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Abstract

We suggest a linear non-conforming triangular element for Maxwell’s equations and
test it in the context of the vector Helmholtz equation for the electric field. The
element uses discontinuous normal fields and tangential fields with continuity at the
midpoint of the element sides, an approximation related to the Crouzeix-Raviart
element for Stokes. The element is stabilized using the jump of the tangential fields,
giving us a free parameter to decide. We give dispersion relations for different sta-
bility parameters and give some numerical examples, where the results converge
quadratically with the mesh size for problems with smooth boundaries. The pro-
posed element is free from spurious solutions and, for cavity eigenvalue problems,
the eigenfrequencies that correspond to well-resolved eigenmodes are reproduced
with the correct multiplicity.

Key words: Maxwell’s equations, stabilized methods, finite element, interior
penalty method, non-conforming method.

1 Introduction

The electric field solution to Maxwell’s equations resides in H(curl) and it
requires tangential continuity. Imposing H1-continuity on the approximation
of the electric field usually leads to pollution of the spectrum, i.e. unphysical
non-zero eigenvalues that mix with the lowest physical eigenvalues. In such a
situation, modes that should have zero eigenvalues (corresponding to gradi-
ent fields) in the continuous setting have non-zero eigenvalues in the discrete
setting. This has led to the introduction of vector elements [17,18] that are
tailor-made for approximation in H(curl) and they have become very popular
for numerical simulations in electromagnetics, cf. Monk [15]. For such elements



of the lowest order, the degrees of freedom are associated with the edges of
the element and therefore they are often referred to as edge elements.

The triangular edge elements suffer in that the corresponding mass matrix
cannot be lumped (with positive entries in the mass matrix) unless an angle
condition is fulfilled [12], or other non-standard measures are taken [14,10]. In
general, the standard edge elements thus require implicit time stepping. On
the other hand, curl-conforming approximations on rectangles and bricks do
allow for mass-lumping and explicit time-stepping, cf. Cohen [7]. For exam-
ple, the lowest order curl-conforming approximation on rectangles and bricks
can be lumped by means of trapezoidal integration, and its analogue finite
difference scheme was introduced by Yee [24]. Thus, it is often referred to as
the Yee scheme but it is probably more well-known as the finite-difference
time-domain (FDTD) scheme [21], which emphasizes its typical usage for
electrodynamic problems. For the purpose of boundary modelling, the Yee
scheme has to be coupled to other methods. It is feasible to couple implicitly
time-stepped tetrahedrons (or triangles) with the Yee scheme in time domain
methods, cf. Degerfelt and Rylander [9]. For the purpose of explicit schemes
on unstructured meshes, Discontinuous Galerkin (DG) methods can be for-
mulated on simplicial meshes [4]. These have been explored in the setting of
time-harmonic problems [19] and eigenvalue problems [22]. They do allow for
mass lumping and explicit time-stepping on unstructured simplicial meshes,
cf. Hesthaven and Warburton [13]; however, DG methods achieve mass lump-
ing at the cost of extra degrees of freedom at the inter-element boundaries—a
solution that becomes particularly expensive for the low-order approximations
that are popular for engineering applications.

In this paper, we propose a new nonconforming element for the approximation
of the curl-conforming electric field of Maxwell’s equations in two dimensions.
Our element yields a diagonal mass matrix and thus explicit time-stepping
can be used on arbitrary unstructured meshes. The element represents lin-
ear field variations exactly and it has degrees of freedom associated with the
edges of the element, where the normal field component is discontinuous and
the tangential field component is continuous at the midpoint of each edge.
Consequently, we achieve a significant reduction in the number of degrees
of freedom as compared to the corresponding DG method without sacrific-
ing the ability to perform explicit time-stepping. We demonstrate that our
new element yields very accurate approximations on a grid of equilateral tri-
angles. In particular, we use this type of discretization in the homogeneous
bulk of the computational domain, and revert to an unstructured mesh of
body-conforming triangles in the vicinity of curved boundaries. The proposed
element is also a good candidate for coupling the Yee scheme on rectangles
to a boundary-fitted triangular mesh, a highly desirable quality for fast and
accurate simulations.
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2 Problem formulation and finite element method

We consider Maxwell’s double curl eigenvalue problem in two somewhat dif-
ferent situations: (i) plane wave propagation in free space for a given wave
number k which gives the numerical dispersion relation ω(k) of the proposed
element; and (ii) a cavity resonator that is defined by the bounded domain
Ω with perfect electrically conducting boundary ∂Ω and outward pointing
normal n. Thus, we wish to find the electric field E and frequency ω such
that

∇×∇× E −
(

ω

c0

)2

E = 0 in Ω, (1)

with (i) Ω = R
2 for the dispersion analysis and (ii) a bounded domain Ω with

n × E = 0 on ∂Ω for the cavity resonator problem.

For the presentation of the new element, we focus on the cavity resonator
problem and postpone further discussions on the dispersion analysis to Section
3. For the cavity resonator problem stated in weak form, we seek

E ∈ V := {v ∈ H(curl; Ω) : v × n = 0 on ∂Ω}

such that
∫

Ω
(∇× E) (∇× v) dΩ −

(

ω

c0

)2 ∫

Ω
E · v dΩ = 0 (2)

for all v ∈ V . Here

H(curl; Ω) := {v : v ∈ L2(Ω) and ∇× v ∈ L2(Ω)}.

In order to discretize this problem, we let Th denote a triangulation of Ω into
simplices T of diameter hT , and let Eh denote the set of edges E, of length hE ,
in Th. We then define the following nonconforming finite element space:

V h := { v ∈ [L2(Ω)]2 : v ∈ [P 1(T )]2 ∀T ∈ Th, n × v is continuous at

the midpoints of all interior edges, and n × v = 0 at the

midpoints of all edges along ∂Ω}.

We note that this space is related to the classical Crouzeix–Raviart (CR) space
[8], but with edge midpoint continuity enforced only for the tangential com-
ponent. The standard CR element is known not to converge for the Maxwell
double curl problem, cf. Brenner, Li, and Sung [2] (where instead an element-
wise divergence free version of the CR element was analyzed and shown to
converge). Additionally, a version of the CR element using only tangential
degrees of freedom was analyzed by Monk and Parrot [16] and shown to give
erroneous dispersion relations.
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Denoting the jump of the tangential component of v ∈ V h across edges by
Jn × vK, with Jn × vK = n × v if the edge is on ∂Ω, where n is a normal to
the edge E, our finite element method is to find (Eh, ω2) ∈ V h ×R such that

ah(E
h, v) −

(

ω

c0

)2

(Eh, v) = 0 ∀v ∈ V h, (3)

where

ah(u, v) :=
∫

Ω
(∇h × u) (∇h × v) dΩ +

∑

E∈Eh

∫

E

γ

hE
Jn × uK Jn × vK ds (4)

and

(u, v) :=
∫

Ω
u · v dΩ.

Here, ∇h× denotes the element-wise application of the curl operator and γ is
a user specified penalty parameter. We note that the tangential jumps have
been added to the equation in the same manner as in a DG method in order to
increase stability of our numerical scheme. Computational experience shows
that this term (with γ > 0) is indeed necessary; the piecewise H(curl; Ω)–
norm is too weak to control the jumps (cf. also [3]). We also note that the DG
scheme has two additional terms compared to (3); the bilinear form for DG
can be written

aDG
h (u, v) = ah(u, v) −

∑

E∈Eh

∫

E
(Jn × uK {∇h × v} + Jn × vK {∇h × u}) ds,

where {·} denotes a mean value of the indicated quantity across the edge
E. These are consistency terms necessary to retain Galerkin orthogonality,
yielding a best approximation result underlying optimal convergence proper-
ties. For our approximation, these terms are zero since ∇h × v is piecewise
constant and the mean value of Jn × vK is zero for all v ∈ V h. Thus our
method is (weakly) consistent in the same sense as a standard DG method
(the idea of retaining the stabilization terms for Crouzeix–Raviart was first
used in another context in [11]).

In the theoretical framework for the analysis of DG approximations of the
Maxwell eigenproblem presented by Buffa and Perugia [5], a key ingredient in
the analysis is the use of an interpolant onto the corresponding edge element
space. Due to the large size of the DG basis, the edge elements constitute a
subset thereof, a fact that can be used in the analysis. One may view our
method as a way of reducing the number of unknowns in the DG method
without losing the property that the edge element basis is a subset of V h:
the linear edge element has full tangential continuity and a complete linear
approximation inside the elements, cf. [18]. This space, with two degrees of
freedom per edge, constitutes a subset of V h with its three degrees of freedom
per (interior) edge (a subset obtained as γ → ∞). Note that this is not the
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case for the standard Crouzeix–Raviart basis with its additional mean normal
continuity.

The null space of our element is identical to that of the linear edge element
in the limit γ → ∞. For finite values of γ, the proposed element allows the
tangential component of the vector field to be discontinuous except at the mid-
point of each edge in the mesh, which clearly yields a larger space than that
of the linear edge element. However, the null space of our discrete operator
remains the same as the null space of the linear edge element also for γ finite.
To see this, note that our formulation requires that modes that belong to the
null space of the bilinear form (4) (with γ > 0) satisfy two conditions: (i)
element-wise application of the curl operator is zero; and (ii) tangential con-
tinuity at element boundaries. Now, any discrete function that does not have
zero tangential jump will give a contribution to ah(·, ·). Thus, the null space of
ah(·, ·) is composed by those discrete functions that are linear on each element
and have full tangential continuity; these are indeed the functions constituting
the null space of the edge element. We also remark that numerical experience
shows that choosing too small a γ does not have the effect of introducing sin-
gular spurious eigenvalues into the spectrum but rather increases tangential
wiggling in the whole of the spectrum. This effect will also disappear under
mesh refinement. Reasonable choices for γ are given in Section 3.

Some advantages of our approach compared to the linear edge element are:

• We have a free parameter γ with respect to which the scheme can be tuned
(this will be discussed in the numerical examples below).

• Mass lumping is inherent.
• We have only one tangential degree of freedom per edge, which fits well with

Yee’s finite difference method.

Our approximation shares with the linear edge element the properties of

• having a full polynomial basis, which is beneficial with respect to accuracy
in case of the Maxwell source problem with sources that feature non-zero
divergence;

• not being divergence-free, which is beneficial in case of varying material
(permittivity) parameters.

Finally, we remark that an alternative, computationally more advantageous,
implementation of the element would be to follow Burman and Hansbo [6] and
replace

∫

E

γ

hE

Jn × uK Jn × vK ds

by
∫

E
γ∗hE Jt · (t · ∇u)K Jt · (t · ∇v)K ds
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where t is a unit vector tangential to the edge and γ∗ > 0 is a stabilization
parameter (different from γ). This gives the same stability (cf. Lemma 9 in
[6] for the basic argument) but requires only one Gauss–point per edge to
integrate exactly.

3 Numerical tests

We test the proposed element on three different problems: (i) dispersion anal-
ysis based on plane wave propagation in free space; (ii) a cavity resonator
problem with regular field solutions; (iii) a cavity resonator problem that fea-
tures a sharp corner which supports field singularities. In the following, we
evaluated the stabilization term in the bilinear form (4) by means of trape-
zoidal integration.

3.1 Dispersion analysis

We use a plane wave on the form E = E0 exp[i(ωt − k · x)] to compute
the numerical dispersion relation on a period grid, cf. Monk and Parrot [16].
The periodic grid exploits a rhombic unit cell that is repeated in order to
discretize R

2. The unit cell is divided into two triangles, which makes it feasible
to formulate an eigenvalue problem with nine degrees of freedom given the
proposed element. We solve the eigenvalue problem in terms of its eigenmodes
and the corresponding eigenvalues ω2, where the frequency ω is a function of a
prescribed wavevector k. The analytically computed dispersion relation yields
three possible solutions: ω = c0k; ω = 0; and ω = −c0k.

As pointed out previously, the proposed method does not suffer from spurious
modes, i.e. problems of the type that fields that vary on the scale of the grid
yield frequencies in the same range as modes that are well-resolved by the grid.
In the case of γ > 0, four of the branches correspond to conservative (gradient
field) solutions with ω = 0. One of these zero eigenvalues is associated with the
node of the unit cell, where the continuous linear Lagrangian basis function φi

has its degree of freedom. The remaining three zero eigenvalues are associated
with edge-bubble basis functions that coincide with the three edges of the unit
cell, where the potential is given by φiφj and the indices i and j denote the
end nodes of an edge in the unit cell. The lowest non-zero branch ω(k) models
the physical dispersion relation, and in the following we present numerical
results that assess its accuracy. The remaining four branches yield very high
numerical frequencies that do not mix with the physical dispersion relation,
and therefore can easily be identified and disregarded. (If the stabilization is
removed by setting γ = 0, we have two zero eigenmodes associated with each
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edge of the unit cell, i.e. in total seven zero branches.)

Let || · ||kmax
denote the L1-norm evaluated on the disc shaped region k ≤ kmax.

Figure 1 shows the relative error ||ωn − ωa||kmax
/||ωa||kmax

as a function of
the parameter γ for a grid of equilateral triangles characterized by the edge
length hE : (i) hEkmax/π = 0.3 – dashed curve; (ii) hEkmax/π = 0.5 – solid
curve; and (iii) hEkmax/π = 0.7 – dash-dotted curve. Here, ωa is the analytical
frequency and ωn is the corresponding numerical value. Thus, it is feasible to
reduce the relative error to very low levels for the equilateral triangle, should
the parameter γ be given an appropriate value. Shape deviations from the
equilateral triangle that are on the order of percent do not change the optimal
value of γ significantly and, in addition, the average error in the dispersion re-
lation is rather unaffected by such perturbations. Since our objective is to find
an element that combines explicit time-stepping with an accurate dispersion
relation, we focus in the following on the case of equilateral triangles. Thus,
we intend to use the equilateral triangles in the homogeneous bulk of the com-
putational domain and other element shapes only in the vicinity of oblique
and curved boundaries, where we wish to have a body-conforming mesh.
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Fig. 1. The relative error ||ωn−ωa||kmax
/||ωa||kmax

on the disc shaped region k ≤ kmax

as a function of the parameter γ for a grid of equilateral triangles: hEkmax/π = 0.3
– dashed curve; hEkmax/π = 0.5 – solid curve; and hEkmax/π = 0.7 – dash-dotted
curve.

Figure 2 shows the pointwise relative error |ωn − ωa|/ωa as a function of the
wavevector k, given the optimized γ = 1.19 for the region hEk/π ≤ 0.5. It is
clear that the relative error in the frequency is very low for a large region in
k-space. This makes it feasible to formulate an explicit time-stepping scheme
that is accurate for broad frequency-band analysis, which also can be applied
to rather large computational domains. We also note that the relative error in
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the dispersion relation is proportional to (hEk)2 in the domain of asymptotic
convergence, which is confined to the region hEk/π / 0.2.
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Fig. 2. The relative error |ωn − ωa|/ωa in per mille as a function of k for a grid of
equilateral triangles of edge length hE with γ = 1.19.

3.2 Cavity analysis

Next, we consider the eigenvalue problem (1) on a bounded region Ω, where
we use the boundary condition n×E = 0 on the boundary ∂Ω. In all the tests
that follow, the proposed element reproduces the lowest eigenvalues accurately
with the correct multiplicity given that the corresponding eigenmodes are well-
resolved. Moreover, the null space of the ∇× ∇×-operator is preserved. Let
the number of internal nodes be denoted by nin, the number of internal edges
by nie and the number of edges on the external boundary by nbe. We find that
γ = 0 yields a null space of dimension nin + 2nie + nbe. When stabilization
is applied to all edges on the boundary of and internal to the computational
domain, the dimension of the null space reduces to nin + nie. This result is in
agreement with our analysis of the null space associated with the ∇ × ∇×-
operator.

In the following, we compare the accuracy and performance of the proposed
element with the lowest order edge element [17] in two different settings: (i) tri-
angular elements; and (ii) rectangular elements with mass lumping by means
of trapezoidal integration. (Note that the lumped rectangular edge element is

8



equivalent [20] to the spatial discretization used by the FDTD scheme [21].)
For comparisons in terms of accuracy, we consider the convergence of the low-
est eigenvalue on a uniformly refined mesh of unstructured triangles. Moreover,
we attempt to assess the performance of the proposed element, which appears
to be most competitive on grids of equilateral triangles due to its low errors
in the dispersion relation if an optimized value of γ is used. Therefore, we
use meshes of the type shown in Fig. 3 for performance estimates. It con-
sists of a structured grid of equilateral triangles in the homogeneous bulk of
the computational domain in combination with a layer of unstructured trian-
gles close to the boundary, which allows for a body-conforming discretization.
Consequently, we cannot expect strictly uniform convergence for these meshes
although we use uniform and hierarchic refinement for the equilateral triangles
in the bulk. However, we note that the thickness of the layer of unstructured
elements is proportional to mesh size and it is assumed that the unstructured
body-fitted mesh yields a negligible contribution to the global error for suffi-
ciently high resolutions.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x [m]

y
[m

]

Fig. 3. Triangulation of square cavity that consists of two regions: (i) a structured
grid of equilateral triangles in the homogeneous bulk of the computational domain;
and (ii) an unstructured mesh of triangles that conform to the external boundary.

3.2.1 Regular solution

We compute the lowest eigenvalue for the square cavity and Fig. 4 shows its
relative error for three different schemes: (i) circles – the proposed element; (ii)
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triangles – the edge element [17] on triangles; and (iii) squares – the edge ele-
ment [17] on squares with mass lumping by means of trapezoidal integration.
Here, the dashed lines show results with uniform refinement of an unstruc-
tured mesh. The solid lines indicate the corresponding results for a grid of
equilateral triangles as shown in Fig. 3.
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Fig. 4. Relative error of the lowest eigenvalue of a square cavity for three different
schemes: (i) circles – proposed element; (ii) triangles – edge element on triangles;
and (iii) squares – edge element on squares with mass lumping. Here, solid lines are
used for meshes with equilateral triangles in the homogeneous bulk of the compu-
tational domain, and the dashed lines show results for uniform mesh refinement of
an unstructured mesh.

Figure 5 shows the arithmetic average of the relative error for the ten lowest
eigenvalues, as a function of the number of degrees of freedom. The squares
show the result for the lowest order edge elements with mass lumping on a
uniformly refined grid of squares. The triangles indicate the result for the
lowest order edge element on triangles computed on a non-uniformly refined
unstructured mesh – a case that has been identified to yield low errors due to
cancellation effects [23]. The circles show the results for the proposed element
on a mesh of the type shown in Fig. 3 with uniform refinement of the triangles
in the bulk of the computational domain. It should be emphasized that the
average error also contain contributions from eigenmodes that are not yet in
the range of asymptotic convergence.

The number of non-zero elements in the stiffness matrix is approximately
proportional to the computational cost associated with a matrix-vector multi-
plication that involves the stiffness matrix: (i) one such matrix-vector product
is needed for each time step of an explicit method; and (ii) implicit time-
integration methods that use conjugate gradients with some reasonable pre-
conditioner typically need some 10-20 matrix-vector products to converge to
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Fig. 5. Average relative error of the ten lowest eigenvalues of a square cavity for three
different schemes: (i) circles – proposed element on mesh with mainly equilateral
triangles; (ii) triangles – edge element on unstructured non-uniformly refined mesh
of triangles; and (iii) squares – edge element on squares with mass lumping on grid
with uniform refinement.

a tolerance that is comparable to a direct solver. Next, we consider the av-
erage relative error shown in Fig. 5 as a function of the number of non-zero
elements in the stiffness matrix, instead of the number of degrees of freedom,
and these results are shown in Fig. 6. As compared to the lumped edge ele-
ments on squares, the proposed element appears to be quite competitive when
used with explicit time-integration. It should be noted that in the FDTD
scheme spatial and temporal discretization errors cancel to some extent and
such considerations are not taken into account here. However, the differences
are sufficiently large to clearly show that the proposed element is competitive.
The edge element on a triangular mesh yields a non-diagonal mass matrix and,
thus, require about 10-20 matrix-vector products per time-step which makes
the performance of such a method similar to the proposed method. It should
be emphasized that, here, we assume that all the methods are operated with
the same time step on similar meshes with uniform mesh size. For example,
local mesh refinement reduces the global time-step of an explicit method and
in such situations implicit time-stepping or hybrids [20] that combine explicit
and implicit time-stepping typically are better.

3.2.2 Singular solution

Finally, we test the proposed element on an eigenvalue problem that features
a sharp corner that supports a field singularity. Figure 7 shows the L-shaped
computational domain, where we again use the boundary condition n×E = 0.
In particular, we emphasize that the proposed element does not show any signs
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Fig. 6. Average relative error of the ten lowest eigenvalues of a square cavity for three
different schemes: (i) circles – proposed element on mesh with mainly equilateral
triangles; (ii) triangles – edge element on unstructured non-uniformly refined mesh
of triangles; and (iii) squares – edge element on squares with mass lumping on grid
with uniform refinement.

of generating spurious modes despite the presence of a singularity, and that
the multiplicity of the lowest eigenvalues is correct. Here, we use a reference
solution with six accurate digits computed by means of quadratic Lagrangian
shape functions and adaptive mesh refinement.
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Fig. 7. Discretization of the L-shaped domain.
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Figure 8 shows the relative error of the lowest eigenfrequency as a function
of the number of degrees of freedom for a uniformly refined mesh of right-
angled triangles: solid curve – the proposed element; and dashed curve – the
conventional edge elements of the lowest order. It is clear that the relative error
scales as N−2/3 ∝ h4/3. This is expected [1] for a PEC corner that subtends the
angle α = π/2, where the electric field in the vicinity of the corner scales as
r−1+π/(2π−α) with respect to the distance r to the corner. For the same number
of degrees of freedom, the proposed element reduces the error by about a factor
three as compared to the lowest order edge element. We attribute this to the
ability of the proposed element to represent linear field variations exactly,
which is useful in the immediate vicinity of the singularity. Clearly, the edge
elements [18] that can represent complete linear fields would preform better
as compared to its lowest order version [17].
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Fig. 8. Relative error for the lowest eigenvalue as a function of the number of degrees
of freedom N ∝ 1/h2 for the L-shaped domain shown in Fig. 7: solid curve –
proposed element; dashed curve – lowest order edge elements.

4 Conclusion

We have proposed a linear nonconforming finite element for Maxwell’s equa-
tions formulated in two space dimensions. The element shape functions have
degrees of freedom associated with the midpoints of the edges of the element.
The tangential field at the midpoint of each edge is continuous, while the
normal component is allowed to be discontinuous, yielding an approximation
related to the Crouziex–Raviart element for Stokes. Our formulation features
a parameter γ that stabilizes the tangential continuity at element edges, which
allows for tuning aimed at improving the accuracy of the method.
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We conclude that the proposed element yields a discretization error that is pro-
portional to the square of the mesh size for problems with smooth boundaries,
which is expected since it can model linear field variations exactly. A numerical
dispersion analysis on a periodic grid shows that the proposed element yields
second order convergence towards the analytical dispersion relation. For the
case with stabilization, we find four branches with ω(k) = 0 that correspond
to modes with an irrotational electric field that can be expressed as the gradi-
ent of a scalar potential: (i) one linear Lagrangian basis function φi associated
with the node of the unit cell; and (ii) three edge-bubble basis functions φiφj

associated with the three edges of the unit cell. (The case without stabiliza-
tion yields an additional three branches with ω(k) = 0.) The lowest non-zero
branch ω(k) correspond to the physical dispersion relation and it shows a
relative error that is proportional to (hT k)2, where hT denotes the maximum
edge length of the mesh. The remaining non-zero branches yield very large
values for ω(k), which makes them easy to identify and disregard. We find
that it is feasible to optimize the stabilization parameter γ on a periodic grid
of equilateral triangles in order to achieve very low errors in the dispersion
relation for large regions in k-space.

Eigenvalue analysis of a square shaped cavity reinforces the convergence prop-
erties found in the dispersion analysis. In addition, we find that the accuracy
of the proposed element is rather good with respect to the number of non-zero
elements in the stiffness matrix, when it is compared to the lumped edge ele-
ments on rectangles that are used for the spatial discretization in the popular
finite-difference time-domain (FDTD) scheme. We emphasize that the pro-
posed element does not suffer from spurious solutions and that it reproduces
the well-resolved eigenvalues with the correct multiplicity, also for problems
where the field solution is singular. Finally, we conclude that the proposed el-
ement allows for explicit time-stepping and yields accurate and robust results.
These characteristic features makes our element very suitable for computation-
ally challenging electromagnetic field problems that feature complex geometry,
e.g. large conformal array antennas.
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Sci. Paris 339 (2004) 727–732.

15



[15] P. Monk, Finite element methods for Maxwell’s equations, Oxford University
Press, New York, 2003.

[16] P.B. Monk, A.K. Parrot, A dispersion analysis of finite element methods for
Maxwell’s equations, SIAM J. Sci. Comput., 15 (1994) 916-937.
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