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Abstract

In this note we propose a finite element method for incompressible (or compress-
ible) elasticity problems with discontinuous modulus of elasticity (or, if compress-
ible, Poisson’s ratio). The problem is written on mixed form using P 1–continuous
displacements and the space of piecewise P 0 pressures, leading to the possibility of
eliminating the pressure beforehand in the compressible case. In the incompress-
ible case, the method is augmented by a stabilization term, penalizing the pressure
jumps. We show a priori error estimates under certain regularity hypothesis. In par-
ticular we prove that if the exact solution is sufficiently smooth in each subdomain
then the convergence order is optimal.

1 Introduction

Hansbo and Hansbo [5,6] proposed an unfitted finite element method for el-
liptic interface methods using Nitsche’s method to allow for discontinuous
or weakly discontinuous solutions. In particular, [6] deals with the elasticity
problem, however avoiding the incompressible case. In this paper we aim to
fill this gap.

We note that the equations of incompressible elasticity written on mixed form
with the pressure as an auxiliary variable is form–identical to the Stokes equa-
tions of creeping viscous flow, and thus this paper serves as a basis for com-
putations involving also two– (or multi–) fluid problems, which has been an



important field of research during the last ten years. Techniques such as front
tracking and front capturing have been introduced in order to keep track of
the front. Both these techniques have qualities and drawbacks. Typically a
front tracking algorithm will give a sharp resolution of the front and since the
mesh follows the interface it is also well suited to solve the fluid mechanics
equations with discontinuous coefficients that the two-fluid problem gives rise
to; on the other hand it breaks down if topological changes occur in the ex-
act solution. This is essentially the reason why front capturing method like
volume of fluid or level set methods were introduced: they handle topological
change automatically. However, since the position of the front is known only
through intermediate of the interface capturing function the mesh is not fitted
to the discontinuities of the coefficients in the exact solution. It is well known
that for elliptic problems this leads to loss of convergence and pollution effects
perturbing the solution close to the front. This paper thus addresses also the
latter question in the setting of fluid mechanics.

We consider the space of piecewise affine, continuous, functions for the ap-
proximation of the velocities and the space of piecewise constant functions for
the pressure. The pressure jumps between adjacent elements are penalized to
enhance stability. Across the interface we enrich the finite element space so
that both the velocities and the pressures are allowed to be discontinuous. The
solutions in the two subdomains are then coupled using Nitsche’s method.

We show that our formulation satisfies the inf-sup condition for stabilized
methods related to the non-mixed constant strain method. This stability esti-
mate is then used in combination with approximation estimates using suitable
extension operators to prove prove optimal a priori estimates in energy and
L2–norms.

2 The elasticity problem on mixed form

Let Ω be a bounded domain in R2, with convex polygonal boundary ∂Ω and an
internal smooth boundary Γ, with bounded measure, dividing Ω into two open
sets Ω1 and Ω2. The mixed form of the elasticity equations that we propose
as a model problem is given by seeking the displacements u and the pressure
p such that

−∇ · (2µiε(u)) +∇p = f in Ωi, i = 1, 2,

∇ · u− 1

λi
p = 0 in Ωi, i = 1, 2,

u = 0 on ∂Ω \ Γ.

(1)
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where, in terms of Young’s modulus Ei and Poisson’s ratio νi, we have µi =
Ei/(2(1 + νi)) and λi = Ei νi/((1 + νi)(1 − 2νi)). (Strictly speaking, p can
only be identified as the pressure in the incompressible case νi → 1/2, but
for simplicity we shall omit this distinction.) Here ε(u) is the symmetric part
of the displacement gradient and Γ denotes the interface between Ω1 and
Ω2, Ω = Ω1 ∪ Ω2 and the Lamé parameters µi and λi are constant in each
subdomain Ωi. For any sufficiently regular function x in Ω1∪Ω2 we define the
jump of x across Γ by !x" = x1−x2, where xi = x|Ωi . We also define the limits
in domain Ω1 or Ω2 on Γ by p(x)|Γ± = limε→±0 p(x + εn) where x ∈ Γ and
where n is the outward pointing normal to Ω1 on Γ. Let (u, v)X denote the
L2-scalar product on X,

(u, v)X :=
∫

X
uv dx,

with associated norm ‖u‖0,X := (u, u)
1
2
X . The Sobolev-norms associated with

the spaces Hk(X) will be denoted by ‖u‖k,X . Define the the max and min of the
shear moduli by µmax := maxΩ µ and µmin := minΩ µ. Formally we obtain the
weak formulation by multiplying (1) by a function (v, q) ∈ [H1

0 (Ω)]2×L2(Ω) =
V×Q and integrating by parts, leading to the problem of finding (u, p) ∈ V×Q
such that

2∑

i=1

(
(2µiε(u), ε(v))Ωi − (p,∇ · v)Ωi + (q,∇ · u)Ωi − (λ−1

i p, q)Ωi

)

+
∫

Γ
!p n− 2µε(u) · n" · v ds = (f , v)Ω, for all (v, q) ∈ V ×Q,

(2)

where
(ε(u), ε(v))Ωi :=

∫

Ωi

ε(u) : ε(v) dx.

Taking into account the following interface conditions

!p n− 2µε(u) · n" · n = −σκ (3)

and
!2µε(u) · n" · t = 0, (4)

where t = (−ny, nx) and σκ denotes the surface tension force term, with κ the
interface curvature, we arrive at the following well posed formulation: Find
(u, p) ∈ V ×Q such that

B[(u, p), (v, q)] := (f , v)Ω +
∫

Γ
σκv · n ds, for all (v, q) ∈ V ×Q, (5)

where

B[(u, p), (v, q)] =
2∑

i=1

(
(2µiε(u), ε(v))Ωi − (p,∇ · v)Ωi

+(q,∇ · u)Ωi − (λ−1
i p, q)Ωi

)
.
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For the analysis we will only consider the incompressible case to reduce the
technical detail. When both materials are incompressible the pressure space
must be chosen as L2

0(Ω). The extension to the compressible case is straight-
forward combining the results below with those of [6] Moreover for the con-
vergence analysis we will assume that u is in H2 on each subdomain and p in
H1 in each subdomain. For a regularity analysis in the compressible case we
refer to [8] and in the incompressible case to [9].

3 The finite element formulation

In a standard finite element method the jump in normal derivative resulting
from the continuity of the traction, when µ1 (= µ2 or λ1 (= λ2, can be taken
into account by letting Γ coincide with meshlines. However, for optimization or
inverse identification purposes (or in general for two–fluid problems) where the
interface will have to move, this implies remeshing during the simulation, at
least close to the interface. Instead we propose to solve (1) approximately using
piecewise linear displacements and piecewise constant pressures on a family
of conforming triangulations Th of Ω which are independent of the location
of the interface. To avoid loss in convergence order we relax the continuity
requirement over Γ and allow the approximation to be discontinuous inside
elements which intersect the interface.

We will use the following notation for mesh related quantities. Let hK be the
diameter of K and h = maxK∈Th

hK . For any element K, let Ki = K ∩ Ωi

denote the part of K in Ωi. By Gh := {K ∈ Th : K ∩ Γ (= ∅} we denote the
set of elements that are intersected by the interface. For an element K ∈ Gh,
let ΓK := Γ ∩K be the part of Γ intersecting K.

We make the following assumptions regarding the mesh and the interface (from
[5]).

• A1: We assume that the triangulation is non-degenerate, i.e.,

hK/ρK ≤ C ∀K ∈ Th

where hK is the diameter of K and ρK is the diameter of the largest ball
contained in K.

• A2: We assume that Γ intersects each element boundary ∂K exactly twice
and each (open) edge at most once.

• A3: Let ΓK,h be the straight line segment connecting the points of intersec-
tion between Γ and ∂K. We assume that ΓK is a function of length on ΓK,h;
in local coordinates

ΓK,h = {(ξ, η) : 0 < ξ < |ΓK,h|, η = 0}
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and
ΓK = {(ξ, η) : 0 < ξ < |ΓK,h|, η = δ(ξ)}.

Since the curvature of Γ is bounded the assumptions A2 and A3 are always
fulfilled on sufficiently fine meshes. These assumptions essentially demand that
the interface is well resolved by the mesh.

To obtain the finite element formulation corresponding to (5) we replace the
test function v by ṽ such that ṽ|Ωi = vi with vi ∈ [H1(Ωi)]2 and vi = 0 on
the boundary ∂Ω thus allowing for a discontinuity over the interface Γ.

For the average across Γ of any sufficiently smooth function x discontinuous
across Γ we will use the notation {x} = κ1x1 + κ2x2 and 〈x〉 = κ2x1 + κ1x2

with κi|ΓK = |Ki|/|K|. Note that κ1 + κ2 = 1. We have

x1 = {x} + κ2 !x" and x2 = {x}− κ1 !x" , (6)

and therefore
!ab" = {a} !b" + !a" 〈b〉. (7)

We note that since ∇ · (pI − 2µε(u)) ∈ L2(Ω) we have (pn − 2µε(u) · n) ∈
H− 1

2 (Γ). Integrating by parts and using (7) we now obtain for the interface
term

∫

Γ
!(pn− 2µε(u) · n)ṽ" ds =

∫

Γ
{pn− 2µε(u) · n} !ṽ" ds +

∫

Γ
!pn− 2µε(u) · n" 〈ṽ〉 ds. (8)

Since ṽ ∈ [H1(Ω)]2 the quantities in (8) are well defined if the interface inte-
grals are interpreted as duality pairings H− 1

2 (Γ)/H
1
2 (Γ).

Using now the interface conditions (3) and (4), with κ = 0, in the second term
we have ∫

Γ
!pn− 2µε(u) · n" 〈ṽ〉 ds = −

∫

Γ
σκ〈ṽ · n〉 ds. (9)

After these preliminary considerations we are now ready to propose a finite
element discretization of the problem, with this aim we introduce two con-
forming triangulations T1 and T2 such that the union of T1 and T2 gives a
conforming triangulation of all Ω and for every triangle K ∈ T1 ∩ T2 we have
K ∩ Γ (= ∅. We also denote the set of interior faces of Ti by Fi. Associated
with T1 and T2 we have the finite element spaces

V h
i = {v ∈ [C0(Ωi)]

2 : v|K ∈ [P 1(K)]2, ∀K ∈ Ti, v|∂Ω = 0},

Qh
i = {v ∈ L2

0(Ωi) : v|K ∈ P 0(K), ∀K ∈ Ti}.
Moreover we denote Vh = V h

1 × V h
2 and Qh = Qh

1 × Qh
2 . The finite element

discretisation now takes the form: find (ui,h, pi,h) ∈ V h
i × Qh

i , i = 1, 2 such

5



that uh = (u1,h, u2,h), ph = (p1,h, p2,h) satisfy

Bh[(uh, ph), (vh, qh)] + J(ph, qh) = (f , vh) +
∫

Γ
σκ〈vh · n〉 ds, (10)

for all (vh, qh) ∈ Vh ×Qh, where

Bh[(uh, ph), (vh, qh)] = ah(uh, vh) + bh(ph, vh)− bh(qh, uh)

ah(uh, vh) =
∫

Ω
2µε(uh) : ε(vh)dx−

∫

Γ
{2µε(uh) · n} !vh" ds

−
∫

Γ
{2µε(vh) · n} !uh" ds +

∫

Γ
γuµmaxh

−1 !uh" !vh" ds,

bh(ph, vh) = −
∫

Ω
ph∇ · vh dx +

∫

Γ
{ph} !vh · n" ds,

and

J(ph, qh) =
∑

F∈F1

∫

F

γ1

µ1
hK [p1,h][q1,h]ds +

∑

F∈F2

∫

F

γ2

µ2
hK [p2,h][q2,h]ds.

where [p] denotes the jump of p across an element face F and (γu, γ1, γ2) are
constants, the size of which will be discussed in the following.

Remark 1 Note that the velocities and the pressures are double valued in the
overlap region. Moreover the pressure from both sides are stabilized over the
whole interior face in the overlapping domain.

The formulation (10) satisfies the following consistency relation

Lemma 2 (Galerkin orthogonality) Let (uh, ph) be the solution of the finite
element formulation (10) and (u, p) ∈ [H2(Ω1)∪H2(Ω2)]2×H1(Ω1)∪H1(Ω2)
be the solution of (5) then

Bh[(uh − u, ph − p), (vh, qh)] = −J(ph, qh) ∀(vh, qh) ∈ Vh ×Qh. (11)

PROOF. Using the formulation (10) we may write

ah(u, vh) + bh(p, vh)− bh(qh, u) = (f , vh) +
∫

Γ
σκ〈vh · n〉 ds. (12)

The claim follows by noting that bh(qh, u) = 0 and by integrating by parts
in the remaining two terms on the left hand side and using equality (9) and
equation (1).

A FE basis for Vh is easily obtained from a standard FE basis on the mesh
by the introduction of new basis functions for the elements that intersect Γ.
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For piecewise linears, the standard interior nodal basis functions in Ω may be
partitioned into the two sets {ψj

i }Ni
j=1 of basis functions with support entirely

in Ωi, i = 1, 2, and the set {ψk
Γ}M

k=1 of basis functions which are non-zero on
Γ. For each of the latter, let ψj

Γ,i := ψj
Γ|Ωi . Then {ψj

i }Ni
j=1 ∪ {ψk

Γ,i}M
k=1 is a basis

for V h
i . As a consequence, the number of basis functions on each element that

intersects Γ is doubled.

4 Approximation properties

The solution of (1) looses regularity at the interface. Indeed the pressure and
normal component of the deformation tensor may jump. We introduce the
broken Sobolev spaces

Hk(Ω1 ∪ Ω2) := {v : v|Ωi ∈ Hk(Ωi), i = 1, 2}

with the corresponding norms

‖u‖2
k,Ω1∪Ω2

:=
2∑

i=1

‖u‖2
k,Ωi

We need to show that our approximating spaces Vh and Qh have optimal
approximation properties on H2(Ω1 ∪Ω2) and H1(Ω1 ∪Ω2) respectively. This
follows from some minor modifications of the analysis in [5]. Let Gh denote
the set of elements that are intersected by the interface. We will use the
following mesh dependent norms defined for functions in [H2(Ω1 ∪ Ω2)]2 or
[H2(Ω1 ∪ Ω2)]2 ×H1(Ω):

‖v‖2
1/2,h,Γ :=

∑

K∈Gh

h−1
K ‖v‖2

0,ΓK
,

‖v‖2
−1/2,h,Γ :=

∑

K∈Gh

h1
K ‖v‖

2
0,ΓK

,

and

#v#2 := ‖v‖2
0,Ω +

∥∥∥µ1/2∇v
∥∥∥
2

0,Ω
+ ‖{2µε(v) · n}‖2

−1/2,h,Γ + ‖[v]‖2
1/2,h,Γ .

On the product space V ×Q we introduce the norm

#(uh, ph)#2 := #uh #2 +
1

µmax
‖ph‖2

0,Ω

and on Vh ×Qh the norm

#(uh, ph)#2
h := #uh #2 +

1

µmax
‖ph‖2

0,Ω + J(ph, ph).

7



We note for future reference that

(u, v)Γ ≤ ‖u‖1/2,h,Γ ‖v‖−1/2,h,Γ . (13)

To show that functions in the space (Vh, Qh) approximate functions v ∈
[H1

0 (Ω)∩H2(Ω1∪Ω2)]2 and q ∈ L2
0(Ω)∩H1(Ω1∪Ω2) to the order h in the norm

# ·# and ‖ ·‖0,Ω, respectively, we construct an interpolant of (v, q) by standard
interpolants of [H2]2×H1–extensions of (v1, q1) and (v2, q2) as follows. Choose
extension operators Ek

i : Hk(Ωi) → Hk(Ω) such that (E2
i v, E1

i q)|Ωi = (v, q) and

‖Ek
i w‖s,Ω ≤ C‖w‖s,Ωi , ∀w ∈ Hs(Ωi), s = 0, . . . , k. (14)

Let Ih be the standard interpolant and Ch be the local projection on the
piecewise constants. We define

(I∗hv, C∗
hq) := ((I∗h,1v1, I

∗
h,2v2), (C

∗
h,1q1, C

∗
h,2q2)), (15)

where I∗h,ivi := (IhE
2
i vi)|Ωi and C∗

h,iqi := (ChE
1
i qi)|Ωi . The following theorem is

valid.

Theorem 3 Let (I∗h, C∗
h) be a pair of interpolation operators defined as in

(15). Then
#v − I∗hv# ≤ Ch‖v‖2,Ω1∪Ω2

and
‖q − C∗

hq‖0,Ω ≤ Ch‖q‖1,Ω1∪Ω2

for all v ∈ [H1
0 (Ω) ∩H2(Ω1 ∪ Ω2)]2 and p ∈ L2

0(Ω) ∩H1(Ω1 ∪ Ω2).

For the proof of this we need the following variant of a trace inequality on a
reference element that we recall from [5] and state here without proof.

Lemma 4 Map a triangle K ∈ Gh onto the unit reference triangle K̃ by an
affine map and denote by Γ̃K̃ the corresponding image of ΓK. Under the the
assumptions A1-A3 of Section 3 there exists a constant C, depending on Γ but
independent of the mesh, such that

‖w‖2
0,Γ̃K̃

≤ C‖w‖0,K̃‖w‖1,K̃ , ∀w ∈ H1(K̃). (16)

PROOF. (Theorem 3)
Recall that Ki = K∩Ωi and let v∗i = E2

i vi denote the extension of vi to Ω and
similarly q∗i = E1

i qi denote the extension of qi to Ω. By standard interpolation
estimates for Ih and Ch respectively we now obtain

‖∇(vi − I∗h,ivi)‖2
0,Ki

= ‖∇(v∗i − I∗h,iv
∗
i )‖2

0,Ki
≤ ‖∇(v∗i − I∗h,iv

∗
i )‖2

0,K

≤ Ch2
K‖v∗i ‖2

2,K

8



and in the same fashion

‖qi − C∗
h,iqi‖2

0,Ki
≤ Ch2

K‖q∗i ‖2
1,K

Summing over all triangles we obtain using (14)

‖∇(vi − I∗h,ivi)‖2
0,Ωi

≤ Ch2
∑

K∩Ωi '=∅
‖v∗i ‖2

2,K ≤ Ch2‖vi‖2
2,Ωi

(17)

and

‖qi − C∗
h,iqi‖2

0,Ωi
≤ Ch2‖qi‖2

1,Ωi
. (18)

We turn now to the jumps on the interface. Since the mesh is non-degenerate,
it follows from Lemma 4, scaled by the map from the reference triangle, that
for s ∈ R

h−s
K ‖w‖2

0,ΓK
≤ C

(
h−1−s

K ‖w‖2
0,K + h1−s

K ‖w‖2
1,K

)
, ∀w ∈ H1(K)

for s ∈ R. Hence it follows, using once again standard interpolation estimates,
that

h−1
K ‖ !v − I∗hv" ‖2

0,ΓK
≤ Ch−1

K

∑

i

‖vi − I∗h,ivi‖2
0,ΓK

= Ch−1
K

∑

i

‖v∗i − Ihv
∗
i ‖2

0,ΓK

≤ C
∑

i

(
h−2

K ‖v∗i − Ihv
∗
i ‖2

0,K + ‖v∗i − Ihv
∗
i ‖2

1,K

)

≤ Ch2
K

∑

i

‖v∗i ‖2
2,K

and Summing the contributions from K ∈ Gh, we get from (14) that

‖ !v − I∗hv" ‖1/2,h,Γ≤Ch
∑

i

‖v∗i ‖2,
⋃

K∈Gh
≤ Ch‖v‖2,Ω1∪Ω2 and (19)

‖ !q − C∗
hq" ‖−1/2,h,Γ≤Ch

∑

i

‖q∗i ‖1,
⋃

K∈Gh
≤ Ch‖q‖1,Ω1∪Ω2 . (20)

Next, we consider the mean viscous stress at the interface. Lemma 4 applied
to n ·∇w and scaling gives

hK‖n ·∇w‖2
0,ΓK

≤ C(‖w‖2
1,K + h2

K‖w‖2
2,K), ∀w ∈ [H2(K)]2.

9



Using this result applied to w = v∗i − Ihv∗i and again standard interpolation
estimates, it follows that

hK‖{n ·∇(v − I∗hv)}‖2
0,ΓK

≤ ChK

∑

i

‖∇(vi − I∗h,ivi) · n‖2
0,ΓK

= ChK

∑

i

‖∇(v∗i − Ihv
∗
i ) · n‖2

0,ΓK

≤ C
∑

i

(
hK‖v∗i − Ihv

∗
i ‖2

1,K + h2
K‖v∗i − Ihv

∗
i ‖2

2,K

)

≤ Ch2
K

∑

i

‖v∗i ‖2
2,K .

Summing again the contributions from K ∈ Gh, we from (14) that

‖{n ·∇(vi − I∗h,ivi)}‖−1/2,h,Γ ≤ Ch‖vi‖2,Ωi . (21)

The claim now follows from equations (17), (18), (19).

Lemma 5 Let q ∈ H1(Ω1 ∪ Ω2) then there holds

J(C∗
hq

∗, C∗
hq

∗) ≤ Ch2‖q‖2
H1(Ω1∪Ω2).

PROOF. This is easily proved using the standard trace inequality in the
following fashion

hK‖[q∗i − C∗
hq

∗
i ]‖2

0,F ≤ C
(
‖q∗i − C∗

hq
∗
i ‖2

0,K + h2
K‖q∗i ‖2

1,K

)

≤ Ch2
K

∑
‖q∗i ‖2

1,K .

This leads to

J(C∗
hq

∗, C∗
hq

∗) ≤
∑

K∈T1

Ch2
K

∑
‖q∗1‖2

1,K +
∑

K∈T2

Ch2
K

∑
‖q∗2‖2

1,K

≤ Ch2(‖q‖2
1,Ω1

+ ‖q‖2
1,Ω2

)

5 The inf-sup condition

We need to show that the formulation satisfies an inf-sup condition with regard
to the norm #(·, ·)#h in the case λi → ∞. We remark that if λi remain
bounded from above, the pressure does not need stabilization and can be
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eliminated elementwise, recovering the constant–strain finite element method.
In this case there is no stability problem in the pressure, and the results of
[6] can be directly applied in the compressible subdomain. We shall therefore
in the following concentrate on the case when both materials are assumed
incompressible.

Observe that the pressure stabilization in J(·, ·) acts over the whole interior
faces in Gh, i.e. not only the part of the faces in the computational domain Ω.
This is of fundamental importance for the below analysis, indeed this “ghost
penalty” is what gives us stability of the interface pressure.

Here we prove the inf-sup condition only in the particular case of the mixed
stabilized P1×P0 formulation for convenience. However, the general framework
holds also when using for instance the pressure stabilisations proposed in [4]
or [1] and we expect the inf-sup condition to hold uniformly in these cases as
well, provided the stabilization operator acts in all elements of T1 and T2.

We need the following inverse inequality, for a proof of which we refer to [5].

Lemma 6 For v ∈ Vh, the following inverse inequality holds:

‖{n ·∇v}‖2
−1/2,h,Γ ≤ CI‖∇v‖2

0,Ω1∪Ω2

5.1 Fortin interpolant

The key result for the inf-sup condition is the construction of the Fortin in-
terpolant. The upshot in the case of Nitsche XFEM for Stokes’ problem is the
need to construct a Fortin interpolant with some additional orthogonality on
the interface. The interpolant defined on mesh Ti will be denoted by πi

h and
the global interpolant by πh. Note that the global interpolant is not continuous
across the interface. Let us consider the construction of the Fortin interpolant
on the space V h

1 the construction on V h
2 then follows by symmetry. Let TΓ by

the subset of triangles of T1 such that

TΓ = {T ∈ T1 : T ∩ (T1 ∩ T2) (= ∅}.

That is all the elements cut by the interface and the elements sharing a face
or a vertex with them. This is a subset of the mesh of width approximately
2h. Let us now regroup the elements in TΓ in patches {Pi}, cutting up the
interface zone in macroelements, each containing a “sufficient” amount of basis
functions to construct a patch function ϕi > 0 associated to each Pi that is
zero on the interior patch boundary and takes the value 1 on at least one face
cut by the interface. The Pi can be constructed so that

• ∃c1, c2 > 0 such that c1h ≤ diam(Pi) ≤ c2h.

11



• ∃c1, c2 > 0 c1h ≤
∫

Γ∩Pi

ϕi ds ≤ c2h.

• ∃c1, c2 > 0 c1h−1 ≤ |∇ϕi| ≤ c2h−1.

We want to prove that we can construct an interpolant πh : [H1(Ω)]2 → V h

such that

‖v − πhv‖0,Ω + h‖∇(v − πhv)‖0,Ω1∪Ω2 ≤ ch‖∇v‖0,Ω

and
∫

Γ∩Pi

(v − πk
hv) ds = 0, for k = 1, 2 (22)

for all Pi.

The idea is to start from the global Clément interpolant of v and then con-
struct a correction using the space Φ = {ϕi} so that the condition (22) is
satisfied. Let Ihv ∈ [C0(Ω̄)]2 denote the global Clément interpolant of v. In
each patch Pi there is exactly one (vector valued) degree of freedom yi asso-
ciated to the basis function ϕi. We know fix the yi by requiring

∫

Γ∩Pi

ϕiyi ds =
∫

Γ∩Pi

(v − Ihv) ds.

where

ϕ =




ϕi 0

0 ϕi



 .

Finally we set π1
hv = Ihv|T1 +

∑
i ϕiyi. Clearly, by construction (22) holds.

The approximability is a consequence of the stability of the projection. Since
π1

hv = Ihv, except in the interface zone, we only need to prove stability for
the interpolant in TΓ. This is where the position of the interface could upset
things. The fact that we have chosen the patches to include the neighbours
seems to work around this problem. Consider, for some K ∈ Pi

‖∇π1
hv‖K,0 ≤ ‖∇Ihv‖K∩Ω1,0 + ‖∇(ϕiyi)‖K∩Ω1,0

≤ c‖∇v‖K,0 + ch−1|yi|meas(K)
1
2

≤ c(‖∇v‖K,0 + |yi|).

It remains to show that |yi| is bounded by the norm of ∇v over some patch of
diameter h. This follows by using the definition, a Cauchy-Schwarz inequality,

12



a trace inequality and the interpolation properties of the Clement interpolant:

|yi| ≤

∣∣∣∣∣∣∣∣

∫

Γ∩Pi

(v − Ihv) ds
∫

Γ∩Pi

(ϕi : ϕi)
1/2 ds

∣∣∣∣∣∣∣∣
≤ ch−1

∣∣∣∣
∫

Γ∩Pi

(v − Ihv) ds
∣∣∣∣

≤ ch−
1
2‖v − Ihv‖0,Γ∩Pi

≤ c(h−1‖v − Ihv‖0,Pi + ‖∇(v − Ihv)‖0,Pi) ≤ c‖∇v‖0,∆Pi
,

where ∆Pi denotes the patch consisting of the elements in Pi and those sharing
a node with an element in Pi. In all interior elements the H1-stability is a
consequence of the properties of the Clément-interpolant.

The approximability in L2 is now easily obtained, noting that for K ∈ Pi

‖v − π1
hv‖0,K ≤ ‖v − Ihv‖0,K + ‖ϕiyi‖0,K ≤ ‖v − Ihv‖0,K + chK |yi|

and applying the previous result. Using arguments similar to that of Section
4 one may readily prove the stability estimate

#πhv# ≤ c‖v‖1,Ω, ∀v ∈ [H1(Ω)]2. (23)

We will now use the proposed interpolant to prove the inf-sup condition for
our formulation. Let us start with a preliminary lemma

Lemma 7 Let v ∈ [H1(Ω)]2; then there holds, for i = 1, 2,

|(!ph" , n · (v − πi
hv))Γ| ≤ cJ(ph, ph)

1
2‖µ

1
2
max∇v‖0,Ω

PROOF. Using the orthogonality on the patches Pk, we may write, with
ξk ∈ R,

|(!ph" , n · (v − πi
hv))Γ| ≤

∑

k

|(!ph" , n · (v − πi
hv))Pk∩Γ|

≤
∑

k

‖ !ph"− ξk‖0,Pk∩Γ‖v − πi
hv‖0,Pk∩Γ

≤ C
∑

k

‖ !ph"− ξk‖0,Pk∩Γh
1
2‖∇v‖0,Pi

≤ C

(

h
∑

k

‖ !ph"− ξk‖2
0,Pk∩Γ

) 1
2

‖∇v‖0,Ω

13



We now choose ξk as the arithmetic mean of all the jumps in the patch Pk,

ξk =
1

Nk

∑

K∈Pk:K∩Γ'=∅
!ph" |K∩Γ

where Nk denotes the number of triangles in Pk ∩TΓ. It then follows, since Nk

is bounded from above by a moderate constant, uniformly in h and k and using
the relation (a− b)2 ≤ 2a2 + 2b2, that for each K ∈ Pk such that K ∩ Γ (= ∅

‖ !ph"− ξk‖2
K∩Γ ≤ 2‖N−1

k

∑
K′∈K′(p1,h|K − p1,h|K′)‖2

0,K∩Γ

+2‖N−1
k

∑
K′∈K′(p2,h|K − p2,h|K′)‖2

0,K∩Γ

≤ C




∑

F∈Ek

∫

F
[p1,h]

2 ds +
∫

F
[p2,h]

2 ds





where K′ := {K ′ ∈ Pi : K ′ ∩ Γ (= ∅; K ′ (= K}, Ek := {F ∈ Pk : F ∩ Γ (= ∅}
and where the constant C depends only on the Nk. We conclude by summing
over all the patches Pi.

We will now prove the main result of this section:

Theorem 8 Let (uh, ph) ∈ Vh ×Qh. Then

cs # (uh, ph)#h ≤ sup
(wh,qh)∈Vh×Qh

Bh[(uh, ph), (vh, qh)] + J(ph, qh)

#(vh, qh)#h
. (24)

PROOF. We start by choosing (vh, qh) = (uh, ph) to obtain

Bh[(uh, ph), (uh, ph)] + J(ph, ph) = ah(uh, uh) + J(ph, ph).

We will need a version of Korn’s inequality for functions in Vh. From [3]
(eq. (1.19)), using Vh ⊂ [H1(Ω1 ∪ Ω2)]d and v|∂Ω = 0 for v ∈ Vh, we have:

‖ε(v)‖2
0,Ω1∪Ω2

+ ‖[v]‖2
1/2,h,Γ ≥ C|v|21,Ω1∪Ω2

∀v ∈ Vh,

while from [2], using v|∂Ω = 0, v|ΓK ∈ L2(ΓK) for v ∈ Vh and a standard error
estimate, we have

|v|21,Ω1∪Ω2
+ ‖[v]‖2

1/2,h,Γ ≥ C‖v‖2
0,Ω ∀v ∈ Vh

and thus

‖ε(v)‖2
0,Ω1∪Ω2

+ ‖[v]‖2
1/2,h,Γ ≥ CK‖v‖2

1,Ω1∪Ω2
∀v ∈ Vh. (25)
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See also the proof on discrete spaces of [7]. Applying now (25), (13) and Lemma
6, we get

ah(uh, uh) + J(ph, ph)

≥ ‖µ1/2ε(uh)‖2
0,Ω1∪Ω2

− 2‖{2µn · ε(uh)}‖−1/2,h,Γ‖[uh]‖1/2,h,Γ

+ γu‖µ1/2
max[uh]‖2

1/2,h,Γ +
2∑

i=1

∑

F∈Fi

γi

µi
hK‖[pi,h]‖2

0,F

≥ CK

2
µmin‖uh‖2

1,Ω1∪Ω2
+

(
µmin

2
− 8CIµmax

ε

)
‖ε(uh)‖2

0,Ω1∪Ω2

+
1

ε
‖{2µn · ε(uh)}‖2

−1/2,h,Γ + (γuµmax − εµmax)‖[uh]‖2
1/2,h,Γ

+
2∑

i=1

∑

F∈Fi

γi

µi
hK‖[pi,h]‖2

0,F . (26)

Taking ε = 16CI
µmax

µmin
,

c # uh#2 ≤ Bh[(uh, ph), (uh, ph)] + J(ph, ph)

for γu > ε.

By the surjectivity of the divergence operator from [H1
0 (Ω)]2 to L2

0(Ω) there
exists vp ∈ [H1

0 (Ω)]2 such that µ−1
maxph = −∇ · vp and ‖vp‖1,Ω ≤ cµ−1

max‖ph‖0,Ω.
Taking now (wh, qh) = (πhvp, 0) where πh is the interpolation operator intro-
duced in the previous section we obtain

Bh[(uh, ph), (πhvp, 0)] = ah(uh, πhvp) + bh(ph, πhvp − vp) + µ−1
max‖ph‖2

0,Ω.

Using the Cauchy-Schwarz inequality we have

ah(uh, πhvp) ≥ − # uh # #πhvp#

≥ −C # uh # µ
1
2
max‖∇vp‖0,Ω ≥ −C # uh # µ

− 1
2

max‖ph‖Ω.

Using integration by parts in the term bh(ph, πhvp − vp) we have

bh(ph, πhvp − vp) =
∑

K∈Th

∫

∂K
[ph] n · (vp − πhvp) ds

+
∑

i

∫

Pi∩Γ

(
!ph n · (vp − πhvp)"− {ph} !n · (vp − πhvp)"

)
ds

=
∑

K∈Th

∫

∂K
[ph] n · (vp − πhvp) ds +

∑

i

∫

Pi∩Γ
!ph" n · 〈vp − πhvp〉 ds

= I + II.
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Treating these term separately we first note that by using the approximation
properties of πh we have

I ≥ −C J(ph, ph)
1
2‖µ−

1
2

maxph‖0,Ω.

For the second term we use Lemma 7 which gives

II ≥ −
∣∣∣∣∣
∑

i

∫

Pi∩Γ
!ph" n · 〈vp − πhvp〉 ds

∣∣∣∣∣ ≥ −C J(ph, ph)
1
2‖µ−

1
2

maxph‖0,Ω.

Note that the different weights here are of no importance since the orthogo-
nality property is satisfied on each side separately and since the weights are
upper bounded by 1. We conclude that

Bh[(uh, ph), (πhvp, 0)] ≥ ‖µ−
1
2

maxph‖2
0,Ω − C

(
J(ph, ph)

1
2 + #uh#

)
‖µ−

1
2

maxph‖0,Ω

(27)
Using now an arithmethic-geometric inequality we get

Bh[(uh, ph), (πhvp, 0)] ≥ 1
2‖µ

− 1
2

maxph‖2
0,Ω − CJ(ph, ph) + C # uh#2 (28)

for ε < C−1 there holds

c # (uh, ph)#2
h ≤ B[(uh, ph), (uh + επhvp, ph)].

The claim now follows noting that there exists cs such that

2cs # (uh + επhvp, ph)#h ≤ #(uh, ph)#h,

which is a consequence of the stability of πhvp.

5.2 A sketch of the case of one compressible and one incompressible material

Let assume that λ1 is bounded but not λ2. We will then work in the norm

#(uh, ph)#2
h = #uh #2 +

1

µmax
‖ph‖2

0,Ω2
+ λ−1

1 ‖ph‖2
0,Ω1

+ J(ph, ph).

Note that coercivity now gives us

#uh #2 +λ−1
1 ‖ph‖2

0,Ω1
+ J(ph, ph) ≤ Bh[(uh, ph), (vh, qh)] + J(ph, qh).

However the pressure is no longer in L2
0(Ω). On the other hand we can repeat

the above analysis using vp such that ∇ · vp = µ−1
max(ph− p̄h), where p̄h denotes

the average of ph over Ω. Clearly

µ−1
max‖ph − p̄h‖2

0,Ω = (ph,∇ · vp)Ω
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and we proceed as before in order to obtain a bound of the quantity:

λ−1
1 ‖p1‖2

0,Ω1
+ µ−1

max‖ph − p̄h‖2
0,Ω. (29)

Now we stress that by the decomposition pi,h = (pi,h − p̄i,h) + p̄i,h and the
orthogonality ((pi,h − p̄i,h), p̄i,h − p̄h)Ωi = 0 there holds

‖ph−p̄h‖2
0,Ω = ‖p2,h−p̄2,h‖2

0,Ω2
+‖p1,h−p̄1,h‖2

0,Ω1
+‖p̄h−p̄1,h‖2

0,Ω1
+‖p̄h−p̄2,h‖2

0,Ω2
.

On the other hand observing that for i = 1, 2

‖pi,h‖2
0,Ωi

= ‖p̄i,h‖2
0,Ωi

+ ‖pi,h − p̄i,h‖2
0,Ωi

it follows that we only need to bound ‖p̄2,h‖2
0,Ω2

. Observing that

‖p̄2,h‖0,Ω2 ≤ ‖p̄h‖0,Ω2 + ‖p̄h − p̄2,h‖0,Ω2

≤ ‖p̄1,h‖0,Ω2 + ‖p̄h − p̄1,h‖0,Ω2 + ‖p̄h − p̄2,h‖0,Ω2

≤ (meas(Ω2)/meas(Ω1))
1
2 (‖p̄1,h‖0,Ω1 + ‖p̄h − p̄1,h‖0,Ω1) + ‖p̄h − p̄2,h‖0,Ω2 ,

the required bound now follows from (29), since we have inf-sup control of the
right hand.

Note that the constant still degenerates for large λ1. This reflects the instabil-
ity of the problem due to the average value of ph that has to be fixed by the
small L2-coercivity. The same holds for the case where λ1 is moderate on a very
small subdomain Ω1. The quantities µ−1

max‖p1,h− p̄1,h‖2
0,Ω1

, µ−1
max‖p2,h− p̄2,h‖2

0,Ω2

and µ−1
max‖ph − p̄h‖2

0,Ω however can be controlled independently of λ1.

6 A priori error estimates

Proposition 9 Assume that the solution (u, p) to problem (2) resides in
[H2(Ω1∪Ω2)∩H1(Ω)]2×H1(Ω1∪Ω2)∩L2

0(Ω); then the finite element solution
(10) satisfies the error estimate

#(u− uh, p− ph)# ≤ cµh(‖u‖2,Ω1∪Ω2 + ‖p‖1,Ω1∪Ω2)

where cµ is independent of h but not of the ratio
(

µmax

µmin

)
.

PROOF. In view of Theorem 3 we only need to show the inequality for
#(I∗hu− uh, C∗

hp− ph)#. First we set ηh = uh − I∗hu and ζh = ph − C∗
hp and

note that

#(u− uh, p− ph)# ≤ #(u− I∗hu, p− C∗
hp) # + # (ηh, ζh) #h .
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By Theorem 8 and using Galerkin orthogonality we obtain,

#(ηh, ζh)#h ≤
1

cs
sup

(vh,qh)∈Vh×Qh

Bh[(ηh, ζh), (vh, qh)] + J(ζh, qh)

#(vh, qh)#h

≤ 1

cs
sup

(vh,qh)∈Vh×Qh

Bh[(u− I∗hu, p− C∗
hp), (vh, qh)]− J(C∗

hp, qh)

#(vh, qh)#h
.

It remains to use interpolation estimates to bound the terms on the right hand
side. We will make repeated use of inequality (13), Theorem 3 and Lemma 4
below. Treating Bh[(u− I∗hu, p− C∗

hp), (vh, qh)] termwise we obtain

a(u− I∗hu, vh) = (2µε(u− I∗hu), ε(vh))0,Ω1∪Ω2 − ({2µε(u− I∗hu)}, !vh")Γ

−({2µε(vh)}, !u− I∗hu")Γ + (γuh
−1 !u− I∗hu" , !vh")Γ

≤ #u− I∗hu # # vh#

≤ ch‖u‖2,Ω1∪Ω2 # (vh, qh)#h,

b(p− C∗
hp, vh) = −(p− C∗

hp,∇ · vh) + ({p− C∗
hp}, [vh])Γ

≤ (‖µmax(p− C∗
hp)‖0,Ω1∪Ω2 + ‖h(p− C∗

hp)|Γ+‖0,Γ + ‖h(p− C∗
hp)|Γ−‖0,Γ)

×
(

µmax

µmin

)

# (vh, qh)#h

≤ c

(
µmax

µmin

)

h‖p‖1,Ω1∪Ω2 # (vh, qh)#h,

b(qh, u− I∗hu) = (qh,∇ · (u− I∗hu)) + ({qh}, [u− I∗hu])Γ

≤
(

µmax

µmin

)

# (u− I∗hu, 0) # # (vh, qh)#h

+
1

γu
# (u− I∗hu, 0) # # (vh, qh)#h

≤ c

(
µmax

µmin

)

h‖u‖2,Ω1∪Ω2 # (vh, qh)#h,

and for the weakly consistent term we have

J(C∗
hp, qh) ≤ J2(p

∗ − C∗
hp

∗, p∗ − C∗
hp

∗)1/2J2(qh, qh)
1/2

≤ c

(
∑

K∈T
‖h(p∗ − C∗

hp
∗)‖∂K

)1/2

J(qh, qh)

≤ ch‖µ− 1
2 p‖1,Ω1∪Ω2 # (vh, qh) #h .
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Using the Aubin-Nitsche duality argument we prove the following L2(Ω)–
estimate for the velocities.

Proposition 10 Under the same assumptions as Proposition 9 there holds

‖u− uh‖0,Ω ≤ cµh
2(‖u‖2,Ω1∪Ω2 + ‖p‖1,Ω1∪Ω2)

where cµ is independent of h but not of the ratio
(

µmax

µmin

)
.

PROOF. Let (w, r) ∈ V ×Q be the solution of the dual equation

B[(v, q), (w, r)] = (ψ, v)0,Ω ∀(v, q) ∈ V ×Q, (30)

and we assume that this dual solution enjoys the additional regularity

‖w‖2,Ω1∪Ω2 + ‖r‖1,Ω1∪Ω2 ≤ c‖ψ‖0,Ω. (31)

Choosing v = u− uh, q = 0 and ψ = u− uh, we may write

‖u− uh‖2
0,Ω = ah(u− uh, w) + (∇ · (u− uh), r)0,Ω

and proceed using Galerkin orthogonality and the Cauchy-Schwartz inequality
to obtain

‖u− uh‖2
0,Ω1∪Ω2

= ah(u− uh, w − I∗hw) + (∇ · (u− uh), (r − C∗
hr))0,Ω1∪Ω2

+(∇ · I∗hw, p− ph)0,Ω1∪Ω2 + J(−ph, C∗
hr)

≤ #(u− uh, 0) #h #(w − I∗hw, 0)#h

+‖∇ · (u− uh)‖0,Ω1∪Ω2‖r − C∗
hr‖0,Ω1∪Ω2

+|I∗hw −w|1,Ω1∪Ω2‖p− ph‖0,Ω1∪Ω2

+J(−ph, C∗
hr

∗)

≤ c(#(u− uh, p− ph) # +J(ph, ph)
1
2 )

×(#(w − I∗hw, r − C∗
hr) # +J(C∗

hr
∗, C∗

hr
∗)

1
2 ).

As a consequence of Proposition 9, Theorem 3, Lemma 5 and the regularity
hypothesis (31) we may conclude that

‖u− uh‖2
0,Ω1∪Ω2

≤ Ch (‖w‖2,Ω1∪Ω2 + ‖r‖1,Ω1∪Ω2) # (u− uh, p− ph)#h

≤ Ch2‖u− uh‖0,Ω1∪Ω2 (‖u‖2,Ω1∪Ω2 + ‖p‖1,Ω1∪Ω2) ,

and the result follows.
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7 Numerical results

7.1 An artificial interface in an incompressible medium

Our first example shows that we have optimal convergence in the case of an ar-
tificial interface in an incompressible solid with constant material parameters.
The problem, often used in the context of Stokes problem of creeping flow, is
posed on the unit square with exact solution given by u = (20xy3, 5x4 − 5y4)
and p = 60x2y − 20y3 − 5. Choosing γ1,2 = 1 and γµ = 10, we obtain the
optimal convergence shown in Figure 1, first order for the pressure and second
order for the displacements. The position of the artificial interface is shown in
Fig. 2 on one of the computational meshes in the sequence.

7.2 An elastic interface problem with ν1 → 1/2

We have considered a radially symmetric problem with different material prop-
erties in concentric discs around the origin. The inner disc has material pa-
rameters E1, ν1, and the outer E2, ν2. At any point, the displacement vector
can be written u = (ur, uθ), where ur is the radial component of the displace-
ment and uθ is the circumferential component. The material is subjected to
a boundary displacement u = x (in Cartesian coordinates), and the exact
solution to the problem is given by (cf. [10])

ur(r) =






((

1− b2

a2

)

c +
b2

a2

)

r, 0 ≤ r ≤ a,
(

r − b2

r

)

c +
b2

r
, a ≤ r ≤ b,

uθ = 0,

with

c =
(λ1 + µ1 + µ2) b2

(λ2 + µ2) a2 + (λ1 + µ1)(b2 − a2) + µ2b2
.

When ν1 = 1/2, the last relation degenerates to c = 1/(b2 − a2). We have
set E1 = E2 = 1, ν2 = 0.25 and set ν1 ∈ {0.3, 0.49, 0.5}. The problem was
solved on a quarter of a disc with symmetry boundary conditions on the
vertical and horizontal boundaries and with the given boundary condition on
the circumference. The stability parameters were chosen as in the previous
example.

In Figure 3 we show the convergence in displacements for the different ν1. We
obtain second order convergence in all cases, though the error on a given mesh
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increases with ν1. We also show, in Figure 4, an elevation of the length of the
displacement vectors and the p variable for ν1 = 0.49.
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Fig. 1. Convergence for an artificial interface.

Fig. 2. Position of the artificial interface.
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Fig. 3. Convergence for the elasticity problem.
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Fig. 4. Elevation of |u| and p for ν1 = 0.49.
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