
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PREPRINT 2008:41 
 

Uncertainty of Estimated Vehicle 
Damage for Random Loads 
 
 
 

K. BOGSJÖ  
I. RYCHLIK  
 
 
 
 
 
Department of Mathematical Sciences 
Division of Mathematical Statistics 

CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Göteborg Sweden 2008 





 
 

 

Preprint 2008:41 
 
 
 
 
 

Uncertainty of Estimated Vehicle Damage for 
Random Loads 

 
 

K. Bogsjö and I. Rychlik 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Department of Mathematical Sciences 
Division of Mathematical Statistics 

Chalmers University of Technology and University of Gothenburg 
SE-412 96  Göteborg, Sweden 
Göteborg, November 2008 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preprint 2008:41 

ISSN 1652-9715 
 

 

Matematiska vetenskaper 

Göteborg 2008 



UNCERTAINTY OF ESTIMATED VEHICLE DAMAGE FOR RANDOM LOADS 
 

K. Bogsjö and I. Rychlik 
Mathematical Sciences, Chalmers University, SE-412 96 Göteborg, Sweden 

Scania CV AB, RTRA Load Analysis, SE-15187 Södertälje, Sweden 
 

ABSTRACT 

 
This paper presents two methods to estimate the variation coefficient for the accumulated 
damage, when only one measurement of the load is available. The methods are applied to 
loads on heavy vehicles travelling on uneven roads. The accuracy and precision of the 
estimates of the variation coefficient is evaluated using both a standard road profile model 
(Gaussian with spectrum according to ISO 8608) and a more realistic model that includes 
irregular sections. Four examples are presented to illustrate the performance of the 
estimates. Finally, the coefficient of variation is computed as a function of road length, for a 
real measured gravel road. Such an analysis indicate how long one need to measure, before 
vehicle damage variability can be neglected. 
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INTRODUCTION 

 
Travelling vehicles are exposed to dynamic loads caused by unevenness in the road. These 
loads induce fatigue damage in the vehicle, which may cause structural failures. Often, in 
statistical analysis of the fatigue damage D(t), only the expected value E[D(t)] is considered. 
However, in many practical situations also the variability is of interest.  
 
For example, decisions of measurement length of vehicle loads may be based on damage 
variability [1]. To decide if stochastic load models give the same fatigue damage as actual 
load measurements, it is necessary to know the uncertainty of the fatigue damage estimates 
[2]. Furthermore, computations of safety index for fatigue failure includes computations of the 

coefficient of variation [ ] [ ] [ ])(E/)(V)(CoV tDtDtD = , see [3]. This paper is focused on 

computation of the coefficient of variation, CoV.  
 
We restrict ourselves to stationary and ergodic loads. The ergodicity assumption is needed in 
order to be able to estimate the expected damage and covariance of the damage intensity 
from one sample path (measurement of a load). Here both Gaussian and non-Gaussian 
loads will be considered. Note that, for stationary random loads when the probabilistic model 
is known, one can obviously use Monte-Carlo methods to estimate the expected damage 
and the variance and the assumption of ergodicity is unnecessary. However, for vehicle 
loads, an accurate random model is usually not known, and only one load measurement is 
available.  
 



VEHICLE FATIGUE DAMAGE 

 
Vehicle fatigue damage is assessed by studying a quarter-vehicle model travelling at 
constant velocity, v, on road profiles. This very simple vehicle model can not be expected to 
predict loads on a physical vehicle exactly, but it will high-light the most important road 
characteristics as far as fatigue damage accumulation is concerned; it might be viewed as a 
‘fatigue load filter’. In this study the model comprises masses, linear springs and linear 
dampers; the only non-linearity is the ability to loose road contact. The parameters are set so 
that the dynamics of the model resembles a heavy vehicle.  
The total force acting on the sprung mass of the quarter-vehicle model is rainflow-counted, 
i.e. each load maximum is paired with a load minimum selected by the rainflow method, see 
[4] . A load cycle is defined as the difference between a maximum and corresponding 
minimum. Damage caused by these load cycles sj are evaluated with Palmgren-Miner’s 
linear damage accumulation hypothesis and fatigue strength is described by Basquin’s 
relation. Finally, the total damage is given by  

 ∑
=

=
rfcN
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Here, the value of C is unimportant, since only relative (pseudo) damage values will be 
studied. Hence, C will not affect the coefficient of variation and to simplify notation we let C=1. 
The other fatigue parameter, k, has a large influence on the coefficient of variation. For 
vehicle components, k is usually in the range 3 – 8. 

 
 
Fig. 1: The quarter vehicle. 
 

COMPUTATION OF THE COEFFICIENT OF VARIATION 

 
When the model of a random load is fully specified, e.g. if the load is a stationary Gaussian 
process with a known mean and spectrum, then both expected damage as well as coefficient 
of variation can be estimated by means of the Monte Carlo method. More precisely, one may 
simulate a large number of loads, with fixed length, from the model and compute the 
accumulated damage for each of the loads. Then expected damage and variance can be 
estimated using standard statistical estimators. (Even the distribution of the damage can be 
studied in this way.) For very long sequences the variability of the observed damage values 
is approximately normally distributed and hence mean and coefficient of variation fully 
describe the variability. However, for high values of the parameter k the convergence to 
normality can be very slow. 
 



In the situation when one has only one measured load then one could, based on data, fit a 
model and use Monte Carlo methodology to estimate mean and variance. However, this 
usually introduces a modelling error, which should not be neglected. Here, instead, we study 
two non-parametric approaches, where no particular model, for the measured load is 
specified. The loads are assumed to be stationary and ergodic. (Ergodicity means that one 
infinitely long realisation defines the random mechanism that generated the load.) 
 
Method 1: The partial damage approach 
The damage for each kilometre is computed separately, and the total damage is expressed 
as the sum of all partial damage values,  

 dNdTD
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where d is the average partial damage. The length of each section must be long enough, so 

that the sum of all partial damage values approximates the damage computed from the 

whole sequence, i.e DD ≈
~

. We suppose also that dj , j = 1,…,N, is a stationary ergodic 

sequence, with the covariance [ ]njnj ddr ,cov += . Then, the variance is simple to compute, 
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Obviously σ2 is a function of N as well. However, if rj converges fast to zero as j increases 
then this dependence can be neglected for large values of N, 

 ∑
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Note that, in practice, rj is unknown and has to be estimated from a load measurement.  
 

Suppose that a load has been observed for a time period [0,t] and let jr̂ be the estimated 

covariance. For a fixed j, the estimate jr̂  can be very uncertain, unless j is much less than N. 

In addition, if we assume that rj converges fast to zero, then a large part of jr̂ , say above N0, 

is not significantly different from zero.  Consequently we propose to remove the 

nonsignificant jr̂  from the sum and estimate σ2 by the following formula 
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Finally, the coefficient of variation is estimated by 
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For the theoretical examples in the following sections, the covariance values rj, j > 0 are 
close to zero. However, for (long) measured loads the covariance is usually correlated. 
Hence, in practical situations, N0 is usually larger than zero.  
 
Method 2: The cycle approach 
In this section we use a similar approach as above, but use the original expression (1). We 

denote the damage due to the j:th maximum and corresponding minimum by k
jj sq = . Now 

the total damage is expressed as qND rfc= , where q is the average of all qj. Furthermore, 

we suppose that qj , j = 1,…,Nrfc, is a stationary ergodic sequence, with the covariance 



[ ]njnj qq ,cov +=ρ . Now, in the same way as above, we express [ ] 2σrfcNTD =)(Var  and get 

the estimate 
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where the covariance above N1 is neglected. Finally, the coefficient of variation is estimated 
by 
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STOCHASTIC MODELS OF THE ROAD PROFILE 

 
We will check the accuracy of the two CoV-estimates using a quarter-vehicle travelling on 
road profiles realized from two different stochastic models. These two road profile models are 
described in the following two subsections.  
 
The Gaussian model 
In the standard ISO8608 a stationary Gaussian road profile model is suggested. A stationary 
zero-mean Gaussian model is uniquely defined by its spectrum. In ISO 8608 the following 
spectrum is proposed 
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where ξ is the spatial frequency in m-1. 
 
The superposition-model 
The standard model is not an accurate road model [5]. A more complex model, which 
includes sections with increased roughness, is more similar to actual roads [2, 6]. The main 

variability in the road profile is described by the stationary Gaussian process )()( xZ 0 , with 

spectrum 
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where ξ0 = 0.2 m-1. In order to add rough parts, irregularities of two types, long-wave and 

short-wave, are superimposed to )()( xZ 0 . The two types occur independently of each other. 

To exemplify, a 300 m long road is generated with three long-wave and two short-wave 
irregularities, see Figure 2. Note that, as the example shows, long-wave and short-wave 
irregularities may overlap. Moreover, the i:th long-wave irregularity and the j:th short-wave 

irregularity are described by )()(
k xZ 1  and )()(

j xZ 2 .  

To avoid discontinuities at the start and end of the rough sections, the added irregularities 
starts and ends with two values equal to zero. Thus, the irregularities are non-stationary and 



hence it is impossible to assign a spectral density to them. However, an irregularity reaching 
from -∞ to +∞ is stationary. The spectral densities of such infinite length long-wave and short-
wave irregularities are given by 
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For finite length irregularities see [6].  
 
Furthermore, the location and length of the sections with added roughness is random. More 
precisely, the distance between the end of a long-wave irregularity and the start of the next is 
exponentially distributed with mean θ1. Similarly, the distance between end and start of short-
wave irregularities is exponentially distributed with mean θ2. The length of long-wave and the 
length of short-wave irregularities are exponentially distributed with mean d1 and d2, 
respectively. Table 1 comprises all road parameters from the superposition model. 
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Fig. 2: A synthetic profile Z(x) from the superposition-model. 
 
Table 1: Parameters in the road model, LWI = long-wave irregularity, SWI = short-wave 
irregularity. 
 Description  Description 

a0 Severity level, ‘regular’ road θ1 Mean distance between LWI:s 
a1 Severity level for LWI:s θ2 Mean distance between SWI:s 
a2 Severity level for SWI:s d1 Mean length of LWI:s 
w1 Spectrum ’slope’, long-wave region d2 Mean length of SWI:s 
w2 Spectrum ’slope’, short wave region   

 



EVALUATION OF THE ESTIMATION PROCEDURES 

 
In this section N=1000 roads are simulated from one of the road models and the vehicle 
fatigue damage corresponding to each road is computed. The ratio between the empirical 
standard deviation and average damage, gives the empirical coefficient of variation. Since N 
is large we can treat this as the true CoV. Also, from each load sequence the CoV is 
estimated using each of the two methods. Hence, N CoV-estimates are obtained for each 
method, which are compared to the true value. 
 
Coefficient of variation: Gaussian model 
In the first example we simulate N = 1000 stationary Gaussian roads of length L = 45 km with  
q = 10-4 and w = 2. The vehicle velocity is set to 70 km/h and the fatigue exponent k = 4. 
Figure 3 shows that the average estimate from Method 1 is closer to the true value than the 
estimate of Method 2. However, the variability of the estimate from Method 2 is lower than 
the estimate from Method 1. Note also that the empirical CoV is low (0.042) already at L = 45 
km. However, it is well known that this road profile model is not accurate [6]. In the coming 
examples a more realistic road model is studied. 
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Fig. 3: Accuracy and precision of CoV-estimates (k=4, v=70 km/h, L = 45 km, Gaussian 
roads). The vertical solid line represents the ‘true’ value 0.043, the empirical CoV.  
 
Coefficient of variation: superposition (SP) model 
In the second example we simulate N = 1000 roads from the superposition model of length 
L=45 km. The parameters are set to a0 = -5.4, a1 = -4.3, a2 = -3.5, w1 = 3.4, w2 = 2.2, θ1 = 400 
m, θ2 = 1500 m, d1 = 32 m and d2 = 5 m. As the above example, the vehicle velocity v = 70 
km/h and the fatigue exponent k = 4. In this example, both methods show a similar 
performance.  
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Fig. 4: Accuracy and precision of CoV-estimates (k=4, v=70 km/h, L = 45 km, SP-roads).    
 
Figure 5 shows the result with the same settings (45 km long SP-roads, v=70 km/h) as the 
above example, but for k = 6. As expected the accuracy is worse. When the fatigue exponent 
is high, only high load peaks contribute significantly to the total damage, and the load 
sequence must be long enough, so that many high load peaks have occurred. In this 
example, the road length is too short, and the estimates are based on a (too) small number 
of high peaks.  
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Fig. 5: Accuracy and precision of CoV-estimates (k=6, v=70 km/h, L = 45 km, SP-roads).    
 
In the next example, the length is increased: 1000 SP-roads of length 400 km is simulated. 
The results in Figure 6 show that the average CoV-estimates from both methods have almost 
converged to the true value (indicated by the vertical solid line).  
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Fig. 6: Accuracy and precision of CoV-estimates (k=6, v =70 km/h, L = 400 km, SP-roads).    
 

COEFFICIENT OF VARIATION FOR A MEASURED ROAD 

 
This section presents the analysis of a 45 km long measured gravel road. The vehicle is 
simulated at 70 km/h and the coefficient of variation is estimated, using both methods. The 
table below show the estimates for k = 3,…,8.  
 
Table 2: Estimated CoV for a 45 km long rough gravel road in northern Sweden. 

Method k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 

1: CoV (split) 0.11 0.15 0.19 0.23 0.27 0.33 
2: CoV (cycle) 0.08      0.12      0.17      0.21      0.26       0.31 

 
In Figure 7 the CoV is plotted as a function of road length, for k = 6. The function is obtained 
from the CoV-estimate of Method 1, 0.23, and (6). The measured length should be 
approximately 250 km in order to obtain a CoV below 0.1. But in practice, to obtain such a 
long measurement, one must measure several gravel roads (with similar properties). This will 
add to the variability, and the total measurement should be even longer.  
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Fig 7: Estimated CoV as a function of measured distance (k = 6, v = 70 km/h). 



 

DISCUSSION 

 

From the examples above, we can see that, in general, the two methods perform similarly. 
Both methods have a tendency to underestimate. However, Method 1 is often easier to use 
in practical situations, when (more complex) measured vehicle loads are studied. For 
example, a construction vehicle often travels back and forth on the same road stretch. A 
measurement from such an operation will show correlated damage values, corresponding to 
twice the length of this road stretch. Also, for very long measurements (order 100 km), from 
changing conditions (e.g. changing road types, vehicle speed, etc), the covariance 
sequences (r and ρ) will converge slowly to zero. In such scenarios, it is easier to use the 
more crude division used in Method 1, in order to describe correlation for long distances. 
However for very short measured loads, when the Method 1 can not be applied, the Method 
2 can still give useful estimates of the coefficient of variation. 

CONCLUSION 

 
Accurate estimation of damage variability from only one load sequence is difficult. Here, two 
quite simple methods to estimate the coefficient of variation of the accumulated rainflow 
damage are compared. Method 1, the slightly easier method to use, is proposed. In this 
method the variability is analysed by division of the total load sequence into subsequences. 
Here, each subsequence corresponds to 1 km long road sections. A damage value is 
assessed for each subsequence. Then, the covariance sequence of the damage values is 
estimated and, finally, the CoV can be estimated. The proposed method has a tendency to 
underestimate the CoV, especially for high values of the fatigue exponent, k.   
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