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MULTISCALE STOCHASTIC HOMOGENIZATION OF
CONVECTION-DIFFUSION EQUATIONS

NILS SVANSTEDT

ABSTRACT. Multiscale stochastic homogenization is studied for convection-diffusion prob-
lems. More specifically we consider the asymptotic behaviour of a sequence of realizations

of the form 2% + L¢ (Tg(g)wg) Ve — div <a (Tl(g)wl,Tz(g)wz,t) Vug) —f Tt

is shown, under certain structure assumptions on the random vector field C(ws3) and the
random map « (w1,ws,t), that the sequence {u¥} of solutions converges in the sense
of G-convergence of parabolic operators to the solution u of the homogenized problem

gu _ div (B(t)Vu) = f.

AMS Subject Classification: 35B27, 35B40.

1. INTRODUCTION

In this paper we consider the stochastic homogenization problem for the initial-boundary
value problem
o . .
T + ;€ (Tg(%)tdg) - Vu¥ — div (a (Tl(i)Wl,TQ(i)wg, t) Vu‘g’) = fin Q,
(1) u¥(z,0) = up(x) in Q,

u¥(z,t) = 0in 0Q, x (0,7).

Here and in the rest of the paper we will write @) for the space-time set @, x (0,7)
where (), is an open bounded set in R*, n = 2, 3, and 7T is a positive number. Further
€ is a divergence free random vector field in R*. For each fixed w; € €;, 1 = 1, 2, 3,

the realization (1) is an initial-boundary value problem. Following the framework in
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[11], see also [4] we associate three probability spaces (Q, Fr, ux), £ = 1,2,3. Each Fy
is a complete o-algebra and each p; is the associated countably additive non-negative
probability measure on F normalized by ux(€2) = 1. For every 2 € R" we associate the
dynamical system

Tk(x) : Qk — Qk

For the random fields

a (wi,ws, t) and C(ws)

we can then, for fixed wq, wy and ws, consider the realizations
a (T1(z)wr, To(x)ws, t) and € (T3(z)ws)
and the “speeded up” realizations
x z 1 T
(0% <T1(—)w1,T2(—)w2,t> and —C (T3(—)UJ3) s
&1 £9 £3 £3
respectively. With this construction which will be precisely defined in Section 2 the ran-
dom fields become stationary due to the invariance properties of the associated probability
measure and therefore the Birkhoff ergodic theorem applies and we can define limits of
the speeded up realizations in terms of expectations (mean values) over the probability
spaces. In the asymptotic analysis of the convection-diffusion problem a key problem is
the scaling of the convection term and the diffusion term. As we willl see the scaling in
1 T ) T z
—C <T3(—)w3) - Vu? — div (a (Tl(—)wl,Tg(—)wg, t) Vu‘;’)
€3 €3 €1 €2
is the appropriate for divergence free fields €. We say that the random field C is divergence

free if for every fixed w3 € €23 all realizations
R" 5 z — C(T3(x)ws)

are divergence free. In our analysis we will have to assume that £; and €, are two well
separated functions (scales) of ¢ > 0 which converge to zero as ¢ tends to zero. We say

that €; and e, are well separated if



MULTISCALE STOCHASTIC HOMOGENIZATION OF CONVECTION-DIFFUSION EQUATIONS 3

This means that ¢, is a finer scale than ;. For instance if &1 = € and e, = €2, then ¢;
and €5 are well separated scales. In this paper we also assume that the scale e3 is well
separated from the other two scales and that e3 is the fastest scale. For instance ¢; = ¢,
g9 = €2 and e3 = &® meet this assumption. The multiscale stochastic homogenization
problem for (1) consists in studying the asymptotic behavior of the solutions u¥ as e
tends to zero.

Homogenization problems with more than one oscillating scale in the periodic setting
was first introduced in [1] for linear elliptic problems. Recently the monotone elliptic case
has been studied in [7]. The multiscale monotone stochastic elliptic and parabolic cases
are recently studied in [11].

In the present work we will use the classical framework of G-convergence, which can be
thought of as a non-periodic “homogenization” or stabilization of sequences of operator
equations. We refer to [10] concerning G-convergence results for elliptic and parabolic
operators needed in this report. Here we show that the general theory also applies to the
situation of multiple scales and multiscale stochastic homogenization of a class of nonlinear
convection-diffusion problems. The main result (Theorem 5) says that the sequence of
solutions {u¥} to (1) converges to the solution u to a homogenized problem of the form

g—z —div (B (t) Vu) = f in Q,
(2) u(z,0) = uo(x) in Q,

u(z,t) =0 in 0Q, x (0,7),
where the convection enhanced effective diffusion matrix B depends on ¢ but is no longer
oscillating in space with €. A motivation for the present work is that it opens to homog-
enize structures which have periodic oscillations in some scales and random oscillations
in other. A typical situation where periodic and random scales occur is the modeling
of porous media. A meso-scale can be modeled as a periodic distribution of solid parts
whereas a sub-scale on a finer level can be modeled by a certain random distribution. The
homogenization problem for monotone operators in the random setting has been studied

by Efendiev and Pankov, see [4] and the references therein. They consider single spatial

and temporal scales but consider oscillations also in time. The corresponding multiscale
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situation is studied in [11]. For a careful study of convection enhanced diffusion for peri-

odic flows we refer to [6].

Acknowledgement The author would like to thank the anonymous referee for a number

of remarks and comments which have improved, in various ways, the final version of the

paper.

2. SOME BASIC NOTATIONS

Let (2, F, u) denote a probability space, where JF is a complete o-algebra and y is a

probability measure. For every x € R" we associate the dynamical system
T(x):Q—Q

where both T'(z) and T'(x) ! are assumed to be u-measurable. Moreover we assume that

the following (measure preserving) properties are satisfied:

e T(0)w = w for each w € Q.

o T'(x+vy)=T(x)T(y) for z,y € R™.

e The set {(z,w) € R* x Q: T(z)w € F} is a dz x du(w) measurable subset of
R™ x Q for each F' € F where dz denotes the Lebesgue measure.

e For any measurable function f(w) defined on €2, the function f(7'(z)w) defined on

R™ x 2 is also measurable where R" is endowed with the Lebesgue measure.

The dynamical system T is said to be ergodic if every invariant function f, (i.e functions

f which satisfies f(T(z)w) = f(w)) is constant almost everywhere in ).
Example 1. (periodic case) As a special case we recover the periodic functions by letting
Q={weR":0<w<1,k=1,...,n} and T(z) : Q2 — Q

given by
T(x)w =z 4+ w(modl).

For a random field f(z,w) the “periodic” realization is given by f(x + w).
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Definition 1. We say that a vector field f is a potential field if there exists a function
g € WyP(R") such that f = Dg.

By LP(2) we denote the equivalence class of all u-integrable functions (with exponent
p > 1). To each f € LP(Q)) the dynamical system 7'(z) yields a function z — f(T(z)w)

on R™. We call this function the realization of f.

Definition 2. We say that a random vector field f € [LP(Q)]" is a potential field if almost
all its realizations f(T(z)w) are potential fields in the sense of Defintion 1. We denote
this field by L% ,(€2).

Definition 3. We also define the space of vector fields with mean value zero.

V) = {F € P (1) = [ 1(6)dute) =0},

We observe that by the Fubini Theorem it follows that if f € L?(£2) then almost all
realizations f(7T'(-)w) € LP(R").

Definition 4. Let f € L] (R*). The number M(f) is called the mean value of f if
lim [ f(z/e)de = |K[M(f)
e=0 J

for any Lebesgue measurable bounded set K € R*. Alternatively the mean can be expressed
in terms of weak convergence. If the family {f(-/€)} is in LP(Q.), p > 1 then M(f) is

called the mean value of f if
{f(-/e)} = M(F) in LP(Qq).
We can now formulate the important:

Theorem 1. (Birkhoff Ergodic Theorem) Let f € LP(Q?), p > 1. Then for almost all
w € Q the realization f(T(x)w) possesses a mean value M(f(T(z)w)). Moreover, as a

function of w € Q, this mean value M (f(T(x)w)) is invariant and

/f ) dja(w /M )) du(w).
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If the system T'(x) is ergodic then
[ 16)dute) = MUHT @)

Now let {(Qu, Fr, ) }2L, denote a family of probability spaces, where each Fy is a
complete o-algebra and each py is the associated probability measure. For every x € R"

we also associate the dynamical system
Tk(ﬂi) : Qk — Qk
With this we can now formulate a multiscale extension of the Birkhoff ergodic theorem:

Theorem 2. Let f € LP(Qq X ... x Qu), p > 1. Then for almost all wy € Qf the real-
ization f(T1(x)w, ..., Tar(z)war) possesses a mean value M (f(Ti(x)wi, - .., Tau(x)war)).
Moreover, as a function of wy € U, this mean value M(f(Ti(z)w1, --., Tar(x)war)) is

variant and

(f)z/Q A flwr, ooy war) dpg(wy) - dppr(wyr) =

/Q [ M), -, Taale)ow)) dys(@0) -y (on)

If the systems Ty (z) are ergodic then
(f) = M(f(Ti(z)wi, ..., Tu(z)wnr)).
We continue by setting the appropriate structure conditions:

Definition 5. Let (0, Fy, k), k = 1, 2, 3, be three probability spaces. Given 0 < § <1,
2 < p < oo and three positive real constants cy, c¢1 and ¢z, we define the class SY =

S¥(co, c1, €2,0) of maps
GZQ1 XQQXQ:;X (O,T) x R" —)Rn,
satisfying

(i) la(wy, wa,ws, t,0)| < ¢ a.e in Q X Qp x Q3 x (0,7),

(i1)  almost all realizations a(-,-,-,-, &) are Lebesgue measurable for every £ € R",
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(iti)  [(a(wr,wa,ws, t,&1) — awr,wa, w3, 1, &) < er(1 4 & + &P 7016 — &, ae in
Ql X Q2 X Q3 X (O,T) fO’f’ all 61,62 € Rn’

(iv)  (a(wr,ws, ws,t, &) —a(wr, we,ws, t,&), & — &) > c2|&1 — &P, a.e. in Oy x Oy x Q3 X

(0,7) for all &,& € R™.
It easily follows that

(3) |a(w1,w2,w3,t, §)| < C(l + |§|)p—1’

(4) |§‘p < 0(1 + (a(wl’w%w& t’ 6)’6))

Let us introduce some function spaces related to the differential equations studied in this
paper. Let V be a reflexive real Banach space, with dual V' and let H be a real Hilbert
space. We introduce the triple

VCHCV'

with dense embeddings. Further, for positive 7" and for 2 < p < oo let us introduce the
spaces V = LP(0,T;V), H = L*(0,T;H) and V' = L4(0,T;V"), where 1/p+1/q = 1.

Then we can consider the corresponding evolution triple
VCHCV
also with dense embeddings where the duality pairing (-, -)y between V and V' is given by
oy = /OT(f(t),u(t))th, forueV, fevV.
We define the spaces W and Wy as
W={veV:v eV}and Wy={veW:v0)=0}.

Here v’ denotes the time derivative of v, where this derivative is taken in distributional

sense. Equipped with the graph norm
10w, = [v]lv + [[o']}v

Wy becomes a real reflexive Banach space. Moreover, since the embedding W, —

C(0,T; H) is continuous, every function in Wy, with possible modification on a set of
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measure zero, can be considered as a continuous function with values in H. Let us define
the operator % :'V — V' given by

d :
£u=u for u € Wy.
We denote by V = W, ?(Q,) with norm ||ul/?, = Jo, |1DufP dz, H = L*(Q,) and V' =
W=44(Q,). Then the evolution triples considered above are well-defined with dense em-

beddings. We define the spaces
U=01"Q:;R") and U' = LY(Q,; R")

and the spaces

U= LP(0,7;U) and U = LI(0,T;U").

3. ELLIPTIC AND PARABOLIC HOMOGENIZATION

We are interested in the asymptotic behaviour (as ¢ — 0) of the sequence {u¥} of

solutions to the initial-boundary value problems

ou¥ . :
auts — div (a (Tl(i)wl,TQ(iwg,Tg,(i)wg,t, Vu‘;’)) = f, in Q,
(5) u?(0) = ug, in Q,

£

w? € LP(0,T; V).

We assume for technical reasons that 2 < p < oco. The results can also be obtained for
1 < p < 2, see [10]. We follow the idea in [11] and present first the homogenization
problem for the corresponding elliptic problem and then use a comparison result. We

now define the operator AY : V — U’ as

(6) AC(2,4,6) = a (Tl(f)wl,T2(:—2)w2,T3(:—3)w3,t, g) .

€1
With some abuse of notation we will say that AY belongs to S“ if the corresponding map
a does. Then, (5) can be written as
Oug div(A%(z,t,Vu?)) = f in Q
- v 3 Uy £ = )
(7) ot ¢
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It is a standard result, see [12] Chapter 30, in the theory of monotone operators that
(7) possesses a unique weak solution for a.e. (wy,wy,ws3) € Q1 X Oy x Q3. Moreover by
Theorem 3.1 in [10] there exist subsequences such that

uy = u in Wy
and
AY(z,t, Vue) = b(x,t,Vu) in U.

We will now use the technique of an auxiliary local problem to construct b explicitly.

We begin with:

Theorem 3. Let us consider the sequence of parameter-dependent elliptic boundary value

problems

—div(A4¥(z,t,Vu?)) = f in Qu,

8 w(-,1) €V, telo,T].

Assume that AY € S5 and that

A2 (2,t,€) — A2 (2,5, <t —s)(L+ ¢ )

where n is the modulus of continuity function. Also assume that the underlying dynamical

systems Ty (z) and Ty(x) are ergodic. Then

ul(,t) = u in V

and
AY(-,t, Vus) = b(t,Vu) in U,
where u 1s the solution to the homogenized problem

—div(b(t, V) = f in Q.

) u(-,t) €V, te€l0,T].

The operator b is defined as

b(t, ) = / by (w1, € + 2 (w1, ) dpn (w1),
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where 2t (wy,t) € V,or(Q1) is the solution to the 1-scale local problem
(bi(wi,t, € + 25 (wi, 1), B1(wi)) = 0
for all ®1(wy) € Vpot(21), t € [0,T]. The operator by is defined as
by (wi,t,&) = /Q awr, wa, t, € + 25(wr, wa, 1)) dug(ws),
>
where 25 (w1, wa, t) € Voo () is the solution to the ey-scale local problem
(ba(wi, wa, T, € + 25 (wi, wa, 1), Pa(ws)) = 0

for all ®o(ws) € Vot (S22) a.e. wy € Oy, t € [0,T]. The operator by is defined as

bo(w1,ws, t,&) = /Q a(wi, wa, ws, t, € + 25 (w1, wa, ws, 1)) dus(ws),

s
where zg(wl,wg,wg,t) € Vpot(€23) is the solution to the e3-scale local problem
(a(wy, wa, ws, t, € + 25 (w1, wa, ws, 1), B3(ws)) = 0

for all ®3(w3) € Vpor(Q3) a.e. wi € Q, wy € o, t € [0,T].

For the proof we refer to [11].

We can now also state the following reiterated homogenization result:

Theorem 4. Consider the initial-boundary value problem (7):

L div(As(@,t. V) = £ in Q,
UZ_J € Wo.

Under the same assumptions as in Theorem 3 it holds true that as ¢ — 0
uy = u in Wy

and

Az, t, Vul) = b(t,Vu) in W,
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where u 1s the unique solution to the homogenized problem

g—? —div(b(t,Vu)) = f in Q,
(10) u(0) = ug in Qg
u € Wo,

Proof The proof follows by combining Theorem 3 above and the comparison result

Theorem 8.2 in [10].

4. HOMOGENIZATION OF THE CONVECTION-DIFFUSION EQUATION

We are interested in the asymptotic behaviour (as € — 0) of the following sequence of

initial-boundary value problems

(11)

aug] 1 T w 3 T xz w j— 3
5 e (Tg,(g)wg) Vug = div (o (Ty(2)wr, To( 2)un, t) Ve ) = . in Q,

u#(0) = ug, in Q,

u? € L*(0,T; H} (),

where € is a divergence free random vector field. We have chosen to consider in this
presentation the linear case for the exposition of explicit homogenization formulae. The

coefficients « are expected to satisfy the assumptions in Definition 5 with
CM((“Jla Wa, t)f = a’(wla Wa, t, g),

where the variable ws is just removed here. Theorem 5 below also holds true for monotone
vector fields € and a. Since div € = 0 it is well-known that there exists a skew-symmetric

matrix S such that div.S = €. In space dimension two

oo s(n(2)u)=( 0 EE)),

€3 —5 (T3(£)w3) 0
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where s is the stream function corresponding to the field €. In space dimension three

there exists a vector potential s = (s1, $9, s3) and a skew-symmetric matrix
0 —S3 (Tg(i) )w3 S92 (Tg(%)w;),)

T
(13) S (T3 (8—) wa) =1 s (Ts(l)ws) 0 —$1 (T3(£)w3
3
—S9 (Tg( )Ldg) S1 (T3(£)L&)3> 0
In the rest of this section we will consider the two-dimensional case. By using the stream

function we can write the convection-diffusion equation as a parabolic divergence form

initial-boundary value problem:

Ou; 1 (A (TI < ) wi, Ty (i) wa, T3 <£> w?nt) VU‘;) =Jfe in Q,
ot €1 ) €3

UZ‘J(O) = UB)’ in QSE7

A <T1 <£> wi, To <£> wa, T3 <£> w3at> =
€1 €9 €3

o (Ti(2)wr, To(2)wn, ) s (To(2)s )

(14)

where

s (T3(2)ws ) o (T1(2)wr, To(2)wn, t)

We also define the realizations AY as

.A:J(.T,t) = A (Tl ( ) wl,TQ <£> LLJQ,Tg (i) (A)3,t)
€1 €9 €3

Before we state the main theorem we also define the appropriate class of coefficients:

Definition 6. We say that the matriz function M (w1, ws,ws, t) € S? if for 0 < B < o <

oo we have
Bil€)? < € ME < Bolef?

for all € € R™, with transpose T, a.e. in Q; x Qs x Q3 x (0,7T).

We can now state the following theorem:
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Theorem 5. Consider the sequence of convection-diffusion equations:

a;f — div(A®(z,)Vu¥) = £ in Q,
(15) u2(0) = ug, in Qg

3

u? € L2(0, T; Hy (Qz))-

Assume that AY € S? and that
(AL (2, 1) — AL (z, 8)] <t = 5),

where n is the modulus of continuity function. Also assume that the underlying dynam-
ical systems Ty (z), Ty(xz) and Ts(z) are ergodic. Then for every compact set {f.} in
L2(0,T; H1(2)) and for every e > 0, there exists a unique solution u® € L*(0,T; H} (Qz))

to (15) and moreover, as € — 0
u? — u in L*(0,T; H)(Q,))
and
AL()VuZ = B()Vu in L*(0,T;[L*(Q:)]"),

where u 1s the solution to the homogenized problem

ou . .
(16) 5 " div(B(t)Vu) = f in Q,
u e L*(0,T; H(Qy)).

For a fired £ € R™ the operator B(t) is defined as

B(t)E = [ Bi(wr, )€+ 25 (wi, b)) dps(wr),

91

where 2 (w1, 1) € Vo (S01) is the solution to the e1-scale local problem
(Bi(wr, t)(€ + 2 (w1, 1)), Pa(wi)) = 0
for all ®1(w1) € Vpor(1), t € [0,T]. The operator B(wi,t) is defined as

Bi(w, ) = | Bolwr,ws, t, & + 25 (wy, 1)) dpn(ws),
Q2

where 237 (wy, t) € Voot (Qg) is the solution to the e4-scale local problem

(Ba(wr, we, ) (€ + 25 (wa, 1)), Ba(wa)) = 0
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for all ®g(ws) € Vpor(22) a.e. wy € Oy, t €[0,T). The operator Bo(wy,ws,t) is defined as

Bo(wy, we, )€ = A(wr, wo, ws, 1, € + Z‘:fl’m’g(w?”t)) dps(ws),
Q3

where z‘;l’m’g(wg,t) € Voot(Q23) is the solution to the e3-scale local problem
(A(wr, wa, ws, 1)(§ + 252 (w3, 1)), P3(ws)) = 0
for all ®3(w3) € Vpor(Q23) a.e. wi € Qp, wy € o, t € [0,T].

Proof The proof follows to a large extent the proof of Theorem 7 in [11], (This is just

Theorem 3 above). Just choose p = 2.

Remark 1. The effective diffusion matriz B is called the convection enhanced diffusion
matriz. We note that AY and B are both skew symmetric. This means that in order to
practically satisfy the S%-condition the convection field and the diffusion must balance. If

the convection is far to large the existence breaks down.

Remark 2. The homogenized matrices have the following explicit form

a(wy,wy,t)  —s(ws)
Bay(wi,ws, )€ = o, (€ + 2502 (ws, 1)) dpas(ws)-
s (w3) awr, wa, t)
a(wy,wa, t) -3
Bi(wi, )€ = o (€ + 25 (ws, 1)) dpas(w2).
s a(wr, we, t)
by (wi,t) —3
B(t)¢ = o (€ + 2 (w1, 1)) dpn (wn),
S by (ws,t)

where 5 denotes the average over §3.
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