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Technology, SE-412 96 Göteborg, Sweden
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Abstract

Several studies show that substantial industrial energy savings can be achieved through process in-
tegration. The returns on such investments are, however, uncertain because of uncertainties in future
energy prices and policies. This article presents a stochastic mixed-integer programming approach
which enables the identification of robust process integration investments under uncertainty. The
proposed approach is applied to the case of a pulp mill for which the complete optimization model is
presented. The model is a scenario-based multistage stochastic programming model with the objec-
tive of maximizing the net present value of the investments.The model also enables the optimization
of investment timing. We show as one important result that the probability distribution can be varied
rather much without a change in the optimal solution. This implies that the stochastic programming
approach is a valuable tool although the true probabilitiesfor the future scenarios are not known.

Keywords: investment analysis, multistage stochastic programming,scenarios, decision support
analysis, process integration.

1 Introduction

The cost-effectiveness of industrial investments in energy efficiency is strongly related to constantly
changing energy market conditions, making decision-making regarding such investments a complicated
task. In particular, the increased climate concern in society leads to higher CO2 emissions charges. Al-
though such an increase of the emissions charges makes investments in energy efficiency more profitable,
uncertainty about the future development of climate policies might, however, make it more difficult to
evaluate the investments. In the worst case, no energy efficiency investments are made, although they
should be profitable, because of the difficulty of knowing what the outcome will be of the investment de-
cision. Blyth et al. (2007) conclude that in order for policy-makers to promote low-carbon technologies,
some long-term certainty about the future policy development should be provided.

For strategic investments especially, profitability depends on the future energy market. Electricity
and fuel prices, emissions charges and taxes are all examples of energy market parameters that are
highly uncertain, but directly influence the profitability of the investments. In a stochastic programming
approach, the uncertainties are explicitly incorporated in an optimization model, and the investment
planning is improved. In stochastic programming it is assumed that, like in reality, investments are made
before the outcome of the uncertain parameters is revealed.The objective is to maximize the expected
net present value of the investments over all future scenarios. This kind of approach will provide better
information to base the decisions on. Several recent studies dealing with energy-related investment
decisions confirm the importance of accounting for uncertainty and timing (Blyth et al., 2007; Laurikka,
2006; Wickart and Madlener, 2007; Yang et al., 2007).
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This article presents a multistage stochastic programmingmodel for the investment planning of
process integration measures in a pulp mill. The objectivesare mainly to present a complete model for
this kind of optimization, and to illustrate and discuss themodelling issues that arise. Since the decision
problem is an engineering design problem, there are integerrequirements on the variables. The objective
is the net present value of the investments which can be made at multiple stages, making the economic
evaluation more complicated than if all of the investments were made at the same time.

The term ‘process integration’ is a wide concept that refersto systematic methods for optimization
of production systems, primarily with respect to energy efficiency and reduction of environmental ef-
fects. This paper gives a description of a stochastic programming model, which is also the mathematical
framework used in previous work by the authors on the optimization of process integration investments
under energy market uncertainty (Svensson E et al., 2008a,b). Here, some new angles for the analyses
of results are provided which have not been presented in the previous papers. These new results include
further analyses of the robustness of the optimal solution and an evaluation of the investment timing
modelling.

In stochastic programming, the probabilities for different future scenarios are assumed to be known.
For the kind of uncertainties that are dealt with here, assumptions can be made about probabilities, but
there is no way to define a ‘true’ distribution. In this paper,we present a case study of a pulp mill
for which we show that the optimal solution is actually not very sensitive to moderate changes in the
assumed probability distribution. Hence, the stochastic programming approach can be adopted also
when the probabilities for the future scenarios are not knowfor certain, and the optimal solution can
be considered a robust solution. The robustness is closely related to the integer requirements on the
decision variables, which result in the model having quite few feasible solutions. This relation between
integrality and robustness is further discussed in Section4.

2 The case study

The model used for this study is the same as the one used in previous work by the authors (Svensson
E et al., 2008a). The focus then was to illustrate what kind ofresults can be achieved by using such
a stochastic programming approach for the optimization of energy efficiency investments. Here, the
focus is rather on the underlying mathematical model that constitutes the framework of the proposed
optimization methodology.

The pulp and paper industry is the fourth largest industrialenergy user in the world (IEA, 2007),
which makes it an important sector in the progress to mitigate climate change. Cost-effective energy
savings have been identified in the pulp and paper sector in several studies (Axelsson and Berntsson,
2008; Martin et al., 2000; Möllersten et al., 2003). The cost-effectiveness of the proposed measures is,
however, depending on, for example, the electricity and wood fuel prices, which are uncertain.

The analyzed mill is a computer model of a typical Scandinavian pulp mill. It was originally devel-
oped for the Swedish national research programme ‘The Future Resource Adapted Pulp Mill’ (FRAM,
2005). The mill will increase its production by 25% in the near future, which renders the opportunity
to make other changes in the process. The production increase case has previously been studied by
Axelsson et al. (2006b).

When the pulp production is increased at a pulp mill, the recovery boiler is often a bottleneck. To the
recovery boiler comes a process stream of black liquor from the pulp digester which contains, among
other substances, pulp digesting chemicals, but also lignin which is a biomass by-product in the pulp
production process. In the recovery boiler, the digester chemicals of the black liquor are recovered.
In addition, the energy of the lignin is utilized to produce high-pressure (HP) steam. The production
increase will lead to an increase of black liquor flow to the recovery boiler, but also an increased steam
demand of the process.
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Traditionally, a recovery boiler upgrade (RBU) has to be carried out–at substantial costs–to meet
the new capacity requirements, see Figure 1a. However, since more HP steam can be produced in
the upgraded boiler, there will be a possibility to increasethe electricity production. Alternatively, the
recovery boiler upgrade can be avoided by decreasing the load on the recovery boiler. This can be
achieved by separating lignin from the black liquor (Axelsson et al., 2006b), see Figure 1b. The lignin
can be exported as wood fuel. In this approach, the steam production cannot be increased, since the
heat of the separated lignin is not utilized. Without any other process changes, the steam demand of the
process will, however, still increase. Nevertheless, lignin extraction will remain an interesting option if
enough steam savings are carried out to prevent the steam demand from increasing.

Figure 1: Two approaches to increased production. a) Upgrading the recovery boiler to the new capacity
requirements. b) Debottlenecking the recovery boiler by separating lignin from the black liquor.

With substantial steam savings it might even be possible to achieve an energy surplus at the mill.
Different opportunities for energy efficiency can be identified by using process integration methods.
Pinch technology (Kemp, 2007; Smith, 2007) is one such process integration method which was used
by Axelsson et al. (2006a) to identify the potential for energy savings at the studied mill. The achieved
steam surplus can be used to increase the electricity production, to further increase the lignin extraction,
or for district heating. High- and/or medium-pressure steam can be used to produce electricity in a
back-pressure turbine while low-pressure steam can be usedin a condensing turbine.

District heating (DH) can be produced from low-pressure steam or from excess heat of a lower tem-
perature, for example hot water. The district heating potential depends on the demand and the alternative
district heating production in nearby communities. There is generally a larger potential for profitable
excess heat cooperation between mills and energy companiesin small district heating systems (Jönsson
et al., 2008) than in larger systems. Hence, we assume here the presence of a small district heating
system nearby, and use the data for the small system studied by Svensson IL et al. (2008c).

The overall system consequences of process integration are, as can be understood from the above
description, complex to evaluate. The opportunities for electricity production, district heating, and lignin
extraction are closely related to each other, as well as on how far the steam savings are taken. The
optimization formulation of the problem enables a modelling of the system without knowing the overall
consequences of every decision. There is, for example, no need here to know the exact amount of steam
savings that are needed to avoid the recovery boiler upgrade. Instead, it is sufficient to set the required
lignin extraction rate and to model the relation between steam savings and lignin extraction.
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3 The optimization model

The objective of the optimization is to maximize the expected net present value (NPV) of energy effi-
ciency investments at a pulp mill. The general assumption isthat decisions are made ’here-and-now’,
before uncertainties are resolved and any energy market changes occur. We assume that a point in time
when investment decisions can be made is followed by a periodof a couple of years, when no new
investments can be made. This gives rise to two stages of the programming model. The cash flow of
the second stage, that is the period when no investments can be made, is a function of the previous in-
vestment decisions, the energy prices, and the operative decisions. A model of this kind, with two types
of decisions where the second one is a reaction to the first as well as on the realization of the uncertain
parameters, is termed a recourse model. The model presentedhere is in fact a multistage model. This
means that after each investment period, new investments can be made. After each point in time where
investments are decided on follows a period with realizations of uncertain parameters and changed cash
flows. The uncertain parameters, typically energy prices, are modelled using scenarios.

As the problem at hand is basically an engineering design problem, it typically involves simulations,
experimental data, and catalogue selections to establish the functions connecting design variables and
the dependent characteristics and attributes of the design. Because it is, in practice, impossible to express
these relations as analytical continuous functions, the decision variables are typically binary, expressing
a choice between discrete options, for which the dependent characteristics can be established in advance.
Here, we additionally require the final optimization model to be linear, as the solver intended to be
used is restricted to mixed-integer linear programming (MILP) models. The model was formulated in
AMPL (Fourer et al., 2003) and solved using the MILP solver CPLEX (ILOG, 2006). The introduction
of binary variables into the optimization model increases its computational complexity and thus the
solution time. The scenario-based modelling of the random variables further increases the number of
decision variables, making the model grow combinatoriallywith a corresponding considerable increase
in computing time. However, the model will remain a MILP model, also in the presence of recourse,
which is an advantage since there are algorithms for solvingthat kind of models. The theory of stochastic
linear programming is covered in, e.g., Birge and Louveaux (1997) and more recently in Ruszczyński
and Shapiro (2003) and Kall and Mayer (2005). Stochastic integer linear programming is described in,
e.g., Louveaux and Schultz (2003) and Sen (2006).

The main parts of the model were developed for a general stochastic optimization of investments
in energy efficiency measures. Those parts are not limited tothe use of a specific mill or industry or
a specific set of measures or ways of benefiting from the implemented energy savings. However, parts
of the model have to be built upon assumptions about a specificcase. The whole model is presented
here for the case of a production increase in the model pulp mill described in Section 2. This enables
clearer explanations of the different parts of the model, which means, for example, that energy savings
are supposed to be in the form of steam savings. Wood input to apulp mill is of course primarily a raw
material for the pulp production, but wood by-products are also used to cover the energy demand of the
process. The model mill studied here is, like many chemical market pulp mills of today, self-sufficient in
energy supply from the wood by-products and no additional fuel is imported. Hence, energy savings will
lead to a heat surplus at the mill since the wood input cannot be decreased if the production is to be kept
constant. An obtained heat surplus will therefore, in such mills, enable an increased export of electricity,
wood fuel, or heat. For many other industries, energy savings are primarily enabling a decreased import
of fuel.

3.1 The scenario tree

A scenario model is developed to handle the uncertainties infuture energy prices and policies such as
taxes. The characteristics of the uncertainties make it, inpractice, impossible to completely describe the
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set of possible future scenarios, but also to know the probabilities for different scenarios. The developed
scenario model is therefore kept simple. Since electricityand fuel prices are strongly linked, a few
consistent energy market parameter sets are being used as building blocks in a scenario tree. These
parameter sets can represent, for example, different ambition levels for CO2 reduction. These blocks are
combined to form different scenarios, for which the probability should then be estimated.

The scenario model is based on a tool for generating consistent energy market parameter sets (Axels-
son et al., 2007). The tool is used to create three different scenario building blocks, and present Swedish
conditions are used to form a fourth one. The different blocks are further described below, and their data
are given in Table 1.

Block I The Swedish energy market in the near future. Electricity and wood fuel prices as well as
marginal power production technology and policy instrument conditions are based on data from
the first quarter of 2006.

Block II A ’business as usual’ (BAU) evolution of society.

Block III A ’moderate change’ evolution of society where the CO2 emissions charge is increased rela-
tive to the present value (corresponding to an assumed decrease on the CO2 emissions cap). The
green power certificates are however assumed to drop in pricebecause of the higher CO2 charge
which also promotes green electricity production.

Block IV A ’sustainable’ evolution of society, i.e. the CO2 emissions charge is further increased relative
to block III. Consequently, the green power certificates arefurther reduced in price as well.

Table 1: Energy market parameter sets for the four scenario building blocks.
Scenario Block

Price parameters [e/MWh] I II III IV
Electricity price 38.6 57.3 60.8 61.9
Green electricity certificates 21.7 16.0 10.6 5.3
Lignin price 19.5 22.9 26.9 31.0
District heating price 21.3 25.3 29.5 33.7

Based on these four blocks, a number of possible scenarios are constructed. The ideas follow the
work by Ådahl and Harvey (2007). The parameters are assumed to be constant for periods of five years,
and the total calculation horizon is 30 years, which in this case study corresponds to the economic
lifetime of the investments. The final scenario tree is illustrated in Figure 2.

BAU denotes a ’business as usual’ development, with minor attention to climate issues. M1 denotes
moderate climate concern in the distant future while M2 denotes moderate concern in the near future.
S1 and S2 describe a development towards sustainability in the distant and the near future respectively.
Finally path E denotes an extreme development towards sustainability, where a radical change happens
in the very near future. The probabilities for each node in the scenario tree can easily be calculated if the
probabilities for each of the development paths are given. These probabilities are of course not known,
but they can easily be changed to test different assumptions.

Finally, we introduce some notation related to the scenariotree. The set of all nodes in the scenario
tree is denoted byN , andR is the root node. A specific node in the scenario tree is referred to by its
node numbern, the parent of that node is given byp(n), and the level of that node is given byℓ(n),
whereℓ(0) = 0. The levels of the scenario tree represents a time scale where each level corresponds to
five years.

We start by modelling the objective function which is to maximize the net present value. Then we
model the investment costs. After that, we move on to the formulation of a function for the revenue. The
necessary constraints, as well as the input data that are needed are presented along the way.
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Figure 2: Scenario tree.

3.2 The objective function: The expected net present value

The multistage model deals with successive decisions on energy efficiency investments, which generate a
revenue by enabling a decreased import of fuel or, as in this case study, an increased export of electricity,
heat, or wood fuel. The revenue is determined by the energy price levels of the different scenarios and by
the exports from the different options, that is, the power generated by the turbines, the exported lignin,
and the district heating deliveries. Adjustments are made for the residual value of investments at the
end of the analyzed time horizon. The objective is to maximize the expected net present value, which is
defined by the following formula

maximize E[NPV]:=
∑

n∈N

prn

(

τ
∑

k=1

fR(αn, ξn)

(1+r)(ℓ(n)−1)τ+k
−

(

(1+r)T−ℓ(n)τ −1
)

fC(x̂n, ŷn, δn)

(1+r)T −1

)

,

whereprn is the probability of noden, fR is the yearly revenue, which is a function of the vector of
the exports from the different options,αn, and the uncertain parameters,ξn, in noden, andfC is the
total capital expenditure, which is a function of the vectors of investment decisions,̂xn, ŷn, andδn, in
noden. Further,r is the discount rate,τ is the time difference in years between scenario tree levels, and
T is the calculation horizon in years corresponding to the economic lifetime of the investments. The
parametersr, τ , andT can be chosen freely. Here,τ = 5 years, whileT = 30 years andr = 0.093.
These chosen values ofT andr correspond to an annuity factor of 0.10, which has been identified as
a reasonable value for strategic decisions concerning energy-efficiency investments in industry (FRAM,
2005).

3.3 Investment costs

The investment cost of process equipment as a function of size or capacity is in many cases given by a
non-linear concave function. Since we desire a linear model, such investment costs have to be linearized.
The idea of the linearization procedure is to divide the equipment capacity into intervals in which the
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cost function is approximately linear. The investment costis thus modelled according to

costnu = cu0ŷ
n
u +

∑

i∈Iu

cui − cu,i−1

kui
δn
ui, u ∈ U, n ∈ N,

whereU is the set of different technologies for energy exports suchas the back-pressure turbine or the
lignin extraction, andIu is the set of linearization intervals for technologyu. Further,ŷn

u is a binary
variable with value1 if investments in technologyu are made in noden, and0 else, andcu0 denotes
the base cost for technologyu. The parametercui denotes the investment cost parameter for technology
u at the end of capacity intervali, andkui is the size of that interval. Finally,δn

ui denotes the installed
capacity within intervali for technologyu in noden. The variableŝyn

u andδn
ui then have to fulfil the

following constraints for all optionsu ∈ U and all nodesn ∈ N .

zn
u0 = ŷn

u ,

zn
uikui ≤ δn

ui ≤ zn
u,i−1kui, i ∈ Iu,

ŷn
u , zn

ui ∈ {0, 1}, i ∈ Iu,

wherezn
ui is an auxiliary binary variable that orders the intervalsi for technologyu.

The linearization is implemented as an AMPL script, giving values forIu, kui andcui. The user
only needs to provide the original cost function, error tolerances for the linearization, and the range for
which the linearization should be valid. Here, an absolute error tolerance of 0.05 Me and a relative
error tolerance of 3% was employed for the difference between the piecewise linear approximation and
the original function. This input data results in the interval sizes shown in Table 2. The different tech-
nologies of the setU are denoted by: BP (back-pressure turbine), CT (condensingturbine), LIG (lignin
separation plant), DH60 (district heating from low quality(60◦C) excess heat), DH100 (district heating
from medium quality (100◦C) excess heat), and DHLP (district heating from low-pressure steam). The

Table 2: Interval sizes (kui [MW]) of the investment cost linearization intervals.
Interval

1 2 3 4 5 6 7 8 9 10
BP 0.1 0.1 0.3 0.9 2.3 4.1 6.5 9.6 13.4 12.7
CT 0.2 0.3 0.8 1.4 2.3 3.4 4.8 5.8
LIG 1 1 3 5 8 12 17 23 30 25
DH60 100
DH100 16.3
DHLP 125

base costs and investment costs for each interval are given by the following formulas.

cBP,0 = 274, cBP,i = 1090
(

∑i

j=1
kBP,j

)0.6

, i = 1, . . . , 10,

cCT,0 = 746, cCT,i = 1960
(

∑i

j=1
kCT,j

)0.6

, i = 1, . . . , 8,

cLIG,0 = 882, cLIG,i = 882
(

∑i

j=1
kLIG,j

)0.6

, i = 1, . . . , 10,

cDH60,0 = 0, cDH60,1 = 109kDHLP,1,

cDH100,0 = 400, cDH100,1 = 400,

cDHLP,0 = 570, cDHLP,1 = 30 (kDHLP,1 + 19) .
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All investment options that are not included in the setU are instead included in the setM , which
in this case study includes steam-saving measures and investments that are not improving the energy
efficiency of the mill. The recovery boiler upgrade (RBU) is an example of the latter type of measure.
The RBU does not yield any steam savings, but to meet the planned production increase, the investment
is required if not enough lignin is extracted. The measures of the setM are assumed to be discrete
options, which can either be carried out at a fixed cost, generating a fixed steam saving, or not be carried
out at all. For these investments in measuresm ∈ M , the investment costs are simply constants, such
that the investment cost in each noden ∈ N is given by

costnm = bmx̂n
m,

x̂n
m ∈ {0, 1},

wherebm is the investment cost parameter for measurem, and the binary variablêxn
m equals1 if measure

m is implemented in noden, and0 else. The possible measures included in the setM are presented in
Table 3 along with their respective investment costs and resulting steam savings.

Table 3: Investment costs and steam savings for energy-efficiency measures.
Cost LP steam MP steam HP steam
(bm) (sm,LP) (sm,MP) (sm,HP)

Measure [ke] [tonnes/h] [tonnes/h] [tonnes/h]
1. New 3-stage flash 3500 3.1 16.1 0.0
2. New HWWS 600 12.5 0.0 0.0
3. Wood yard 0 2.6 0.0 0.0
4. Shoe press 6000 11.8 0.0 0.0
5. Blow out 0 13.9 0.0 0.0
6. Blow down 0 -78.4 -39.5 102.5
7. Convap∗‡ 9300 59.5 -19.3 9.3
8. Convap∗§ 9700 59.5 -19.3 9.3
9. PIvap†‡ 11700 63.9 -14.3 9.3
10. PIvap†§ 10900 63.9 -14.3 9.3
11. Convap¶ 4400 0.0 0.0 0.0
12. RBU 29800 0.0 0.0 0.0
13. DH piping 6600 0.0 0.0 0.0
∗ A modern conventional evaporation plant
† A process integrated evaporation plant
‡ Not adapted for lignin extraction
§ Adapted for lignin extraction
¶ Least-cost evaporation plant yielding no steam savings

Investments can only be made in the first levels of the scenario tree. The reason is that late invest-
ments will not be analyzed correctly since the resulting cash flows will be calculated for a too short time
period. Hence, investment decision variables are restricted to be zero (or they are simply not defined)
for high levels, according to

ŷn
u = x̂n

m = 0, u ∈ U, m ∈ M, n ∈ NA,

whereNA is the set of nodes in which investments cannot be made. From this follows that alsoδn
ui and

zn
ui are zero forn ∈ NA.
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To summarize, the total capital expenditurefC is given by:

fC(x̂n, ŷn, δn) =
∑

m∈M

bmx̂n
m +

∑

u∈U

cu0ŷ
n
u +

∑

i∈Iu

cui − cu,i−1

kui
δn
ui, n ∈ N. (1)

3.4 The revenue function

The total yearly revenue that is generated in each node is a function of the exports for the different
technologies and the net export revenues. It can be expressed as

fR(αn, ξn) =
∑

u∈U

fE,u(ξ
n)eαn

u, u ∈ U, n ∈ N,

wherefE,u(ξn) is the net export revenue for optionu in noden andαn
u ≥ 0 is the export for technology

u in noden. The factore is simply a unit conversion, which in this case equals 7.8 (GWh/year)/MW.
The functionfE,u represents the export revenues minus operating costs; it isa function of the energy
prices presented in Table 1. In this case, there is an operating cost only for lignin extraction and for the
heat pump. The functionsfE,u for different technology optionsU and all nodesn ∈ N are given by

fE,LIG(ξn) = ξn
lignin − (5.72 + 0.0162ξn

elec.),

fE,BP(ξn) = fE,CT(ξn) = ξn
elec,

fE,DH60(ξ
n) = ξn

heat − 0.357ξn
elec.,

fE,DH100(ξ
n) = fE,DHLP(ξn) = ξn

heat.

3.5 Mass and energy balances and capacity limitations

The amount of generated power, extracted lignin, and delivered district heating is contained in the export
vectorαn

u, which is limited by the available steam surplus and the capacity of the equipments. In this
section, we formulate constraints to handle steam balancesas well as capacity limitations for the different
options.

3.5.1 General constraints relating steam to power, heat, and lignin exports

The general constraint stating the required steam surplus to achieve a specific output of at leastαn
u of

power, heat, or lignin is given by

αn
u ≤

∑

p∈P

qupρ
n
up + γn

u , u ∈ U\L, n ∈ N. (2)

Here,P denotes the set of steam pressure levels (LP, MP, and HP steam) and the parameterqup relates the
steam surplus of pressurep to the power, lignin, or heat output for technology optionu. The parameter
qup was calculated from process and equipment data such as efficiencies, enthalpies, and so on. The
values that were obtained are given in Table 4. Further, the variableρn

up denotes the flow of steam with
pressurep used for technologyu in noden. Finally, the variableγn

u is the possible additional output for
optionu in noden, which can be achieved without any steam input.

In constraint (2),L denotes the set of the condensing turbine option and the district heating options.
For these options, constraint (2) above is replaced by the constraints (3)–(6), which are described in
Section 3.5.2. The reason for this is that the possibility todeliver district heating is limited by the district
heating demand which varies over the year. This requires a finer time resolution for the different district
heating options, but also for the condensing turbine. Low-pressure steam can either be used for district
heating or for the condensing turbine, which causes the district heating demand variations to affect also
the condensing turbine option.
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Table 4: Production per steam surplus (qup) [MW/(t steam/h)].
Option LP steam MP steam HP steam
BP 0 0.0406 0.0976
CT 0.1243 0 0
LIG 0 0 0.8110
DH60 0 0 0
DH100 0 0 0
DHLP 0.647 0 0

3.5.2 District heating constraints

The district heating demand curve is modelled as a finite number of time steps of given length and
district heating demand. We defineJ as the set of time steps,tj as the length of time stepj, andvj as the
external demand in stepj. Here, the demand curve is divided into 20 intervals, representing the twelve
months and eight additional time periods with an unusually high or low demand. The numbers of the
parameters are given in Table 5.

Table 5: Data for the district heating demand parameters.
Step Month Demand Length Step Month Demand Length
(j) (vj) (tj) (j) (vj) (tj)

[MW] [h] [MW] [h]
1 Jan 21 720 11 Jul 1 720
2 Jan peak 41 24 12 Jul low 1 24
3 Feb 21 648 13 Aug 3 720
4 Feb peak 41 24 14 Aug low 3 24
5 Mar 21 720 15 Sep 10 720
6 Mar peak 41 24 16 Oct 10 744
7 Apr 10 720 17 Nov 21 696
8 May 3 744 18 Nov peak 41 24
9 Jun 3 696 19 Dec 21 720
10 Jun low 3 24 20 Dec peak 41 24

We defineX as the set of options directly limited by the external demand, that is, the district heating
options. The variableµn

uj denotes the heat or power output of optionu ∈ L in stepj in noden, where
L includes the condensing turbine in addition to the districtheating options. Finally, we let̃ρn

uj be the
low pressure steam flow of optionu ∈ L in stepj in noden (replacingρn

up for u ∈ L). The following
constraints can then be formulated for all nodesn ∈ N :

αn
u

∑

j∈J

tj ≤
∑

j∈J

µn
ujtj , u ∈ L, (3)

µn
u,j ≤ qu,LPρ̃n

uj + γn
u , u ∈ L, j ∈ J, (4)

∑

u∈X

µn
uj ≤ vj, j ∈ J, (5)

µn
uj, ρ̃

n
uj ≥ 0, u ∈ L, j ∈ J. (6)

Constraint 6, ensuring positive values ofµn
uj and ρ̃n

uj , is based on no district heating being delivered
today and hence, the deliveries cannot decrease. As a resultof the above formulation,αn

u will express a
yearly average of the district heating deliveries and of theelectricity produced in the condensing turbine.
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3.5.3 Steam balance constraints

The steam used to produce electricity, heat, or lignin is of course limited by the available steam surplus.
Before we go on to the formulation of the steam balances, we need to introduce two sets of binary
variables. The previously introduced̂xn

m controls the investment cost and takes the value1 only in the
node where investments are made. The variablexn

m controls the available steam surplus and takes the
value1 in all nodes where the steam surplus for that measure is available. The same type of distinction
holds betweenyn

u and ŷn
u . While ŷn

u controls the investment cost,yn
u controls the availability of the

technology and is1 if option u is available to use in noden, and0 else. The relations between these
variables are stated in the following constraints, where also the variablešxn

m andy̌n
u are introduced for

the possibility to deactivate investments:

x0
m = y0

u = 0, m ∈ M, u ∈ U, (7)

xn
m = xp(n)

m + x̂p(n)
m − x̌p(n)

m , m ∈ M, n ∈ N\R, (8)

yn
u = yp(n)

u + ŷp(n)
u − y̌p(n)

u , u ∈ U, n ∈ N\R, (9)

yn
u ≥ y̌n, u ∈ U, n ∈ N, (10)

ŷn
u ≥ y̌n

u , u ∈ U, n ∈ N, (11)

0 ≤ xn
m, yn

u ≤ 1, m ∈ M, u ∈ U, n ∈ N, (12)

x̌n
m, y̌n

u ∈ {0, 1}, m ∈ M, u ∈ U, n ∈ N. (13)

The variablesxn
m andyn

u need not be integrality constrained. In an optimal solutionthese variables will
possess binary values, due to the above constraints and the fact thatx̂n

m, x̌n
m, ŷn

u , andy̌n
u are required to

be binary. The deactivation possibility is used, for example, in the case of reinvestments in technologies
that have already been invested in.

The steam balance on each steam pressure levelP is simply stating that the use of steam for different
options (ρn

up or ρ̃n
uj) must equal the acquired steam surplus plus steam that is passed from higher pressure

levels, minus steam that is passed to lower pressure levels.Let smp denote the steam saving at pressure
level p for measurem. The steam savings for each measure are given in Table 3. Further, the set of
options that reduce pressure (the back-pressure turbine but also pressure-drop valves) is denoted byQ,
and the parameterhup is a factor that is introduced due to the fact that when steam is passed from higher
to lower pressures, it will be superheated, and water will beadded to saturate the steam. This factor will
take the valueshBP,MP = 1.040, hBP,LP = 1.010, hV,MP = 1.174, andhV,LP = 1.027, where the
index V denotes the pressure-drop valves. For high- and medium-pressure steam, the constraints for all
nodesn ∈ N are then

∑

u∈(U∪Q)\L

ρn
u,HP ≤

∑

m∈M

xn
msm,HP,

∑

u∈U\(Q∪L)

ρn
u,MP ≤

∑

m∈M

xn
msm,MP +

∑

u∈Q

(

ρn
u,HP−ρn

u,MP

)

hu,MP.

The steam balance for the low-pressure steam is expressed bythe similar constraint:

∑

u∈L

ρ̃n
u,j ≤

∑

m∈M

xn
msm,LP +

∑

u∈Q

ρn
u,MPhu,LP, j ∈ J, n ∈ N.

Positive values of the steam flows are of course required, except for rebuilt or replaced equipment,
where a decrease (relative to the present situation) can occur. The possible decrease of steam flow with
pressurep for the optionu is denoted bydup. Here, a decrease is possible for the back-pressure turbine
option only. The values (which correspond to the current useof steam) aredBP,HP = 201 tonnes/h
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anddBP,MP = 157 tonnes/h respectively. For all other options, the value ofdup is zero (see also the
constraint (6)).

ρn
up ≥ −dup, u ∈ (U ∪ Q)\L, p ∈ P, n ∈ N.

For some technology options it is possible to increase the outputαn
u without using any extra steam. This

is the case for the new back-pressure turbine, for which the output is increased compared to the old one,
simply because it has a higher efficiency. This is also true for the two district heating options that use
low quality excess heat and not steam. The maximum ‘steam-free’ output is denotedwu and the variable
γn

u , which was introduced in the constraints (2) and (4), denotes the actual utilization of the ‘steam-free’
output according to

γn
u ≤ wuyn

u , u ∈ U, n ∈ N.

For the new back-pressure turbinewBP = 1.3 MW. For DH60, the value iswDH60 = 83.6 MW, corre-
sponding to the maximum heat delivery from a heat pump that uses all available excess heat of60◦C.
Finally, wDH100 = 16.3 MW, corresponding to the available excess heat of100◦C. For all other options
the value ofwu is zero.

3.5.4 Capacity constraints

The productionαn
u of power, lignin, and district heating for the different technology options is of course

limited to a maximum of the installed capacity. We define the variableβn
u , as the available capacity in

noden for optionu. The constraints are then for all nodesn ∈ N :

αn
u ≤ βn

u − guyn
u , u ∈ U\L,

µn
u,j ≤ βn

u , u ∈ L, j ∈ J.

The parametergu states the current capacity for technology optionu at the mill. Here,gBP = 24.7 MW
andgu = 0 MW for all the other options. (The existing back-pressure turbine has a capacity of 24.7
MW.) The reason for subtracting24.7yn

u in the case of the back-pressure turbine is that only the power
output exceeding this level will contribute to an added incoming cash flow. The relation betweenβn

u and
the variableδn

ui which is used in the cost function (1) can be stated similar asthe constraints (7)–(13)
above which relatexn

m to x̂n
m andyn

u to ŷn
u . For all optionsu ∈ U , we then have

β0
u = 0,

βn
u = βp(n)

u +
∑

i∈Iu

δ
p(n)
ui , n ∈ N\R.

3.6 Combination constraints

Except for the specific data needed for this case, and the adaptations of some constraints to handle the
varying demand of district heating, a number of constraintshave to be added to the model. These are
constraints that specify how process integration measurescan be combined. The measures in the set
M are numbered according to Table 3. Technology options of thesetU are denoted by: BP (back-
pressure turbine), CT (condensing turbine), LIG (lignin extraction), DH60 (district heating from low
quality excess heat), DH100 (district heating from medium quality excess heat), and DHLP (district
heating from low-pressure steam).

Some investments have to be made immediately because of the production increase, which is planned
to be implemented in the beginning of the analyzed time period. For the production increase, either the
recovery boiler has to be upgraded (RBU) or lignin has to be separated. For the RBU option, the only
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opportunity to invest is from start. Later, the opportunityfor RBU is foregone due to the long production
down-time. If RBU is not carried out, at least 53.6 MW of lignin has to be separated in order not to
overload the existing recovery boiler. Furthermore, a new evaporation plant is also necessary from the
start due to the production increase.

x̂n
12 = 0, n ∈ N\R, (14)

αn
LIG ≥ 53.6(1 − xn

12), n ∈ N\R, (15)
11
∑

m=7

x̂0
m = 1. (16)

Large steam savings can be achieved by rebuilding the evaporation plant, but a number of constraints
limits the actual potential. There can only exist one evaporation plant at each point in time, either the
cheapest one with no actual steam saving (Convap¶), or a more modern but conventional evaporation
plant (Convap∗), or a process integrated evaporation plant (PIvap) (see Table 3). To make it possible to
install PIvap, the hot and warm water system (HWWS) has to be rebuilt. Another constraint is that PIvap
cannot be combined with the new three-stage flash. This gives, for all nodesn ∈ N the constraints

11
∑

m=7

xn
m ≤ 1,

xn
9 + xn

10 − xn
2 ≤ 0,

xn
1 + xn

9 + xn
10 ≤ 1.

Lignin separation cannot be implemented without investments in a new evaporation plant and the
evaporation plant has to be adjusted for lignin extraction.If the evaporation plant is in fact designed
for lignin extraction, lignin has to be extracted with an amount that equals the design capacity. This is
because the evaporation plant that is designed for lignin extraction is designed for different flows than a
conventional evaporation plant. We then have the constraints

yn
LIG − (xn

8 + xn
10) ≤ 0, n ∈ N,

λ0 = 0,

λn = λp(n) + λ̂p(n), n ∈ N,

−MLIG(x̂n
8 + x̂n

10) ≤ λ̂n ≤ MLIG(x̂n
8 + x̂n

10), n ∈ N,

λn − MLIG(1 − (xn
8 + xn

10)) ≤ αn
LIG ≤ λn, n ∈ N\R.

We have introducedMLIG, a ‘big enough’ parameter, in the above constraints.
For an existing back-pressure turbine, the load cannot change independently for the high-pressure

part and the medium-pressure part, but the steam flow change has to be equal for both parts. When the
turbine is exchanged for a new one, the steam flow can change freely. Also, if investments are made in
a new back-pressure turbine, the existing back-pressure turbine has to be replaced. We introduceMBP,
which is a ‘big enough’ parameter for the following constraints:

(

ρn
BP,HP − ρn

BP,MP

)

−
(

ρ
p(n)
BP,HP − ρ

p(n)
BP,MP

)

≤ MBPŷ
p(n)
BP , n ∈ N\R, (17)

(

ρn
BP,HP − ρn

BP,MP

)

−
(

ρ
p(n)
BP,HP − ρ

p(n)
BP,MP

)

≥ −MBPŷ
p(n)
BP , n ∈ N\R, (18)

∑

i∈IBP

δn
BPi ≥ gBP (ŷn

BP − y̌n
BP) , n ∈ N. (19)
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Finally, there are a number of constraints related to the opportunities for district heating deliveries.
If excess heat is used internally in the mill, either for process-integrated evaporation or for a new three-
stage flash, excess heat is not available for district heating. This means that PIvap cannot be combined
with DH100 nor DH60, and the flash cannot be combined with DH100. If any of the district heating
options are chosen, investments have to be made in district heating piping. This cost for district heating
piping is assumed to partially be taken by the energy company. Thus, once district heating is decided
on, the exports are not allowed to decrease. This yields the constraints

xn
m + yn

u ≤ 1, m ∈ {9, 10}, u ∈ {DH60,DH100}, n ∈ N,

xn
1 + yn

DH100 ≤ 1, n ∈ N,

xn
13 ≥ yn

u , u ∈ X, n ∈ N,
∑

u∈X

αn
u ≥

∑

u∈X

αp(n)
u , n ∈ N\R,

∑

u∈X

αn1

u =
∑

u∈X

αn2

u , n1 ∈ N\R, n2 ∈ N\R : p(n1) = p(n2).

4 Results and discussion

In order to solve the model, a discrete probability distribution has to be assumed for the scenarios de-
scribed in Section 3.1. There are, however, no statistics orlogic to base such an assumption on. Instead,
the assumed probability distribution will represent the decision-maker’s opinion or beliefs regarding the
future development of the energy market. This should, of course, be based on sound judgement as well
as insights regarding the political agenda and the planned development of energy market policy instru-
ments. Nevertheless, this is a difficult assumption to make.Thus, in order for the model to be of any
use, it is important to evaluate the robustness of the solution with respect to the probability distribution.

Here, we will begin with a uniform probability distributionto arrive at some general results. In
Section 4.2, we then test how much this distribution can be changed without altering the optimal solution.
Then, in Section 4.3, the modelling of investment timing will be further elaborated.

The model was, as mentioned earlier, formulated in AMPL and solved using CPLEX, which is
a solver for mixed-integer linear programs (MILP). The computation time was 58 CPU seconds on a
computer with a 2.0 GHz AMD Athlon processor for the basic case presented below.

4.1 General results

The optimal solution, under the assumption of a uniform probability distribution (illustrated as alter-
native B in Figure 3), is characterized by a lignin extraction rate that is just enough to avoid that the
recovery boiler is upgraded, that is 53.6 MW of lignin (see the constraint (15)). The remaining steam
surplus is used for electricity generation and district heating. Steam savings are achieved through energy-
efficiency measures 2–6, 8, and 13 (these numbers referring to Table 3). Furthermore, all investments
are made in node 0 and the lignin extraction, the electricitygeneration, and the district heating deliveries
are kept at a constant level throughout the analyzed time horizon.

We also compute the optimal solution for each scenario, thatis, the solutions that are achieved by
setting the probability to 100% for one scenario at a time. None of the obtained solutions implies any
investments after the initial ones are made. Interestingly, the scenarios M2 and S1 both render the same
optimal solution as the one achieved with a uniform probability distribution (alternative B in Figure 3)
and scenario S2 renders a very similar solution (alternative C in Figure 3). However, in the optimal
solution for scenarios BAU and M1 no lignin is extracted and all steam surplus is used for electricity
production and district heating (alternative A in Figure 3). The optimal solution for scenario E is on
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the contrary to use the steam surplus for maximum lignin extraction and only to slightly increase the
electricity production (alternative D in Figure 3).
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Figure 3: The main investment alternatives and their characteristics.

There are of course more solutions than those illustrated inFigure 3, although they are not optimal
for any of the scenarios. Nevertheless, it is quite obvious that the number of feasible solutions is limited
and in fact rather few. This is of course a consequence of the integer requirements on, mainly, the
decision variables for the energy-efficiency measures. Theconstraints on how the different measures
can be combined, and the requirement on the immediate production increase also limit the number of
feasible solutions.

4.2 Sensitivity of the optimal solution to probability distribution variations

To analyze how robust the solution is to changes in the assumed probability distribution, we sought to
find how much the probability could deviate from a uniform distribution without altering the optimal
solution. Obviously, the probabilities for scenarios M2 and S1 can be up to 100%. However, for BAU,
M1, S2, and E, there exists a probability level (between 17% and 100%) for which the solution switches
from alternative B to some other solution.

We found that, if the probabilities for the rest of the scenarios were kept equal, the probability for
scenario BAU can increase to 80% before the solution switches from alternative B to A. Whether this
number indicates robustness with respect to the probability assumption for the BAU scenario has to be
judged by those who will make the decision on investment. It is, however, reasonable to believe that
someone who believes in a higher probability than 80% for a ’business as usual’ development would not
carry out this kind of analysis at all. Table 6 shows the breakpoint probabilities for all scenarios.

As can be seen in Table 6, the breakpoint probabilities for scenario E are substantially lower than
the breakpoint probabilities for the other scenarios. The solution switches first, at 42% probability for
scenario E, from solution B to solution C, and then, at 51%, from C to D. These levels of breakpoint
probabilities might seem low, indicating that the solutionis not robust to changes in the probability of
this scenario. On the other hand, considering the extreme properties of this scenario, already the value
of 17%, which is the probability in the uniform distribution, should be regarded as quite high. In fact,
zero probability could be reasonable for this scenario.

Here, we have varied the probability distribution by increasing the probability of one scenario, while
decreasing the probabilities of the other scenarios uniformly. The probability distribution may, however,
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Table 6: Breakpoint probabilities for the respective scenarios at which there is a change in the optimal
solution. The optimal solutions are denoted by letters A–D according to Figure 3.

Scenario Breakpoints (solutions)
BAU 80% (B→ A)
M1 99% (B→ A)
M2 (no switch)
S1 (no switch)
S2 85% (B→ C)
E 42% (B→ C) 51% (C→ D)

be varied in several other ways. Nevertheless, our tests show that it is difficult to find other solutions than
the ones illustrated in Figure 3. As an example, all probability distributions having an equal probability
for scenario BAU and E while the other scenarios also are changed uniformly results in the optimal
solution B.

To summarize, the optimal solution seems to be robust to changes in the assumed probability distri-
bution. The analysis is straight-forward and can easily be repeated for each new case study. It is also
important that the results of the analysis is evaluated by the decision-makers of each case.

It should be noticed, however, that the robustness propertyonly holds when the assumed probability
for each of the scenarios is far from its respective breakpoint value. This is to a large extent a conse-
quence of the integer requirements on the decision variables, which is the reason that there are quite few
solutions to the optimization model. Close to the breakpoints, the optimal solution is naturally more sen-
sitive to a variation of the probability assumptions. At these breakpoints, the optimal solution changes
rather drastically, for example from a solution with no RBU to one with RBU but no lignin extraction.
Remember that the investment cost for the RBU alone is almost30Me, which means that there are high
values at stake if the wrong decision is made.

4.3 Timing of investments

The multistage modelling of the investment decision problem enables the study of the timing of in-
vestments. In the above example, however, the optimal solution turned out to involve only immediate
investments made at the root node of the scenario tree. In order to verify that the timing issue has been
modelled correctly and to render the achievement of a solution where investments are allowed at more
than one node possible, the above example was changed such that the production increase was assumed
to be planned for year 2020 instead of year 2010.

A production increase the year 2020 corresponds to making the production increase investments in
level 2 of the scenario tree. The increased production will then be in effect from level 3. Some parameters
will possess different values before and after the production increase. This applies to the steam savings,
smp, and the costs,bm, of the energy-efficiency measures, but also the maximum ‘steam-free’ output of
the export options,wu. A node index,n, is therefore introduced for these parameters.

The steam savings,sn
mp, after the production increase (ℓ(n) > 2) are the same as those given in

Table 3. The steam savings before the production increase (ℓ(n) ≤ 2) are given in Table 7 below.
Since the purpose here is to illustrate the modelling of the timing issue, detailed input data is not a

requirement. To simplify, most of the investment costs for the measures are therefore assumed to be the
same before and after the production increase, which can be reasonable if the investments are made with
the planned production increase in mind. The evaporation plant, however, needs to be rebuilt for the
production increase, and hence the evaporation plant measures (m = 7–10) are included with different
values for both costs and steam savings before and after the production increase. The costs,bn

m, after the
production increase (ℓ(n) ≥ 2) are the same as those given in Table 3. The costs before the production
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increase (ℓ(n) < 2) are given in Table 7 below.

Table 7: Investment costs and steam savings for measures before the production increase.
Cost LP steam MP steam HP steam
(bn

m) (sn
m,LP) (sn

m,MP) (sn
m,HP)

(ℓ(n) < 2) (ℓ(n) ≤ 2) (ℓ(n) ≤ 2) (ℓ(n) ≤ 2)
Measure [ke] [tonnes/h] [tonnes/h] [tonnes/h]
1. New 3-stage flash 3500 2.5 12.9 0.0
2. New HWWS 600 10 0.0 0.0
3. Wood yard 0 2.1 0.0 0.0
4. Shoe press 6000 9.4 0.0 0.0
5. Blow out 0 11.1 0.0 0.0
6. Blow down 0 -30.7 -22.3 41.8
7. Convap∗‡ 6400 47.6 -15.4 7.4
8. Convap∗§ 6800 47.6 -15.4 7.4
9. PIvap†‡ 7700 51.1 -11.4 7.4
10. PIvap†§ 7300 51.1 -11.4 7.4
11. Convap¶ 4400 0.0 0.0 0.0
12. RBU 29800 0.0 0.0 0.0
13. DH piping 6600 0.0 0.0 0.0
∗†‡§¶ See Table 3

Finally, the ‘steam-free’ output of the export options,wn
u , will not change for the back-pressure

turbine. For DH100 and DH60, the values will bewn
DH100 = 13 MW and wn

DH60 = 66.9 MW for
n ∈ N such thatℓ(n) ≤ 2. The values forℓ(n) > 2 were given at the end of Section 3.5.3 above.

Perhaps the most obvious model change when moving the production increase is that the constraints
(14)–(16) will change, according to

x̂n
12 = 0, n ∈ N : ℓ(n) 6= 2,

αn
LIG ≥ 53.6(1 − xn

12), n ∈ N : ℓ(n) > 2,

11
∑

m=7

x̂n
m = 1 n ∈ N : ℓ(n) = 2.

The optimal solution now involves investments in two stages. In the root node, investments are made
in steam-saving measures, in a new back-pressure turbine, in a condensing turbine, and in district heating
from low-pressure steam as well as from100◦C heat. In nodes 4–7 (at level 2) additional investments
are made. For all these nodes, investments are made in a lignin separation plant, in an evaporation plant
with increased capacity adapted for lignin extraction, butalso in the shoe press, which was not invested
in from the start. As is the case for the immediate productionincrease, lignin extraction turns out to be
a better alternative than a recovery boiler upgrade.

At this level, after the production increase, investments have been made in exactly the same energy-
efficiency measures and export options as was made in the optimal solution for the immediate production
increase. The total capacity of the turbines and the district heating is, however, substantially higher,
which means that not all the capacity is used. Remember that the steam load of the turbines will decrease
when lignin is extracted, which will be the case at the time ofthe production increase. The potential
for using steam for district heating will also be decreased.The results thus imply that, in this case, it is
beneficial to make early investments in turbines although they will be used to their full capacity only for
ten years. Here, there is no reason to wait with energy efficiency until the production increase.
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Moreover, the steam load of the back-pressure turbine changes rather dramatically when lignin is
extracted. Due to the constraints (17)–(19), a new investment in the turbine is thus required. Since
the load decreases, however, a capacity increase is not necessary and the investment will be minimal.
Although this is obviously a shortage in the turbine cost modelling, we will not make any definite
changes to the model or input data here. A simple analysis shows that the investment cost for the
changed steam load conditions could be around 5000 ke before the optimal solution changes. It could
be argued, that since the turbine is rather new (10 years), and the production increase was known when
the turbine was first installed, the possibility of controlling the steam flows independently could have
been built in from start, making the constraints (17)–(19) redundant for the new turbine. The discussion
makes it clear, however, that the modelling, solving, and analyzing process may need to be iterated.

Although the investments are similar for all the nodes 4–7 (at level 2), the investments in node 7,
which is part of the scenario E, differ slightly. In this scenario, the wood fuel prices are higher compared
to the electricity prices, and lignin extraction is more profitable. Hence, the lignin extraction capacity
is a few MW higher in this scenario than in the others. This affects the electricity production and the
district heating deliveries which are slightly decreased.

To summarize the latter results, they show that with the proposed model, it is possible to arrive at
optimal solutions where investments are made at more than one point in time, and these investments are
evaluated correctly. The importance of employing an iterative procedure to update the model based on
achieved results is also illustrated.

5 Conclusions

This article presents a multi-stage stochastic programming model for the optimization of process inte-
gration investments under economic uncertainty. The proposed approach enables optimization of com-
binations of measures for which the outcome is directly and indirectly affected by the implementation
of the other measures as well as on uncertain market conditions.

Uncertainties are modelled in a scenario-based approach. We show that the probabilities for the
different scenarios can be substantially changed without altering the optimal solution. This implies a
robustness of the solution obtained with respect to the assumed probability distribution, which definitely
is an advantage in dealing with the kind of uncertainties that are present in this model. Robustness,
however, is not a general property. The model should therefore always be solved for some different
probability distributions around the one the decision maker believes in, in order to check for robustness
in the probability range of interest.

Furthermore, the model enables the optimization of the timing of investments, although for the case
study presented here, we find that investments should be madeimmediately. A change of the conditions
for the case study results in a model for which the optimal solution involves investments at more than
one point in time.

6 Acknowledgements

We kindly thank Professor Thore Berntsson for valuable comments and support. The project was funded
by the Swedish Energy Agency (the contributions by Elin Svensson and Ann-Brith Strömberg) and the
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