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Abstract

In this paper, we propose a new method for modelling precipitation in Sweden. We consider a

chain dependent stochastic model that consists of a component that models the probability of

occurrence of precipitation at a weather station and a component that models the amount of

precipitation at the station when precipitation does occur. For the first component, we show

that for most of the weather stations in Sweden a Markov chain of an order higher than one is

required. For the second component, which is a Gaussian process with transformed marginals,

we use a composite of the empirical distribution of the amount of precipitation below a given

threshold and the generalized Pareto distribution for the excesses in the amount of precipitation

above the given threshold. The derived models are then used to compute different weather

indices. The distribution of the modelled indices and the empirical ones show good agreement,

which supports the choice of the model.

Key words: High order Markov chain, generalized Pareto distribution, copula, precipita-

tion process, Sweden
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1 Introduction

Realistic sequences of meteorological variables such as precipitation are key inputs in many

hydrologic, ecologic and agricultural models. Simulation models are needed to model

stochastic behavior of climate system when historical records are of insufficient duration

or inadequate spatial and /or temporal coverage. In these cases synthetic sequences may

be used to fill in gaps in the historical record, to extend the historical record, or to generate

realizations of weather that are stochastically similar to the historical record. A weather

generator is a stochastic numerical model that generates daily weather series with the

same statistical properties as the observed ones, see Liao et al. (2004).

In developing the weather generator, the stochastic structure of the series is described

by a statistical model. Then, the parameters of the model are estimated using the observed

series. This allows us to generate arbitrarily long series with stochastic structure similar

to the real data series.

Parameter estimation of stochastic precipitation models has been a topic of intense

research the last 20 years. The estimation procedures are intrinsically linked to the nature

of the precipitation model itself and the timescale used to represent the process. There are

models which describe the precipitation process in continuous time and models describing

the probabilistic characteristics of precipitation accumulated on a given time period, say

daily or monthly totals. Different reviews of the available models have been presented: see

for example Woolshiser (1992), Cox and Isham (1988) and Smith and Robinson (1997).

Continuous time models for a single site with parameters related to the underly-

ing physical precipitation process are particularly important for the analysis of data at

short timescales, e.g. hourly. Some of these models are described in Rodŕıguez-Iturbe et

al. (1987, 1988) and Waymire and Gupta (1981).

When only accumulated precipitation amounts for a particular time period (daily) are

recorded then empirical statistical models, based on stochastic models that are calibrated

from actual data are appealing. Empirical statistical models for generating daily precip-

itation data at a given site can be classified into four different types, chain dependent

or two-part models, transition probability matrix models, resampling models and ARMA

time series models, see Srikanthan and McMahon (2001) for a complete review of the
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different models.

A generalization of the precipitation models for a single site is the spatial extension

of these models for multiple sites, to try to incorporate the intersite dependence but pre-

serving the marginal properties at each site. A more ambitious task is the modelling of

precipitation continuously in time and space and original work on these type of models

based on point process theory was presented by LeCam (1961) and further developed by

Waymire et al. (1984) and Cox and Isham (1994). Mellor (1996) has developed the mod-

ified turning bands model which reproduces some of the physical features of precipitation

fields in space as rainbands, cluster potential regions of rain cells.

In this study we concentrate on the chain-dependent model for the daily precipitation

in Sweden which consists of two steps, first a model for the sequence of wet/dry days

and second, a model for the amount of precipitation for the wet days. For the first, we

use high-order Markov chains and for the second we introduce a composite model that

incorporates the empirical distribution and the generalized Pareto distribution.

2 Data

Fig.1: Location of the stations.

Precipitation data from 20 stations in Sweden have been used in the studies presented

in this paper. The locations are shown in Fig. 1 and the names of the stations are given

in Table 1. The data consist of accumulated daily precipitation collected during 44 years

starting on the 1st of January 1961 and ending the 31st of December 2004 and are provided

by the Swedish Meteorological and Hydrological Institute (SMHI). The number of missing
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observations in all stations is generally low (< 5%). The time plots of the annual number

of wet days (above the threshold 0.1 mm) at the 20 stations are presented in Fig. 2.
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Fig.2: Time plot of annual number of wet days.

Time plots of annual number of wet days showed that the precipitation regime in

some stations (namely, Söderköpping, Rösta and Stensele) contains possible trends. The
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results presented in the next sections refer to the whole period of data from all stations,

but attention should be paid when we refer to the above mentioned stations. In Fig. 3,

time plots of the annual amount of precipitation of the wet days are presented. The total

amounts of precipitation seem to be stationary over the different years.

3 Model

To model precipitation in Sweden, we have decided to use a chain dependent model. The

first part of the model can be dealt with using Markov chains. Gabriel and Newman (1962)

used a first-order stationary Markov chain. The models have since been extended to allow

for non-stationarity, both by fitting separate chains to different periods of the year and

by fitting continuous curves to the transition probabilities, see Stern and Coe (1984) and

references within. The order of Markov chain required has also been discussed extensively,

for example Chin (1977) and references therein, with the obvious conclusion that different

sites require different orders. Still, the first order Markov chains are a popular choice since

they have been shown to perform well for a wide range of different climates, see for example

Bruhn et al. (1980), Lana and Burgueno (1998) and Castellvi and Stockle (2001). The

main deficiency associated with the use of first order models is that long dry spells are

not well reproduced, see Racsko et al. (1991), Guttorp (1995).

To model the amount of precipitation that has occurred during a wet day, different

models have been proposed in the literature all of which assume that the daily amounts

of precipitation are independent and identically distributed. Stidd (1973) and Hutchin-

son (1995) have proposed a truncated normal model for the amount of precipitation with

a time dependent parameter, while the Gamma and Weibull distributions have been se-

lected by Geng et al. (1986) as well as Selker and Heith (1990), because of their site-specific

shape.

In this study, we model the occurrence of wet/dry days using Markov chains of higher

order and for the amount of precipitation we use a composite model, consisting of the

empirical distribution function for values below a threshold and the distribution of excesses

for values above the given threshold. Such a model is more flexible, describes better the

tail of the distribution and additionally allows for dependence in the precipitation process.
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Fig.3: Time plot of annual amount of precipitation.

Let Zt be the precipitation at a certain site at time t measured in days. Then, a

chain-dependent model for the precipitation is given by,

Zt = XtWt,

where Xt and Wt are stochastic processes such that Xt takes values in {0, 1} and Wt
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Number Name

1 Lund

2 Bolmen

3 Hanö

4 Bor̊as

5 Varberg

6 Ungsberg

7 Säffle

8 Söderköping

9 Stockholm

10 Malung

11 Vattholma

12 Myskel̊asen

13 Härnösand

14 Rösta

15 Pite̊a

16 Stensele

17 Haparanda

18 Kvikkjokk

19 Pajala

20 Karesuando

Table 1: Names of weather stations.

takes values in R
+ \ 0. The processes Xt and Wt will be referred to as the occurrence of

precipitation and the amount of precipitation process, respectively.

The approach presented in this study provides a mechanism to make predictions of

precipitation in time. This is particularly important for many applications in hydrology,

ecology and agriculture. For example, at a monthly level, the amount of precipitation and

the probability and length of a dry period are required quantities for many applications.
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4 Models for the Occurrence of Precipitation

Let {Xt, t = t1, . . . , tN} denote the sequence of daily precipitation occurrence, i.e. Xt = 1,

indicates a wet day and Xt = 0, a dry day. A wet day in the context of this study, occurs

when at least 0.1mm of precipitation was recorded by the rain gauge. The level has been

chosen above zero in order to avoid identifying dew and other noise as precipitation and

to also avoid difficulties arising from the inconsistent recording of very small precipitation

amounts. Moreover, daily precipitation amounts of less than 0.1mm can have relatively

large observational errors, and including them would cause a significant change in the

estimated transition probabilities of the occurrences. As a consequence this introduces

additional errors into the fitted models. The model is fitted over different periods of the

year, that is subsets of the N days of the year, that may be assumed stationary.

Before we continue any further we need to introduce some notation. Let S = {0, 1}

denote the state space of the k-Markov chain Xt. The elements of S are called letters and

an ordering of letters w ∈ Sl = S × · · · × S is called a word of length l, while the words

composed of the letters from position i to j in w for some 1 ≤ i ≤ j ≤ l, are denoted as

wj
i = (wi, wi+1, ..., wj). Finally, for k ≤ l let τk(w) = wl

l−k+1 denote the k-tail of the w

word, i.e. τk(w) denotes the last k letters of w. If no confusion will arise when k ≤ j − i,

we also write τk(w
j) instead of τk(w

j
i ).

It is assumed that the process Xt is a k-Markov chain: a model completely character-

ized by the transition probability

pw,j(t) := P (Xt = j|τk(X
t−1) = w), j ∈ S, t = t1, . . . , tN ,

where w is a word of length k and X t−1 = {. . . , Xt−2, Xt−1} is the whole process up

to t − 1 so τk(X
t−1) is the last k days up to and including Xt−1; that is, τk(X

t−1) =

(Xt−k, . . . , Xt−1). Note that, for a 2−state Markov chain of any order pw,1(t)+pw,0(t) = 1.

In the special case of time homogeneous Markov chain, pw,j(t) = pw,j, for t = t1, . . . , tN ,

i.e. the transition probabilities are independent of time.

Let nw,j(t) denote the number of years during which day t is in state j and is preceded

by the word w (i.e. τk(X
t−1) = w, w ∈ Sk and Xt = j). Then the probabilities pw,j(t) are

estimated by the observed proportions

p̂w,j(t) =
nw,j(t)

nw,+(t)
, w ∈ Sk, j ∈ S, t = t1, . . . , tN ,
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where + indicates summation over the subscript. Note also that day 60 (February 29th)

has data only in leap years so day 59 precedes day 61 in non-leap years. Fig. 4 (left)

shows the unconditional probability of precipitation, pooled over 5 days for clarity, plotted

against t for the data from the station in Lund.

In the context of environmental processes, non-stationarity is often apparent, as in

this case, because of seasonal effects or different patterns in different months. A usual

practice is to specify different subsets of the year as seasons, which results to different

models for each season, although the determination of an appropriate segregation into

seasons is itself an issue.
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Fig.4: Lund, Sweden (data from 1961 to 2004). (Left): Observed p̂(t) pooled over 5

days. (Right): Mean number of wet days per month (”+”), and per season (solid lines).

4.1 Fitting Models to the Occurrence of Precipitation

There is an inter-annual variation in the annual number of wet days, as can be seen in

Fig. 2. Moreover, there is also seasonal variation in the mean monthly number of wet days,

see Fig. 4 (Right) for data from Lund, although this is not as prominent as in other regions

of the world. It is possible that the optimum order of the chain describing the wet/dry

sequence varies within the year and from one year to another. It is therefore important

to properly identify the period of record that can be assumed as time homogeneous.

Moreover, the problem of finding an appropriate model for the occurrence of precip-

itation process, Xt, is equivalent to the problem of finding the order of a multiple step

Markov chain. The Akaike Information Criterion (AIC), Bayesian Information Criterion
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(BIC) and the Generalized Maximum Fluctuation Criterion (GMFC) order estimators, a

short description of which can be found in the subsection 8.1, have been applied to the

data for each of the stations. Various block lengths were considered for determining the

order of the Markov chain, k, as suggested in Jimoh and Webster (1996).

• 1 month blocks (i.e. January, February, ..., December),

• 2 month blocks (January - February, February - March, ..., December - January),

• 3 month blocks (January - March, February - April, ..., December - February).

The effect of block length on the order of the Markov chain can be seen in Figs. 5-7.

We can notice that grouping the data in blocks of length more than one month, results

in Markov chains of ”smoother” order, in the sense that the order of the chain does not

change so fast. It is also interesting to notice that while the order of the Markov chain for

the stations 16-20, varies a lot according to the AIC and GMFC estimators it seems to

be almost constant for the BIC order estimator. As it has been expected, the BIC order

estimator underestimates the order k of the Markov chain relatively to both the AIC and

GMFC order estimators for large k and moderate data sets, see Dalevi et al. (2006), while

the values of the GMFC order estimator lie between the BIC and AIC ones. The results

presented in Figs. 5-7, confirm that the model order is sensitive to the season (month) and

the length of the season (number of months) considered, as well as the method used in

identifying the optimum order. Possible dependence on the threshold used for identifying

wet and dry days has not been studied here. For the rest of this study, we define as

seasons the 3 month periods, December-February, March-May, June-August, September-

November. As can be seen in Fig. 3 for the station in Lund, the rest of the stations

provide with similar plots, the probability of precipitation is close to be constant during

these periods, which makes the assumption of stationarity seem plaussible. The orders of

the Markov chain for these periods can be found in Fig. 7. For the rest of this study the

order k of the Markov chain is decided according to the GMFC order estimator.
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Estimated Orders by Akaike order estimator
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Fig.5: k-Markov chain orders for block lengths of one month, (Jan, Feb, ...).
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Fig.6 k-Markov chain orders for block lengths of two months, (Jan-Feb, Feb-Mar, ...).
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Fig.7 k-Markov chain orders for block lengths of three months, (Jan-Mar, Feb-Apr, ... ).

4.2 Distribution of Dry Spell length

An interesting aspect of the wet/dry behavior, i.e. the process Xt, is the distribution of

the dry (wet) spells, i.e., the number of consecutive dry (wet) days, which is an accessible

property of multiple step Markov chains.
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For a time homogeneous (stationary) k-Markov chain Xt, (k ≥ 2), with state-space S

let T be the first time the process Xt is such that τ2(X
t) = (1, 0), i.e.,

T = inf{t ≥ 0 : τ2(Y
t) = (1, 0)}.

So T is the time of the start of the first dry period. Let also for the words u, v ∈ Sk

au,v = P (τk(X
T ) = v|τk(X

0) = u)

denote the probability the process Xt has at time T a k-tail equal to v given that the

k-tail at time 0 is equal to u. The probabilities au,v are easily obtained for stationary

processes, see Norris (1997). Note that at t = 0, there may be the start of a dry period,

the start of a wet period, the continuation of a dry period or the continuation of a wet

period. If D(Xt) denotes the length of the first dry period that starts at time t = 0 for the

k-Markov chain Xt, then assuming additionally that the process Xt is time homogeneous,

the distribution of the first dry spell can be computed as

P (D(Xt) = m) =
∑

{u∈Sk}

πu

∑

{w∈Sk:τ2(w)=(1,0)}

au,wP (τm(Xm−1) = 0, Xm = 1|τk(X
0) = w),

(1)

where 0 is used to denote sequences of 0′s of appropriate length.

Now, if v = w01 is a word of length m + k (0 here is of order m − 1) and using the

fact the process Xt is a k-Markov chain, Eq.1 can be rewritten as

P (D(Xt) = m) =
∑

{u∈Sk}

πu

∑

{w∈Sk:τ2(w)=(1,0)}

au,w

m
∏

i=1

P (Xi = vk+i|τk(X
i−1) = τk(v

k+i−1)).

(2)

Remark 1 Here we should notice that the distribution of the first dry spell is different

than the distribution of the subsequent dry spells for Markov chains of order greater than

two. For one or two order Markov chains there is no need for this distinction. Moreover

the equivalent of Eq. 1 for k = 1 is

P (D(Xt) = m) = pm−1
0,0 p0,1

while for k = 2, Eq. 2 simplifies to

P (D(Xt) = m) =







p10,1 for m = 1

p10,0p
m−2
00,0 p00,1 for m ≥ 2,

where au,v = 1 for all u,v in Eq. 1.
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The distribution of the first dry spell can be also used for model selection or model

validation purposes. For this, we use the Kolmogorov-Smirnov (KS) test, see Benjamin

and Cornell (1970). The one sample KS test compares the empirical distribution function

with the cumulative distribution function specified by the null hypothesis.

Assuming that Pk(x) is the true distribution function (of a Markov chain of order k)

the KS test is

D = sup
m∈N+

|Pk(D(X) ≤ m) − Femp(m)|,

where Femp(x) is the empirical cumulative distribution of the length of the first dry spell.

If the data comes truly from a k order Markov chain and the transition probabilities are

the correct ones, then by Glivenko-Cantelli theorem, the KS test converges to zero almost

surely (a.s).

To apply the test, the transition probabilities have been estimated from the data using

maximum likelihood for different values of the order k of the Markov chain. To obtain

the empirical distribution of the length of the first dry spell, we have computed the length

of the dry spells (sequence of zeros) following the first (1, 0). (Here note that this is

equivalent to computing the length of the first dry spell for Markov chains of order k = 1

or k = 2. In the case of k = 3, although the distribution of the first dry spell is not

exactly the same as the distribution of any dry spell, we have still used all the dry spells

available due to shortage of data.) The procedure has been applied separately to data

from each station and season. If the first observations were zeros, they were ignored as

the continuation of a dry spell. Also if a dry spell was not over by the end of the season

then it was followed inside the next season.

To determine whether the theoretical model was correct or not, Monte Carlo simula-

tions were performed. We have obtained the empirical distribution of the length of the

first dry spell using 500 synthetic wet/dry records of 44 years of data (each station and

season was treated separately), and the KS test was computed for each one of them, which

resulted to the distribution of the KS statistic.
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Estimated Orders by KS−criterion of dry spell order estimator
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Fig.8: Order of Markov chain as suggested by the Kolmogorov-Smirnov statistic at 10%

tail value for each station and season.

The suggested orders of the Markov chain using the Kolmogorov-Smirnov statistic at

the 10% tail value are collected in Fig. 8. The resulting orders of the Markov chain appear

to be close to those obtained by the BIC order estimator. In Table 2, we have collected

information on how many data sets have passed the Kolmogorov-Smirnov test at the 10%

tail value for the different seasons. Observe that the KS test suggests that the 1-Markov

chain, although widely used, is an inadequate model for the majority of the stations in

Sweden over the different seasons.

Season

Model S1 S2 S3 S4

k = 1 1 0 1 6

k = 2 20 20 20 20

k = 3 20 20 20 20

Table 2: Number of data sets that have passed the Kolmogorov-Smirnov test at the

10% tail value for different orders of the Markov chain. S1 stands for Dec.-Feb., S2 for

Mar.-May, S3 for Jun.-Aug. and S4 for Sep.-Nov.

4.3 Distribution of Long Dry Spells

Let us now define as long dry spell, a dry spell with length longer or equal to the order k

of the Markov chain. Then it is easy to show that the distribution of the long dry spell is
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actually geometric. Indeed, let a long dry spell that starts at time i have length m ≥ k

and let us also assume that we know that the length of the dry spell is at least l. Then,

for m ≥ l ≥ k

P (D(Xt) = m|τl(X
i+l−1) = 0) = p0,1p

m−l
0,0 = p0,1(1 − p0,1)

m−l,

where as before

p0,1 = P (Xn+1 = 1|τk(X
n) = 0), ∀n.

Therefore, the expected length of long dry spells is given by

E(D(Xt)|τl(X
i+l−1) = 0) = l +

1 − p0,1

p0,1
. (3)
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Fig. 9: Conditional distribution of Dry Spell given the Dry Spell is longer or equal to 3

days for k-Markov chain models of order k = 1, k = 2 and k = 3 and the data from Lund.

Data are from the winter months December-February.

Fig. 9 shows the conditional distribution of dry spell given that it has lasted for more

than two days for the first season and the data from Lund. The estimated order of the

Markov chain for this data set is 2 using both the GMFC and the KS criterion. A first order

Markov chain, the popular model of choice in this case would obviously underestimate

the risk of a long dry spell. A two order Markov chain seems to be the best choice for

this particular data set.

It is clear from Table 3, that underestimation of the order k of the Markov chain leads

to underestimation of the expected length of the long dry spells, where again a dry spell

is defined as long if it has length larger than or equal to the order of the Markov chain.

15



Model l = 1 l = 2 l = 3

k = 1 2.49 3.49 4.49

k = 2 - 3.91 4.91

k = 3 - - 5.11

Observed 2.56 3.97 5.23

mean value

Table 3: Expected length of long dry spells for season Dec-Feb in Lund.

5 Modeling the Amount Precipitation Process

In this section we model the amounts of daily precipitation. This is done in two steps.

Firstly we model the dependence structure of the amount precipitation process and sec-

ondly we estimate the marginal distribution.

One of the important features of any climatological data set, is that they exhibit

dependence between nearby stations or successive days. In this work we are interested in

the latter case and the dependence structure is modelled using two-dimensional Gaussian

copula.

After the copula has been estimated, we remove the days with precipitation below the

cut-off level of 0.1mm. That is, we let Yt be the thinning process resulting from the amount

of precipitation process Wt when we consider only the wet days, i.e., Yt := Wt|Xt = 1.

Then, the marginal distribution of the amounts of daily precipitation is modelled following

an approach that combines the fit of the distribution of excesses over a high threshold

with the empirical distribution of the thinned data below the threshold.

5.1 Copula

Almost every climatological data set exhibit dependence between successive days. To

model the temporal dependence structure of the data we use the two-dimensional Gaussian

copula C given by

C(u, v; ρ) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1 − ρ2
e
−x2

−2ρxy+y2

2(1−ρ2) dxdy (4)

= Φρ(Φ
−1(u), Φ−1(v)),
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where Φ is the cumulative distribution function of the standard normal distribution and

Φρ is the joint cumulative distribution function of two standard normal random variables

with correlation coefficient ρ.

To estimate the copula, let

A = {t : Yt > 0 and Yt+1 > 0},

be the set of all days with non zero precipitation that were followed by days also with

non zero precipitation (greater than 0.1mm) and

u = [Ya1, Ya2 , . . . ] , v = [Ya1+1, Ya2+1, . . . ] , a1, a2, · · · ∈ A

be the vectors consisting of the amounts of precipitation during the days indicated in the

set A and the following days respectively, both with marginal distribution F (x). Then,

transforming the vectors u and v by taking the empirical cumulative distribution corrected

by the factor n
n+1

, (n is the number of days with positive precipitation in the data set)

results to vectors U and V respectively that follow the discrete uniform distribution in

(0, 1). If the Gaussian copula in Eq. 4 describes correctly the dependence structure of the

data, then

(

Φ−1(U), Φ−1(V)
)

∼ N









µ1

µ2



 ,





σ1 ρσ1σ2

ρσ1σ2 σ2







 .

Finally the copula parameter ρ is estimated using Pearson’s correlation coefficient. An

analytic description of the method and its application can be found in Lennartsson and

Shu, (2005). The dependence between successive days is demonstrated in Fig. 13 where

the transformed data from Lund are plotted.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

T
(Y

t+
1)

T(Y
t
)

17



Fig.13: Plot of the dependence structure with the marginal distributions transformed to

standard normal.

For a thorough coverage of bivariate copulas and their properties see Hutchinson and

Lai (1990), Joe (1997), Nelsen (2006), and Trivedi and Zimmer (2005) who provide with

a copula tutorial for practitioners. The values of the correlation coefficient ρ, estimated

for each station are collected in Table 4. Notice that all the estimates of the correlation

coefficient ρ are statistically significant, which makes the assumption of independence

between the data points to seem unreasonable.

5.2 Marginal Distribution

Finally, to model the amount precipitation process we propose an approach that combines

the fit of the distribution of excesses over a high threshold with the empirical distribution

of the original data below the threshold. We commence our analysis by introducing

some notation followed by some introductory remarks. Let X1, X2, . . . be a sequence of

independent and identically distributed random variables having marginal distribution

F (x). Let us also denote by

Fu(x) = P (X ≤ x|X > u),

for x > u, the conditional distribution of X given that it exceeds level u and assume that

Fu(x) can be modelled by means of a generalized Pareto distribution, that is

Fu(x) = 1 −

(

1 + ξ

(

x − u

σ

))− 1
ξ

, (5)

for some µ, σ > 0 and ξ over the set {x : x > u and 1 + ξ x−u
σ

> 0}, and zero otherwise.

Let also, Femp(x) denote the empirical distribution i.e.,

Femp(x) =
1

n

n
∑

i=1

{Xi ≤ x},

where {·} denotes the indicator function of an event, i.e. the 0−1 random variable which

takes value 1 if the condition between brackets is satisfied and 0 otherwise.

Finally, define the function

FC(x; u) = Femp(x ∧ u) + (1 − Femp(u))Fu(x),
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which, as can be easily checked, is a probability distribution function that will be used to

model the amount precipitation process. Thus what needs to be addressed is the choice

of the level u above which the excesses can be accurately modelled using a generalized

Pareto distribution as well as methods for the estimation of the distribution parameters.

5.2.1 Choice of Threshold Level

Selection of a threshold level u, above which the generalized Pareto distribution assump-

tion is appropriate is a difficult task in practice see for example, McNeil (1996), Davison

and Smith (1990) and Rootzen and Tajvidi (1997). Frigessi et al. (2002), suggest a dy-

namic mixture model for the estimation of the tail distribution without having to specify

a threshold in advance. Once the threshold u is fixed, the model parameters ξ and σ are

estimated using maximum likelihood, although there exists a number of other alternative

methods, see for instance Resnick (1997) and Crovella and Taqqu (1999) and references

therein.

5.2.2 Extreme Value Analysis for Dependent Sequences

The generalized Pareto distribution is asymptotically a good model for the marginal

distribution of high excesses of independent and identically distributed random variables,

see Coles (2001), Leadbetter et al. (1983). Unfortunately, this is a property that is almost

unreasonable for most of the climatological data sets since dependence in successive days

is to be expected. A way of dealing with the dependence between the excesses is either to

choose the level u high enough so that enough time has past between successive excesses to

make them independent or to use declustering, which is probably the most widely adopted

method for dealing with dependent exceedances; it corresponds to filtering the dependent

observations to obtain a set of threshold excesses that are approximately independent,

see Coles (2001). A simple way of determining m-clusters of extremes, after specifying a

threshold u, is to define consecutive excesses of u to belong to the same m-cluster as long

as they are separated by less than m+1 time days. It should be noted that the separation

of extreme events into clusters is likely to be sensitive to the choice of u, although we do

not study this effect in this work. The effect of declustering to the generalized Pareto

distribution in Eq. 5 is the replacement of the parameters σ and ξ by σθ−1 and ξ, where
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θ is the so-called extremal index and is loosely defined as

θ = (limiting mean cluster size)−1.

5.3 Method Application

In this subsection we apply the method described in subsection 5.2 to model the thinning

of the amount of precipitation process, i.e. Yt. To demonstrate the method we use data

from the station in Lund. The rest of the stations give similar results.

As we have already seen, the data exhibit temporal dependence. The correlation

coefficient ρ, using the Gaussian copula for the data from Lund was estimated to be 0.1362.

The dependence in the data can also be seen in Fig. 10, where the expected number of

m clusters (with more than one observation) for different values of m and u = 15mm

are plotted. The expected number of these m clusters, assuming the observations are

independent is denoted by ’o’ and are consistently less that the observed number of m

clusters that is denoted by ’+’. The expected number of m clusters computed assuming

the observations are actually correlated (ρ = 0.1362) is denoted by ’*’ and provides with

an obvious improvement to the assumption of independence. We also provide with 95%

exact confidence intervals for both cases. The observed values fall inside the confidence

interval constructed assuming correlated data.
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Fig. 10: Number of m-clusters with more than one observation. ’+’ denotes the observed

and ’o’ the theoretical number of m-clusters assuming that the observations are indepen-

dent, while ’*’ denotes the number of m clusters using ρ = 0.1362. Line ’–’ denotes the

95% confidence interval for the theoretical number of m-clusters assuming independence,
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while ’-.’ denotes the 95% confidence interval for the theoretical number of m-clusters

assuming ρ̂ = 0.1362.

After the cluster size has been decided, in the case of the station in Lund m = 0, we

turn to the problem of estimating the parameters ξ, σ and θ for the generalized Pareto

model. The choice of the specific threshold (u = 15mm) was based on mean residual life

plot. It is expected, see Coles (2001) that for the threshold u for which the generalized

Pareto model provides a good approximation for the excesses above that level, the mean

residual life plot i.e. the locus of the points

{(

u,
1

nu

nu
∑

i=1

(Yt(i) − u)

)

: u < Y max
t

}

,

where Yt(1), . . . , Yt(nu) are the nu observations that exceed u and Y max
t is the largest ob-

servation of the process Yt, should be approximately linear in u. Fig. 11 shows the mean

residual life plot with approximate 95% confidence interval for the daily precipitation in

Lund. The graph appears to curve from u = 0 until u = 15 and is approximately linear

after that threshold. It is tempting to conclude that there is no stability until u = 28

after which there is approximate linearity which suggests u = 28. However, such threshold

gives very few excesses for any meaningful inference (33 observations out of 16000). So

we decided to work initially with the threshold set at u = 15.
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Fig. 11: Mean residual life plot of amount precipitation process from Lund, dotted lines

give the 95% confidence interval.

Finally, the different diagnostic plots for the fit of the Generalized Pareto distribution

are collected in Fig. 12. The data from the rest of the stations have produced similar plots
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none of which gave any reason for concern about the quality of the fitted models. The

parameters of the generalized Pareto model for the data from all the stations together

with 95% confidence intervals are collected in Table 4. For three different stations, (i.e.

Bolmen, Bor̊as, and Hapamanda), the estimates of the shape parameter, ξ, are negative.
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Fig. 12: Diagnostic plots for threshold excess model fitted to daily precipitation data

from the station in Lund.

Table 5 shows θ for different values of m-clusters and threshold u = 15 for the data

from Lund.

6 Evaluation

To verify the validity of the model, we have obtained distribution functions of the dif-

ferent precipitation indices as stipulated by the Expert Team and its predecessor, the

CCl/CLIVAR Working Group (WG) on Climate Change Detection, see Peterson et al. (2001)

and Karl et al. (1999). Sixteen of those indices are of relevance to this work, two regard-

ing only the occurrence of precipitation process (CDD and CWD), another two regarding

only the amount precipitation process (SDII and Prec90p) and the remaining twelve con-

cerning both processes, see Table 6. Using the chain dependent model, we have obtained

the distribution of each index based on 100, 000 simulations. This has been compared

to the empirical distribution (’.-’ line in Figs. 14 - 18). The agreement between the two

distributions is more than satisfactory. Moreover, the empirical distribution falls always

inside the 90% exact confidence intervals. The results have been presented for the weather

station in Lund. The rest of the stations give similar results.
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Station σ̂ CI for σ̂ ξ̂ CI for ξ̂ θ̂ u (mm) ρ̂

Lund 5.91 (4.93, 7.03) 0.076 (-0.041, 0.236) 0.935 15 0.1362

Bolmen 6.44 (5.56, 7.41) -0.0002 (-0.095, 0.116) 0.921 15 0.2008

Hanö 5.29 (3.044, 8.737) 0.458 (0.115, 1.05) 0.977 25 0.1649

Bor̊as 7.63 (7.01, 8.28) -0.011 (-0.067,0.053) 0.794 10 0.1982

Varberg 5.48 (4.687, 6.378) 0.106 (0.001, 0.236) 0.926 15 0.1206

Ungsberg 5.768 (4.622,7.115) 0.245 (0.089,0.445) 0.925 15 0.1843

Säffle 6.62 (5.96,7.329) 0.099 (0.027,0.183) 0.857 10 0.1809

Söderköping 6.259 (4.32,8.884) 0.297 (0.1, 0.649) 0.984 25 0.1678

Stockholm 5.597 (4.827,6.453) 0.135 (0.033,0.259) 0.903 10 0.1523

Malung 6.355 (5.676,7.095) 0.08 (0.004,0.17) 0.86 10 0.2280

Vattholma 4.964 (3.521,6.784) 0.334 (0.098,0.667) 0.984 20 0.1709

Myskel̊asen 6.854 (5.962,7.844) 0.019 (-0.072,0.13) 0.849 10 0.2311

Härnösand 7.863 (7.053, 8.742) 0.087 (0.011, 0.175) 0.832 10 0.2068

Rösta 6.276 (5.453,7.19) 0.032 (-0.062, 0.145) 0.876 10 0.2116

Pite̊a 5.937 (4.429, 7.822) 0.19 (0.004, 0.456) 0.96 20 0.2010

Stensele 7.66 (6.098, 9.5) 0.041 (-0.11, 0.236) 0.915 15 0.2249

Haparanda 5.628 (4.405, 7.07) -0.073 (-0.196, 0.125) 0.984 18 0.1871

Kvikkjokk 5.66 (5.01, 6.36) 0.04 (-0.04, 0.137) 0.864 10 0.2526

Pajala 5.033 (3.705, 6.728) 0.356 (0.153, 0.646) 0.966 18 0.2385

Karesuando 5.303 (4.117, 6.754) 0.12 (-0.037, 0.34) 0.922 15 0.2206

Table 4: Extremal parameters and their 95% confidence intervals for each weather station.

m θ̂

0 0.9144

1 0.8836

2 0.8425

3 0.8322

Table 5: Values of the parameter θ for different choices of m clusters.

23



Index Description Formula

R10mm Heavy precipitation days
∑

1{Zi>10}

R20mm Very heavy precipitation days
∑

1{Zi>20}

RX1day Highest 1 day precipitation amount maxi Zi

RX5day Highest 5 day precipitation amount maxi

∑4
j=0 Zi+j

CDD Max number of consecutive dry days max{j : τj(X
i) = 0}

CWD Max number of consecutive wet days max{j : w = τj(X
i), wk > 0, ∀k}

R75p Moderate wet days
∑

1{Zi>q0.75}

R90p Above moderate wet days
∑

1{Zi>q0.90}

R95p Very wet days
∑

1{Zi>q0.95}

R95p Extremely wet days
∑

1{Zi>q0.99}

R75pTOT Precipitation fraction due to R75p
∑

Zi1{Zi>q0.75}/
∑

Zi

R90pTOT Precipitation fraction due to R90p
∑

Zi1{Zi>q0.90}/
∑

Zi

R95pTOT Precipitation fraction due to R95p
∑

Zi1{Zi>q0.95}/
∑

Zi

R99pTOT Precipitation fraction due to R99p
∑

Zi1{Zi>q0.99}/
∑

Zi

SDII Simple daily intensity index
∑

Yi/
∑

1{Yi>0}

Prec90p 90%-quant. of thinned amount of precipitation F−1
Y (0.9)

Table 6: Weather Indices and their mathematical expressions. The quantiles q(·) have

been estimated using the observed data.

As we can see, Fig. 14 (top left), approximately during two years we expect to have

about 17 days with precipitation more than 10mm and, Fig. 14 (top right), about 3 days

with precipitation more than 20mm. But then, see Fig. 14 (bottom left), the precipitation

during each one of these three days will be quite a lot more than 20mm. Fig. 14 (bottom

right) tell us that the probability of having 5 consecutive days of really heavy precipitation

in Lund is quite high.
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Fig. 14: Plots of R10mm (top left), R20mm (top right), RX1day (bottom left) and

RX5day (bottom right). theoretical distribution ’-’ and empirical distribution ’.-’.

10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

no. of days

Index CDD

 

 

Model cumul. distr.
Empirical distr.

8 10 12 14 16 18 20 22 24

0

0.2

0.4

0.6

0.8

1

no. of days

Index CWD

 

 

Model cumul. distr.
Empirical distr.

Fig. 15: Plot of maximum number of consecutive dry days (left), and maximum number

of consecutive wet days (right).

As we notice in Fig. 15 (left), once every two years we should expect to have a dry

spell with length more than two weeks, and a wet spell of approximately 12 days.

25



30 35 40 45 50 55 60 65 70

0

0.2

0.4

0.6

0.8

1

no. of days

Index R75p

 

 

Model cumul. distr.
Empirical distr.

10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

no. of days

Index R90p

 

 

Model cumul. distr.
Empirical distr.

4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

no. of days

Index R95p

 

 

Model cumul. distr.
Empirical distr.

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

no. of days

Index R99p

 

 

Model cumul. distr.
Empirical distr.

Fig. 16: Plot of the probability of number of moderate wet days (top left), above mod-

erate wet days (top right), very wet days (bottom left) and extremely wet days (bottom

right).

In Fig. 16 (top left), we see that every two years in Lund, we expect to have almost

fifty moderately wet days (top right), almost 18 above moderately wet days (top right),

almost 8 very wet days (bottom left) and almost 2 extremely wet days (bottom right).

In Fig. 17 (top left), we see that during the fifty moderately wet days that we ex-

pect over a period of two years in Lund we will have about 70% of the total amount of

precipitation. Similarly, during the 18 above moderate wet days we expect on average a

little more than 40% of the total precipitation amount (top right), for the 8 very wet days

about 25% of the total amount (bottom left) and for the 2 extremely wet days about 10%

(bottom right) of the total amount.

In Fig. 18 (left), we see that the average amount of precipitation per day of precipita-

tion is 3.5mm and also every year on average only 1 out of the 10 precipitation days the

downfall exceeds 9.5mm.
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Fig. 17: Percentage of precipitation during the moderately wet days (top left), the above

moderate wet days (top right), the very wet days (bottom left) and the extremely wet

days (bottom right).
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Fig. 18: Plot of the average amount of precipitation per day of precipitation (left) and the

90% quantile of the amount of precipitation of the thinned precipitation process (right).

7 Conclusions

In this paper, we have modelled the temporal variability of the precipitation in Sweden.

The different weather stations have been assumed as not having any spatial dependence.
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It is among our future research plans to try to model also the spatial variability of the

precipitation in the different weather stations in Sweden. Some interesting conclusions

can be drawn.

We have used a chain dependent model for the precipitation. That consists of a compo-

nent for the occurrence of precipitation and a component for the amount of precipitation.

For the first component, we have used high order Markov chains with two states. We have

shown that the 1-Markov chain model that has been used extensively, is an inadequate

model for most of the Swedish stations. For example, when the distribution of the long

dry spell is of interest, the 1-Markov chains underestimates the length of the long dry

spell in some cases up to half a day.

For the amount of precipitation process, we have used a copula to describe the temporal

dependence structure between successive days, which in reality is a Gaussian process with

transformed marginals. Then, the cumulative distribution has been modelled in two

steps. First using the empirical distribution for the amounts of precipitation that are less

than a given threshold and, then using a generalised Pareto distribution to model the

excesses above the threshold. Such models have the advantage that they provide with the

mathematical platform that allows computation of such quantities as return periods.

Finally, the distributions of different weather indices have been computed using Monte

Carlo Markov Chain techniques, and been compared to the empirical distributions ob-

tained from the data. The agreement between the two distributions has been really good,

which supports the choice of the models.
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8 Appendix

8.1 Review of Mathematical Order Estimators

Let Xt denote a k-Markov chain that is defined on a state space S and xn
1 its realisation.

Let also PML(k)(x
n
1 ) be the kth order maximum likelihood, i.e.

PML(k)(x
n
1 ) = max P (Xk

1 )Πn
i=k+1P (Xi = xi|τk(X

i−1) = τk(x
i−1)).

Tong (1975) reported that the Akaike Information Criterion (AIC) order estimator, could

be used as an objective technique for determining the optimum order k of the chain, see

also Akaike [?]. The optimium order k is the order that has the minimum loss function:

k̂AIC(xn
1 ) = argmink(− log PML(k)(x

n
1 ) + |S|k).

Schwartz (1978) presented an alternative technique the Bayesian Information Criterion

(BIC) order estimator whose consistency was established under general conditions [?]

was only recently established. The optimum order, k is the order that minimises the loss

function which now is given by:

k̂BIC(xn
1 ) = argmink(− log PML(xn

1 ) +
|S|k(|S| − 1)

2
log(n)).

Dalevi et al. (?) showed using experimental results that the BIC order estimator tends to

under-estimate the order as k gets larger for moderate data sizes.

Finally, the Maximal Fluctuation Criterion (MFC) contrary to the AIC and BIC

order estimators, was specifically designed for multiple step Markov chains. Let for any

realisation x ∈ Sn of the k-Markov chain, Nx(w) = |{i ∈ [1, n] : τl(x
i) = w, w ∈ Sl}|

denote the number of times w occurs in x. The Peres-Shields Fluctuation function is

defined as

∆k(v) = max
s∈S

|Nx(vs) −
Nx(τk(v)s)

Nx(τk(v))
Nx(v)|.

When the order of the Markov chain is k or less, this fluctuation is small. Therefore, the

Maximal Fluctuation Criterion (MFC) order estimator is defined as

k̂MFC(xn
1 ) = min{k ≥ 0 : max

k<|v|<log log(n)
∆k(v) < n3/4}.

In practice the function log log(·) is substituted by any function that grows slower than

log(·). Dalevi et al. (?) suggested the Generalized Maximum Fluctuation Criterion
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(GMFC) order estimator, which is closely related to the Maximal Fluctuation Criterion

(MFC) order estimator,

k̂GMFC(xn
1 ) = argmaxk

maxk−1<|v|<f(n) ∆k−1(v)

maxk<|v|<f(n) ∆k(v)
,

where f(n) is any function that satisfies the same conditions as for the GMF order esti-

mator.
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