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ON CONVERGENCE OF MIXED FINITE ELEMENT METHODS
FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM

MOHAMMAD ASADZADEH!

ABSTRACT. In this paper we investigate the basic ingredients for global su-
perconvergence strategy used for the mixed finite element approximations, in
H' and W1*°-norms (see [1]), for the solution of the Vlasov-Poisson-Fokker—
Planck system. This study is an extension of the results in [2]-[5], to finite
element schemes including discretizations of the Poisson term, where we also
introduce results of an extension of the h-versions of the streamline diffu-
sion (SD) and the discontinuous Galerkin (DG) methods to the corresponding
hp-versions. Optimal convergence results presented in the paper relay on the
estimates for the regularized Green’s functions with memory terms where some
interpolation postprocessing techniques play important roles, see [7].

1. INTRODUCTION

Our purpose is to study the global superconvergence in Ly and maximum norms, for
h and hp-versions of, the mixed finite element approximations for A and hp-versions
of the streamline diffusion and discontinuous Galerkin methods for the solution of
the deterministic, multi-dimensional Vlasov—Poisson—Fokker—Planck (VPFP) sys-
tem of Coulomb particles. The mathematical problem is formulated as follows:
given the initial distribution of particles fo(x,v) > 0, in the phase-space variable
(z,v) € RExR?, d =1,2,3, and the physical parameters 8 > 0 and o > 0, find the
distribution function f(z,v,t) for t > 0, satisfying the nonlinear system of evolution
equations

(Oif +v-Vof +divy[(E — Bv)f] = oA, f, in R?? x (0, 00),
f('Z.:U:O) = f0($7v)7 for (.’IJ,U) € RZda
(L.1) $ __9 =z q
B(e.1) = rga=r [y * #(® ) for (z,1) € R? x (0, 00),
plz,t) = f(z,v,t) dv, E=0FE, and § = +1,
\ R4

where z € R? is the position, v € R? is the velocity, and ¢t > 0 is the time,
v-Vp = 2?21 v;0/8z;. Finally |S|?~1 ~ 1/wq is the surface area of the unit disc in
R?, p(z,t) is the spatial density and *, denotes the convolution in z. F and p can
be interpreted as the electrical field, and charge, respectively. Here the macroscopic
force field E can be taken as
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with ¢(x,t) being the internal potential field. For a gradient field, E is divergence
free and with no viscosity: 8 = 0, the first equation in (1.1) would become

(1.3) Of+v-Vof + E-Vyf =0A,f,

which, with the rest of equations in (1.1), gives rise to the Vlasov—Fokker—Planck
system. If in addition ¢ = 0, then we obtain the classical Vlasov—Poisson equation
with ¢(z,t) satisfying the Poisson equation

(1.4) Ay p(z,t) = Rdf(a:,v,t)dv = p(z,t).

We shall concentrate on the following (modified) version of the VPFP equation
(1.5) Of+v-Vof —=Vop-Vof =V, - (Bof + 0V f).

The mathematical study of the VPFP system has been considered by several au-
thors in various settings, see e.g. [11] The deterministic approach is based on
controlling the behavior of the trajectories, i.e., the solutions of the ordinary dif-
ferential equations underlying the Vlasov—Poisson equation. Compared to the an-
alytical studies the numerical analysis of the VPFP system is much less developed.
In the deterministic approaches the dominant part of numerical studies are using
method of characteristics: basically particle methods developed for the Vlasov—
Poisson equation, see [10]. Probabilistic approaches commonly employ Mote-Carlo
simulations. Concerning hp finite element strategy: In the classical finite element
method (h-version) convergence order improvement relies on mesh refinement while
keeping the approximation order within the elements at a fixed low value (suitable
for problems with highly singular solutions that require small mesh parameter).
Some studies on the h-version of the SD finite element method can be found, e.g.,
in [15] for advection-diffusion, Navier-Stokes and first order hyperbolic equations;
in [16] for Euler and Navier-Stokes equations; in [2] for the Vlasov-Poisson and in
[3], for the Fokker-Planck and Fermi equations and in [17] for conservation laws.
On the other hand in the spectral method the accuracy improvement is accom-
plished by raising the order of approximation polynomial rather than mesh refine-
ment (advantageous in approximating smooth solutions). However, most realistic
problems have local behavior (are locally smooth or locally singular), therefore
a more realistic numerical approach would be a combination of mesh refinement
in the vicinity of singularities (with lower order polynomial approximations), and
higher order polynomial approximations in high regularity regions (with larger,
non-refined, mesh parameter). This strategy, which can be viewed as a generalized
adaptive approach, is the hp-version of the finite element method. For some basicp
and hp-finite element studies see, e.g., [6], [18] and [19].

In this paper we derive optimal error estimates for finite element approximation of
(1.1) through the study of regularized Green’s function, (see [12], [13], and [21]) for
(1.4) combined with the SD and DG methods for (1.3) and (1.5). We also give op-
timal stability and convergence results for the hp-versions of the above approaches.
We shall give the Green’s function approach for the mixed finite element methods
in some detail, however, to keep the presentation concise, we restrict both the SD,
DG and hp approaches to mentioning the main results and, for the detailed proofs,
refer the reader to follow the techniques in some current literature.
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2. THE CONTINUOUS PROBLEM

With separate study of ¢ (and 8 = 0) we are left with the continuous problem
called the Vlasov-Fokker—Planck system:

8tf—|—v-sz+E-VUf—0Avf=0, f(.Z',U,O) :f()(.’E,U),
(2.1) _ T—y _
E(z,t) = Cq /Rd P _y|dp(y,t) dy, plz,t) = Rdf(m,v,t) dv.

We split the study of problem (1.1) to solving the Poisson equation (1.4) for ¢ in
order to determine the field E and then solve the following linear Fokker—Planck
equation for f,

(22) fitv-Vof+E-V,f—0A,f =g, f(.TE,U,O) = fO("L':U)a

where
d

E("E7U7t) = (E1($7U7t)) . 17
i=

is a given vector field and fo(z,v) and g(z,v,t) are given functions. Existence,
uniqueness, stability and regularity properties of the solution for the equation (2.2)
are derived following 1D results in [7] for degenerate type equations.

In our studies (z,v) € Q := Q, x Q,, where Q,, Q, C R? are bounded simply
connected domains and we let Qr := Q, x Q, x (0,7]. With these assumptions
and S # 0 we consider the VPFP problem of finding (f, ¢) satisfying

Of+v-Vof =Vpp-Viof =V(Bof + 0oV f), in Qr,
(23) f(.Z’,U,O) = fo(.’L‘,U), in Q7
flz,v,t) =0, on I'" := {(z,v) € 00 x 00y :n-G < 0}.

Here G := (v, —V;¢), and n = (n(z),n(v)), with n(z) and n(v)being outward unit
normals to 0Q; and 9Q, at the point (z,v) € 9Q,; x 0Q,. Further ¢ and f are
associated through the Poisson equation

(2.4) —Ayp(x,t) = /Q f(z,v,t) dv, (z,t) € Qp x (0,T] := Qr,

where V,¢ is uniformly bounded and |V,¢| — 0 as z — 9Q,. We shall use the
notation Vf := (V, f, V, f) and

— _ 9¢ 99\ _
G(f) = (1), VZ¢)_(U17"'7vd7 amlr"a amd) _(G17"'7G2d)7
leading to the following useful divergent free drift coefficient:
d 2d
0G; 0G;
2. di = = d=1,2,3.
(2.5) WG =D Gy, + g‘;l o =0 2,3

3. REGULARIZED GREEN’S FUNCTION

The Green’s function plays a central role in the study of convergence of the finite
element approximations for the elliptic equations and is usually considered as the
solution of a dual problem. We apply this procedure to Poisson equation for ¢
by introducing its general framework below. To this end we recall the back-ward
Gronwall’s inequality:
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Lemma 3.1. Assume that ¥ and ¢ are two non-negative functions defined on
[0,T]. Then

T T
v <e+C [ v = s <c{e0+ [ ewa} e

We start by introducing a finite element structure on Q, x €,,. Let Tf = {7, } and
Ty = {7} denote finite element subdivisions of 2, and €, with elements 7, and 7,,
respectively. Then 7j, = T x T} = {7, X7, } = {7} will be a finite element partition
of 0 = 0, x Q, into triangular or quadrilaterals with quasi-uniform elements 7 =
Te X Ty Let Vi, C HE(Q) be the corresponding finite element space of order r. For
a given point z := (y,u) € O = Q, x Oy, let 67 (p) € Vi, p = (,v) be the smoothed
d-function at z which satisfies

3.1) (0h,9) =9(2), g€ Vi
Now, for o(t) € Cg°(0,T) with [|¢||z,0,7y < 1, we define the Green’s function
G*(t) := G*(p,t;2) € L2((0,T); HL(Q) N H?(2)), to be the solution of the equation

T
(3.2) A(t)G*(¢) +/t B(s,t)G*(s)ds = djp(t), in Qr,

where B is an integral kernel. Let [ be any fixed hyperline direction and define the
directional derivative
62+Az 5%

(3.3) 9,65 := Az”ll’irgz_m hTﬂh’ satisfying (0,05,9) = 0,9(2), g € V.
We introduce the weight function p(p) = p.(p) == (Jp — 2|* + v?) !, with v := vh
and v > 0, and define

||w||ia = /Qu"‘|w|2 dzdv, ||w||fn,ua = Z ||Dkw||ia, m=12,...,.a€R
k| <m

In this setting we have the estimate:

Lemma 3.2. There is a constant C such that
l="8:6%l0 = 110:67||,,—> < C.

Similarly we may define a Green’s function for the derivatives, then we have a
regularity requirement of the type 8,G*(t) € L*((0,T); Ha(Q2) N H2(2)) such that

(3.4) A()0.G%(t) + /TB(s,t)6zgz(s) ds = 0,07¢(t), in Qp.
¢

Let Gi(t) and 0.Gj (t) be finite element approximations of the regularized Green’s
functions G* and 0,G?, respectively.

We discretize the Poisson equation for ¢ = ¢(z,t), see (1.2) and (1.4), using
the above version of the regularized Green’s functions approach. The discretization
variable is z € (), and the ¢t variable is tackled separately in a backward-Euler type
time-discretization. Below we outline the main steps for the Regularized Green’s
functions procedure and refer to [12], [13], and [21], for the details. Consider the
Dirichlet problem for the second order elliptic equation viz: find ¢ € H'(f,) such
that

{ —Azp = p(xat)a (.’L‘,t) €Oy x [OaT]a
(3.5) 7
=g, on 0.
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Note that in our case p(x,t) = / f(z,u,t)dv. Let E = —V,p, the idea is to

Qy
study a mixed form for (E, ) given by

E+V,0=0, in Qg,
(3.6) div E = p, in Qg
p =g, on 0.

To this end we define the necessary measurement environments: Let
H = H(div,Q,) = {w € [Lg(Qw)]d cdiv w € Ly(Q)),
be a Hilbert space associated with the norm
llwll3, = llwll3 + [|divwl]3.
Now the weak form of (3.6) reads as follows. Find (E, ) € H x L2(f2 :;) such that

. (B,w) — (divw,p) = — < g,w-n >, Yw € H,
S (div w,u) = (p,u), Vu € Lo(9,),
d
where (-,-) is the usual inner product in either H = [Lg(Qw)] or Ls(Q;) (the

actual space at each usage will be obvious from the content) and < -,- > is the
inner product in L, (89,) and n is the outward unit normal to 9Q,. The problems
(3.5) and (3.7) are equivalent and the solubility of (3.7) is based on the inf — sup
condition

) (divE,u)
3.8 inf sup ————— > A,
(3.8) E€H yeLy [|E||2||ull

due to Babuska and Brezzi, where A is a positive constant. Now consider a quasi-
uniform triangulation of Q, as QF : 7,2 = {7} and let H;, x L} C H x Ly be the
associated pair of finite element spaces corresponding to the discretization 7;° such
that the discrete version of the Babuska-Brezzi condition holds true:

(3.9 inf  sup (divF, un)

> )
EneHn y,erk |1 Enllullunll =7

where X is independent of h. Now the mixed finite element method for (3.7) is
formulated as follows: Find (Ep, ¢r) € Hp x LE(QR) such that

3.10 (Ehaw)_(dlv ’w,QDh):—<g,UJ'n>, V'LUEH}“
(310 (div En,u) = (p,u), Vu € L3 (D).

Subtracting (3.10) from (3.7), formulated in the subspaces Hy x L% C H x Ly, we
obtain the error equations for the mixed method as:

(E = Ep,w) — (div w, ¢ — ¢p) =0, Vw € Hp,
(3.11) . h
(div (E — Ep),u) =0, Yu € Ly ().
There exist local projections II;, and 7
I, = H’,ﬁ : H(div, Q) = Hp, and T = W,’iil 1Ly — L’;,
with W:_l denoting the local Ly-projection, such that

(3.12) divIlf = 7f ' div,
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Now we state the main error estimates, due to [9], for the mixed finite element viz,

Theorem 3.1. Using the BDM spaces we for have the following error estimates
for the mized finite element scheme (3.10):

(3.13) |E — Epll2 < CIIE — I E]2,

(3.14) llp = ¢nllz < ChIIE = T B|lz + CR™ 30 |p — w=" pll.

Proof. As we mentioned above a somewhat detailed and technical proof is based
on an approach given by Brezzi et al [9] and therefore omitted. O

We sketch the procedure for deriving the projection errors on the right hand
sides in (3.13) and (3.14). For complete proofs we refer to the work of Wang in
[21]. To this approach we recall a version of the weight function (u(p)):

(3.15) o(z,z0) = (|Jz — zo|> + 6°)'/2, 6=Ch, C>0, z€,
introduced by [14] , satisfying the following properties

(3.16) max o (z,xo) < Cmino(z, o), VreTyr, zy €y,
TET TET

(3.17) / o0 2dz < Cllogh|, and |Dic* <Co®Vl,  acR
Qo

For n € H*(Q,), n being a scalar or vector-valued function, we define the, o,
weighted Le-norm by

1Dl = [ DI 0% o
Qs
Then the construction of II¥ and 7¥~1 yields the inequalities:
h h

d
(3.18) lw — TTEw|ye < CREF|DE w]pe, Y € [H’““(Qz)] ,

(3.19) lu — 7f tullpe < CRF||D*ullpe,  Vu e H(Q,),

(3.20)  ||o*w — ITfo?w||,—» < Ch||E||2 + Ch*(||w]|g-2> + ||V,w|]2), VYw € Sh,

where V, indicates element-by-element gradient.

In the sequel we give a Galerkin approach for regularized Green’s function that
concerns Lj-error estimates useful in the L, estimates as well as asymptotic error
expansions. The conventional approach is based on an split of the procedure to solv-
ing two system of equations for the first and second regularized Green’s functions,
respectively. We start with the first system:

Let (T'1,71) = (T'1(z,20),71(x,x0)) be the first regularized Greens function at
xo € Q, defined by the following system of equations associated to (3.5):

r, + V71 =0, in Q:L':
(3.21) div I'; = 67, in Qg
n =0, on 69:85
where 0% = §!(x, z) is regularized Dirac J-function at z € Q, given by
1
T eD
22 h - { or e
3.22) At ={ P LS

where D C 7 satisfies the following properties:
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(i) diam D = wh,, for some w (see also [21]),

(ii) there exists a ball B with radius rh, such that B C D,

(iii) D is star-shaped with respect to B.

Now we use the notation Uy, := L%. Let u € Uy, then there is an element 7 € Tr
and a point zy € 7 such that

(3.23) lulloe = lu(@o)]-

Using the mean value theorem and an inverse estimate one can show that (see [12]),
for an appropriate choice of D

(324)  Jullw <Clw,dM)l,  w€lUp, C>1, (C~d=diam(®,)).

Proposition 3.1 ( Scott [20]). For the Green’s function v, we have the following
classical estimates, due Scott:

(3.25) max ([ lz, 1D* 71152 ) < Cllog hl'/2,

3.26 D%y, < Chl Pllogh|? P, p=1,2.
V4

Proposition 3.2 ( Wang [21]). Now (T},~}) be the mized finite element approz-
imation of (I'1,v1) in BDM space stated above. Then (3.13) and (3.26) implies
that,

(3.27) Ty — T7|, < Cllogh|*~?, p=1,2,

(3.28) 71 = 2]l2 < Chllog h|M2.

Next we outline the second Green’s function approach which is, mostly, applied
in L,,-estimates. Let (I‘Q(x.xo),'yQ(;v.xo)) be defined as functions satisfying the
following system of equations:

F2 + V’Y? = Sg; in Qw:
(3.29) div T = 0, in Q,
v =0, on 09,,

where Sg = 35‘ (z, o) is a vector of dimension d with all zero components except
one (either one) being the regularized Dirac é-function 6% at zo (with z¢ and D as
in the definition of d(-,z¢)) satisfying

(iv) 05 (,x0) € C* (), suppé} € D,

) 63207 fgm(sgd:ﬂ:l:

(vi) 185 ]loc < CR™471H, j =0,1.

Now we gather the corresponding estimates for the second regularized Green’s
system (3.29) in the following proposition

Proposition 3.3. let (T%,v%) be the mized finite element approzimation of (T2, 2)
in BDM space stated above. Then by the H?-regularity assumption of the domain
O, we have

(3.30) IVy2ll < Ch .
Further, once again, using (3.13) and (3.26) we have the following estimates
(3:31) VP72l < Ch'"Pllogh|'/?,  p=1,2
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and
(3.32) IC2 — T4, < Ch' Pllogh|*P/2 p=1,2
(3.33) llv2 — 4l < C.

Proof. The proof is straightforward following similar techniques as in Section 5 in
Wang, [21]. O

As a consequence of these regularized Green’s function approaches, we finally get
the projection error estimates for the potential ¢ gathered in the following theorem:

Theorem 3.2. Let (E,p) and (En,¢n) be the exact solution for (3.7) and the
mized finite element approxzimations in BDM space, respectively, and assume that
p € WH2(Q,). Then

Chllog bl (IIE — T, Blloe + log h|=/2llp = 7lpll2), k=1,
ko=t plloo < § C(I1E = L Ell2 + hllog h[*/2Ilp — 7l ) k=1,
Chllog h|(I|E = TS Ellos + hllp = 75~ plloo ), k> 1.

| = Tl < Cllog h|'/2 (|| =TT} Ellc + hllog b /%[l — 75~ plloc).

where 01y, is the Kronecker function. An improved version of the above estimate for
sufficiently smooth 02 and k > 1 is given by

(334)  |IE - Bl < C(Jlogh2|E ~ T Bl + hllp — 75 pllse)-

Proof. The proof for all these estimates can easily be reconstructed from the results
in [21]. Further estimates of these type are given by Brezzi et al in [9]. O

4. THE STREAMLINE DIFFUSION METHOD

The streamline diffusion (SD) method is a finite element method constructed for
convection dominated convection—diffusion problems which (i) is higher order ac-
curate and (ii) has good stability properties. The (SD) method was introduced by
Hughes and Brooks [15] for the stationary problems. The mathematical analysis for
this method in two settings (streamline diffusion and discontinuous Galerkin) are
developed for ,e.g., two—dimensional incompressible Euler and Navier—Stokes equa-
tions in [16], for multi-dimensional Vlasov—Poisson equation in [2], for hyperbolic
conservations laws in [17], and for the two—dimensional Fermi and Fokker—Planck
in [3]. Here is the SD strategy:

Let 0 =t9 < t; < --- <ty =T be a partition of the time interval I = [0,T] into
subintervals I, = (tm,tm+1), m = 0,1,...,M — 1. Let Cp, be the corresponding
subdivision of Q7 = Q x [0, T] into elements K := 7 x I,;,, with the mesh parameter
h = diam K and Py(K) = Pi(7z) X Pir(1y) X Pi(I) the set of polynomials in
(z, v, t) of degree at most k on K. In the study of SD-method for the VPFP
system given by (2.3), the trial functions are continuous in the x and v variables,
but may assumed to be discontinuous in time. Below we introduce the basis finite
element space

Vh:{geﬂo:g‘KGPk(T)ka(Im); VK =1 x I, € Cp, k:0,1,...},
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where Ho = [IM=) HY(Sm) with H} = {g € H' : g = Oon 60:}} and the

slabs S;, = Q x I,, m = 0,1,...,M — 1. Further (f,9)m = (f,9)s.., llgllm =
1/2

(991", < £,9 >m= (fCstm), (90 tm))e and glm =< g,9 >11” . We also

present the jump [g] = g+ — g, where for t € I and (z,v) € 8Q, x QF,

T h T
9+ = 31—1>r(I)1:|: g(.’E,U,t+S), (1.71)) € Int (QZ)XQ'M g+ = sgr(r)lig(w+sv,v,t+s),

and the boundary integrals defined by
<[+ 9+ >r—=/F frg+ (G"n)dv, < fy,g¢ >r;(r;)=/ " < f+,9+ >r- dv,
_ I (I

with G := G(f") defined as above. We use the discrete version of (2.5): div G(f") =
0, and for a given appropriate function f, define the trilinear form B by

B(G(f); 1,9) =(fe + G())V f,9 + h(ge + G(f")V9)) o, —ho(Auf,g: + G(f")Vg),
M-1

+0(Vof,Vog) g, + D A1 94)m + (s 940 — (Fs 94 )0

m=1

and the bilinear form K by
K(f,9) = (V(Bvf),g + h(ge + G(f")Vg)) o, -

Note that both B and K depend implicitly on f* (hence on h) through the term
G(f"). We also define the linear form L

L(9) = (fo,9+)o-

Using this notation we can formulate the SD-problem in the following concise form:
find f* € V}, such that

(41) B(G(fh)vfhag) - K(fhag) = L(g)a Vg S Vh-

We shall give our stability and convergence estimates for (4.1) in a triple norm
defined by

M-1
[%IIvaIIéT FloPs + 13+ 3 [[6l + 2hllge + GVl

m=1
+/ 92|Gh-n| dl/ds].
oQxI

Lemma 4.1 (Stability I). We have that

DN | =

llgll* =

1
Vg€ Ho,  B(G(f");g9,9) > =|lglll*

Lemma 4.2 (Stability IT). For any constant C; > 0 we have for any g € Ho,

M
1
lglle < lgngt +G(MVelig, + 3 lo-Im + / 9°|G"n| duds] he".
1 aQxI

m=1
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For the proofs follow the argument in [2]-[3] (be constructive). Let f* € Vj be
an interpolant of f with the interpolation error denoted by n = f — f" and set
€= f"— fh sowehavee = f— f* =15 —¢ The objective in the error estimates is
to dominate |||€]|| by the known interpolation estimates for |||n|||]. Our main result
in this section is as follows:

Theorem 4.1. Assume that f* € V; and f € H**Y(Q7), k > 1, are the solutions
of (4.1) and (2.3), respectively, such that

(4.2) IV £lloo + 1G(Hlleo + [[VAlleo < C.

Then there exists a constant C' such that

Ilf = £l < CA** 2| fllis1.00-

In the proof of Theorem 4.1 we use two results estimating the forms B and K.
Combining these results, with the estimates of the previous section for ¢ as a
generalized Green’s function, gives superconvergence for the SD estimate for VPFP.
The discontinuous Galerkin counterpart assumes discontinuities, even, in z and v
and follows similar pattern, however somewhat lengthy procedure where, in addition
to the sum over jumps in the time direction, we also have a sum over the jumps
over the enter-element boundaries, (see the formulation below).

5. DISCONTINUOUS GALERKIN AND HP RESULTS

Theorem 5.1. Under the conditions of theorem 3, the discontinuous Galerkin
approximation for solutions of (2.3), satisfies

1
IIf = F"lllpe < CH** 2| fllkt1,0r,
where
IS = M llloe = I1F = £+ Y / [u]*|G" - nl,
et Jor_@n)
with 0K_(G") = {(z,v,t) € 0K_(G") : ny(z,v,t) = 0} controls an additional term
corresponding to the sum of the jump-discontinuities over enter-element boundaries.

As for the hp version (p is the degree of polynomial in spectral approximation, see
the definition of A, below. The accuracy of hp is measured in powers of (h/p) with
small mesh parameter h and high spectral degree p, see [19]). Assume a partition P
of Q7 into open patches P which are image of the canonical cube P= (—1,1)2d+1
under smooth bijections Fp: VP € P; P = Fp (15) For each P a mesh Tp is
obtained by subdividing P into quadrilaterals labeled 7 affine equivalent to 15,

VP eP; Tp:={r|r=Fp(?), +€Tp}

Each 7 is an image of P under affine mapping A; : P57 LetT := UpepTp, F; =
Fp o A; and define Fp = {Fp: P € P} and

A, =span{(£,0)* : 0 < a; <p, 1 <i<2d+1}, (z,0) € P.

We skip the details and, with these notations, state a patch-wise optimal hp con-
vergence result for the VPFP system.
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Theorem 5.2. The hp-estimate with piecewise polynomials of degree p for the SD
method for solutions of (2.3), satisfies

® S7) 1 2 hy\2s-+1 o
1 - flpp <0 3 w28 yg o (MY e e
TETP Pr p

where  ®(p;, s;) = max(®1(pr,s:), ®2(pr,5:)), and with parameters ap =

and Sy, = %, we have

1
p(p+1)

N
Bulps) =N 2T Y T,
i=1

|m|;—1<i—1

N N ‘
By(p,s) =N D2 Y el

=1j=1  |m[;—1<j—1
m;=1
A proof for can be obtained following the outlines in [5], using Stirling’s formula
(under certain assumption) to show:

®(p,,s,) < Cp; .

Similar estimates hold for the hp DG approximation including additional terms
corresponding to the sum of the jump-discontinuities over enter-element boundaries.
To summarize we have a convergence of order O(h/p)*t'/? in H*+1(Qr) which is
an optimal result improving the classical convergence rate for hyperbolic problems
by O(h/p)'/>.

Conclusion

This article is a survey introducing some of the recent techniques on convergence
analysis for the finite element approaches. The objective is twofold (i) To con-
cisely demonstrate the mathematical structure in some finite element procedures
employed for the numerical solution of general partial differential equations (PDE)
and (ii) To follow basic steps in deriving convergence rates for a deterministic
numerical approach for a rather complex PDE: the Vlasov-Poisson-Fokker-Planck
system. While introducing a kind of strategy for the numerical studies in the
interdisciplinary research, we have avoided all the proofs and technical details. Ex-
tensions towards analytical aspects as well as simulations are equally important
and involve challenging projects.
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