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Safety index of fatigue failure for ship structure details
MAO W.∗, RYCHLIK , I.∗ AND STORHAUG, G.∗∗

∗ Department of Mathematical Sciences, Chalmers University of Technology,
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Abstract

One way to assess the uncertainty in fatigue damage analysisis to use a so-called safety index. In
the computation of such an index the variation coefficient for the accumulated damage is required. In
this paper the expected fatigue damage and its coefficient ofvariation is firstly estimated from measured
stress. Secondly, when suitable stress measurements are not available these are computed from models
for damage accumulation and sea states variability. Stresses during ship sailing period are known as the
non-stationary, slowly changing, Gaussian processes and hence damage accumulation, during encoun-
tered sea state, can be approximated by an algebraic function of significant wave height, ship speed and
heading angle; Further the space time variability of significant wave height is modeled as a lognormal
field with parameters estimated from the satellite measurements.

The proposed methods to estimate uncertainties in the damage accumulation process are validated
using full scale measurements carried out for a container vessel operating in the North Atlantic.

Keywords: Rainflow damage, fatigue risk of ship structure detail, safety index, damage variability.

1 Introduction

Material fatigue is one of the most important safety issues for structures subject to cyclic loads and
the cause of failure in a majority of cases. Fatigue life of a structural detail is greatly influenced by a
number of components and material dependent factors, such as geometry, size of the structure, surface
smoothness, surface coating, residual stress, material grain size and defects. Further, the nature of
the load process is important. The complex dependence between these factors and fatigue life makes
predictions uncertain and even for controlled laboratory experiments the results from fatigue life tests
exhibit a considerable scatter.

In this paper we present a simplified safety analysis showinghow the different sources of uncertain-
ties can be combined into a safety index using a Bayesian approach with material and structure detail
dependent parameters modeled as random variables. We will particularly focuse on the variability of
the loads a ship may encountered in a specified period of time.

When studying a variable environment, the average damage growth rate may not be sufficient to
properly estimate the risk for fatigue failure. For example, the fatigue crack risk of a ship structure
detail during one year depends on the age of such detail, and can be high during a year if a vessel
encounters an extreme storm. The probability of meeting such a storm can be very small but may still
influence the value of the estimated risk. Consequently the uncertainties in long term variability of load
properties should be included in the risk analysis.

In this paper methods to estimate the fatigue risk of ship structure details will be presented. Data
from an extensive measurement campaign will be used to validate the proposed methodology. The
paper is organized as follows. In Section 2 some basic definitions of rainflow damage are given and
in Section 2.1 variable amplitude tests are discussed. Safety index is introduced in Section 2.2. The
computation of such index is illustrated in Section 3 where the measured stresses during half a year
are used to compute the safety index of trade in different numbers of years. An important case of
computation of the safety index when no stress measurementsare available is discussed in Section 4.
In this section the safety index will be estimated, by means of a model for the sea state variability
estimated using the satellite data. The model is presented in the appendix. Some further mathematical
details about computating the coefficient of variation of the accumulated damage are moved to the
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appendix. Finally, a numerical example is given in Section 5.

2 Fatigue review

Fatigue testing of structural details has traditionally been carried out using constant amplitude stress
cycles. In these experiments the stress oscillates betweenthe minimum and maximum value until fa-
tigue failure occurs. Repeating the experiments for different amplitudes, keeping the ratio,R, between
minimum and maximum load constant, result in what is known asa Wöhler curve, also called S-N
curve, with a log-linear dependence between the number of cycles to failure,N , and the stress cycle
range,h,

log(N) = a − k log(h) + e, (1)

where parametersa > 0 andk ≥ 1 depend on material and structural detail properties and thestress
ratio R. When studying fatigue of welded ship structure, the parametersa, k are usually categorized
into different types based on the properties of structural details. In this paper, we will use the simple
one slope S-N curve withk = 3 anda = 12.76, where the unit of stress cycle rangeh should be "MPa",
see DNV Fatigue Note (2005).

For random stresses the stress cycles and cycle ranges need to be defined using some cycle count
procedure. In fatigue analysis the "rainflow" method, see Appendix I, has been shown to give the most
accurate results. The method was originally introduced by Endo: The first paper in English is Matsuishi
and Endo (1968). Here we shall use the alternative definitiongiven in Rychlik (1987), which is more
suitable for statistical analysis.

Fatigue damage from variable amplitude (random) stresses is commonly regarded as a cumulative
process. Lethi be the ranges of the rainflow cycles, see Figure 5, found in thestress then using
the linear Palmgren-Miner damage accumulation rule (Palmgren, 1924, Miner, 1945) one defines the
pseudo rainflow damageDrfc(t) at timet as

Drfc(t) =
∑

i

hk
i (2)

Finally it is assumed that fatigue failure occurs whenlog(Drfc(t)) > a. (Note thathi should have the
same unit as the stress cycle rangeh in (1)). In practice one is observing failures whenlog(Drfc(t)) >
a − 0.5 due to variability of material properties and other factors, relevant for fatigue accumulation,
see Johannesson et al. (2005a) for detailed discussion. A possible solution to incorporate these factors
in the model is to estimate the parametersa andk of the S-N curve using tests with variable amplitude
loads similar to the real load processes. We will discuss this issue further in the next section.

2.1 Variable amplitude S-N curve

Let us introduce the equivalent cycle range defined as

heq(n) =

(

1

n

n
∑

i=1

hk
i

)1/k

, (3)

where{hi}n
1 are stress ranges of rainflow cycles. Usually the stress signal is rainflow filtered, i.e. small

cycles, with range smaller than some chosen threshold relative to the fatigue limit, are removed before
computation of the equivalent range. Consequentlyn in (3) is the number of remaining rainflow cycles
used in the blocked test load. For stationary (ergodic) Gaussian loadsheq(n) fast approaches a limit
heq, say,

heq = lim
n→∞

heq(n), (4)

which can be computed from a single long measurement of the load.
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Figure 1: S-N curve estimated from variable amplitude testsusing broad-banded, narrow-banded and
Pierson-Moskowitz spectra compared with constant amplitude tests (Agerskov, 2000).

Empirical tests, see Agerskov (2000) and Figure 1, have shown that the S-N curve (1) is valid also
for Gaussian random loads if the constant stress ranges is replaced byheq,

log(N) = a − k log (heq) + e. (5)

The S-N curve (5) tells us that, if an undamaged structure details loaded by a stationary Gaussian
stress under timet, then the load is safe for this structure detail if

a − log
(

Drfc(t)
)

+ e > 0. (6)

In Figure 1 the results of constant amplitude experiments are marked by pluses and one can see that
the S-N relation for the constant amplitude load would give the samek but also a higher value of the
parametera. It indicates that usinga in (6) from the constant amplitude experiments will give some
(nonconservative) bias.

2.2 Fatigue in variable environment

Measurements show that the Gaussian processes are often good models for variability of the wave
induced stresses to ship structure details under stationary sea conditions, from about 30 minutes to
several hours. However the sea-states vary along the route and hence the stress is in fact a non-stationary
Gaussian process. Since the fatigue tests leading to S-N curve (5) were performed under stationary
conditions and hence it is not obvious that one can again use the S-N based criterion (6) to estimate
the risk of fatigue failure. In fact some additional assumptions are needed to extend applicability of
the criterion from stationary to non-stationary loading. For example one needs to neglect the possible
sequential effects and then use the S-N curve obtained for stationary Gaussian loads.

More precisely, suppose that during periodT , M voyages were undertaken. Further, assume that
the damage accumulated in harbors during loading and unloading operations can be neglected. If the
stresses are known during the voyages then the pseudo rainflow damageDrfc

j , duringjth voyage and
defined by (2), can be evaluated and the total pseudo damage defined by

Drfc(T ) =

M
∑

j=1

Drfc
j (7)

Now the Palmgren-Miner hypothesis is equivalent to the criterion that the stress history is safe for
fatigue if

a − log
(

Drfc(T )
)

+ e + ẽ > 0 (8)
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wherea ande are taken from variable amplitude fatigue tests. Further, the additional error term̃e repre-
sents the uncertainties caused by possible modeling errors, e.g. using Palmgren-Miner rule, neglecting
sequential effects between voyages, using stress concentration factor and other simplifications. (The
mean ofẽ is often assumed to be zero while the variance ofẽ needs to be determined by means of
experience.)

The total accumulated pseudo damageDrfc(T ), defined in (7), is a function of the magnitudes
of stresses experienced by structure details during the period T . However most often the stresses are
unknown. In such situation one can model the uncertain valueof the damageDrfc(T ) by a distribution
of the possible values it can take, in other wordsDrfc(T ) is a random variable. And then one is
interested in the failure probability

Pf = P (a − log(Drfc(T )) + e + ẽ ≤ 0).

Here, using the Bayesian ideasa, Drfc(T ), e andẽ are random variables. If

G = a − log(Drfc(T )) + e + ẽ

is normally distributed then the probability of cracking occurrences for the structural detailPf =
1 − Φ(IC), whereΦ is the cumulative distribution function (cdf) of a standardnormal variable, while
IC is the so called Corell’s safety index defined as follows

IC =
E [G]

√

Var(G)
=

E[a − log(Drfc(T )) + e + ẽ]
√

Var(a − log(Drfc(T )) + e + ẽ)
(9)

Most oftenG is not normally distributed and hencePf 6= 1 − Φ(IC) but the index is still a useful
measure for the risk of cracking for the structure detail.

In the case when the distributions ofa, Drfc(T ), e andẽ are not well known one is further simpli-
fying the safety index (assuming independence and employing Gauss formulas) by

IC ≈ E [a] − log(E[Drfc(T )])
√

Var(a) + Var(log(Drfc(T ))) + Var(e) + Var(ẽ)
(10)

In the following examples we shall usek = 3 andE[a] = 12.76 as mentioned before. The value of
variance ofa (and the two other variances as well) is not available and we shall use typical values
taken from literature. The variability ofa, ande were studied in Johannesson et al. (2005a), typical
values areVar(a) = 0.005, Var(e) = 0.14 while Var(ẽ) = 0.1. Further,Var(log(Drfc(T ))) can be

approximated byCoV(Drfc(T ))2 = Var(Drfc(T ))
E[Drfc(T )]2

, coefficient of variation of pseudo damage. Then
the safety index is approximated as

IC ≈ E [a] − log(E[Drfc(T )])
√

Var(a) + CoV(Drfc(T ))2 + Var(e) + Var(ẽ)
. (11)

Hence only the orders ofE[Drfc(T )] andCoV(Drfc(T ))2, have to be estimated.

In what follows two simplifying assumptions, both realistic, are employed to estimate the order
of CoV(Drfc(T ))2: firstly, if routes i, j and their starting dates are known thenDrfc

i , Drfc
j are

independent; and secondly, the errors of time series of stress measurement can be neglected. Suppose
that one wishes to compute variation coefficient afterM voyages for which routes are known then

CoV(Drfc(T ))2 = CoV(

M
∑

j=1

Drfc
j )2 =

∑M
j=1 Var(Drfc

j )

(
∑M

j=1 E[Drfc
j ])2

. (12)

We shall use (12) in the following situations. Suppose that aship will operate in similar conditions for
T years, and that we found a way to estimate the variation coefficient forT0 period, such as 0.5 or 1
year, then

CoV(Drfc(T ))2 =
T0

T
CoV(Drfc(T0))

2. (13)

4



There is a vast literature proposing different means for estimating ofE[Drfc(T )] and one is often
assuming that the uncertainty in the damage, i.e.CoV(Drfc(T ))2, is negligible relatively to other
uncertainties. Formula (13) could be used to motivate this practice. However sometimes the shipping
for an old vessel can be drastically changed and then theCoV(Drfc(T ))2 for short time periodT is
not negligible and should be included in evaluation of the safety index.

Two principally different approaches to estimateE[Drfc(T )] andVar(Drfc(T )) will be presented
in the following sections. The first one is the statistical (nonparametric) approach when the information
from historical data (measured stresses) will be used and the second, parametric one, is when a model
for the stress variability will be employed to computeE[Drfc(T )] andVar(Drfc(T )). (Obviously one
needs data to estimate the parameters in the model.)

3 Safety index, extrapolation of measurement to longer periods

Often in practice when long time series of stresses have beenmeasured one may assume that the future
damage increase is stationary, i.e. varies in the same way asduring the measured period, e.g. when a
vessel is operated in the similar routes. In what follows we shall denote the observed rainflow pseudo
damages duringjth voyage bydrfc

j . We assume that measurement errors are negligible and denote

asdrfc =
∑

drfc
j the rainflow pseudo damage computed from the measured stresses during a period

T0, e.g. a year. If one is planning to use a vessel forT -years on similar transports (routes, cargo) as
during the measured periodT0 (T ≥ T0) then, as will be shown in Appendix II, the safety index can be
evaluated according to the following formula

IC ≈ E [a] − log(T/T0) − log(drfc)
√

Var(a) + K Var(Drfc(T0))/(drfc)2 + Var(e) + Var(ẽ)
, K =

T − T0

T
. (14)

(Obviously K grows from zero to one as extrapolation period increases.) In order to evaluateIC

one still needs to estimateVar(Drfc(T0)). Since damages accumulated during individual voyages are
independent the variance can be estimated by means of standard statistical method if there are voyages
that have the same expectation. For example voyages on similar routes undertaken at the same month
should have the same mean and can be used to estimate both meanand variance, see the following
example.

(a) Measured locations at the 2800 TEU vessel

  80oW   60oW   40oW   20oW    0o  
  12oN 

  24oN 

  36oN 

  48oN 

  60oN 

15 measurement passages

(b) Measured courses in the North Atlantic

Figure 2: The locations and detailed routes of 15 measured voyages for the 2800TEU container ship
operating in the North Atlantic during the first half of year 2008.

Example 1: One container vessel is now operating in the North Atlantic between EU and Canada. The
time series of stress were measured at 2 critical locations at this vessel, shown in Figure 2(a), during
the first half of year 2008 (detailed description about the measurement see Storhaug and Heggelund
(2008a)). There are 15 voyages measured during this period,and the detailed courses are shown in
Figure 2(b). The rainflow estimated pseudo damages during different voyages are provided in Figure 3,
where (a) presents the observed pseudo damagedrfc

j of the structure detail in the midship, while (b)
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Figure 3: The observed pseudo damagesdrfc
j for a container ship: stars are the passages from Canada

to EU while dots are passages from EU to Canada. Thex axis gives the day of the year when trips are
finished.

showsdrfc
j of the other structure detail in the aftership. In Figure 3 the stars represent the pseudo

damagesdrfc
j measured on voyages from Canada to EU while dots are pseudo damagesdrfc

j when

sailing from EU to Canada. For the structure detail in the midship, the accumulated damagedrfc
mid =

23.3 · 1010, for the one in the aftership, the corresponding damagedrfc
aft = 2.44 · 1010. In both cases

the measuring periodT0 = 0.5 year. The variances ofVar(Drfc
mid(T0)) andVar(Drfc

aft(T0)) will be
estimated next.

The data consists of 15 passages over North Atlantic and the measureddrfc
j are presented in Fig-

ure 3. Inspired by the figure, we split the voyages into two groups: three most damaging winter passages
from EU to Canada and the remaining 12 less damaging passages. For structure detail in the midship,
variance of a winter passage from EU to Canada is estimated tobe1.08 · 1020, while the less damag-
ing type passage has variance2.82 · 1019. Consequently the varianceVar(Drfc

mid(T0)) ≈ 6.62 · 1020

and henceVar(Drfc
mid(T0))/(drfc

mid)
2 ≈ 0.012. Meanwhile for the aftership detail, taking the same

approach, variance of a winter passage from EU to Canada is estimated to be3.78 · 1018 while
the less damaging type passage has variance2.85 · 1017, thus Var(Drfc

aft(T0)) ≈ 1.48 · 1019 and

Var(Drfc
aft(T0))/(drfc

aft)
2 ≈ 0.025.

Now for anyT ≥ 0.5 the safety indexes of structure details in midship and aftership are respectively
computed as follows:

IC_mid ≈ 12.76 − log(drfc
mid) − log(T/T0)√

0.005 + 0.012K + 0.14 + 0.1
,

IC_aft ≈
12.76 − log(drfc

aft) − log(T/T0)√
0.005 + 0.025K + 0.14 + 0.1

,

whereK = (T − T0)/T . In following table 1, we give indexes for different periodsT .

T IC(T ) - MidSect 1 − Φ(IC) IC(T ) - AftSect 1 − Φ(IC)
0.5 2.81 0.002 4.79 8·10−7

1 2.18 0.015 4.08 0.00002
2 1.57 0.06 3.45 0.0002
3 1.22 0.11 3.09 0.001
5 0.78 0.22 2.65 0.004

Table 1: Column 1 - time periodT ; Column 2 - safety index for midship position; Column 3 - nominal
probability of fatigue failure (crack) for structure detail in the midship; Column 4 - safety index for
aftership position; Column 5 - nominal probability of fatigue failure for aftership structure detail.
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Base on this simplified analysis, we conclude that the risk offatigue cracking for the structure
detail in midship is not negligible even for the time period of 1 year; and that the safety of aftership
detail is also low for the time period exceeding 5 years, in the sense of possibility of crack development.
However it has to be noted that the consequence of existence of a crack may not affect the hull integrity.
(Cracks are often accepted after 20 years of age.)

4 Safety index, parametric approach

In the previous section we derived the safety index by means of the extrapolation of the measured
damage during a period of timeT0. Here we will consider the case when one cannot use the ex-
trapolation approach because either measured stresses arenot representative for the future loads or
there are no measurements of stresses at all. In such situation one needs to estimateE[Drfc(T )] and
CoV(Drfc(T ))2 by proposing a model for the distribution ofDrfc(T ). The following properties of
the wave induced stresses are basis of our model:

(a) The waves are build up from rather long period, about 30 minutes, when the loading conditions
can be assumed to be stationary.

(b) The mean stress remains almost constant over long time period, i.e. for a voyage between two
harbors.

(c) Wave load has short memory, i.e. load process becomes independent after couple of minutes.

Properties (a-b) allow us to approximate the damage accumulated during a voyage by the sum of
damages caused by loads during the stationarity periods, see Bogsjö and Rychlik (2007), Bengtsson
et al. (2008) for more detailed discussion. In Mao et al. (2008) it is shown that the error of such an
approximation was less than 1% for stresses measured during15 voyages over North Atlantic.

Although cycles vary in unpredictable manner during the stationarity periods the variability of the
pseudo damageDrfc(T ) is still negligible, because of (c), in comparison with other sources of un-
certainties, see Bengtsson and Rychlik (2008). Consequently, as it is often done in practice, one can
approximate the damage increments during stationarity periods by their expected values. The expecta-
tions can then be bounded by means of the narrow-band approximation, reviewed next.

4.1 Narrow-band bound

Let Y (t) be a Gaussian stress, andhs = 4
√

Var(Y (0)) be the significant stress range whilefz =

1
2π

√

Var(Ẏ (0))/Var(Y (0)), the apparent frequency (the intensity of mean stress levelupcrossings by
Y ), then the expected pseudo rainflow damage in the periodt is bounded by

E
[

Drfc(t)
]

≤ 0.5 t fz hk
s , (15)

for 2 ≤ k ≤ 4, see Rychlik (1993) for the proof. (This is the so called narrow-band approximation
introduced in Bendat (1964).) Furthermore, as it was reported in Bengtsson and Rychlik (2008), the
coefficient of variation ofDrfc(t) converges fast to zero ast increases and, for typical wave spectra,
one can assume that evenDrfc(t) ≤ 0.5 t fz hk

s . During a voyage if the stress properties change slowly
(conditions (a-c) are valid) then, approximately, the accumulated pseudo damage:

Drfc
j ≤ 0.5∆t

∑

fz(i)hk
s (i) = Dnb

j , (16)

HereDrfc
j is the increase of the rainflow pseudo damage duringjth voyage,∆t is the common length

of stationary period, usually 1800 seconds,hs(i) andfz(i) are the significant stress range and apparent
frequency estimated fromith stationarity period in thejth voyage. In the previous work Mao et al.
(2008) it was demonstrated that(dnb

j −drfc
j )/drfc

j was less than 0.3. As before we denote bydnb
j , drfc

j
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the measured damages, by narrow-band approximation and rainflow analysis, respectively. (In addition
(16) is used in many dedicated softwares to estimate the damage accumulation during a voyage.) What
remains is to find a model for variability of significant stress rangehs and apparent frequenciesfz,
which is done in the following subsections.

4.1.1 Model for fz

Suppose that the sea contains only one cosine wave with period T . For a vessel sailing with heading
angleβ and speedv, then the encountered frequency is

fe =

∣

∣

∣

∣

1

T
+

2π v cos(β)

g

1

T 2

∣

∣

∣

∣

= fz (17)

by assumed linear relation between stresses and encountered waves. Since the sea is composed of many
waves having different periods and since the heading angle,to these waves, may also vary hence we
propose to replaceT andβ in (17) by the peak periodTp and the average heading angleβ̄, respectively,
giving the following approximation offz

fz ≈
∣

∣

∣

∣

1

Tp
+

2π vs cos(β̄)

g

1

T 2
p

∣

∣

∣

∣

. (18)

Here it is assumed that main wave period does not deviate muchfrom main response spectrum, but this
can happen for "narrow" band transfer functionSR(ω) = |H(ω)|2 S(ω), whereS(ω) is the encountered
wave spectrum.

Both the average heading angle and the peak period have to be estimated onboard of the vessel.
Finally we also propose to estimate as followsTp ≈ 4.9

√
Hs, approximately valid for fully developped

sea, see DNV Fatigue Note (2005) now replaced by new recommendation in DNV Environment Note
(2007), giving

fz ≈
∣

∣

∣

∣

1

4.9
√

Hs

+
2π vs cos(β̄)

g

1

24Hs

∣

∣

∣

∣

. (19)

Example 1 cntd.: For a container ship the directional spectrumSi(ω, α) were measured by means of a
radar and hence one can estimate the average heading angleβ̄i, during stationary periods, by means of

β̄i =

∫ 180

0

∫

∞

0
αSi(ω, α) dω dα

∫ 180

0

∫

∞

0
Si(ω, α) dω dα

. (20)

(Note that we defined directional spectrum only for angles[0, 180], instead for more commonly used
[0, 360].)

4.1.2 Model for hs

Suppose that we use a linear wave model then sea state, under stationary condition, is defined by a direc-
tional spectrumS(ω, α). A typical model forS(ω, α), is obtained by combining Piearson-Moskowitz
spectrumS(ω) andcos2 α spreading function. Such a directional spectrum is characterized by sig-
nificant wave heightHs andTz only. The linear transfer function, estimated by means of dedicated
software, give a relation

hs = C(Tz, β, v) Hs

where as before,β is the heading angle, whilev is the ship speed. Next, for fixedv, the constantC(β)
is defined as the averageC(β) = E[C(Tz, β)] whereTz has a long term distribution that ship would
encountered in the particular route. Here a simplification is done by choosing theTz-distribution used
by DNV for the North Atlantic scatter diagram which does not reflect the seasonal variability, see DNV
Environment Note (2007).
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For the particular details, respectively located in the midship and aftership of investigated container
vessel, the constantC(β) is computed using the linear strip software Waveship (see Waveship User’s
Manual (1993)) and given in the following Table 2, whereCmid(β) is for midship detail andCaft(β) is
for aftership detail. (We have assumed that the ship is sailing with the constant service speed 10 [m/s]).

Combining the proposed model the following approximation,say the new narrow band approxima-
tion, for the increase of the pseudo damage during thejth voyage is proposed

Dnb
j ≈ ∆t

∑

i

C(β̄i)
3

∣

∣

∣

∣

Hs(i)
2.5 1

9.8
+ Hs(i)

2 π vs cos(β̄i)

24 g

∣

∣

∣

∣

, Dnb(T ) =

M
∑

j=1

Dnb
j , (21)

where∆t is the common length of the stationary period taken to be 1800seconds here. Obviously the
values of significant wave height encountered during a voyage, as well as heading angles are not known
in advance and henceDnb

j is a random variable. For a specific voyage, i.e. when starting date, ship
speed and the route is defined, then one could boundDnb by taking heading angleβ = 0. Then what
remains is to model the variability of encountered significant wave heightHs along the route. Using
model forHs variability, presented in Appendix III, one can simulate the sequence ofHs(i) and then
compute values ofDnb

j . Repeating independently the simulations one can obtain the distributionDnb

by a standard statistical method.

β 0 10 20 30 40 50 60 70 80
Cmid(β) 25.66 25.77 25.58 25.10 24.37 23.47 22.47 21.48 20.65
Caft(β) 12.73 12.76 12.62 12.35 11.96 11.46 10.99 10.51 10.13

β 90 100 110 120 130 140 150 160 170
Cmid(β) 20.10 19.92 20.16 20.77 21.65 22.66 23.67 24.56 25.24
Caft(β) 9.89 9.84 9.99 10.32 10.78 11.29 11.79 12.23 12.55

Table 2: The constantC(β) computed using linear strip software Waveship and to be usedin (21) to
approximate the increament of pseudo damage during a voyage.

4.2 Estimation of safety index IC

Let T be the computed period, usually measured in years, the safety indexIC(T ), given by (11), can be
now estimated by replacingDrfc(T ) by Dnb(T ). (Note that this is an conservative approximation and
hence we do not add any additional uncertainty into denominator of the index). Now the safety index
based on the proposed model becomes

IC ≈ E [a] − log(E[Dnb(T )])
√

Var(a) + CoV(Dnb(T ))2 + Var(e) + Var(ẽ)
. (22)

Hence only the orders ofE[Dnb(T )] andCoV(Dnb(T ))2, have to be estimated. Consequently by (21)
one needs to have a model for variability of encountered significant wave heightHs and heading angles
β.

Finally in order to easy comparison between non-parametricand parametric approaches to estimate
the index we will now give a parametric version of formula (14). Suppose that there is a periodT0, for
example one year, and that the similar shipping is planned for the whole period ofT years then

IC ≈ E [a] − log(T/T0) − log(E[Dnb(T0)])
√

Var(a) + K CoV(Dnb(T0)) + Var(e) + Var(ẽ)
, K =

T0

T
. (23)

5 Validation of the proposed approach

We say that operation schedule of a vessel is specified if: a number of voyages are given together with
planned time of the year when voyage starts; positions in latitude, longitude and ship velocity for the
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Voyage date MidSect AftSect
2007-12-20 2.00 (0.40) 2.53 2.03 0.20 (0.34) 0.30 0.24
2008-01-06 4.61 (0.44) 4.85 1.76 0.57 (0.48) 0.59 0.21
2008-01-17 0.82 (0.27) 1.86 1.73 0.10 (0.28) 0.22 0.21
2008-01-29 3.26 (0.28) 4.46 2.06 0.28 (0.14) 0.54 0.24
2008-02-09 0.65 (0.30) 1.42 1.42 0.08 (0.30) 0.17 0.17
2008-02-18 2.56 (0.22) 3.83 1.64 0.21 (0.10) 0.46 0.20
2008-03-01 1.15 (0.76) 0.63 0.72 0.13 (0.75) 0.07 0.08
2008-03-12 0.86 (0.12) 2.04 1.02 0.12 (0.15) 0.25 0.13
2008-03-21 0.48 (0.23) 1.40 1.24 0.05 (0.23) 0.17 0.15
2008-04-01 1.88 (0.58) 1.74 0.75 0.18 (0.36) 0.21 0.09
2008-04-11 1.41 (0.50) 1.42 1.05 0.14 (0.41) 0.17 0.12
2008-04-24 1.57 (0.72) 1.24 0.56 0.18 (0.70) 0.15 0.07
2008-05-04 0.69 (0.53) 0.66 0.42 0.06 (0.34) 0.08 0.05
2008-06-03 0.44 (0.44) 0.47 0.20 0.04 (0.23) 0.06 0.03
2008-06-13 0.86 (1.00) 0.24 0.20 0.09 (1.00) 0.03 0.02

Table 3: Column 1 - day the voyage ends; Column 2 to 5 list the results of structure detail located in the
midship: Column 2 - the observed pseudo damage10−10 · drfc

j computed using the measured stresses
(stress concentration factor 2), Column 3 - a Monte Carlo estimation of the probabilityP (Dnb

j ≤
drfc

j ), Column 4,5 - the expected accumulated damage10−10 · E[Dnb
j ] and the standard deviation

10−10 ·
√

Var(Dnb
j ), whereDnb

j defined as in (21), and the model forHs variability estimated using

satellite measurements of significant wave height presented in Appendix III. Columns 6 to 9 are the
results for aftership structure detail with the same meaning as column 2 to 5.

routes are chosen. In such situation uncertainties in values of accumulated damages are results of "lack
of knowledge" of the significant wave heights and heading angles which will be encountered during
the planned voyages. The heading angles can be taken to zero giving the conservative estimates of
damages and what remains is finding a statistical model forHs variability. Such a model has been
proposed in Baxevani et al. (2005) and Baxevani et al. (2008b). The parameters of the model, estimated
from the satellite measurements ofHs, are presented in Baxevani et al. (2008a) and hence one can find
the distribution ofDnb

j for almost any route.

Since in this section we are primarily interested in checking the accuracy of the proposed approach
by validating it against the measured data the distributionof Dnb

j will be found only for the 15 routes for
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Figure 4: Comparison between empirical cumulative distributions of the observed rainflow pseudo
damagesdrfc

j for the 15 voyages and the cumulative distribution ofDnb
j (dotted line) defined by means

of (21), for structure details respectively in the midship and aftership. (The distributions describe
variability of pseudo damages on a route taken at random fromthe 15 passages.)
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which measured values ofdrfc
j are available. In order to increase precision we also assumethat heading

angleβi on that 15 routes are known, i.e. the same as measured (each half hour) on that voyages (the
speed is kept constant 9 [m/s] for the whole voyage). Two typeof checks will be performed. The
first one is to compute probability that, for a voyage indexedby j = 1, ..., 15, Dnb

j is smaller than

the observed damagedrfc
j . Values below 0.01 and above 0.99 would indicate a significant difference

between the observed damages and the variability ofDnb
j . The results are presented in Table 3, third

and seventh columns respectively for locations in midship and aftership. (In second and sixth columns
of this table we have10−10 · drfc

j .) Results presented in the table show that observed variability of
rainflow damages is well modeled byDnb

j in (21).

The second comparison is presented in Figure 4, where (a) is for midship location and (b) is for the
aftership location. The solid line is the cumulative distribution function (cdf) of the observed values of
drfc

j . Such cdf describes variability of rainflow damages that areselected at random from the second
column (for midship) or seventh column (for aftership) in Table 3. The dotted cdf describes variability
of the corresponding random experiment for the damagesDnb

j , i.e. drawing at random one of the
15 routes and simulating the value ofDnb

j . Two distributions agree surprisingly well for both of the
structure details in the midship and aftership. Hence we conclude thatDnb

j seems to be a very good

approximation fordrfc
j and one can compute the safety indexIC for the 15 voyages by replacing

Drfc(T ) with Dnb(T ) =
∑15

j=1 Dnb
j .

In order to compute safety indexIC , for extension in sailing for additionalT = 0.5 year, one needs
E[Dnb

j ] andVar(Dnb
j ). Those are given in columns 4, 5 (for midship detail) and column 8, 9 (for

aftership detail) in Table 3, respectively. (The details ofthe computations ofE[Dnb
j ], Var(Dnb

j ) are
given in Appendix III). Finally the safety indexes of locations in midship and aftership are respectively
given by

IC_mid =
12.76 − log(2.88) − log(T/T0) − 11
√

0.005 + 0.0295 · (T0/T ) + 0.14 + 0.1
,

IC_aft =
12.76 − log(3.46) − log(T/T0) − 10
√

0.005 + 0.0291 · (T0/T ) + 0.14 + 0.1
.

In the following table, we give indexes for different periodsT .

T IC(T ) - MidSect 1 − Φ(IC) IC(T ) - AftSect 1 − Φ(IC)
0.5 2.48 0.006 4.24 2·10−5

1 1.96 0.025 3.77 0.00008
2 1.39 0.08 3.22 0.0007
3 1.05 0.15 2.89 0.002
5 0.60 0.27 2.45 0.007

Table 4: Column 1 - time periodT ; Column 2 - safety index for midship location; Column 3 - nominal
probability of failure for midship location; Column 4 - safety index for aftership location; Column 5 -
nominal probability of failure for aftership location.

Comparing the results presented in table 1, we conclude thatderived indexes obtained by the meth-
ods are equivalent. However applying both methods we neglected some uncertainties, statistical errors
when estimatingVar(Drfc(T0)) (this error can be large due to crudeness of our estimation method)
while for the parametric method we neglected the possibility of modeling errors.

6 Conclusions

In this paper nonparametric (extrapolation of measured damages) and parametric (based on a model for
significant wave height variable along a route) were presented and validated. The application of the
nonparametric approach is limited to the case of stationaryshipping.
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The second approach, defined in (21), seems to provide with a very accurate approximation of the
damage accumulation process. It has a clear advantage that no measurements of stresses or significant
wave height are explicitly needed and could be applied to anyroute and ship. However the deficiency
of this approach is possibility of "modeling errors", i.e. that the linear transfer function is too sim-
ple model to describe relation between waves and stresses. Further the transfer function itself may
be not estimated accurately enough. There could be similar uncertainty in the modeled wave environ-
ment (e.g. by assuming Pierson-Moskowitz spectrum andcos2 α spreading function). Consequently
measurements of stresses could still be needed to validate the results of numerical computations.

The safety index indicate that the current ship has relatively good fatigue strength, but that fatigue
cracks may be anticipated before ending of the ships life. The method does not yet reflect the possibility
to reduce the fatigue damage risk and corresponding safety index, but this is subject of future work.
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Appendix I

In the rainflow cycle count each local maximum of the load process is paired with one particular local
minimum, determined as follows:

max

min rfc

h

Figure 5: A rainflow pair

• From the local maximum one determines the lowest values in forward and backward directions
between the time point of the local maximum and the nearest points at which the load exceeds
the value of the local maximum.
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• The larger of those two values is the rainflow minimum paired with that specific local maximum,
i.e. the rainflow minimum is the least drop before reaching the value of the local maximum again
on either side.

• The cycle range,h, is the difference between the local maximum and the paired rainflow mini-
mum.

Note that for some local maxima, the corresponding rainflow minimum could lie outside the measured
load sequence. In such situations, the incomplete rainflow cycle constitutes the so called residual and
has to be handled separately. In this approach, we assume that, in the residual, the maxima form cycles
with the preceding minima.

Appendix II

In this appendix we shall motivate the approximation (14). Suppose that one has measured stresses
during a periodT0, and let denote the accumulated pseudo damage bydrfc. (We assume that measure-
ments errors are negligible.) Obviouslydrfc 6= E[Drfc(T0)] and leteT0

be the error

eT0
= E[Drfc(T0)] − drfc, E[eT0

] = 0, Var(eT0
) = Var(Drfc(T0)).

The safety index forT years of trade, given by (11), is equal to

IC ≈ E [a] − log(E[Drfc(T )])
√

Var(a) + CoV(Drfc(T ))2 + Var(e) + Var(ẽ)
.

If one is planning similar trade (routes, cargo) forT years as during the measured periodT0 thenIC

can be computed as follows. From stationarity of damage accumulation process and independence of
Di,Dj it follows that

E[Drfc(T )] =
T

T0
drfc +

T − T0

T0
eT0

,

Var[Drfc(T )] =
T − T0

T0
Var[Drfc(T0)].

Next, usinglog(a + x) ≈ log(a) + x/a,

log(E[Drfc(T )]) ≈ log(drfc) + log(T/T0) +
T − T0

T

eT0

drfc

SinceE[eT0
/drfc] = 0 we further approximate the index as follows

IC ≈ E [a] − log(drfc) − log(T/T0)
√

Var(a) + CoV(Drfc(T ))2 + Var(e) + Var(ẽ) + Var(X)
.

whereX = T−T0

T

eT0

drfc . SinceE[Drfc(T0)] ≈ drfc we obtain

CoV(Drfc(T ))2 =
(T − T0)T0

T 2

Var(Drfc(T0))

(drfc)2

and hence

CoV(Drfc(T ))2 + Var(X) =
T − T0

T

Var(Drfc(T0))

(drfc)2

giving (14).
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Appendix III

As reported in Baxevani et al. (2005) the significant wave height at positionp and timet is accurately
model by means of lognormal cdf. LetX(p, t) = ln(Hs(p, t)) denote a field of logarithms of signifi-
cant wave height that evolves in time. Supposet0 be the starting date of a voyage,p(t) = (x(t), y(t)),
[t0, t1], the planned route, whilev(t) = (vx(t), vy(t)) a velocity a ship will move with. For a route
let z(t) = X(p(t), t) be the encountered logarithms of the significant wave heights. (The encountered
significant wave heights areHs(t) = exp(z(t)).) Thez(t) is a non stationary Gaussian process and in
this appendix we give a model for the covariance functionrz(t1, t2) = C(z(t1), z(t2)).

Locally stationary field:Suppose that for a fixed geographical region and season (e.g.January)X
is a stationary Gaussian field with meanm, varianceσ2 and separable correlation structure. We also
assume that the field is drifting (moving) with a constant velocity V = (Vx, Vy), say. By this we mean
that there are two autocorrelation functionsρS correlation betweenlog Hs at two positions at the same
time andρT the correlation oflog Hs at the same location but different time instances that defines the
covariance between logHs at different locations and time instances, viz.

C(X(p1, t1),X(p2, t2)) = σ2 ρS(x2 − x1 − Vx(t2 − t1), y2 − y1 − Vy(t2 − t1)) · ρT (t2 − t1).

(The correlationρS could be estimated from a map ofHs derived by means of Hindcast data (ERA40)
or satellite measurements whileρT comes from the buoy measurements.)

Now suppose that a vessel is sailing with constant velocity(vx, vy) and letz(t) be encountered
log(Hs) at timet. If variability in time and space of logHs is modeled by the stationary Gaussian field
X thenz is also stationary Gaussian process with meanm and the covariance function

C(z(t1), z(t2)) = σ2 ρS(v1 (t2 − t1), v2 (t2 − t1))ρT (t2 − t1) = rz(t2 − t1), (24)

wherev1 = vx − Vx andv2 = vy − Vy. In Baxevani et al. (2008b) one used, in (24),

ρS(x, y) = exp(−(x2 + y2)/2L2), ρT (t) = exp(−λ|t|), (25)

t in hours, where parametersL andλ are slowly varying over oceans and seasons.

Sincez is a stationary process it has power spectral density (psd)S(ω), say. Here the psd depends on
parametersσ2, L, λ and the relative ship velocityv = (v1, v2). (The parametersσ2, L were estimated
by means of satellite observation whileλ is estimated usingHs measured by buoys, see Baxevani et al.
(2008a) where the variability of the parameters in season and geographical location over the globe is
presented.)

We have assumed that the processz is stationary however in practice the assumption may be valid
for short period of time because the statistical propertiesof sea changes with the geographical locations.
Consequently, as has been observed in data, parametersm,σ2, L, λ and velocityv varies between
different geographical locations on the oceans. Hence the encountered logHs process, i.e.z(t), cannot
be stationary for the whole voyage. Since the properties ofz changes slowly we shall model it by means
of locally stationary processes defined next.

Let St(ω) be the spectrum of a stationary processz with covariance function defined by formulas
(24-25) where the parametersσ2(t), L(t), λ(t) andv(t) are functions of position of a shipp(t). If St

is known for allt ∈ [t0, t1] then a "locally stationary" processz can be defined, by means of spectral
representation and moving averages construction, as folllows

z(t) =

∫

exp(−it ω)
√

St(ω) dB(ω), (26)

whereB(ω) is a Brownian motion. This is somewhat technical construction which results in a nonsta-
tionary Gaussian model forz, with E[z(t)] = m(t) and

C(z(t1), z(t2)) =

∫

exp(−i(t2 − t1)ω)
√

St1(ω)St2(ω) dω = rz(t1, t2), (27)
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say. Since the Gaussian processz is uniquely defined by its meanm(t)) and covariance function
rz(t1, t2) hence alsoHs(t) = exp(z(t)) is uniquely defined when the encountered local spectraSt(ω)
and meansm(t) are known. Here it means that one have to estimate parametersdefining spectra for
geographical locations and time of the year of interest for shipping, see Baxevani et al. (2008a).

Havingrz andm then, by means of methods presented in Baxevani and Rychlik (2007), one can
computeE[Dj ] and varianceVar(Dj) if the heading anglesβ(t) and speed of the vessel are known.
However in order to estimate the distribution of damageDj a Monte Carlo approach is the most conve-
nient. Simply one can generate sequences ofHs(i) of possible values of significant wave heights along
routes and then compute the damageDj .

More precisely, let timesti, i = 0, . . . , n, with ti+1 − ti = ∆t equal 30 minutes, be the times
a vessel is passing positions(xi, yi) = (x(ti), y(ti)) and the values of significant wave height at the
positionHs(i) = exp(zi), wherezi = z(ti) are correlated normal variables. It is a simple task to
generate a sequence ofzi when the vector of meansm = [mi], mi = m(ti), and the covariance matrix
Σ = [rij ], whererij = rz(ti, tj) are known.

However in order to make computation fast one would like to have explicit formula for covariance
rz instead of the integral (27) that has to be evaluated numerically. In addition for the particular choice
of the autocorrelationsρS andρT , given in (25), even spectrumSt(ω) has to be computed by means of
numerical procedure. e.g. FFT transform, for allt values. In the following subsection we shall modify
the autocorrelation functionρT in such a way that covariancerz will be given by an explicit algebraic
expression depending only on easily interpretable parameters.

Approximation of rz(t1, t2)

In previous work we have used (24) withρT (t) = exp(−λ|t|) to define time correlation structure of
the significant wave field at a fixed position. A typical value for parameterλ estimated from buoys is
0.0125, which means that correlation lengthτT , say, is about 40 hours. (Here we define correlation
length as a time lag the correlation drops to 0.6.) In order tosimplify computation we propose to
approximate the covarianceρT (t) = exp(−0.0125 |t|), wheret is defined in hours, by the Gaussian
covariance with the same correlation length, viz.ρ(t) = exp(−0.5(t/τT )2), τT = 2/λ.

Using (24), some simple algebra gives

rz(t) = σ2 exp(−0.5t2/C2), C =
τT τS

√

τ2
T + τ2

S

, τS =
√

v2
1 + v2

2/L. (28)

Note thatτS is the space related correlation length and has interpretation as the time it takes for a vessel
to move between two positionsp1 andp2 for which the log of significant wave heights spatial correla-
tion drops to 0.6. ParametersτT andτS characterize the spatial and time sizes of storms, respectively.
The covariance (28) is particularly convenient since the power spectrumSt, used in (26), can be given
in an explicit way

St(ω) = σ2 C√
2π

exp(−ω2 C2/2).

The spectrum depends ont because the values of parametersσ2 andC are changing along the route
p(t). Knowingσ(t) andC(t) the integral in (27) can be computed giving

rz(t, s) = 2σ(t)σ(s)
C(t)C(s)

C(t)2 + C(s)2
e−(t−s)2/(C(s)2+C(t)2).
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