments). Let X =
∫
fdΛ and assume that fN ∈ L2(X ,B, m). Then thefollowing recurrence formula for the moments holds

EXN = (N − 1)!

N∑

k=1

EXN−k

(N − k)!

∫
fkdmSk−1,where

Sr =





∑ r
2
− 1

2

k=0 sr,k, r odd,

µ
(

σ2

2

) r
2

+
∑ r

2
−1

k=0 sr,k, r even,and
sr,k = µr−2k−1

(
σ2

2

)k ((
r − k − 1

k

)
σ2 +

(
r − k

k

)
µ2

)
.In the Appendix, Subsection 4.2, the argument for the above proposition is given togetherwith the simpli�ed version of the formulas for the symmetric case � Propositions 8. Fromthem the �rst four central moments can be expressed to yield the skewness coe�cient s andexcess kurtosis ke as follows

s = sgn(µ)
2µ2 + 3σ2

(µ2 + σ2)
3

2

·
∫
f 3dm

(∫
f 2dm

)3/2

ke = 3

(
2 − σ4

(µ2 + σ2)2

)
·
∫
f 4dm

(∫
f 2dm

)2 .Example 1. If m is the Lebesgue measure in R
d divided by ν > 0, we obtain an extranumerical parameter (with the standard value ν = 1) so we can write LSI(µ, σ, ν; f). Wecan also fully parametrize the distribution by taking a family of parametrized kernels. Thecase of f(x) = 1[0,1](x) corresponds to the generalized Laplace distributions as de�ned in[13]. An interesting family of kernels f(x) ∼ exp(−β|x|α), where |x| is the Euclidean normin R

d, leads to the fully parametrical model LSI(µ, σ, ν, α, β). The proportionality constantfor the kernel f is chosen so that VarX = (µ2 + σ2)/ν for all members of the family, i.e.
∫
f 2 = 1. For the one dimensional case we have

∫

R

exp(−β|x|α) dx = 2β−1/αΓ

(
α + 1

α

)
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Figure 2. Densities and their dependence on the parameter α =

0, 0.5, 1, 2,∞. Top: Symmetric case (µ = 0); Bottom: Asymmetric case with
µ =

√
p ∗ ν, with p = 0.1. From left to right ν = 1, 2, respectively.and we obtain f(x) = K(α, β) · e−β|x|α, where

K2(α, β) =
21/α−1β1/α

Γ
(

α+1
α

) .Thus using an explicit form of the integral of fk with respect to the Lebesgue measure thatis given by
∫
fk =

(
2

k

)1/α
(

(2β)1/α

2Γ
(

α+1
α

)
)k/2−1

,we obtain explicit formulas for the moments, skeweness and kurtosis in terms of the gammafunction. We also observe that for large α, the kernel is converging to 1/
√

2 on [−1, 1],and thus the distribution of integral becomes L(µ/
√

2, σ/
√

2, ν/2). On the other hand, for



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 11small α the kernel will be more like a constant on the increasing support and thus by theCentral limit theorem it converges to the Gaussian distribution. The shapes of the densitiesin comparison to these two limiting cases are shown in Figure 2. The parameters have beennormalized so the variances of all presented distributions are equal to one and the meansare zero. Since except for a few special cases, there is no explicit formula for the densitiesthe fast Fourier transform (FFT) has been used for approximation. We observe that α hasa similar in�uence on the shape as the parameter ν. Moreover, large values of α a�ect verylittle the shape of the distribution (the densities for α = 2 and α = ∞ almost coincide).Remark 1. We note that the distribution of X is leptokurtic (positive excess kurtosis), i.e.it has a more acute �peak� around the mean and �fatter� tails than a normally distributedvariable (for which excess kurtosis is zero). For example in the symmetric case, if we consider
m to be the Lebesgue measure on R multiplied by 1/ν, then

ke = 3ν

∫
f 4

∫ 2
f 2and we see that by varying parameter ν we can make excess kurtosis either very large (veryfat tails) or close to normal (ν converging to zero). In this respect, the distribution of theintegral with respect Laplace measure behaves analogously to the Laplace distribution thatstands behind the random Laplace measure.Simulation of the Laplace integrals should be considered in conection with stochastic �eldsthat are de�ned in the following section. In fact, there are many di�erent ways of approachingto this problem and e�ectiveness of resulting simulations deserves a separate treatment.Here let us just mention that a straightforward way is by simulations of (independent)increments of the Laplace motion over an equally spaced grid and then summating themweighted by the kernel values at the grid points � the Riemman sum approach. Simulation ofincrements themselves can be based on Proposition 7 where the asymmetric Laplace motionis represented as a Brownian motion subordinated to Gamma process so that increments canbe obtained as independent normal variables with variances equal to the simulated gammaincrements. 3. Second order Laplace processes and fieldsThe interest in non-Gaussian modeling resulted in many attempts to provide with a generalclass of second order processes that would account for non-Gaussian features in the data. A



12 S. ÅBERG AND K. PODGÓRSKImajority of the models proposed so far take Gaussian processes as the starting point. In thissense, our approach di�ers fundamentally as it distances from the Gaussian processes fromthe very begining. Namely, we use the stochastic integral as de�ned in the previous sectionto de�ne stationary stochastic �elds with the marginals distributed as the integrals withrespect to Laplace motion. The terminology for this class of processes and correspondingdistributions is not well-established and names such as generalized Laplace convolutions orgeneralized Bessel function distributions can be justi�ed either by historical reasons or bymathematical properties. The �rst considered class de�nes through the standard movingaverage construction a family of stationary random �elds that we have decided to termas continuous time Laplace moving averages (LMA). The second class is de�ned only forunivariate argument and here is referred to as Laplace harmonizable (LH) processes in thetradition of similar concepts introduced for other classes of in�nitely divisible processes. Webelieve that this terminology is a good compromise between historical reasons, descriptivevalue, and compactness of the names.3.1. Laplace moving average. Let us assume that X is a Hilbert space and the measure
m is shift invariant on X . Our main focus is on Euclidean spaces, i.e. X = R

n although mostof the properties are valid without this restriction. For a Laplace measure Λ with parameters
µ and σ controlled by the Lebesgue measure on X that is divided by ν and f as describedin Section 2, the following process is referred to as a moving average

X(t) =

∫

X
f(t− x) dΛ(x). (3)Since the scaling of f can be equivalently expressed by the corresponding scaling of theparameter ν, we always assume that f is scaled so that ∫ f 2 = 1. The next result listsbasic facts about this class of second order processes. Here and in what follows the Fouriertransform is de�ned by

Ff(ω) =

∫

X
exp(−iω · t)f(t)dt,where · stands for the inner product in X .Theorem 1. Let Λ be a stochastic Laplace measure with parameters µ and σ controlled bythe Lebesgue measure on X that is divided by ν. Further, let X(t) be the moving averageprocess de�ned by (3). Then



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 13a) the marginal distribution of X(t) is given by the characteristic function
φX(t)(u) = exp

(
−1

ν

∫

X
log

(
1 − iµuf(x) +

σ2u2f 2(x)

2

)
dx

)
,and more generally its �nite dimensional distribution of X(t) = (X(t1), . . . , X(tn) isgiven by the characteristic function at u = (u1, . . . , un):

φX(t)(u) = exp

(
−1

ν

∫

X
log

(
1 − iµuTft(x) +

σ2

2

(
u

T ft(x)f
T
t
u
))

dx

)
,where ft(x) = (ft1(x), . . . , ftn(x)).b) the autocorrelation function ρ(τ) of X(t) is given by

ρ(τ) =

∫ ∞

−∞
f(x− τ)f(x) dx = (f ∗ f̃)(τ),where f̃(x) = f(−x) and ∗ denotes the convolution operator,c) if X = R

d, then the spectral density R(ω) of X(t) is given by
R =

σ2 + µ2

ν
· |Ff |

2

(2π)d
,where F denotes the Fourier transform. In particular, if f is symmetric and non-negative de�nite, then

f = (2π)d/2

√
ν

σ2 + µ2
· F−1

√
R.Proof. Part a) is a consequence of Proposition 3. The autocovariance function for Part b) isgiven by

ρ(τ) = E[X(0)X(τ)] =

∫

X

∫

X
f(τ − x)f(−y)E[dΛ(x)dΛ(y)]

=

∫

X
f(τ − x)f(−x) dx.Finally, Part c) follows immediately since the Fourier transform of a convolution is theproduct of Fourier transforms. �In Figure 2, we have already seen how the marginal densities of moving averages depend onthe kernel function as well as on the values of parameters of Laplace measure. An interestingcase occurs when (σ2 +µ2)/ν is kept constant equal to 1 say so ν = σ2 +µ2. Then, for a �xedkernel f(x) the covariance function is �xed although the marginal distribution of the processis allowed to vary. In the limiting case when ν → 0 one will get the Gaussian distributionas a marginal. Take for example the case µ = 0, then

φΛ(t)(u) =

(
1

1 + σ2u2/2

)t/σ2

=

(
1 − u2/2

1/σ2 + u2/2

)t/σ2

→ e−tu2/2, σ2 → 0,
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Figure 3. Marginal densities with the covariance e−t2 symmetric and asymmetriccases. Left: µ = 0, ν = 4, 2.25, 0.25, the dashed curve is the standard normal density(ν = 0); Center: Fixed µ = 0.5 and variable σ = 2, 1, 0.5, so ν = 4.25, 1.25, 0.5.Right: Fixed σ = 0.5 and variable µ = 1, 0.5, 0.2, so ν = 1.25, 0.5, 0.29.i.e., the Laplace motion converges in distribution to the Brownian motion. This is illustratedin Figure 3 where the marginal symmetric densities are computed for a speci�c kernel, namely
f(x) =

√
2π−1/4e−2x2 . For this particular choice of kernel, the covariance and autocorrelationfunctions simply become ρ(τ) = e−τ2 .Example 2. For illustrating purposes, we have simulated samples of X0 for di�erent spectraldensities. In Figure 4, histograms based on 10000 samples and theoretical densities are shownin the second row for two completely di�erent spectral densities namely a uniform spectrumand a Pierson-Moskowitz spectrum with Hs = 7m, Tp = 11s. (For a survey of spectra usedin ocean engineering see [10].) In both cases we let ν = σ = 1. The agreement betweenthe histogram and the theoretical density is perfect so the simulation approach seems towork due to the ergodic property of moving averages that follows from the general theory ofstationary processes (see [7]). The third row represents simulations for harmonizable Laplaceprocesses that will be discussed later.Next, we present how to obtain the level crossing sampling distributions that are basedon the Rice formula. Here we limit ourselves to the expected number of upcrossings in any�nite interval although the approach applies to the �elds as well. In its simplest setting,Rice's formula considers a stationary, zero mean Gaussian process X(t), t ∈ R, possessinga quadratic mean derivative X ′(t), say. Under these conditions the expected number ofupcrossings of the level v in the interval [0, t], here denoted by E[Nv(t)], can be computed
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Figure 4. Theoretical densities and histograms of X(0) based on 10000 simula-tions of LMA (middle row) and HL (bottom row) for a uniform spectrum (left) anda Pierson Moskowitz spectrum (Hs = 7m, Tp = 11s) (right), the top row depicts thespectra themselves.
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E[Nv(t)] =

t

2π

√
λ2

λ0
e
− v2

2λ0 = t

∫ ∞

0

zfX(0),X′(0)(v, z) dz,where λj 's equal spectral moments de�ned as ∫ wjR(ω) dω. A proof of this statement can befound in [8]. For non-Gaussian processes it is hard to show a general Rice formula. However,one can under fairly mild conditions on the process show a weaker, almost everywhere, versionof it, see [21] for a proof. Namely, for a stationary process X(t) having a.s. continuouslydi�erentiable sample paths and such that X(t), X ′(t) have a joint density fX(t),X′(t)(x, y), foralmost every v,
E[Nv(t)] = t

∫ ∞

0

zfX(0),X′(0)(v, z) dz.In order to �nd the intensity of upcrossings, E[Nv(1)], it is thus important to �ng the jointdensity of the process and its derivative. For the LMA, the joint distribution of process andderivative can be expressed in terms of its characteristic function given next.Proposition 5. Let X(t) denote the Laplace driven moving average process and assumethat its derivative exists in a sample path or quadratic mean sense and is given by X ′(t) =
∫∞
−∞ f ′(t− x) dΛ(x). Then the characteristic function of (X(0), X ′(0)) is given by
φ(u1, u2) =

exp

(
−1

ν

∫ ∞

−∞
log

(
1 − iµ(u1f(x) + u2f

′(x)) +
σ2

2
(u1f(x) + u2f

′(x))2

)
dx

)
,where ν, σ and µ are parameters of the asymmetric Laplace measure.Proof. Note that u1X(0) + u2X

′(0) =
∫

(u1f(−x) + u2f
′(−x)) dΛ(x) so that the propositionfollows by applying Proposition 3 with the kernel function equal to u1f(−x)+u2f

′(−x). �With this characteristic function at hand the intensity of level crossings can be expressedas
E[Nv(1)] =

1

(2π)2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
z e−i(u1v+u2z)φX(0),X′(0)(u1, u2) du1 du2 dz.The crossing intensity cannot be written on a closed form, but must be integrated with somenumerical method.Remark 2. An alternative method to compute Rice's formula for the LMA is to use its relationto Gaussian processes. Recall that the LMA is obtained as an integral with respect to Laplacemotion which in its turn, according to Proposition 1, is a superposition of Brownian motionwith Gamma process. Consequently, conditional on a realization of the Gamma process, the
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Figure 5. Crossing intensity for the LMA for di�erent values of skewness andkurtosis of the marginal distribution. As a reference the crossing intensity for thecorresponding Gaussian process is shown.LMA becomes a non-stationary Gaussian process for which the crossing intensity is easier to�nd. Thus the crossing intensity may be computed in a Monte-Carlo fashion according to
E[Nv(t)] ≈

1

n

n∑

k=1

E[Nv(t) | Γ = γk],where γk are realizations of the appropriate Gamma-process and the terms in the sum canbe e�ciently computed using theory for Gaussian processes.Example 3 (Rice's formula). This example is supposed to exemplify Rice's formula. InFigure 5 the crossing intensity for a Gaussian process and the LMA is shown for di�erentvalues of skewness and kurtosis of the marginal distribution of the LMA. The spectrum usedis a Pierson-Moskowitz spectrum commonly used in sea surface modelling. For the LMAthe crossing intensity is computed using the Monte-Carlo approach previously described.For skewness equal to zero and kurtosis almost 3 the LMA is essentially equivalent to theGaussian model, which is also seen on the crossing intensity. As skewness and kurtosisincreases the crossing intensity becomes asymmetric with a heavier right tail.



18 S. ÅBERG AND K. PODGÓRSKIThe problem of linear �ltering which is very important in practical applications has beenstudied in the full detail in [2]. Below we just summarize the result that have been appliedthere to analyze the fatigue damage of a structure subject to non-Gaussian loads.Proposition 6 (Linear Filtering). Let LMA with kernel f(x) be input to a linear timeinvariant system with impulse response h(x). Then the output Y (t) is also LMA with kernel
h ∗ f , viz.

Y (t) =

∫ ∞

−∞
(h ∗ f)(t− x) dΛ(x).Before turning to our main example of spatial modelling, we would like brie�y discuss LMAmodel �tting. This can be done in two steps. First, the kernel f can be estimated from theestimated spectral density function and in a second step the parameters of the Laplacemotion can be �tted using the method of moments based on Proposition 4. Estimationmethods for the parameters of the Laplace motion and their accuracy is a seperate issuethat will be investigate in some future research. For the kernel estimation, if the kernel isfrom a parametric family one can �t the parameters using the correlation function. Thisparametric approach depends much on the assumed family and will not be discussed here. Ina non-parametric approach and under the assumption that the kernel satis�es f(x) = f(−x)and ∫ f 2 = 1, a kernel estimate f̂ can be taken as

f̂(x) = F−1

√
R̂(ω),where R̂(ω) is an estimate of the (twosided) spectral density function. In fact, the estimateof f is determined up to a non-identi�able constant. Thus one can always pick an estimatesuch that ∫ f̂ 2(x) dx = 1, which means that f ∗ f becomes a correlation function. This isobtained by letting

f̂(x) = (2π)d/2
F−1

√
R̂(ω)

√∫∞
−∞ R̂(ω) dω

.For illustration consider a data set sea.dat that can be found in the WAFO-toolbox formatlab (available for download, free of charge, at www.maths.lth.se/matstat/wafo). Thisset contains 40 minutes of sea elevation measurements sampled at 4Hz at a �xed location inthe North Sea. Before starting the analysis the mean is removed from the data and then,as a �rst step, the spectral density function is estimated, see Figure 6 (left). The estimatedspectrum has two main peeks indicating that the waves are composed of both swell and windwaves. Next, some simple statistics of the data are computed and it was found that the



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 19sample variance of the data is 0.23 m2, the sample skewness 0.25 and sample excess kurtosis
0.17. The latter two values show some evidence that the data has a skewed distributionand possesses tails that are heavier than the Gaussian ones (skewness and excess kurtosisequal zero for the Gaussian distribution). The next step in the model �tting procedure is toestimate a symmetric kernel f , satisfying ∫ f 2dx = 1, see Figure 6 (right). Having this kernelone can then �nd the parameters µ, ν and σ of the asymmetric Laplace motion by �ttingskewness, kurtosis and variance. The parameters were in this case estimated to µ = 0.076,
ν = 0.059, σ2 = 0.0076 and then to use the sample mean to obtain the shift (location)parameter d = −1.27. The �tted process has now the same covariance structure, skewnessand kurtosis as the sea elevation data.
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Figure 6. Kernel estimation for sea.dat. Left: Estimated one sided spectraldensity; Right: Symmetric kernel.Example 4 (Matérn covariances). In the de�nition of the integral and thus also LMA,the argument of the kernel can be of an arbitrary dimension. Consequently, most of thepresented results are valid for stochastic �elds. Here, as an example of application, wesummarize the LMA model of two dimensional �elds with covariance function from theMatérn family � a popular class of covariances that is commonly used in geostatistics. Thecovariance is given by
r(x) =

φ

2β−1Γ(β)
(α|x|)βKβ(α|x|), (4)where φ is the variance, β a smoothing parameter, 1/α is related to the range of the covariancefunction and K is a modi�ed Bessel function of the second kind (occasionally referred to asof the third kind) of order β. The family includes the exponential covariance and has the



20 S. ÅBERG AND K. PODGÓRSKIGaussian covariance as a limit. The exponential covariance is obtained if β = 1/2 and if
β = m+ 1/2 for some non-negative integer m, r(x) is the product of a polynomial of degree
m in (α|x|) and exp(−α|x|). For example

β = 1/2, r(x) = φ exp(−α|x|),

β = 3/2, r(x) = φ (α|x| + 1) exp(−α|x|),

β = 5/2, r(x) = φ
(
(α|x|)2 + 3α|x| + 3

)
exp(−α|x|).
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Figure 7. Examples of Matérn correlation functions.The corresponding family of spectral densities is given by
R(ω) = π−d/2 Γ(β + d

2
)

Γ(β)

φα2β

(α2 + |ω|2)β+ d
2

, (5)where d is the dimension of the space on which the process is de�ned. We recognize thatincidentally they have the form of symmetric Laplace densities.In order to �nd a symmetric kernel f in the Laplace moving average that corresponds toa Matérn covariance structure we use the fact that r ∝ f ∗ f and thereby Ff(ω) ∝
√
R(ω).Due to the form of R(ω) one gets a new member of the Matérn family by taking the square
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√
R(ω) =

Γ(β
2

+ d
4
)αβ− d

2

Γ(β
2
− d

4
)πd/2

1

(α2 + |ω|2)(β

2
− d

4
)+ d

2

× φ1/2πd/4αd/2

√
Γ(β + d

2
)

Γ(β)

Γ(β
2
− d

4
)

Γ(β
2

+ d
4
)
.Since this expression is written in the same form as (5) and since (5) and (4) constitute aFourier transform pair, it holds, with g = F−1

√
R, that

f(x) ∝ g(x) =
1

(2π)d

φ1/2πd/4αd/2

2
β
2
− d

4
−1Γ(β

2
+ d

4
)

√
Γ(β + d

2
)

Γ(β)
(α|x|)β

2
− d

4Kβ

2
− d

4

(α|x|).The kernel scaling is determined by assuming that ∫ f 2(x) dx = 1. We note that by Parseval'stheorem ∫
g2(x) dx =

∫
R(ω) dω/(2π)d = φ/(2π)d. Thus the normalized kernel is given by

f(x) =
(2π)d/2

φ1/2
g(x) =

α
d
2

Γ(β
2

+ d
4
) 2

β

2
+ d

4
−1πd/4

√
Γ(β + d

2
)

Γ(β)
(α|x|)β

2
− d

4Kβ

2
− d

4

(α|x|),having Fourier representation
Ff(ω) = 2d/2πd/4

√
Γ(β + d

2
)

Γ(β)

1

(α2 + |ω|2)β

2
+ d

4

. (6)The smoothness of the sample paths is determined by the smoothness of the kernel. Inorder for the sample paths to be di�erentiable n times, the kernel has to be di�erentiable ntimes. This condition can also be expressed in terms of the parameter β of the Matérn covari-ance function. If the smoothing parameter β > m, then the kernel with the correspondingMatérn covariance is m times di�erentiable. Therefore, if β > s/2 the covariance functionis di�erentiable s times, i.e. expressing this for the kernel we get that if β > s+ d/2,thenthe kernel is s times di�erentiable. This means for example that in one dimension (d = 1)for the sample paths to be di�erentiable one needs β > 3/2 while in two dimensions (d = 2)one needs to require β > 2.LMA may be thought of as a convolution of the increments of the Laplace motion withthe kernel f . In a computer the convolution operation can be quite slow, in particular if thedimension is larger than one. Therefore it is more e�cient to work in the frequency plane.Besides, as is the case with the Matérn kernels for some values of β, the convolution maynot work for unbounded kernels. A simulation is thus preferably done in the frequency planeaccording to the following scheme:(1) Simulate independent increments of the Laplace motion,
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Figure 8. Laplace MA �elds with Matérn correlations. The parameters fromtop to bottom are β = 0.5, 1.5, 2.5, 3.5, α = 1.0, 1.6, 2.0, 2.3 and for the generat-ing Laplace process [ν, σ, µ, γ] =[1, 1, 0, 0] yielding mean zero, variance one and asymmetric marginal distribution.



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 23(2) Fourier transform the array of increments using the fast Fourier transform (FFT),(3) Evaluate the Fourier transform of the kernel using (6),(4) Take the product of the two Fourier transforms,(5) Make the inverse FFT to obtain the simulation.This scheme has been used to produce simulations of the Laplace MA �elds shown in thefollowing example.In this example we will show simulations of Laplace moving average �elds having a Matérncorrelation with di�erent degrees of smoothness and di�erent marginal distributions. Theparameters investigated are:
β 0.5 1.5 2.5 3.5

α 0.9986 1.5813 1.9729 2.2922The values of α are chosen such that the correlation equals 0.05 at distance 3, as shown inFigure 7.A fragment of a simulation of the di�erent processes is shown in Figure 8 for Laplaceprocess parameter values [ν, σ, µ, γ] =[1, 1, 0, 0]. As it is apparent from the �gures, theprocess gets smoother and smoother with increasing value of β. Recall that the samplepaths are once di�erentiable if β > 2 and twice if β > 3, which corresponds to the twosimulations on the second row. The corresponding marginal densities are shown in Figure 9(left).
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Figure 9. Marginal densities of LMA �eld for di�erent correlations. The parame-ters of the driving Laplace process are [ν, σ, µ, γ] =[1, 1, 0, 0] � left (symmetric case)and [ν, σ, µ, γ] =[1, 1/
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2] � right (asymmetric case).



24 S. ÅBERG AND K. PODGÓRSKINext the same correlation functions are kept but the parameters of the Laplace processare changed to [ν, σ, µ, γ] =[1, 1/
√

2, 1/
√

2,−1/
√

2]. In this way the marginal density willbe right skewed, having mean equal to zero and variance equal to one. In Figure 10 somesimulations are shown and in Figure 9 (right) the corresponding marginal densities are shown.3.2. Laplace harmonizable processes. Let X(t) be a real-valued weakly stationary pro-cess having zero mean with covariance function
r(t) =

∫ ∞

0

cos(λt) dF (λ),where F : R
+ 7→ R is a never-decreasing bounded function which is continuous to the right.The function F (λ) is called the one-sided spectral distribution function of the process X(t).In the following we assume that F (λ) has no jump at zero and that F (0) = 0. Then X(t)has the following spectral representation

X(t) =

∫ ∞

0

cos(λt) du(λ) +

∫ ∞

0

sin(λt) dv(λ), (7)where real-valued processes u(λ) and v(λ) with uncorrelated increments satisfy
E[u(λ)] = E[v(λ)] = 0,

E[(u(λ))2] = E[(v(λ))2] = F (λ),

E[(du(λ))2] = E[(dv(λ))2] = dF (λ),

E[du(λ)dv(λ′)] = 0.Conversly, if one starts up with processes u(λ) and v(λ) having the above properties, thenthe process X(t) de�ned by (7) is weakly stationary.Here, we consider the processes for which the uncorrelated increments processes u and
v are given by Laplace motions. More precisely, let B(λ) be a standard Brownian motionand Γ(λ) a standard gamma process. Then, due to the representation of Laplace motion,we know that L(λ) = B(Γ(λ)) is standard Laplace motion. Further, let F : R

+ 7→ R be anever-decreasing, right continuous and bounded function and de�ne a time-shifted Laplacemotion, LF (λ), say, by LF (λ) = B(Γ(F (λ)). Note that LF (λ) is a process with independentbut non-stationary increments and that Var[LF (λ)] = F (λ).Next, let B(λ) and B̃(λ) be two independent standard Brownian motions and let Γ(λ)be a standard gamma process independent of both B(λ) and B̃(λ). Using these processesde�ne two time-shifted Laplace motions by LF (λ) = B(Γ(F (λ)) and L̃F (λ) = B̃(Γ(F (λ)).
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Figure 10. Laplace MA �elds with Matérn correlations. The parameters fromtop to bottom are β = 0.5, 1.5, 2.5, 3.5, α = 1.0, 1.6, 2.0, 2.3 and for the generatingLaplace process [ν, σ, µ, γ] =[1, 1/
√

2, 1/
√

2,−1/
√

2] yielding mean zero, variance oneand a right skewed marginal distribution.



26 S. ÅBERG AND K. PODGÓRSKIObviously, since LF (λ) and L̃F (λ) are constructed using the same gamma process, they arenot independent. However, it easy to check by conditioning on Γ that they are uncorrelated.Thus the processes LF (λ) and L̃F (λ) can serve as the processes u(λ) and v(λ) in the spectralrepresentation to de�ne a real-valued weakly stationary process by
X(t) =

∫ ∞

0

cos(λt) dLF (λ) +

∫ ∞

0

sin(λt)dL̃F (λ). (8)The process X(t) de�ned in this way will be called a harmonizable Laplace (HL) process.The marginal distributions of this process can be obtained in a similar fashion as for LMA.Interestingly, the density distribution can be explicitely written using the Bessel functions.Theorem 2 (One-dimensional distribution). The HL process de�ned by (8) has ageneralized Laplace mariginal distribution, de�ned by the characteristic function
E
[
eiξXt

]
=

(
1

1 + ξ2

2

)λ0

,where λ0 = F (∞) − F (0). Moreover, the density of X(t) is given by
fXt

(x) =

√
2

Γ(λ0)
√
π

( |x|√
2

)λ0−1/2

Kλ0−1/2(
√

2|x|), x 6= 0,where Γ is the gamma function and Kν(x) is the modi�ed Bessel function of the second kindwith index ν.Proof. The process X(t) conditional on Γ can be written as
X(t)|Γ =

∫ ∞

0

cos(λt) dBΓ◦F (λ) +

∫ ∞

0

sin(λt) dB̃Γ◦F (λ),i.e., conditional on Γ, X(t) is a stationary Gaussian process having control measure Γ ◦ F .Thus, since E[X(t)|Γ] = 0 and Var[X(t)|Γ] = Γ(F (∞)) − Γ(F (0)) we have
E
[
eiξXt

]
= E

[
E
[
eiξXt|Γ

]]
= E

[
e−

ξ2

2
(Γ(F (∞))−Γ(F (0)))

]
.This can be recognized as the moment generating function, evaluated at −ξ2/2, for therandom variable Γ(F (∞)) − Γ(F (0)) which has a standard gamma distribution with shapeparameter F (∞) − F (0). Consequently

E
[
eiξXt

]
=

(
1

1 + ξ2

2

)F (∞)−F (0)

,so that X(t) has a generalized Laplace distribution. �



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 27The �nite dimensional distributions have a less explicit form and the joint density have tobe obtained by numerical approximation.Theorem 3 (Finite-dimensional distributions). The �nite-dimensional distributionsof the HL process are de�ned by the following characteristic function
E

[
ei
∑n

j=1
ξjX(tj )

]
= exp

{
−
∫ ∞

0

ln

(
1 +

1

2
ξTAξ

)
dF (λ)

}
,where ξ = (ξ1, ξ2, . . . , ξn)T and A is a matrix with entries Ajk = cos(λ(tk − tj)).Proof. Introduce the random variable Y =

∑n
j=1 ξjX(tj) then, by de�nition of the Laplacestationary process,

Y =

∫ ∞

0

f(λ) dLF (λ) +

∫ ∞

0

f̃(λ) dL̃F (λ),where f(λ) =
∑n

j=1 ξj cos(λtj) and f̃(λ) =
∑n

j=1 ξj sin(λtj). Then, conditional on Γ, we have
Y |Γ =

∫ ∞

0

f(λ) dBΓ◦F (λ) +

∫ ∞

0

f̃(λ) dB̃Γ◦F (λ).Since this is just a sum of two independent Gaussian variables we get that
E
[
eiτY |Γ

]
= e−

τ2

2

∫
∞

0 (f2(λ)+f̃2(λ)) dΓF (λ).Thus, by the properties of generalized Gamma convolutions, it holds that
E[eiY ] = E

[
E[eiY |Γ]

]
= E

[
e−

1

2

∫
∞

0 (f2(λ)+f̃2(λ)) dΓF (λ)
]

= exp

(
−
∫ ∞

0

ln

(
1 +

1

2

(
f 2(λ) + f̃ 2(λ)

))
dF (λ)

)
.Now, the theorem follows by observing that

f 2(λ) + f̃ 2(λ) =
n∑

j=1

n∑

k=1

ξjξk cos(λ(tk − tj)) = ξTAξ.

�Since, by theorem 3, the �nite dimensional distributions are invariant with respect to atranslation in time the following corollary is true.Corollary 1. The harmonizable Laplace process is stationary in the strict sense.Despite stationarity, the HL processes are not ergodic which follows, for example, fromthe results in [7] and [20]. This can be also seen from the simulations of this process as thesampling distribution does not coincide with the theoretical marginal, see Figure 4. Therewe see a simulated long trajectory (5000 samples) of the stationary Laplace process and look



28 S. ÅBERG AND K. PODGÓRSKIat a histogram of the values in the trajectory. We use the same spectra as in Example 2. Asit can be clearly seen the histogram and the theoretical density of X(0) do not match at all,neither for the uniform nor the Pierson-Moskowitz spectrum. This lack of ergodicity couldbe considered as a serious drawback of the model unless the σ-�eld of invariant sets for theprocess is explicitely characterized. In the latter case, the model could be used in applicationswhere the sample-to-sample variability can not be explained by too scarce records so somestochastic models of it are needed. Within non-ergodic stationary processes this requiresdistributional identi�cation of the conditional expectation with respect to shift invariantsets. The result of [20] suggests that sample to sample variability which is represented bythe conditional expectation with respect to the invariant sets can be expressed in terms ofjumps of the Gamma process. This line of study as well as the extension of HL to theasymmetric case is left for some future work.AcknowledgementResearch of both researchers was supported in part by the Gothenburg Stochastic Centerand the Swedish foundation for Strategic Research through GMMC, Gothenburg Mathemat-ical Modelling Center. 4. Appendix4.1. Gamma variance model. For a random, possibly asymmetric, Laplace measure Λ onthe real line and controlled by a measure m on Borel sets, one can obtain an analogue ofthe gamma variance model. To this end, we start with the de�nition of a gamma stochasticmeasure on (X ,B, m) in the standard manner, i.e. we call a σ-additive function Γ on Binto L2 an independently scattered gamma measure if for each A ∈ B the random variable
Γ(A) has a gamma distribution with shape parameter m(A) (and scale equal to one). Thiscorrespond to the totally skewed case of the Laplace measure, i.e. the case of σ2 = 0. Moregenerally, the Laplace measure with σ = 0 and µ > 0 is referred to as the gamma measurecontrolled by m. Typically, the letter Γ instead of Λ will be used to denote such a measure.For a Brownian motion B with variance σ2 and drift µ and any measurable non-decreasingfunction F : [0,∞) 7→ [0,∞), the process BF (t) = B(F (t)) is Gaussian with independent al-though typically non-homogenous increments. Consequently, it corresponds to the randomlyscattered measure (controlled by dF ) that will be also denoted by BF .



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 29Proposition 7 (General Gamma Variance Model). If B is a Brownian motion withvariance σ2 and drift µ and Γ is a stochastic measure controlled by a measure m on Borel setsof the real half-line, then the Laplace measure Λ with parameters µ and σ that is controlledby m is represented with probability one as
Λ(A) = BΓ(A),where B and Γ are mutually independent.Proof. The trajectories of Γ are non-decreasing with probability one thus BΓ conditionallyon such trajectories is well de�ned. Since both Λ(t) = Λ([0, t]) and BΓ(t) = BΓ([0, t]) areprocesses with independent increments, it is su�cient to verify that the distributions of theirincrements are identical. We have

φΛ(t+h)−Λ(t)(u) =

(
1 − iµu+

σ2u2

2

)m(t)−m(t+h)

,where m(t) = m([0, t]). Conditionally on Γ(t+ h) = γ(t+ h) and Γ(t) = γ(t) we have
E eiu(B(γ(t+h))−B(γ(t)) = φB(γ(t+h)−γ(t))(u)

= e(iµu−σ2u2/2)(γ(t+h)−γ(t)) .Since for each complex z such that =z > 0 we have
E eiz(Γ(t+h)−Γ(t)) = (1 − iz)m(t)−m(t+h),we obtain

φBΓ(t+h)−BΓ(t)(u) = (1 − i(µu+ i
σ2u2

2
))m(t)−m(t+h)which concludes the proof. �4.2. Moments of Laplace stochastic integrals. Consider �rst a symmetric Laplace mea-sure Λ, i.e. assume that µ = 0. Formally, the de�nition of X =

∫
fdΛ extends in a standardway from simple functions to an arbitrary f ∈ L2(X ,B, m) so that

φX(u) = exp

(
−
∫

X
ln(1 + σ2f 2(x)u2/2) dm(x)

)
.From this characteristic function it is possible to obtain a recurrent formula for the evenmoments as shown in the following result.



30 S. ÅBERG AND K. PODGÓRSKIProposition 8 (Moments � Symmetric Case). Let X =
∫
fdΛ and assume that f 2N ∈

L2(X ,B, m). Then the following recurrent formula for the even moments holds
EX2N = (2N − 1)!

N∑

k=1

σ2k
∫
f 2kdm

2k−1

EX2N−2k

(2N − 2k)!
.Proof. First note that

φ′
X(u) = φX(u)νX(u),where

νX(u) = −
∫

X

σ2f 2(x)u

1 + σ2f 2(x)u2/2
dm(x).The above is justi�ed by Lemma 1, Subsection 4.3 of this Appendix, as the derivative of theintegrand is bounded by σ2|u+ δ|f 2(x).Therefore as long as all involved derivatives exist

φ
(n+1)
X (u) =

n∑

k=0

(
n

k

)
φ

(n−k)
X (u)ν

(k)
X (u). (9)Since by the assumptions, fk ∈ L2(X ,B, m), for k = 1, . . . , 2N it follows from Lemma 2of the Appendix that for r < 2N :

ν
(r)
X (0) =





2(−1)
r+1

2

(
σ2

2

) r+1

2

r!
∫
f r+1dm ; r odd,

0 ; r even.Substituting this and φk
X(0) = ikEXk into (9) leads after some simple algebra to the recurrentrelation for the moments. �In order to extend the de�nition of integrals to the asymmetric Laplace measures we startwith the integrals with respect to the gamma stochastic measures. The class of distributionsthat are obtained through the integration of the positive functions with respect to the gammameasure is well-known in the literature under the name of generalized gamma convolutions(see [6] for a monographic treatment of this class). Throughout this subsection we assumewithout further mention that f is an integrable function on X with respect to m. For thede�nition of the integral for f ≥ 0 it is more natural to consider the Laplace transform ratherthan characteristic functions. Let us consider a random Gamma measure Γ controlled by mand with µ > 0 as the scale parameter. Then

ψΓ(A)(z) = e− ln(1+µz)m(A).



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 31Thus if f ≥ 0, then for X =
∫
f dΓ:

lnψX(z) = −
∫

X
ln(1 + µzf(x))dm(x).To extend the above de�ntion to a not necessarily non-negative function f we switch backto the characteristic functions and notice that

logφΓ(A)(u) =

∫ ∞

0

(eiuξ − 1)
e−ξ/µ

ξ
dξ ·m(A).For an arbitrary f ∈ L2(X ,B, m), we obtain

logφX(z) =

∫ ∞

0

∫

X
(eiuξf(x) − 1) dm(x)

e−ξ/µ

ξ
dξ

=

∫

X
k(uf(x);µ) dm(x),where the complex function k(y;µ) is de�ned as

k(y;µ) =

∫ ∞

0

(
eiyξ − 1

) e−ξ/µ

ξ
dξ.Proof of Proposition 3. We can now turn to the most general case of µ ∈ R, σ > 0, and

f ∈ L2(X ,B, m). It follows from Proposition 2 that the characteristic function ofX =
∫
f dΛis given by

logφX(u) =
∫
X k(uf(x); σ/(

√
2κ)) dm(x) +

∫
X k(−uf(x); σκ/

√
2) dm(x),where µ = σ√

2

(
1
κ
− κ
), or by introducing
K(y;µ, σ) =

∫ ∞

−∞

(
eiyξ − 1

) exp
(
−

√
2

σ
κsign(ξ)|ξ|

)

|ξ| dξ,where sign(ξ) is the sign of ξ, we can simply write
log φX(u) =

∫

X
K(uf(x);µ, σ)dm(x). (10)The function K(y;µ, σ) can be more explicitly written using the complex logarithm. Dueto the representation in Proposition 2 one can identify the function K(y;µ, σ) as being thecharacteristic exponent of Λ([0, 1]). However, since the characteristic function for Λ([0, 1]) isknown on closed form we have that

1

1 − iµy + σ2y2

2

= exp (K(y;µ, σ))and consequently
− log

(
1 − iµy +

σ2y2

2

)
= K(y;µ, σ) + i2πn(y;µ, σ), (11)



32 S. ÅBERG AND K. PODGÓRSKIwhere n(y;µ, σ) is an integer which possibly depends on y and the parameters µ and σ.Denoting the left hand side of this equation by L(y;µ, σ), the imaginary parts of L(y;µ, σ)and of K(y;µ, σ) are given by
=L(y;µ, σ) = arctan

(
µy

1 + σ2y2

2

)

and
=K(y;µ, σ) =

∫ ∞

−∞
sin(yξ)

exp
(
−

√
2

σ
κsign(ξ)|ξ|

)

|ξ| dξ,respectively. Since both these functions are continuous functions of y and so is the logarith-mic function on the left hand side of (11) (note that the real part of the argument underlogarithm is positive), it follows that n(y;µ, σ) = n(0;µ, σ). Moreover, since =L(0;µ, σ) =

=K(0;µ, σ) = 0, it holds that n(0;µ, σ) = 0. Thus K(y;µ, σ) = L(y;µ, σ) which concludesthe proof. �The following is a proof of the recurrent formula for moments for the general not necessarilysymmetric case.Proof of Proposition 4. The characteristic function for the integral with respect to asym-metric Laplace motion is given by (2). Using Lemma 1 in the Appendix (the integrand isbounded in absolute value by √6(σ2 + µ2)|f(x)| +
√

3σ2µ2
√

|u+ δ|f 2(x)), we have
φ

(1)
X (u) = φX(u)νX(u),where

νX(u) = −
∫

X

σ2f 2(x)u− iµf(x)

1 − iµf(x)u+ σ2f2(x)u2

2

dm(x).The recursion for the moments follows easily from Lemma 3 in the Appendix and
EXN = (−i)Nφ

(N)
X (0) = (−i)N

N∑

k=1

(
N − 1

k − 1

)
φN−k

X (0)ν
(k−1)
X (0)

=

N∑

k=1

(
N − 1

k − 1

)
(−i)k

EXN−kν
(k−1)
X (0).

�



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 334.3. Lemmas. For completeness, we include here some technical facts that allows to carryout some formal argument at certain parts of the proofs. Due to its very technical characterand for clarity of the main ideas of the proofs, we gathered them in this Appendix.Lemma 1. Consider I(u) =
∫
g(x, u)dm(x) with g di�erentiable with respect to u. Then
dI

du
(u) =

∫
∂g

∂u
(x, u) dm(x)if there exists G(x) ≥ 0 integrable with respect to m and δ > 0 such that for each h ∈ [0, δ]:

∣∣∣∣
∂g

∂u
(x, u+ h)

∣∣∣∣ ≤ G(x).Proof. By the �rst order Taylor expansion
I(u+ h) − I(u)

h
=

∫
∂g

∂u
(x, u+ ox(h)) dm(x).The term under the integral is uniformly bounded by G(x) for each 0 < h < δ that allowsfor direct application exchange the limit with integration. �Lemma 2. Let gk,j(u; a) = uk(a2 +u2)−j, k ≥ 0, j > 0 and for h such that hj ∈ L2(X ,B, m)let

Gk,j(u) =

∫

X
gk,j (u; 1/h(x)) dm(x).Then if both hj and hj+1 are in L2(X ,B, m):

G′
k,j(u) = kGk−1,j(u) − 2jGk+1,j+1(u). (12)If h, hn+1 ∈ L2(X ,B, m), then G(n)

1,1 (u) exists and
G

(r)
1,1(0) =





(−1)
r−1

2 r! ·
∫
hr+1dm , r ≤ n odd

0 , r ≤ n evenProof. The recurence relations between derivatives follows from Lemma 1 if we notice that
|gk,j(u; a)| ≤ a−2j |u|k.For h that is bounded and such that hk is integrable for each k ∈ N the formula followsby the expansion of
u

a2 + u2
=

∞∑

k=0

(−1)ku
2k+1

a2k+2
,



34 S. ÅBERG AND K. PODGÓRSKIfor u2/a2 < 1. So for u2 < M−2, where M is an upper bound for |h(x)| we have
G1,1(u) =

∫

X

∞∑

k=1

(−1)k+1h2k(x)u2k−1 dm(x)

=
∞∑

k=1

(−1)k+1

∫
h2kdmu2k−1.This proves the formula for the derivatives at zero for functions h that are bounded andintegrable in any power.For a general h, hn+1 ∈ L2(X ,B, m), we notice from relation (12) that there is a formulaexpressing Gn

1,1(u) as a linear combination of Gk,j(u) for 0 ≤ k ≤ n + 1 and 0 ≤ j ≤ n + 1.The same relation obviously holds for functions that are bounded and integrable in anypower. One can take a sequence of such functions that approximates h and the norm of theirpowers approximate ∫ h2kdm. We note that
G0,j(0) =

σ2j

2j

∫
h2jdm,

Gk,j(0) = 0, k > 0,Thus the formula for G(n)
1,1 (0) has to be expressed as a linear combination of G0,j(0), 1 ≤

j ≤ n+ 1 and must agree with the corresponding formula for the sequence of approximatingfunctions and this concludes the proof. �The above result is extended to a more general case as follows.Lemma 3. Let for k, j ≥ 0, j ≥ k:
gk,j(u; a, b) = (a2u− ib)k(1 − ibu+ a2u2/2)−j.Then for h such that hk ∈ L2(X ,B, m) the following integral is well-de�ned
Gk,j(u; a) =

∫

X
gk,j

(
u; a2h2(x), h(x)

)
dm(x).If hk−1 (if k > 0), hk, hk+1 all are in L2(X ,B, m), then

G′
k,j(u; a) = a2k ·Gk−1,j(u; a) − j ·Gk+1,j+1(u; a). (13)If h, hr+1 ∈ L2(X ,B, m), then G(r)

1,1(u) exists and
G

(r)
1,1(0; a) =





ir−1r!
∫
f r+1dm

∑ r
2
− 1

2

k=0 sr,k, r odd,
ir−1r!

∫
f r+1dm

(
µ
(

σ2

2

) r
2

+
∑ r

2
−1

k=0 sr,k

)
, r even, , (14)



A CLASS OF NON-GAUSSIAN SECOND ORDER RANDOM FIELDS 35where
sr,k = µr−2k−1

(
σ2

2

)k ((
r − k − 1

k

)
σ2 +

(
r − k

k

)
µ2

)
.Proof. The main idea of the proof is identical to the one in the previous result, therefore wejust highlight the main steps.We note that there exists a constant K independent of u, a, and b such that

|gk,j(u; a, b)|2 ≤ K
(
a2k + b2k

)
. (15)From this it follows that Gk,j(u; a) is properly de�ned if h is such that hk ∈ L2(X ,B, m).The same inequality (15), Lemma 1, and the following recurrence relation

d

du
gk,j(u; a, b) = a2k · gk−1,j(u; a, b) − j · gk+1,j+1(u; a, b)give (13) as long as the conditions on h are satis�ed.By using the fact that (1−x)−1 =

∑∞
n=0 x

n if |x| < 1, it holds for bounded and integrablein any positive integer power h that
a2h2u− ih

1 − ihu+ a2h2u2

2

= (a2h2u− ih)
∞∑

n=0

n∑

k=0

(
n

k

)
(ihu)k

(
−a

2h2u2

2

)n−kBy reorganizing this expression, taking the r-th derivative and evaluating at zero some tediousbut straightforward calculations leads to (14).For a general h, hr+1 ∈ L2(X ,B, m), we notice from relation (12) that there is a formulaexpressing Gr
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