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Abstract

One way to assess the uncertainty in fatigue damage anaygisuse a so-called safety index. In
the computation of such an index the variation coefficienttie accumulated damage is required. In
this paper the expected fatigue damage and its coefficiesatrizftion is firstly estimated from measured
stress. Secondly, when suitable stress measurementstaeailable these are computed from models
for damage accumulation and sea states variability. Stsehgring ship sailing period are known as the
non-stationary, slowly changing, Gaussian processes emceldamage accumulation, during encoun-
tered sea state, can be approximated by an algebraic foraftgignificant wave height, ship speed and
heading angle; Further the space time variability of sigaiit wave height is modeled as a lognormal
field with parameters estimated from the satellite measemntsn

The proposed methods to estimate uncertainties in the daam@gimulation process are validated
using full scale measurements carried out for a containeseleperating in the North Atlantic.

Keywords: Rainflow damage, fatigue risk of ship structure detail, tyafedex, damage variability.

1 Introduction

Material fatigue is one of the most important safety isswessfructures subject to cyclic loads and
the cause of failure in a majority of cases. Fatigue life ofractural detail is greatly influenced by a

number of components and material dependent factors, Sugbametry, size of the structure, surface
smoothness, surface coating, residual stress, matedal gize and defects. Further, the nature of
the load process is important. The complex dependence bptthese factors and fatigue life makes
predictions uncertain and even for controlled laboratoqyegiments the results from fatigue life tests
exhibit a considerable scatter.

In this paper we present a simplified safety analysis sholwivgthe different sources of uncertain-
ties can be combined into a safety index using a Bayesiaroappmwith material and structure detail
dependent parameters modeled as random variables. Weantiltydarly focuse on the variability of
the loads a ship may encountered in a specified period of time.

When studying a variable environment, the average damagelgrate may not be sufficient to
properly estimate the risk for fatigue failure. For examplee fatigue crack risk of a ship structure
detail during one year depends on the age of such detail, amdbe high during a year if a vessel
encounters an extreme storm. The probability of meeting sustorm can be very small but may still
influence the value of the estimated risk. Consequentlyticeiainties in long term variability of load
properties should be included in the risk analysis.

In this paper methods to estimate the fatigue risk of shipcstire details will be presented. Data
from an extensive measurement campaign will be used toatalithe proposed methodology. The
paper is organized as follows. In Section 2 some basic defisitof rainflow damage are given and
in Section 2.1 variable amplitude tests are discussed.tySaf@ex is introduced in Section 2.2. The
computation of such index is illustrated in Section 3 whéwe measured stresses during half a year
are used to compute the safety index of trade in differentbamnof years. An important case of
computation of the safety index when no stress measureraemtvailable is discussed in Section 4.
In this section the safety index will be estimated, by meana model for the sea state variability
estimated using the satellite data. The model is presentdetiappendix. Some further mathematical
details about computating the coefficient of variation af iccumulated damage are moved to the



appendix. Finally, a numerical example is given in Section 5

2 Fatiguereview

Fatigue testing of structural details has traditionallgmearried out using constant amplitude stress
cycles. In these experiments the stress oscillates bettheeminimum and maximum value until fa-
tigue failure occurs. Repeating the experiments for difiéamplitudes, keeping the rati&, between
minimum and maximum load constant, result in what is knowra &86hler curve, also called S-N
curve, with a log-linear dependence between the numberaésyo failure,V, and the stress cycle
range,h,

log(N) = a — klog(h) + e, (1)

where parameters > 0 andk > 1 depend on material and structural detail properties andttiess
ratio R. When studying fatigue of welded ship structure, the pararset k are usually categorized
into different types based on the properties of structueshits. In this paper, we will use the simple
one slope S-N curve with = 3 anda = 12.76, where the unit of stress cycle ranfgshould be "MPa",
see DNV Fatigue Note (2005).

For random stresses the stress cycles and cycle rangesmkedléfined using some cycle count
procedure. In fatigue analysis the "rainflow" method, sepeiglix |, has been shown to give the most
accurate results. The method was originally introducedrnyoE The first paper in English is Matsuishi
and Endo (1968). Here we shall use the alternative defingieen in Rychlik (1987), which is more
suitable for statistical analysis.

Fatigue damage from variable amplitude (random) stressesmmonly regarded as a cumulative
process. Leth; be the ranges of the rainflow cycles, see Figure 5, found irstress then using
the linear Palmgren-Miner damage accumulation rule (Padmgl924, Miner, 1945) one defines the
pseudo rainflow damag®” /¢ (t) at timet as

DIe(t) = by (2)

Finally it is assumed that fatigue failure occurs wheg( D"7¢(t)) > a. (Note thath; should have the
same unit as the stress cycle rahga (1)). In practice one is observing failures wheg(D"/¢(t)) >

a — 0.5 due to variability of material properties and other factoedevant for fatigue accumulation,
see Johannesson et al. (2005a) for detailed discussionsgige solution to incorporate these factors
in the model is to estimate the parameteendk of the S-N curve using tests with variable amplitude
loads similar to the real load processes. We will discussifisiue further in the next section.

2.1 Variableamplitude S-N curve

Let us introduce the equivalent cycle range defined as

1 n 1/k
hed(n) = <n > hf) , 3)
=1

where{h;}} are stress ranges of rainflow cycles. Usually the stresalsgrainflow filtered, i.e. small
cycles, with range smaller than some chosen thresholdvetatthe fatigue limit, are removed before
computation of the equivalent range. Consequenily (3) is the number of remaining rainflow cycles
used in the blocked test load. For stationary (ergodic) Gandoadsh¢?(n) fast approaches a limit
he, say,

R = lim h®(n), 4)

n—oo

which can be computed from a single long measurement of e lo
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Figure 1: S-N curve estimated from variable amplitude tastsg broad-banded, narrow-banded and
Pierson-Moskowitz spectra compared with constant ang#@itests (Agerskov, 2000).

Empirical tests, see Agerskov (2000) and Figure 1, have shbat the S-N curve (1) is valid also
for Gaussian random loads if the constant stress rangeeplaced by:¢?,

log(N) = a — klog (h®?) + e. (5)

The S-N curve (5) tells us that, if an undamaged structurailddbaded by a stationary Gaussian
stress under timg then the load is safe for this structure detail if

a — log (D"fc(t)) +e>0. (6)

In Figure 1 the results of constant amplitude experimergsnaarked by pluses and one can see that
the S-N relation for the constant amplitude load would ghe same: but also a higher value of the
parameter. It indicates that using in (6) from the constant amplitude experiments will give gom
(nonconservative) bias.

2.2 Fatiguein variable environment

Measurements show that the Gaussian processes are oftdmymtels for variability of the wave
induced stresses to ship structure details under stayiag®a conditions, from about 30 minutes to
several hours. However the sea-states vary along the nodtesace the stress is in fact a non-stationary
Gaussian process. Since the fatigue tests leading to Sk ¢B)y were performed under stationary
conditions and hence it is not obvious that one can againhes&+4N based criterion (6) to estimate
the risk of fatigue failure. In fact some additional assuond are needed to extend applicability of
the criterion from stationary to non-stationary loadingr Example one needs to neglect the possible
sequential effects and then use the S-N curve obtaineddtoisary Gaussian loads.

More precisely, suppose that during periBd M voyages were undertaken. Further, assume that
the damage accumulated in harbors during loading and unipagerations can be neglected. If the
stresses are known during the voyages then the pseudo mhtﬂlmagel);’f ¢, during jth voyage and
defined by (2), can be evaluated and the total pseudo daméigediby

M
prie(r) =Y Djle (7)
j=1
Now the Palmgren-Miner hypothesis is equivalent to theedoh that the stress history is safe for
fatigue if
a — log (D"fC(T)) +e4+é>0 (8)



wherea ande are taken from variable amplitude fatigue tests. Furtheradditional error terrérepre-
sents the uncertainties caused by possible modeling eergrsusing Palmgren-Miner rule, neglecting
sequential effects between voyages, using stress coatientfactor and other simplifications. (The
mean ofé is often assumed to be zero while the varianceé okeds to be determined by means of
experience.)

The total accumulated pseudo damdge’*(T'), defined in (7), is a function of the magnitudes
of stresses experienced by structure details during thec#&r. However most often the stresses are
unknown. In such situation one can model the uncertain \afitiee damaged™/<(T") by a distribution
of the possible values it can take, in other woid%/<(T) is a random variable. And then one is
interested in the failure probability

P; = P(a —log(D"/¢(T)) + e+ ¢ <0).
Here, using the Bayesian ideasD"/¢(T'), e andé are random variables. If
G =a—log(D"e(T))+e+é

is normally distributed then the probability of crackingcacrences for the structural detail; =
— @(I¢), whered is the cumulative distribution function (cdf) of a standaatmal variable, while
I is the so called Corell’s safety index defined as follows
E[G]  Ela—log(D"/(T)) + e+ é]
VVar(G)  +/Var(a —log(D"/¢(T)) + e + é)

Cc =

(9)

Most oftenG is not normally distributed and hend& # 1 — &(I) but the index is still a useful
measure for the risk of cracking for the structure detail.

In the case when the distributions@f D™/¢(T"), e andé are not well known one is further simpli-
fying the safety index (assuming independence and empgdyauss formulas) by
Ela] — log(E[D"/(T)])
\/Var + Var(log(D7f¢(T'))) + Var(e) + Var(é)

(10)

In the following examples we shall ude= 3 andE[a] = 12.76 as mentioned before. The value of
variance ofa (and the two other variances as well) is not available and vedl sise typical values
taken from literature. The variability af, ande were studied in Johannesson et al. (2005a), typical
values aréVar(a) = 0.005, Var(e) = 0.14 while Var(¢) = 0.1. Further,Var(log(D"/¢(T))) can be

approximated byCoV (D7f¢(T))? = %W, coefficient of variation of pseudo damage. Then

the safety index is approximated as

E(a] — log(E[D"/*(T)])

fo= V/Var(a) + CoV(D"7e(T))2 4 Var(e) + Var(é)

(11

Hence only the orders d&[D"/¢(T)] andCoV (D"f¢(T))?, have to be estimated.

In what follows two simplifying assumptions, both realistare employed to estimate the order
of CoV(D/e(T))2: firstly, if routesi, j and their starting dates are known the®/c, D;.fc are
independent; and secondly, the errors of time series afsstreeasurement can be neglected. Suppose
that one wishes to compute variation coefficient altevoyages for which routes are known then

YL Var(D)T)
CoV(D"e(T))? = CoV()_ D}/%)? =1
wrny Z (LB

We shall use (12) in the following situations. Suppose thgtiip will operate in similar conditions for
T years, and that we found a way to estimate the variation cgafti for 7, period, such as 0.5 or 1
year, then

(12)

CoV(D™e(T))? = % CoV(D"e(Ty))2. (13)



There is a vast literature proposing different means fdameting of E[D"/¢(7")] and one is often
assuming that the uncertainty in the damage, CeV (D"/¢(T))?, is negligible relatively to other
uncertainties. Formula (13) could be used to motivate trastice. However sometimes the shipping
for an old vessel can be drastically changed and theiCthé(D"/<(T))? for short time periodl” is
not negligible and should be included in evaluation of tHetyandex.

Two principally different approaches to estimatg)"/<(T")] and Var(D"/<(T')) will be presented
in the following sections. The first one is the statisticalr{parametric) approach when the information
from historical data (measured stresses) will be used anddebond, parametric one, is when a model
for the stress variability will be employed to compi@gD”/¢(T")] andVar(D"/¢(T)). (Obviously one
needs data to estimate the parameters in the model.)

3 Safety index, extrapolation of measurement to longer periods

Often in practice when long time series of stresses have ieasured one may assume that the future
damage increase is stationary, i.e. varies in the same wdyragy the measured period, e.g. when a
vessel is operated in the similar routes. In what follows telsdenote the observed rainflow pseudo
damages duringth voyage byd;fc. We assume that measurement errors are negligible andedenot

asd’’c =" dgfc the rainflow pseudo damage computed from the measuredestrdgsng a period
Ty, €.9. a year. If one is planning to use a vessellfeyears on similar transports (routes, cargo) as
during the measured peridd (7" > T;) then, as will be shown in Appendix Il, the safety index can be
evaluated according to the following formula

~ E[a] — log(T/Tp) — log(d" ) T-T
% Nat@ T K Va0 @) @ v v T Y

(Obviously K grows from zero to one as extrapolation period increases.prdier to evaluatdo

one still needs to estimadér(D"/¢(Ty)). Since damages accumulated during individual voyages are
independent the variance can be estimated by means of eiestdtistical method if there are voyages
that have the same expectation. For example voyages orasimiltes undertaken at the same month
should have the same mean and can be used to estimate bothanteaariance, see the following
example.

15 measurement passages

(a) Measured locations at the 2800 TEU vessel (b) Measured courses in the North Atlantic

Figure 2: The locations and detailed routes of 15 measurgdges for the 2800TEU container ship
operating in the North Atlantic during the first half of yed(3.

Example 1: One container vessel is now operating in the North Atlantimieen EU and Canada. The
time series of stress were measured at 2 critical locatibtigsavessel, shown in Figure 2(a), during
the first half of year 2008 (detailed description about th@sneement see Storhaug and Heggelund
(2008a)). There are 15 voyages measured during this paiatithe detailed courses are shown in
Figure 2(b). The rainflow estimated pseudo damages durffegelt voyages are provided in Figure 3,
where (a) presents the observed pseudo dam]ja’ﬁeof the structure detail in the midship, while (b)
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Figure 3: The observed pseudo dama@é@ for a container ship: stars are the passages from Canada
to EU while dots are passages from EU to Canada. 2Taxis gives the day of the year when trips are
finished.

showsd;fc of the other structure detail in the aftership. In Figure 8 ¢hars represent the pseudo
damagesif;f “ measured on voyages from Canada to EU while dots are psemnl@géadgf ¢ when

sailing from EU to Canada. For the structure detail in theshig, the accumulated damadg /, =

23.3 - 10'°, for the one in the aftership, the corresponding damﬁ@ = 2.44 -10'°. In both cases
the measuring period, = 0.5 year. The variances dfar(D)/¢,(Ty)) and Var(D]};(Ty)) will be
estimated next.

The data consists of 15 passages over North Atlantic and ﬁ‘aesmedigf “ are presented in Fig-
ure 3. Inspired by the figure, we split the voyages into twaigso three most damaging winter passages
from EU to Canada and the remaining 12 less damaging pasdagestructure detail in the midship,
variance of a winter passage from EU to Canada is estimated @8 - 102°, while the less damag-
ing type passage has variarizé2 - 10'°. Consequently the varianéér(D’/¢ (Tp)) ~ 6.62 - 102
and henceVar(D'’¢ (Ty))/(d’7¢)? ~ 0.012. Meanwhile for the aftership detalil, taking the same
approach, variance of a winter passage from EU to Canadatiimated to be3.78 - 10'® while
the less damaging type passage has vari@g®- 1017, thusVar(DZ%(TO)) ~ 1.48 - 10! and
Var(DL46(Th)) /(difs)? = 0.025.

Now for anyT” > 0.5 the safety indexes of structure details in midship and sifiprare respectively
computed as follows:

12.76 — log(d./5) — log(T/Tp)
v/0.005 + 0.012 K + 0.14 + 0.1’
12.76 — log(d,%;) — log(T/Ty)
v/0.005 + 0.025 K + 0.14 + 0.1’

whereK = (T — Ty)/T. In following table 1, we give indexes for different periofls

Ic mia =

IC_aft ~

T [ Io(T)-MidSect| 1 —®(I¢) | Ic(T) - AftSect | 1 — ®(I¢)
0.5 2.81 0.002 4.79 8107
1 2.18 0.015 4.08 0.00002
2 1.57 0.06 3.45 0.0002
3 1.22 0.11 3.09 0.001
5 0.78 0.22 2.65 0.004

Table 1: Column 1 - time perio@; Column 2 - safety index for midship position; Column 3 - noaii
probability of fatigue failure (crack) for structure détai the midship; Column 4 - safety index for
aftership position; Column 5 - nominal probability of fatigfailure for aftership structure detalil.



Base on this simplified analysis, we conclude that the riskabfue cracking for the structure
detail in midship is not negligible even for the time periddloyear; and that the safety of aftership
detail is also low for the time period exceeding 5 years, édbnse of possibility of crack development.
However it has to be noted that the consequence of existéaoerack may not affect the hull integrity.
(Cracks are often accepted after 20 years of age.)

4 Safety index, parametric approach

In the previous section we derived the safety index by meérbkeoextrapolation of the measured
damage during a period of timg,. Here we will consider the case when one cannot use the ex-
trapolation approach because either measured stressestarepresentative for the future loads or
there are no measurements of stresses at all. In such situate needs to estimal&D"/¢(T)] and
CoV(D"/¢(T))? by proposing a model for the distribution &f"7¢(T). The following properties of

the wave induced stresses are basis of our model:

(a) The waves are build up from rather long period, about 3tutes, when the loading conditions
can be assumed to be stationary.

(b) The mean stress remains almost constant over long timedpée. for a voyage between two
harbors.

(c) Wave load has short memory, i.e. load process becomepéndent after couple of minutes.

Properties (a-b) allow us to approximate the damage ac@aietuturing a voyage by the sum of
damages caused by loads during the stationarity periodsBsgsjo and Rychlik (2007), Bengtsson
et al. (2008) for more detailed discussion. In Mao et al. 00is shown that the error of such an
approximation was less than 1% for stresses measured diingyages over North Atlantic.

Although cycles vary in unpredictable manner during théatarity periods the variability of the
pseudo damag®"/¢(T) is still negligible, because of (c), in comparison with atlseurces of un-
certainties, see Bengtsson and Rychlik (2008). Conselyuastit is often done in practice, one can
approximate the damage increments during stationaritpgeby their expected values. The expecta-
tions can then be bounded by means of the narrow-band appetigh, reviewed next.

4.1 Narrow-band bound

Let Y(¢t) be a Gaussian stress, ahgd = 4,/Var(Y (0)) be the significant stress range whjle =

= \/Var(Y(O))/ Var(Y (0)), the apparent frequency (the intensity of mean stress lgpebssings by
Y’), then the expected pseudo rainflow damage in the peimtdounded by

E[D™/¢(t)] < 0.5t f. h, (15)

for 2 < k < 4, see Rychlik (1993) for the proof. (This is the so called oarband approximation
introduced in Bendat (1964).) Furthermore, as it was regbirt Bengtsson and Rychlik (2008), the
coefficient of variation ofD"¢(t) converges fast to zero asncreases and, for typical wave spectra,
one can assume that eve¥i/<(t) < 0.5¢ f, h*. During a voyage if the stress properties change slowly
(conditions (a-c) are valid) then, approximately, the awclated pseudo damage:

D¢ <05At Y f.(i) hE(i) = D", (16)

HereD;f"‘ is the increase of the rainflow pseudo damage dujthgyoyage At is the common length

of stationary period, usually 1800 seconldsi) and f. (¢) are the significant stress range and apparent
frequency estimated fronth stationarity period in thgth voyage. In the previous work Mao et al.
(2008) it was demonstrated thak® — ;') /d7’* was less than 0.3. As before we denoteiBy, '



the measured damages, by narrow-band approximation arftbvaanalysis, respectively. (In addition
(16) is used in many dedicated softwares to estimate thega@umulation during a voyage.) What
remains is to find a model for variability of significant ssemangeh, and apparent frequencies,
which is done in the following subsections.

411 Mode for f,

Suppose that the sea contains only one cosine wave withdd€rid-or a vessel sailing with heading
angles and speed, then the encountered frequency is

oo ‘1 N 21 veos(B) 1

T g ﬁ = fz (17)

by assumed linear relation between stresses and encadimtaves. Since the sea is composed of many
waves having different periods and since the heading atmldese waves, may also vary hence we
propose to replac€ andg3 in (17) by the peak period, and the average heading angleespectively,
giving the following approximation of,

1 +27rvscos(ﬁ) 1
T, 9 T3 .

(18)

Here it is assumed that main wave period does not deviate fnuthmain response spectrum, but this
can happen for "narrow" band transfer funct®m(w) = |H(w)|? S(w), whereS(w) is the encountered
wave spectrum.

Both the average heading angle and the peak period have tstibeated onboard of the vessel.
Finally we also propose to estimate as folldlys~ 4.9/H, approximately valid for fully developped
sea, see DNV Fatigue Note (2005) now replaced by new recoutatien in DNV Environment Note
(2007), giving

N 1 +27Tvscos(6) 1
T 4.9V, g 24H|

Example 1 cntd.: For a container ship the directional spectréipw, o) were measured by means of a
radar and hence one can estimate the average headingsandleing stationary periods, by means of

f= (19)

5, — 0180 Jo© aSi(w, a) dw do
' folso 157 Si(w, @) dw dex .

(20)

(Note that we defined directional spectrum only for andled80], instead for more commonly used
[0, 360].)

4.1.2 Modd for hg

Suppose that we use a linear wave model then sea state, tatitarary condition, is defined by a direc-
tional spectrunt(w, o). A typical model forS(w, «), is obtained by combining Piearson-Moskowitz
spectrumS(w) and cos? a spreading function. Such a directional spectrum is charaed by sig-
nificant wave height/; and7’, only. The linear transfer function, estimated by means diiciked
software, give a relation

hs = C(T.,[,v) Hy

where as beforej is the heading angle, whileis the ship speed. Next, for fixad the constan€'(3)

is defined as the averag® ) = E[C(T., 3)] whereT, has a long term distribution that ship would
encountered in the particular route. Here a simplificat®oddne by choosing thE. -distribution used
by DNV for the North Atlantic scatter diagram which does reftect the seasonal variability, see DNV
Environment Note (2007).



For the particular details, respectively located in theshid and aftership of investigated container
vessel, the constaidi(3) is computed using the linear strip software Waveship (seee®fdp User’s
Manual (1993)) and given in the following Table 2, whétg,,(5) is for midship detail and’, s, (3) is
for aftership detail. (We have assumed that the ship iswgflith the constant service speed 10 [m/s]).

Combining the proposed model the following approximat&ay, the new narrow band approxima-
tion, for the increase of the pseudo damage duringtheoyage is proposed

, . 1 s cos(3; M

D" ~ At Zijo(ﬁi)?’ H,(i)*? 5= + Hs(i)? 249(5 )|, D™(T) = ; D*, (21)
whereAt is the common length of the stationary period taken to be 58@0nds here. Obviously the
values of significant wave height encountered during a veyagwell as heading angles are not known
in advance and henCB;-‘b is a random variable. For a specific voyage, i.e. when stadate, ship
speed and the route is defined, then one could baditidby taking heading anglg = 0. Then what
remains is to model the variability of encountered signiftoaave height/{; along the route. Using
model for H, variability, presented in Appendix Ill, one can simulate 8equence off, (i) and then
compute values oD;’b. Repeating independently the simulations one can obtailigtributionD™?
by a standard statistical method.

I6) 0 10 20 30 40 50 60 70 80
Cmia(0) | 25.66 25.77 2558 25.10 24.37 2347 2247 21.48 20.65
Copt(B) | 1273 12,76 12.62 1235 11.96 11.46 10.99 10.51 10.13

16 90 100 110 120 130 140 150 160 170
Cmia(8) | 20.10 19.92 20.16 20.77 21.65 22.66 23.67 2456 25.24
Copt(B) | 989 984 999 1032 10.78 11.29 11.79 1223 12.55

Table 2: The constan®'(3) computed using linear strip software Waveship and to be irs€2il) to
approximate the increament of pseudo damage during a voyage

4.2 Estimation of safety index I

Let 7" be the computed period, usually measured in years, theysafktx /- (7"), given by (11), can be
now estimated by replacing”/<(T') by D"*(T). (Note that this is an conservative approximation and
hence we do not add any additional uncertainty into dencmired the index). Now the safety index
based on the proposed model becomes

~ E [a] — log(E[D"*(T)])
\/Var(a) + CoV (D" (T))2 + Var(e) + Var(é)

Hence only the orders d@f[D"*(T)] andCoV (D™ (T))?, have to be estimated. Consequently by (21)
one needs to have a model for variability of encounteredfiignt wave heighti; and heading angles

0.

Ic

(22)

Finally in order to easy comparison between non-paramairicparametric approaches to estimate
the index we will now give a parametric version of formula)18uppose that there is a peridg, for
example one year, and that the similar shipping is plannethéowhole period of” years then
N E[a] — log(T/Tp) — log(E[D™(Ty)]) oD (23)

V/Var(a) + K CoV(D™(Ty)) + Var(e) + Var(é)’ T

Ic

5 Validation of the proposed approach

We say that operation schedule of a vessel is specified ifngeruof voyages are given together with
planned time of the year when voyage starts; positions ituti, longitude and ship velocity for the



\Voyage date MidSect AftSect

2007-12-20| 2.00 (0.40) 253 2.030.20 (0.34) 0.30 0.24
2008-01-06| 4.61 (0.44) 485 1.76 0.57 (0.48) 059 0.21
2008-01-17| 0.82 (0.27) 186 1.730.10 (0.28) 0.22 0.21
2008-01-29| 3.26  (0.28) 4.46 2.06 0.28 (0.14) 054 0.24
2008-02-09| 0.65 (0.30) 142 1.420.08 (0.30) 0.17 0.17
2008-02-18| 2.56  (0.22) 3.83 1.64 0.21 (0.10) 0.46 0.20
2008-03-01| 1.15 (0.76) 0.63 0.72 0.13 (0.75) 0.07 0.08
2008-03-12| 0.86 (0.12) 2.04 1.02 0.12 (0.15) 0.25 0.13
2008-03-21| 0.48 (0.23) 140 1.240.05 (0.23) 0.17 0.15
2008-04-01| 1.88 (0.58) 1.74 0.75 0.18 (0.36) 0.21 0.09
2008-04-11| 1.41 (0.50) 142 1.05 0.14 (0.41) 0.17 0.12
2008-04-24| 1.57 (0.72) 1.24 0.56 0.18 (0.70) 0.15 0.07
2008-05-04| 0.69 (0.53) 0.66 0.42 0.06 (0.34) 0.08 0.05
2008-06-03| 0.44 (0.44) 047 0.20 0.04 (0.23) 0.06 0.03
2008-06-13| 0.86  (1.00) 0.24 0.20 0.09 (1.00) 0.03 0.02

Table 3: Column 1 - day the voyage ends; Column 2 to 5 list theltg of structure detail located in the
midship: Column 2 - the observed pseudo damiye? - dgfc computed using the measured stresses

(stress concentration factor 2), Column 3 - a Monte Carlomegion of the probabilityP(D‘;Pb <
d;fc), Column 4,5 - the expected accumulated damawe'” - E[D;‘b] and the standard deviation

—10. /Var(D??), whereD?" defined as in , and the model A, variability estimated using
10710, /Var(D7?), whereD} defined as in (21), and th del fAf, variability estimated usi

satellite measurements of significant wave height predenté&ppendix Ill. Columns 6 to 9 are the
results for aftership structure detail with the same megaagicolumn 2 to 5.

routes are chosen. In such situation uncertainties in satiaccumulated damages are results of "lack
of knowledge" of the significant wave heights and headingeangrhich will be encountered during
the planned voyages. The heading angles can be taken to izérg the conservative estimates of
damages and what remains is finding a statistical modeHfowariability. Such a model has been
proposed in Baxevani et al. (2005) and Baxevani et al. (2D0dte parameters of the model, estimated
from the satellite measurementsi@f, are presented in Baxevani et al. (2008a) and hence one chn fin
the distribution ofD;-’b for almost any route.

Since in this section we are primarily interested in chegkire accuracy of the proposed approach
by validating it against the measured data the distribLﬂde;‘b will be found only for the 15 routes for

CDF

5 . . . . . . . . . 3 . . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Pseudo damage x 102 Pseudo damage x10%

(a) Result of location in Midship (b) Result of location in Aftership

Figure 4: Comparison between empirical cumulative diatiins of the observed rainflow pseudo
damagesslzfC for the 15 voyages and the cumulative distributiorﬂﬂ’ (dotted line) defined by means
of (21), for structure details respectively in the midshipl aftership. (The distributions describe
variability of pseudo damages on a route taken at random fineni5 passages.)
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which measured values d?fc are available. In order to increase precision we also asthemhbeading
angleg; on that 15 routes are known, i.e. the same as measured (eabloing on that voyages (the
speed is kept constant 9 [m/s] for the whole voyage). Two tyjpehecks will be performed. The
first one is to compute probability that, for a voyage indekgdj = 1, ..., 15, D;Lb is smaller than
the observed damagéfc. Values below 0.01 and above 0.99 would indicate a signifidéference
between the observed damages and the variabiliW;Hfl The results are presented in Table 3, third
and seventh columns respectively for locations in midship aftership. (In second and sixth columns
of this table we hava0—1° - d;.fc.) Results presented in the table show that observed viiradf
rainflow damages is well modeled l@;?b in (21).

The second comparison is presented in Figure 4, where (@) isiflship location and (b) is for the
aftership location. The solid line is the cumulative distition function (cdf) of the observed values of
dgfc. Such cdf describes variability of rainflow damages thatsalected at random from the second
column (for midship) or seventh column (for aftership) irblEa3. The dotted cdf describes variability
of the corresponding random experiment for the damd@?’s i.e. drawing at random one of the
15 routes and simulating the value DI;“’ Two distributions agree surprisingly well for both of the
structure details in the midship and aftership. Hence welcole thatD;’” seems to be a very good

approximation ford’;fC and one can compute the safety index for the 15 voyages by replacing

DIe(T) with D"(T) = Y17 D,

In order to compute safety ind€x, for extension in sailing for additiondl = 0.5 year, one needs
E[Dy"] and Var(D;Lb). Those are given in columns 4, 5 (for midship detail) and cwiw, 9 (for
aftership detail) in Table 3, respectively. (The detailsh# computations oE[D;”’], Var(D;”’) are
given in Appendix IIl). Finally the safety indexes of loaatis in midship and aftership are respectively
given by

[ 12.76 — log(2.88) — log(T/Tp) — 11 ’
- 1/0.005 + 0.0295 - (Tp/T) + 0.14 + 0.1

Ie agt = 12.76 — log(3.46) — log(T/Ty) — 10 .
- 1/0.005 + 0.0291 - (Tp/T) + 0.14 + 0.1

In the following table, we give indexes for different perssfl.

T [ Ic(T)-MidSect] 1 — o(Ic) | Io(T) - AftSect | 1 — &(I¢)
0.5 2.48 0.006 424 21070
1 1.96 0.025 3.77 0.00008
2 1.39 0.08 3.22 0.0007
3 1.05 0.15 2.89 0.002
5 0.60 0.27 2.45 0.007

Table 4: Column 1 - time perio@; Column 2 - safety index for midship location; Column 3 - noaii
probability of failure for midship location; Column 4 - s@féndex for aftership location; Column 5 -
nominal probability of failure for aftership location.

Comparing the results presented in table 1, we concludelgrated indexes obtained by the meth-
ods are equivalent. However applying both methods we neglesome uncertainties, statistical errors
when estimatingvar(D"f¢(Tp)) (this error can be large due to crudeness of our estimatidhadg
while for the parametric method we neglected the posgitifitmodeling errors.

6 Conclusions

In this paper nonparametric (extrapolation of measuredad@s) and parametric (based on a model for
significant wave height variable along a route) were pregtand validated. The application of the
nonparametric approach is limited to the case of statioshigping.
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The second approach, defined in (21), seems to provide wisinyaaccurate approximation of the
damage accumulation process. It has a clear advantageothaasurements of stresses or significant
wave height are explicitly needed and could be applied torante and ship. However the deficiency
of this approach is possibility of "modeling errors", i.éhat the linear transfer function is too sim-
ple model to describe relation between waves and stressasheF the transfer function itself may
be not estimated accurately enough. There could be similzgrtainty in the modeled wave environ-
ment (e.g. by assuming Pierson-Moskowitz spectruma@iéda spreading function). Consequently
measurements of stresses could still be needed to valldatesults of numerical computations.

The safety index indicate that the current ship has relgtiyeod fatigue strength, but that fatigue
cracks may be anticipated before ending of the ships life.rmbthod does not yet reflect the possibility
to reduce the fatigue damage risk and corresponding safeéex] but this is subject of future work.
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Appendix |

In the rainflow cycle count each local maximum of the load pescis paired with one particular local
minimum, determined as follows:

Figure 5: A rainflow pair

e From the local maximum one determines the lowest valuesrimai@ and backward directions
between the time point of the local maximum and the nearastat which the load exceeds
the value of the local maximum.
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e The larger of those two values is the rainflow minimum pairéth What specific local maximum,
i.e. the rainflow minimum is the least drop before reachirgvilue of the local maximum again
on either side.

e The cycle rangeh, is the difference between the local maximum and the paaediow mini-
mum.

Note that for some local maxima, the corresponding rainflanimum could lie outside the measured
load sequence. In such situations, the incomplete rainflmle constitutes the so called residual and
has to be handled separately. In this approach, we assuimattiee residual, the maxima form cycles
with the preceding minima.

Appendix |1

In this appendix we shall motivate the approximation (14)up@se that one has measured stresses
during a periodl}, and let denote the accumulated pseudo damagl/sy (We assume that measure-
ments errors are negligible.) Obviously'® # E[D"f¢(T;)] and leter, be the error

er, = E[D™e(Ty)] — d'7e, Eler,] = 0, Var(er,) = Var(D™/¢(Tp)).
The safety index foff” years of trade, given by (11), is equal to

E(a] — log(E[D"/*(T)])

le ™ (@) T CoV D (T2 T Var(e) = Var(@)|

If one is planning similar trade (routes, cargo) Bryears as during the measured perigdthen I
can be computed as follows. From stationarity of damageraafation process and independence of
D;, Dj it follows that

T T - T
E[D"¢T) = —d'e 0 ¢
[ ( )] T()d + TO PTO’
T-T,
Var[D™/e(T)] = . O Var[D"/¢(Ty)].
0
Next, usinglog(a + x) = log(a) + x/a,
T — TO €Ty

log(E[D"™(T)]) ~ log(d") +log(T/Ty) + —— <75

SinceE[er, /d"f¢] = 0 we further approximate the index as follows

I~ E [a] — log(d"/®) —log(T'/Ty)
V/Var(a) + CoV(D"f¢(T))2 + Var(e) + Var(é) + Var(X)

whereX = =10 220 SinceE[D"/¢(Ty)] ~ d™/¢ we obtain

(T —Ty) Ty Var(D"7¢(Ty))

rfe 2
CoV(D"T))* = T2 (@7
and hence
T — Ty Var(D"7¢(Ty))
rfe 2 _ 0 0
CoV(D"™(T))* + Var(X) T PRBE
giving (14).
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Appendix 11

As reported in Baxevani et al. (2005) the significant wavehieat positionp and timet is accurately
model by means of lognormal cdf. L&t(p,t) = In(H,(p,t)) denote a field of logarithms of signifi-
cant wave height that evolves in time. Suppasbe the starting date of a voyage(t) = (z(t), y(t)),
[to,t1], the planned route, while(t) = (v.(t),v,(t)) a velocity a ship will move with. For a route
let z(t) = X (p(¢),t) be the encountered logarithms of the significant wave hegidfihe encountered
significant wave heights at€,(¢) = exp(z(t)).) Thez(t) is a non stationary Gaussian process and in
this appendix we give a model for the covariance functigft;, t2) = C(z(t1), z(t2)).

Locally stationary fieldSuppose that for a fixed geographical region and seasonJ@ngary)X
is a stationary Gaussian field with mean variances? and separable correlation structure. We also
assume that the field is drifting (moving) with a constanbegy V = (V,,V,)), say. By this we mean
that there are two autocorrelation functignscorrelation betweetog H, at two positions at the same
time andpr the correlation ofog H; at the same location but different time instances that detine
covariance between lof at different locations and time instances, viz.

C(X(p1,t1), X (P2, t2)) = 0% ps(wa — w1 — Valta — t1), 42 — y1 — Vy(ta — t1)) - pr(ta — t1).

(The correlatiorps could be estimated from a map Hf, derived by means of Hindcast data (ERA40)
or satellite measurements whjpe comes from the buoy measurements.)

Now suppose that a vessel is sailing with constant veldgityv,) and letz(¢) be encountered
log(Hy) at timet. If variability in time and space of lo@/, is modeled by the stationary Gaussian field
X thenz is also stationary Gaussian process with meaand the covariance function

C(z(t1), 2(t2)) = 0” ps(v1 (t2 — t1),v2 (t2 — t1))pr(t2 — t1) = r=(t2 — t1), (24)

wherev, = v, — V, andvy = v, — V,,. In Baxevani et al. (2008b) one used, in (24),

ps(z,y) = exp(—(z® +y%)/2L?),  pr(t) = exp(=AJt]), (25)

t in hours, where parametefsand\ are slowly varying over oceans and seasons.

Sincez is a stationary process it has power spectral density (§&d), say. Here the psd depends on
parameters2, L, A and the relative ship velocity = (v1,v2). (The parameters?, L were estimated
by means of satellite observation whies estimated using/, measured by buoys, see Baxevani et al.
(2008a) where the variability of the parameters in seasdngaographical location over the globe is
presented.)

We have assumed that the process stationary however in practice the assumption may bel vali
for short period of time because the statistical propediesga changes with the geographical locations.
Consequently, as has been observed in data, parameter§ L, A and velocityv varies between
different geographical locations on the oceans. Hencertbeuntered lod7, process, i.ez(t), cannot
be stationary for the whole voyage. Since the propertiescbianges slowly we shall model it by means
of locally stationary processes defined next.

Let S;(w) be the spectrum of a stationary processith covariance function defined by formulas
(24-25) where the parameters(t), L(t), \(t) andv(t) are functions of position of a ship(). If S;
is known for allt € [to, 1] then a "locally stationary" processcan be defined, by means of spectral
representation and moving averages construction, aevall

z(t) = /exp(—itw)\/St(w) dB(w), (26)

whereB(w) is a Brownian motion. This is somewhat technical constaunctvhich results in a nonsta-
tionary Gaussian model far, with E[z(¢)] = m(t) and

C(z(t1),2(t2)) = /exp(—i(tg —t1)w)\/St, (W) S, (w) dw = 7, (1, t2), (27)
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say. Since the Gaussian process uniquely defined by its meam(t)) and covariance function
r.(t1,t2) hence alsdi;(t) = exp(z(t)) is uniquely defined when the encountered local spefitfa)
and meansn(t) are known. Here it means that one have to estimate paranuztfining spectra for
geographical locations and time of the year of interestligp@ng, see Baxevani et al. (2008a).

Havingr, andm then, by means of methods presented in Baxevani and RycB0K7(), one can
computeE[D;] and variancé/ar(D;) if the heading angleg(¢) and speed of the vessel are known.
However in order to estimate the distribution of daméyyea Monte Carlo approach is the most conve-
nient. Simply one can generate sequenced df) of possible values of significant wave heights along
routes and then compute the damdge

More precisely, let times;, i = 0,...,n, with ;;; — t; = At equal 30 minutes, be the times
a vessel is passing positiofts;, v;) = («(¢;),y(t;)) and the values of significant wave height at the
position H(i) = exp(z;), wherez; = z(t;) are correlated normal variables. It is a simple task to
generate a sequencezfwhen the vector of meana = [m;], m; = m(t;), and the covariance matrix
Y = [ry], wherer;; = r.(t;,t;) are known.

However in order to make computation fast one would like teehexplicit formula for covariance
r, instead of the integral (27) that has to be evaluated nualridn addition for the particular choice
of the autocorrelationss andpr, given in (25), even spectrusi (w) has to be computed by means of
numerical procedure. e.g. FFT transform, fortalblues. In the following subsection we shall modify
the autocorrelation functiopy in such a way that covarianeg will be given by an explicit algebraic
expression depending only on easily interpretable pansiet

Approximation of r,(t, ts)

In previous work we have used (24) with-(t) = exp(—A\|t|) to define time correlation structure of
the significant wave field at a fixed position. A typical valee parametei estimated from buoys is
0.0125, which means that correlation length say, is about 40 hours. (Here we define correlation
length as a time lag the correlation drops to 0.6.) In ordesimaplify computation we propose to
approximate the covariange-(¢) = exp(—0.0125 |t|), wheret is defined in hours, by the Gaussian
covariance with the same correlation length, yi¢) = exp(—0.5(¢/77)?), 70 = 2/ .

Using (24), some simple algebra gives

r.(t) = 0% exp(—0.5t*/C?), C = TS Ts = 1/v? +v3/L. (28)

2 2’
TP+ TS

Note thatrg is the space related correlation length and has interpyetas the time it takes for a vessel
to move between two positions andp, for which the log of significant wave heights spatial correla
tion drops to 0.6. Parameterg andrg characterize the spatial and time sizes of storms, respécti
The covariance (28) is particularly convenient since thegrspectrun®t;, used in (26), can be given
in an explicit way
C
Sy (w) = o2

t( ) \/ﬂ
The spectrum depends erbecause the values of parametefsand C' are changing along the route
p(t). Knowingo(t) andC(t) the integral in (27) can be computed giving

exp(—w? C?/2).

Ct)C(s C(t—s)2 )2 2
r(t,s) = QU(t)U(s)CMe (=52 /(C(s7+C (1))
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