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On Solutions to the Linear Boltzmann Equation with
Inelastic Granular Collisions and Infinite Range Forces

Rolf Pettersson
Department of Mathematics, Chalmers University of Technology, SE-412 96 Goteborg, Sweden

Abstract. This paper considers the time- and space-dependent linear Boltzmann equation with general boundary conditions
in the case of inelastic (granular) collisions. First, in the angular cut-off case, mild L!-solutions are constructed as limits of
iterate functions, and boundedness of higher velocity moments are studied in the case of inverse power collision forces. Then
the problem with inelastic collisions in the infinite range case (without cut-off) will be studied in an integral weak form,
combining methods from our earlier papers, and using an H-theorem for a relative entropy functional.
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INTRODUCTION

The linear Boltzmann equation is frequently used for mathematical modelling in physics, (e.g. for describing
the neutron distribution in reactor physics, cf. [1]-[3]). In our earlier papers [4]-[6] we have studied the linear
Boltzmann equation, both in the angular cut-off case and the infinite range case, for a function f(x,v,?) representing
the distribution of particles with mass m colliding elastically and binary with other particles with mass m, and with
a given (known) distribution function Y (x,v,). In recent years a significant interest has been focused on the study
of kinetic models for granular flows, mostly with the non-linear Boltzmann equation; see ref. [7] for an overview,
with many further references, and also [8]—[9]. Our papers [10] and [11] consider the time-dependent respectively the
stationary linear Boltzmann equation for inelastic (granular) collisions, both papers in the angular cut-off case. The
purpose of this paper is to combine the methods from [4]—[6] and [10]-[11] to get results for granular collisions in the
infinite range case.

So we will study collisions between particles with mass m and particles with mass m., such that momentum is
conserved,

mv +myv, = mv' +m,v., )

where v, v, are velocities before and v/, v, are velocities after a collision.

In the elastic case, where also kinetic energy is conserved, one finds that the velocities after a binary collision
terminate on two concentric spheres, so all velocities v/ lie on a sphere around the center of mass, Vv = (mv +
m.v.)[(m+m.), with radius %=, where w = |[v — v.|, and all velocities v, lie on a sphere with the same center
¥ and with radius m’j‘_‘,‘,’l* , cf Figure 1 in [4].

In the granular, inelastic case we assume the following relation between the relative velocity components normal to
the plane of contact of the two particles,

w'u = —a(wu), 2)

where a is a constant, 0 < a < 1, and w = v —v,,w = v/ — v/, are the relative velocities before and after the collision,
and u is a unit vector in the direction of impact, u = (v —v') /|v —v/|. Then we find that v/ = v/, lies on the line between
v and v/, where v/} is the postvelocity in the case of elastic collision, i.e. with a = 1, and v/, lies on the (parallel) line
between v, and v,.

Now the following relations hold for the velocities in a granular, inelastic collision
My

(wa)u, V,=vi+(a+1)

V=v—(a+1)
m—+ nmy m—+ my

(wu)u, (3

where wa = wcos 8, w = |v — v,], if the unit vector u is given in spherical coordinates,

u = (sinBcos@,sinBsind,cos0), 0<O<7m/2, 0< ¢ <2m. @



Moreover, if we change notations, and let 'v,’ v, be the velocities before, and v, v, the velocities after a binary inelastic
collision, then by (2) and (3), cf. [7]-[11],

p (a+1)m, ) (a+1)m
v=y a(m+m,) (wuju, v =v. + a(m+my) (wu)u )
PRELIMINARIES

We consider the time-dependent transport equation for a distribution function f(x,v,#), depending on a space
variable X = (x1,X2,%3) in a bounded convex body D with (piecewise) C'-boundary I = 9D, and depending on a
velocity variable v = (vi,v2,v3) € V = R? and a time variable ¢ € R, . Then the linear Boltzmann equation is in the
strong form

d
L x,v,0) + grady f(x,v,1) = (@) (x,v,1), ©

xeD, veV=R}, teR,,

supplemented by initial data
f(XaVaO):fO(X’V)a xeD, veV. @)

The collision term can, in the case of inelastic (granular) collision, be written, cf. [7]-[11],
@N&v) = [ [ [a(8,w)Y (6/v.)£(x7,0) = ¥ (x, ) f(x,v,0)] B(O,w) dv.d6dg ®)
v/Q

with w = |v—v,|, where Y > 0 is a known distribution, B > 0 is given by the collision process, and finally J, is a
factor depending on the granular process (and giving mass conservation, if the gain and the loss integrals converge
separately). Furthermore, 'v, 'v, in (8) are the velocities before and v, v, the velocities after the binary collision, cf.
(5),and Q= {(0,0):0< 6 < 8, 0< ¢ < 2x} represents the impact plane, where 6 < Z in the angular cut-off case,

and 6 = Z in the infinite range case. The collision function B(8,w) is in the physically interesting case with inverse
k:th power collision forces given by

B(0,w) = b(0)w, :2_—5, w=lv—v., )

with hard forces for k > 5, Maxwellian for £ = 5, and soft forces for 3 < k < 5, where b(0) has a non-integrable
singularity for & = Z. So in the angular cut-off case one can choose § < 7, and then the gain and the loss terms in (8)
can be separated

(@) (x,v,1) = (@7 1) (x,v,6) = (@7 f)(x,,1), (10)

where the gain term can be written (with a kernel K;)
(O ) (x,v,1) = /VKa(x, Vo v)f(x,)v,t)d'v, (11)

and the loss term is written with the collision frequency L(x,v) as

(O™ )(x,v,t) = L(x,V) f(x,V,1). (12)

In the case of non-absorbing body we have that
L(x,v)=/Ka(x,v—>v') av'. (13)
v

Furthermore, equation (8) is in the space-dependent case supplemented by (general) boundary conditions

fovn = [R5 5 ) £, (x,9,00d9, (14)

v

nw<0,nv>0,xel'=dD, re Ry,



where n = n(x) is the unit outward normal at x € I' = dD. The function R > 0 satisfies (in the non-absorbing boundary
case)

/R(x,?—)v)dvzl, (15)
14

and f_ and f; represent the ingoing and outgoing trace functions corresponding to f. In the specular reflection case
the function R is represented by a Dirac measure R(x,V — v) = 8(v — ¥+ 2(n¥)n), and in the diffuse reflection case
R(x,¥ — v) = |nv|W(x, V) with some given function W > 0, (e.g. Maxwellian function).

Let 1, = 1(x,v) = infrep, {T:Xx—7v ¢ D}, and X, = x(X,V) = X —1,V, where 1, represents the time for a particle
going with velocity v from the boundary point x;, to the point x.

Then, using differentiation along the characteristics, equation (6) can formally be transformed to a mild equation,
and also to an exponential form of equation in the angular cut-off case, cf. [10] and also [4]-[6].

CONSTRUCTION OF SOLUTIONS IN THE CUT-OFF CASE

We construct L'-solutions to our problems as limits of iterate functions f”, when n — oo, Let first f~!(x,v,t) = 0.
Then define for given f*~! the next iterate f, first at the ingoing boundary (using the appropriate boundary condition),
and then inside D and at the outgoing boundary (using the exponential form of the equation),

n¥]

R(x,V "1(x,¥ \ 1

P (%,v,0) = /V

f(x,v,t) = f'(x,v,t)exp [—/otL(x—sv,v)ds]Jr— a7

t T
+/ exp [—/ L(x—sv,v)ds] / Ky(x—1v, v > v) " (x—1v, 'v,t — 1) d'vdr,
0 0 14
where

-n | folx—=tv,v), 0<t<ty,
! (X’V”)_{ A Xp Vot =), 1> 1. (18)

Let also f"(x,v,t) =0 for x € R? \ D. Now we get a monotonicity lemma, f(x,v,t) > f*~'(x,v,t), which is essential
and can be proved by induction.

Then, by differentiation along the characteristics and integration (with Green’s formula), we find (using the equa-
tions above, cf. [10]), that

/D/Vfﬂ(x,v,t) dxdvﬁ/D/Vfo(x,v) dxdv, (19)

so Levi’s theorem (on monotone convergence) gives existence of (mild) L!-solutions
F(x,v,1) = lim f*(x,v,1)
n—eo

to our problem with granular gases (almost in the same way as for the elastic collision case). Furthermore, if
L(x,v)f(x,v,t) € L' (D x V), then we get equality in (19) for the limit function f, giving mass conservation together
with uniqueness in the relevant function space (cf [4]-[6], [10], [11], and also Proposition 3.3, chapter 11 in [3]).

Remark 1 The assumption Lf € L' (D x V) is, for instance, satisfied for the solution f in the case of inverse power
collision forces, cf. (9), together with e.g. specular boundary reflections. This follows from a statement on global
boundedness (in time) of higher velocity moments, (cf. Theorem 4.1 and Corollary 4.1 in [10]).

Remark 2 There holds also in the granular inelastic collision case an H-theorem for a general relative entropy
functional A 9

D X7V7
H2(F) (1) = /D /V (L o )F(x,v) dxav, (20)

giving that this H-functional is nonincreasing in time, if ® = ®(z), R, — R, is a convex C'-function, and if there exists
a corresponding stationary solution F (x,v) with the same total mass as the initial data fy(x,v) for the time-dependent
solution f(x,v,?); cf. Theorem 5.1 in [10].



ON L!-SOLUTIONS IN THE INFINITE RANGE CASE

In this section the linear Boltzmann equation for granular inelastic collisions is considered without cut-off in the
collision term, i.e. including infinite range forces. It is studied in the following weak integral form, which can formally
be derived from equation (6) with (7) and (8):

| [ soxv.nsocve) axav= [ [ exv.0)foix,v) dxav+ en

/0; /D/V [v grad, g(x,v,T) + %g(x,v, ‘L')]f(x,v, T) dxdvdt+

/Ot/,)/v/v/g [8(x,¥',7) — g(x,v,7)| B(8,W)Y (X,V.) f(X,V,T) dxdvdv.dBd¢dr,

for all test functions g € Cé’w (for simplicity).
Here Cp™ = {g € C'* : g(x,v,1) =0, x € ['= D}, where C' = {g € C' (D x V x [0,00)) :

llglls = suplg(x,v,1)| +sup| g(x, v, 7)| + sup |grad,g(x,V,1)| + sup|grad,g(x, v,1)| < eo}.
The mathematical problems in the non-cut-off case come from the non-integrability (when 8 — %) of the function
B(0,w) = b(0)w? in the inverse power case, cf. (9), where

/Eb(e) 46 = o, /fb(e)cose 6 < .
0 0

Now the possibility of getting a solution f(x,v,?) to equation (21) depends (among others), cf. (3), on the following
estimate for the test functions, cf [4]-[6],

My

lg(x, v, 7) —g(x,v,7)| < |lglli(a+1) wcos 8. (22)

m—+ my

Then we want to prove existence of L'-solutions f(x, v,?) to the integral equation (21) in the infinite range case without
angular cut-off, & = Z. Therefore we start with a sequence of solutions f,(x,v,t) € L'(Dx V), t € R, from the cut-off
case, with e.g. ép =7- ;7, p=1,2,3,... These solutions f,(x,v,?) satisfy equation (21).

The existence theorem in the non-cut-off case is based on a compactness lemma, which is analogous to that given
by Arkerydin [12], (cf. also Lemma 4.1 in [5]); the formulation and the proof are omitted here. Then we can formulate
the following theorem on existence of L!-solutions to equation (21) in the case of inelastic (granular) collisions with
inverse power forces, cf. [4]-[6].

Theorem Let B(0,w) satisfy (9) and let Y (x,v.) = X (x)Z(v,) with X (x) continuous on D and Z(v,) measurable on
V, and suppose specular reflections at the boundary. Assume alternatively:

a) that fp log(J;—o) € L'(D x V) holds for the initial function fy, where E(x,v) € L' (D x V) satisfies a detailed balance
relation E(x,v)Y (x,v.) = E(x,V)Y(x,V,), or

b) that f log(%) € L'(D x V) holds for fy and a corresponding stationary solution F(x,v) (independent of the
cut-offs).

Then there exists (for ¢+ > 0) a solution f(x,v,¢) € LL(D x V) to the linear Boltzmann equation in the in-
tegral form (21) for granular, inelastic collisions in the infinite range case. The solution conserves mass:
Inly f(x,v,1) dxdv = [, ], fo(x,v) dxdv, and higher velocity moments are globally bounded in time for hard
forces (k > 5) and locally bounded for soft forces (3 < k < 5).

Proof (sketch): Cf. the proof of Theorem 4.2 in [5] and also the proof of Theorem 3 in [12]. Let { fp(x,v,t)}";=1
be a sequence of (mild) solutions for equation (21) with angular cut-offs ép =7- %. By an H-theorem and the
compactness lemma one can select a subsequence { fp;} =1 converging weakly to a function f € LL(D x V) for all
rational ¢. But [, [y, 8(x,v,t) fp(X,V,t) dxdv is equicontinuous in ¢, and the subsequence {f,;} converges weakly to a

function f € LlL (D x V) for all ¢. One finds that the function f = w — lim;_;e f; ; satisfies the integral equation (21),
and the statements on velocity moments follow from the cut-off case.



Remark The assumption g(x,v,t) = 0, x € I' = dD on the test functions can be weakened, and the boundary terms

t
/0 /I‘/V/V [8(X:VI;T) - g(x,v, T)]R(x,v — V) f(x,v,7)|nv| dTdvdv'dt (23)

can be included in equation (21), e.g. in the case of specular reflection, cf. [13].
Final remark Granular inelastic collisions can also be studied using transformation of masses and velocities to the
problem of elastic collisions, cf, ref. [14], but our method above gives somewhat precise estimates.
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