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REGULARIZATIONS OF RESIDUE CURRENTS

JAN-ERIK BJÖRK & HÅKAN SAMUELSSON

Abstract. Under assumptions about complete intersection, we
prove that Coleff-Herrera type currents satisfy a robust calculus
in the sense that natural regularizations of such currents can be
multiplied to yield regularizations of the Coleff-Herrera product of
the currents.

1. Introduction

Let f be a holomorphic function defined on the unit ball B ⊂ Cn.
Then 1/f exists as a principal value distribution, or rather as a (0, 0)-
current, on B, i.e.,

lim
ε→0+

∫
{|f |>ε}

ϕ/f

exists for ϕ ∈ Dn,n(B) and defines a continuous functional on Dn,n(B).
This was first proved by Herrera-Lieberman, [17], using Hironaka’s the-
orem on resolutions of singularities. In fact, by Hironaka’s theorem one
may assume that f is a monomial, and in that case it is possible to
compute the limit by hand. The proof also shows that one may take the
limit of integrals over {|f̃ | > ε}, where f̃ is any holomorphic function
such that f̃−1(0) ⊇ f−1(0). The current 1/f is obviously closely related
to division problems; if h is holomorphic then h/f is at least a current,
and it is holomorphic if and only if it is ∂̄-closed, i.e., if and only if
0 = ∂̄(h/f) = h∂̄(1/f). Hence, h is in the ideal, 〈f〉, generated by f if
and only if h annihilates the current ∂̄(1/f). This current clearly has
support on Zf = f−1(0) and it is related to Lelong’s integration current
[Zf ], see [20], by the Poincarè-Lelong formula: 2πi[Zf ] = ∂̄(1/f) ∧ df .
The current ∂̄(1/f) is called the residue current associated to f and it
is thus an analytic object that describes the algebraic-geometric object
〈f〉.

Now, let V be a pure n-dimensional analytic subset of a complex N -
dimensional manifold X and let f : X → C be a holomorphic function
such that V \f−1(0) is a dense subset of Vreg. Then the principal value

2000 Mathematics Subject Classification. 32A27; 32C30; 32B15.
The second author was partially supported by a Post Doctoral Fellowship from

the Swedish Research Council.



2 JAN-ERIK BJÖRK & HÅKAN SAMUELSSON

of 1/f exists on V , i.e.,

(1) lim
ε→0+

∫
V ∩{|f̃ |>ε}

ϕ/f

exists for ϕ ∈ Dn,n(X) and holomorphic f̃ with f̃−1(0) ⊇ f−1(0) and
yields a well defined current denoted (1/f)[V ]. The existence of this
limit follows from the case V = B by Hironaka’s theorem. A sheaf of
currents on X supported on V is then obtained by applying holomor-
phic differential operators to such currents. This sheaf is (equivalent
to) the sheaf CHV [∗S], see Definition 3, and it is this kind of currents
we will consider in this paper. The kernel of ∂̄ in CHV [∗S] is denoted
CHV and is actually sufficiently ample to represent moderate cohomol-
ogy in the sense that CHV ' HP

[V ](OX), see [14]; here P = N − n is
the codimension of V . The notation CH refers to Coleff-Herrera type
currents.

Let us return to the case V = B ⊂ Cn and consider a holomorphic
mapping f = (f1, . . . , fp) : B → Cp. To find a current that describes
the ideal, 〈f〉, generated by f1, . . . , fp it is tempting to try to define the
product ∂̄(1/f1)∧· · ·∧∂̄(1/fp). If f defines a complete intersection, i.e.,
f−1(0) has codimension p, it is possible to give a well defined meaning
to this product. This was first done by Coleff-Herrera, [13], as follows.
Let ϕ ∈ Dn,n−p(B) and put

Iϕf (ε) :=

∫
∩{|fj |2=εj}

ϕ/(f1 · · · fp).

Coleff-Herrera proved that the limit of Iϕf (ε) as ε → 0 along any “ad-
missible path” exists and defines a current of bidegree (0, p), denoted
∂̄(1/f1)∧ · · · ∧ ∂̄(1/fp) or Rf for short, that is alternating with respect
to the ordering of the tuple f . Admissible path here means that ε→ 0
along a path in the first orthant such that εj/εkj−1 → 0 for j = 2, . . . , p
and all k ∈ N. It was later proved by Dickenstein-Sessa, [14], and Pas-
sare, [21], independently that Rf describes the ideal 〈f〉 in the sense
that its annihilator is precisely 〈f〉. We remark that even if f does not
define a complete intersection, the limit of Iϕf (ε) along an admissible
path exists but does not yield a well defined current associated to f as
one easily sees from the simple case f1 = z2, f2 = zw. Currents describ-
ing general ideals have recently been defined by Andersson-Wulcan, [6];
see also Section 6 below.

From now on we stick to the (generic) case that f defines a com-
plete intersection. The first question raised by Coleff-Herrera in [13]
is whether it is necessary to take limits along admissible paths or
not. It turned out to be necessary; Passare-Tsikh, [24], showed that if
f = (z4, z2 +w2 + z3) then Iϕf (ε) does not have an unrestricted limit as
ε→ 0 (for all ϕ). A generic family of examples with this property was
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later found by the first author; even examples with Iϕf (ε) → ∞ along
certain paths are constructed, see, e.g., [12]; see also Pavlova, [26].
However, our main theorem implies that the mild average of Iϕf (ε),

Iϕf (ε) :=

∫
s∈[0,∞)p

Iϕf (s) dχ1(s1/ε1) ∧ · · · ∧ dχp(sp/εp),

where χj ∈ C∞([0,∞]), χj(0) = 0, and χj(∞) = 1, depends Hölder
continuously on ε ∈ [0,∞)p and tends to the Coleff-Herrera product
Rf as ε→ 0. In fact, we prove

Theorem 1. Let X be a complex N-dimensional manifold, V ⊆ X
an analytic subset of pure dimension n, and f = (f1, . . . , fq) : X →
Cq a holomorphic mapping such that (f1, . . . , fp, fj) locally defines a
complete intersection on V for p + 1 ≤ j ≤ q. Let also χj, 1 ≤ j ≤ q,
be smooth on [0,∞], vanish to order `j at 0 and χj(∞) = 1. Then for
any µ ∈ CHV and ϕ ∈ DN,n−p(X) we have∣∣∣ ∂̄χε1 ∧ · · · ∧ ∂̄χεpχεp+1 · · ·χεq

f `11 · · · f
`q
q

∧ µ.ϕ

−∂̄ 1

f `11

∧ · · · ∧ ∂̄ 1

f
`p
p

1

f
`p+1

p+1 · · · f
`q
q

∧ µ.ϕ
∣∣∣ ≤ C‖ϕ‖Mεω,

where χεj = χj(|fj|2/εj), and M and ω are positive constants that only
depend on f and Supp(ϕ), while the positive constant C also might
depend on the CM -norm of the χj-functions.

Let V = X, µ = 1, `j = 1 and let the χj be smooth regularizations
of the characteristic function of [1,∞); by this we mean that χj is a
smooth increasing function on [0,∞) that is 0 close to 0 and 1 close to
∞. The theorem implies that the smooth form

(2) ∂̄
χε1
f1

∧ · · · ∧ ∂̄
χεp
fp
·
χεp+1

fp+1

· · ·
χεq
fq

converges unrestrictedly to the mixed residue and principal value cur-
rent

(3) ∂̄
1

f1

∧ · · · ∧ ∂̄ 1

fp
· 1

fp+1

· · · 1

fq

introduced by Coleff-Herrera, [13], and Passare, [22]. It is proved in [22]
that if εj = δsj , then (2) has a limit, independent of s = (s1, . . . , sq) ∈
Rq

+, as δ → 0+ as long as s avoids finitely many hyperplanes Ha = {t ∈
Rq

+; t · a = 0}, a ∈ Nq; we say that ε→ 0 inside a Passare sector. Our
result is thus a sharpening and a generalization of Passare’s result and
shows that there is a robust calculus for Coleff-Herrera type currents.
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In particular, we have the appealing formula

Rf .ϕ = lim
ε→0

∫
X

∂̄
f̄1

|f1|2 + ε1
∧ · · · ∧ ∂̄ f̄p

|fp|2 + εp
∧ ϕ, ϕ ∈ DN,N−p(X),

which follows by taking χj(t) = t/(t+ 1).

Another approach to the Coleff-Herrera product, Rf , is based on
analytic continuation of currents, a technique with roots in the works of
Atiyah, [8], and Gelfand-Shilov, [16]. In the context of residue currents,
it has been developed by several authors, e.g., Barlet-Maire, [9], Yger,
[29], Passare-Tsikh, [23], Berenstein-Gay-Yger, [11], and by the second
author in the recent paper [28]. Computing the Mellin transform of
the integral in (1) (considered as a function of ε) one obtains

(4)
∫
V

|f̃ |2λϕ/f

if Reλ >> 1. One can show, either by using a Bernstein-Sato func-
tional equation or by computing directly in a resolution of V where
f−1(0) has normal crossings, that (4) (as a function of λ) has a mero-
morphic continuation to all of C and that its poles are contained in
an arithmetic progression {−s − N}, s ∈ Q+. It is thus analytic in a
neighborhood of the origin, and moreover, its value there defines the
action of a current. This current is the current (1/f)[V ], as one easily
shows in a resolution.

The Coleff-Herrera-Passare current (3) can be obtained in a similar
manner; consider the function

(5) λ 7→
∫
X

∂̄|f1|2λ1 ∧ · · · ∧ ∂̄|fp|2λp|fp+1|2λp+1 · · · |fq|2λq
f1 · · · fq

∧ ϕ,

where f defines a complete intersection on X and Reλj >> 1. One
can similarly show that it has a meromorphic extension to Cq. It
was recently showed by the second author in [28] that it actually is
analytic in a neighborhood of ∩j{Reλj ≥ 0}. By results of Yger,
it was known before that the restriction of (5) to any complex line
of the form {λ = (t1z, . . . , tqz); z ∈ C}, tj ∈ R+, has an analytic
continuation to a neighborhood containing the origin and that the value
there equals (3). Moreover, it was also known that if q = 2, then (5)
has an analytic continuation to a neighborhood of the origin in C2; see,
e.g., [10], [11] for proofs. Even though not explicitly stated in [28], we
remark that it follows from the proof that one may replace X in (5) by
a pure dimensional analytic subset V of X and still have analyticity in
a neighborhood of the origin.

We conclude the introduction with the simple but useful observation
that expressions like χ(|f |2/ε)/f ` essentially are invariant under holo-
morphic differential operators. More precisely, if χ ∈ C∞([0,∞]) and
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vanish to order ` at 0, then

(6)
∂

∂zj

χ(|f |2/ε)
f `

=
∂f

∂zj

χ̃(|f |2/ε)
f `+1

,

where χ̃(t) = tχ′(t)− `χ(t) is smooth on [0,∞], vanishes to order `+ 1
at 0, and χ(∞) = −`χ(∞).

2. The case of three functions

We first note that Iϕf (ε) might be discontinuous already when f =
(f1, f2) consists of two functions as the Passare-Tsikh example shows.
The technical reason is the presence of charts of resonance, i.e., charts
on the resolution manifold where it is not possible to choose coordinates
so that the pullback of both f1 and f2 are monomials. To deal with
the charts of resonance the smoothness of the χ-functions has to be
used; we refer to [27] for the details. In the case of three functions a
new difficulty arise; it is no longer a local problem on the resolution
manifold to prove that

(7)
∫
∂̄

f̄1

|f1|2 + ε1
∧ ∂̄ f̄2

|f2|2 + ε2

f̄3

|f3|2 + ε3
∧ ϕ

has an unrestricted limit. We illustrate this by considering a simple
example; the example of Section 3 in [28]. We let f1 = z1, f2 = z2,
and f3 = z3 in C3. Then, obviously, (7) has an unrestricted limit for
all (3, 1)-test forms ϕ in C3. Now, we let ϕ = φdz ∧ dz̄3, where φ is
a test function, we blow up C3 along the z3-axis, and we compute (7)
on the blow-up. The blow-up has two standard charts, one of which is
given by (w1, w2, w3) 7→ (w1, w1w2, w3) = (z1, z2, z3). Let us consider
the contribution, µϕ(ε), to (7) from this chart. One verifies easily, using
Cauchy’s formula, that limε1→0+ µϕ(ε) = 0 for fixed ε2, ε3 > 0. On the
other hand, one similarly shows that

lim
ε3→0+

lim
ε1→0+

lim
ε2→0+

µϕ(ε) = −(2πi)2

∫
z3

φ(0, 0, z3)

z3

dz3 ∧ dz̄3,

which clearly is non-zero for certain choices of φ. Both the charts on
the blow-up therefore have to be considered in order to see that (7) has
an unrestricted limit.

In general, however, what can be showed in each chart separately is
that ∣∣∣ ∫ ∂̄

f̄1

|f1|2 + ε1
∧ ∂̄ f̄2

|f2|2 + ε2
∧
( f̄3

|f3|2 + ε3
− 1

f3

)
ϕ
∣∣∣ ≤ Cεω3

for positive constants C and ω that do not depend on ε1, ε2, see Propo-
sition 8 below. To see that (7) has an unrestricted limit it is therefore
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enough to show that∫
∂̄

f̄1

|f1|2 + ε1
∧ ∂̄ f̄2

|f2|2 + ε2
∧ 1

f3

ϕ =

∫
∂̄

f̄1

|f1|2 + ε1

f̄2

|f2|2 + ε2

1

f3

∧ ∂̄ϕ

+

∫
∂̄

f̄1

|f1|2 + ε1

f̄2

|f2|2 + ε2
∧ ∂̄ 1

f3

∧ ϕ,

has an unrestricted limit. But now we have only two parameters and,
moreover, on the right hand side there is only ∂̄ in front of one of the
parameter depending factors. With an appropriate induction hypoth-
esis and the result of Proposition 8 one can then conclude that (7) has
an unrestricted limit; see Section 6 for details.

3. Coleff-Herrera currents

In this section we review the facts we will need about Coleff-Herrera
type currents. The results are well-known but for the readers conve-
nience we supply detailed proofs. Let X be a complex N -dimensional
manifold and let V ⊆ X be a reduced subvariety of pure dimension
n. Put P = N − n and let JV be the ideal (sheaf) generated by V .
A (possibly singular) hypersurface S ⊂ X is called V -polar if V \ S
is a dense subset of Vreg. Recall from the introduction, cf. (1), that
if h ∈ O(X) and h−1(0) is V -polar, then the principal value current
(1/h)[V ] exists. It is often convenient to use the technique of analytic
continuation when working with this current; recall from the introduc-
tion that if h̃ is any holomorphic function such that h̃−1(0) is V -polar
and contains h−1(0), then

1

h
[V ].ϕ =

∫
V

|h̃|2λϕ
h

∣∣∣
λ=0

, ϕ ∈ Dn,n(X).

The next lemma shows, in particular, that this kind of currents have
the Standard Extension Property; a current µ has the Standard Exten-
sion Property with respect to a pure dimensional analytic set V if for
any holomorphic function g such that V \ g−1(0) is dense in V we have
limε→0+ χ(|g|2/ε)µ = µ, where χ is a smooth regularization of the char-
acteristic function of [1,∞). Two currents, µ and µ̃, which both have
the Standard Extension Property and are equal outside a hypersurface
H, i.e., µ.ϕ = µ̃.ϕ if ϕ has support outside H, are thus equal.

Lemma 2. Let h, f ∈ O(X) and assume that h−1(0) is V -polar and
that V \f−1(0) is dense in V . If χ is a bounded function on [0,∞] that
is identically 0 close to 0 and continuous at ∞, then

lim
ε→0+

χ(|f |2/ε)
f `

· 1

h
[V ] =

χ(∞)

f `h
[V ].
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Proof. By Hironaka’s theorem one may assume that V is an n-dimensional
manifold and that {h · f = 0} has normal crossings. Locally one can
then choose coordinates x such that f = xα and h = vxβ, where v is
an invertible holomorphic function. Letting ϕ = φ dx ∧ dx̄ we thus see
that χ/(f `h)[V ]. ϕ is a finite sum of terms like

(8)
∫
V

|xβ|2λχ(|xα|2/ε)
x`α+β

|v|2λ

v
φ dx ∧ dx̄

∣∣∣
λ=0

.

By Lemma 6 in [27] we can write

|v|2λ

v
φ =

∑
K+L<`α+β−1

xK x̄LΦK,L(λ, x) +
∑

K+L=`α+β−1

xK x̄LΦK,L(λ, x),

where each ΦK,L, with K + L < `α+ β − 1, is independent of at least
some coordinate xj. Using this, and changing to polar coordinates,
one readily checks that the first sum on the right hand side does not
contribute to the integral (8). Substituting the second sum into (8) the
singularity of the integrand vanishes and one may put λ = 0 and let
ε→ 0+ to obtain

lim
ε→0+

∫
r,θ

χ(r2α/ε)
∑

K+L=`α+β−1

eiθ·(K−L−`α−β)ΦK,L(0, reiθ)drdθ

= χ(∞)

∫
r,θ

∑
K+L=`α+β−1

eiθ·(K−L−`α−β)ΦK,L(0, reiθ)drdθ.

Computing (1/(f `h))[V ].ϕ in the same way, using the same desingular-
ization and choice of coordinates one easily checks that this last integral
is what one gets (in the x-chart). �

Let Q be a holomorphic differential operator in X and put µ =
(1/h)[V ]. It is clear that J̄V ·Q(µ) = 0 and that Supp(∂̄Q(µ)) ⊆ h−1(0).
Moreover, from the lemma it follows that Q(µ) has the Standard Ex-
tension Property. In fact, let {f = 0} be a hypersurface in X such
that V \ {f = 0} is dense in V , let χ be a smooth regularization of
the characteristic function of [1,∞), and put χε = χ(|f |2/ε). Then a
simple computation shows that

(9) χε ·Q(µ) = Q(χε · µ) +
∑
j

Qj

( χεj
fkj
· µ
)
,

where Qj are certain differential operators and χεj = χj(|f |2/ε) with
χj smooth on [0,∞] and χj(∞) = 0; cf. (6). From the lemma it then
follows that χε ·Q(µ)→ Q(µ).

With these facts in mind we define the Coleff-Herrera currents on
V , CHV , and the Coleff-Herrera currents on V with pole along S,
CHV [∗S], for hypersurfaces S ⊆ X such that V \ S is dense in V .
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Definition 3. (The sheaves CHV and CHV [∗S].)
A current µ of bidegree (0, P ) on an open set U ⊆ X is a section of

CHV over U if
1) µ has the Standard Extension Property,
2) J̄V · µ = 0,
3) ∂̄µ = 0.

If µ satisfies 1), 2), and Supp(∂̄µ) ⊆ S, then we say that µ is a section
of CHV [∗S] over U .

We have the following local representation of Dolbeault-Lelong type
of currents in CHV , and consequently of currents in CHV [∗S]; see
below. The slick proof is taken from [2].

Proposition 4. Let X be a neighborhood of the closure of the unit ball
B ⊂ CN and let µ ∈ CHV . In B, there is a holomorphic differential
operator Q, a holomorphic n-form ϑ, and a holomorphic function h
with V -polar zero set, such that

(10) µ.(ϕ ∧ dz) = lim
ε→0+

∫
V ∩{|h|>ε}

Q(ϕ) ∧ ϑ
h

, ϕ ∈ D0,n(B).

Proof. Let y ∈ V and assume that we have local coordinates w =
(w′;w′′) = (w1, . . . , wP ;wP+1, . . . , wN) so that V = {w′ = 0} close to
y. If 1 ≤ j ≤ P we have by 2) in Definition 3 that w̄jµ = 0, and so,
by 3), we get dw̄j ∧ µ = ∂̄(w̄jµ) = 0. It follows, for any function φ
with support close to y, that µ.(φ dw̄I ∧ dw) = 0 if dw̄I 6= ±dw̄′′. Let
Π: CN

w → Cn
w′′ be the standard projection and define

aα(w′′) = Π∗(w
αdw′ ∧ µ/α!)

for α = (α′, 0). Since µ is ∂̄-closed, the aα must be holomorphic. We
claim that

(11) µ =
1

(2πi)P

∑
α=(α′,0)

aα(w′′)∂̄
1

wαP+1
P

∧ · · · ∧ ∂̄ 1

wα1+1
1

close to y, where the sum ranges over α with |α| less than or equal to
the order,M , of µ on B̄. Given the claim, the proposition easily follows
for test forms with support close to y. In fact, by the Poincarè-Lelong
formula, we may take (−1)nP

∑
α=(α′,0) aα(w′′)∂α as the differential op-

erator, let ϑ = dw′′, and h = 1. To prove the claim, we note that it
suffices to check it for test forms φ dw̄′′ ∧ dw by the observation in the
beginning of the proof. We write φ as a Taylor sum

φ =
∑

α=(α′,0)

∂|α|φ

∂wα
(0, w′′)

wα

α!
+ J̄V +O(|w′|M+1).
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Noting that |w′|M+1µ = 0 and that J̄V · µ = 0, by 2) in Definition
3, the claim now follows from the definition of the aα and a simple
computation.

To obtain global Q, ϑ, and h we proceed as follows. We choose
H1, . . . , HP ∈ JV (B) and coordinates z = (z′, z′′) for B such that h̃ :=
det(∂H/∂z′) is generically non-vanishing on every component of V ,
i.e., h̃−1(0) is V -polar. Outside {h̃ = 0} we can then make the change
of variables w = (w′, w′′) := (H, z′′). Note however that wj ∈ O(B)

for all j. Outside {h̃ = 0} we thus have a realization (11) of µ with
aα ∈ O(B). Moreover, since ∂/∂w′ = t(dH/dz′)−1∂/∂z′, we see that

Q′ := (−1)nP h̃k
∑

α=(α′,0)

aα(w′′)∂αw′

is a holomorphic differential operator in B if k is large enough; recall
that |α| ≤ M . For large enough ` we then define the holomorphic
differential operator Q by Q(φ) = h̃`Q′(φ/h̃). Letting h = h̃k+` and
ϑ = dz′′, the formula (10) then follows from (11) if ϕ has support
outside {h = 0}. But both µ and the current defined by the right hand
side of (10) has the Standard Extension Property, by 1) in Definition 3
and the comment after the proof of Lemma 2 respectively, and so the
proposition follows. �

This proposition makes it possible to divide Coleff-Herrera currents
by holomorphic functions. Let µ ∈ CHV and let f be a holomorphic
function such that V \f−1(0) is dense in V . Given a local representation
(10) of µ we put

(12)
1

f
µ.(ϕ ∧ dz) = lim

ε→0+

∫
V ∩{|hf |>ε}

Q(ϕ/f) ∧ ϑ
h

.

It is clear that (1/f)µ ∈ CHV [∗f−1(0)]. On the other hand, if γ ∈
CHV [∗f−1(0)], then (at least locally) for some large k we have τ =
fkγ ∈ CHV . Thus, γ = (1/fk)τ for some τ ∈ CHV . It follows that
we have representations (10) also for currents γ ∈ CHV [∗S] if V \ S
is dense in V and that (1/f)γ is defined. From Lemma 2 and the
technique of its proof it follows that

(13)
1

f
µ = lim

ε→0+

χ(|f |2/ε)
f

µ =
|f |2λ

f
µ
∣∣∣
λ=0

, µ ∈ CHV [∗S],

cf. also (9).

Proposition 5. Let S ⊆ X be a hypersurface such that V \S is dense
in V . Then

∂̄ : CHV [∗S]→ CHV ∩S.
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Remark 6. This mapping actually fits into a long exact sequence, see,
e.g., [12]. In particular, if S is V -polar, then

0→ CHV ↪→ CHV [∗S]
∂̄−→ CHV ∩S −→ HP+1

[V ] (OX)→ 0

is exact. Here, HP+1
[V ] (OX) is (isomorphic to) the cohomology group

Ker∂̄(C
0,P+1
V )/∂̄(C0,P

V ), where C0,∗
V are the currents on X of bidegree

(0, ∗) with support contained in V . If, in addition, V is Cohen-Macaulay
then this group vanishes and the mapping of Proposition 5 becomes
surjective.

Proof. We will start by indicating how to prove the following
Claim: Let f, g, h be holomorphic functions such that h−1(0) is V -

polar and V \ f−1(0) is dense in V . Then

(14) λ 7→ ∂̄|f |2λ

f `
∧ 1

h
[V ] has an analytic continuation as a current,

(15)
χ(|g|2/ε)

gk
∂̄|f |2λ

f `
∧ 1

h
[V ]
∣∣∣
λ=0
→ 0, as ε→ 0+,

if χ ∈ C∞([0,∞]) and vanishes both close to 0 and ∞. Moreover, if
(f, g) defines a complete intersection on V and χ is a smooth regular-
ization of the characteristic function of [1,∞) then

(16) χ(|g|2/ε) ∂̄|f |
2λ

f `
∧ 1

h
[V ]
∣∣∣
λ=0
→ ∂̄|f |2λ

f `
∧ 1

h
[V ]
∣∣∣
λ=0

,

as ε→ 0+. If instead g ∈ JV ∩f−1(0), then

(17) ḡ
∂̄|f |2λ

f `
∧ 1

h
[V ]
∣∣∣
λ=0
→ 0.

To prove (14), one computes in a resolution π : V → V such that
{π∗f ·π∗h = 0} has normal crossings in the manifold V and one chooses,
preferably, local coordinates, x, such that π∗h = xβ and π∗f = uxα,
where u is holomorphic and invertible. To prove (15) and (17) one
proceeds similarly; one first computes (∂̄|f |2λ/f `) ∧ (1/h)[V ]|λ=0 in a
resolution π : V → V such that {π∗f · π∗h · π∗g = 0} has normal
crossings, preferably using coordinates such that π∗f = uxα, π∗h =
vxβ, and π∗g = xγ. Then it is not too hard to verify (15) and (17). It
is a bit more delicate to prove (16) since the assumption about complete
intersection has to be used properly. Let ϕ be a (n, n− 1)-test form in
the base space X. On a resolution manifold V as the one above, one
chooses an atlas of local coordinates with the properties stated above,
and moreover, so that π∗ϕ = φdx̄′ ∧ dx, where dx̄′ = dx̄2 ∧ · · · ∧ dx̄n.
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The trick is now to show that (∂̄|f |2λ/f `) ∧ (1/h)[V ].ϕ|λ=0 equals

(18)
∑
x1| xα

x1-xγ

∫
∂̄|xα|2λ|xβ|2s

x`α+β
∧ |u|

2λ|v|2s

uv
ρx φdx̄

′ ∧ dx
∣∣∣
s=0

∣∣∣
λ=0

,

where {ρx} is a partition of unity on V . That is, that only charts
on V such that x1 | π∗f and x1 - π∗g contribute. That x1 has to
divide π∗f is obvious. If, in addition, x1 divides π∗g, then {x1 = 0} ⊆
π−1{f = g = 0} ∩ V . Since {f = g = 0} ∩ V has dimension n − 2
it follows that any anti-holomorphic n − 1-form in X has a vanishing
pullback to {f = g = 0} ∩ V . Thus, π∗ϕ has a vanishing pullback
to {x1 = 0}. It follows that φ = x̄1φ̃ for some smooth φ̃. Using this
one easily shows that charts where x1 divides both π∗f and π∗g do
not contribute. With this in mind it is not very difficult to show that
χ(|g|2/ε)(∂̄|f |2λ/f `) ∧ (1/h)[V ].ϕ|λ=0 tends to (18) as ε → 0+, which
then proves (16).

It is now easy to prove the proposition. Let µ ∈ CHV [∗S]; it is
a local problem to show that ∂̄µ ∈ CHV ∩S. Choose a holomorphic
function f and a τ ∈ CHV such that S = f−1(0) and µ = (1/f)τ .
From (13) we have µ = (|f |2λ/f)τ |λ=0, and for Reλ >> 1 we have
∂̄((|f |2λ/f)τ) = (∂̄|f |2λ/f)τ . From (14), the last expression also has
an analytic continuation, and so ∂̄µ = (∂̄|f |2λ/f)τ |λ=0. Using a repre-
sentation (10) of τ and (14) and (17) one easily sees that ḡ∂̄µ = 0 if
g ∈ JV ∩S (recall that S = f−1(0)). Similarly, if τ is represented by (10)
it follows from (14), (15), and (16) that χ(|g|2/ε)∂̄µ→ ∂̄µ, as ε→ 0+;
i.e., that ∂̄µ has the Standard Extension Property. �

Definition 7. Let µ ∈ CHV [∗S] and let f be a holomorphic function
such that V \f−1(0) is dense in V and V ∩S \f−1(0) is dense in V ∩S.
We define ∂̄(1/f) ∧ µ by

∂̄
1

f
∧ µ = ∂̄(

1

f
µ)− 1

f
∂̄µ.

That this definition makes sense follows from Proposition 5. It is in-
tuitively clear that ∂̄(1/f)∧µ ∈ CHV ∩f−1(0)[∗S] but it is not immediate
from the definition. However, letting µ = (1/g)τ , where τ ∈ CHV and
g−1(0) = S, we get from Proposition 8 that∣∣∂̄ χ(|f |2/ε1)

f
∧ χ(|g|2/ε2)

g
τ − ∂̄ 1

f
∧ 1

g
τ
∣∣

≤ Cεω2 +
∣∣∂̄ χ(|f |2/ε1)

f
∧ µ− ∂̄ 1

f
∧ µ
∣∣

≤ Cεω2 +
∣∣∂̄(

χ(|f |2/ε1)

f
∧ µ)− ∂̄(

1

f
∧ µ)

∣∣
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+
∣∣χ(|f |2/ε1)

f
∂̄µ− 1

f
∂̄µ
∣∣ . εω1 + εω2 ,

where χ is a smooth regularization of the characteristic function of
[1,∞). Thus, (∂̄χ(|f |2/ε1)/f) ∧ (χ(|g|2/ε2))τ converges unrestrictedly
to ∂̄(1/f)∧µ. First letting ε2 → 0 and then letting ε1 → 0 we then see
that ∂̄(1/f) ∧ µ = (1/g)∂̄((1/f)τ) ∈ CHV ∩f−1(0)[∗S] by Proposition 5.

If µ ∈ CHV and f = (f1, . . . , fq) : X → Cq is holomorphic such that
(f1, . . . , fp, fj) defines a complete intersection on V for p + 1 ≤ j ≤ q
we have thus given a meaning to

∂̄
1

f1

∧ · · · ∧ ∂̄ 1

fp
· 1

fp+1

· · · 1

fq
∧ µ.

It follows from Theorem 1 that this product, apart from being alternat-
ing in f1, . . . , fp as it should, is independent of the ordering of the tuple
f and, moreover, that it coincides with the definition of Coleff-Herrera
and Passare.

4. The key proposition

In this section we prove the key proposition needed to prove our main
theorem. The proof of the proposition relies on a Whitney type divi-
sion lemma for the pullback of anti-holomorphic forms through modi-
fications. This lemma appear also in [28].

Throughout this section our considerations are local; X = B is the
unit ball in CN and V is an analytic set of pure dimension n (and
codimension P = N − n) defined in a neighborhood of B.

Proposition 8. Let V ⊆ B be an analytic set of pure dimension n,
S ⊂ B a V -polar set, and f = (f1, . . . , fq) : B → Cq a holomorphic
mapping such that (f1, . . . , fp, fj) defines a complete intersection on V
for all j = p+1, . . . , q. Let also χj, 1 ≤ j ≤ q, be smooth on [0,∞] and
vanish to order `j at 0. Then for any µ ∈ CHV [∗S] and ϕ ∈ D0,n−p(B)
we have∣∣∣∣∣ ∂̄χε1 ∧ · · · ∧ ∂̄χεpχεp+1 · · ·χεq−1

f `11 · · · f
`q−1

q−1

( χεq
f
`q
q

− 1

f
`q
q

)
∧ µ.(ϕ ∧ dz)

∣∣∣∣∣ ≤
≤ C‖ϕ‖Mεωq ,

where χεj = χj(|fj|2/εj), M and ω are positive constants that only
depend on f and Supp(ϕ), while the positive constant C also might
depend on the CM -norm of the χj-functions.

Proof. We fix a representation (10) of µ (or rather its “analytic contin-
uation” counterpart) and write

(19) Iϕf,µ(ε) :=
∂̄χε1 ∧ · · · ∧ ∂̄χεpχεp+1 · · ·χεq

f `11 · · · f
`q
q

∧ µ.(ϕ ∧ dz)
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=

∫
V

|h|2λ

h
Q
( ∂̄χε1 ∧ · · · ∧ ∂̄χεpχεp+1 · · ·χεq

f `11 · · · f
`q
q

∧ ϕ
)
∧ ϑ

∣∣∣
λ=0

.

Since expressions like χε/f ` essentially are invariant under holomorphic
differential operators, cf. (6), and since ∂̄ commutes with such opera-
tors, the right hand side of (19) is, by Leibniz’ rule, a finite sum of
integrals of the same kind but with the holomorphic differential opera-
tor Q omitted. We can therefore ignore Q in the computations below.

By Hironaka’s theorem, e.g., formulated as in [18] and [8], one can
find, first an n-dimensional complex manifold Ṽ and a proper holo-
morphic map π1 : Ṽ → V that defines a biholomorphism outside Vsing,
and then (at least locally on Ṽ ) a further n-dimensional complex man-
ifold V and a proper holomorphic map π2 : V → Ṽ such that Z :=
π−1

2 (π∗1h · π∗1f1 · · · π∗1fq = 0) has normal crossings and π2 is a biholo-
morphism outside Z. Put π = π1 ◦ π2 and denote the pull-back under
π by ·̂, e.g., ĥ = π∗h. We choose a (sufficiently fine) finite partition
of unity {ρj} on Supp(ϕ̂) and local charts on the Supp(ρj) such that
ĥ, f̂1, . . . , f̂q are monomials times invertible holomorphic functions. The
right hand side of (19), (recall that we may ignore Q), is therefore equal
to

(20)
∑
i

∫
V

|ĥ|2λ

ĥ

∂̄χε1 ∧ · · · ∧ ∂̄χεpχεp+1 · · ·χεq
f̂ `11 · · · f̂

`q
q

∧ ϕ̂ ∧ ϑ̂ρi
∣∣∣
λ=0

.

Moreover, we may assume that ϕ is of the form ϕIdz̄I , |I| = n −
p, and so we can write ϕ̂ = η · φ1, where η = ϕ̂I ∈ D0,0(V) and
φ1 = d̂z̄I is an anti-holomorphic n − p-form on V . We now consider
one term of (20), we drop the subscript i from ρi, and we put φ2 :=

ηϑ̂ρ. In a neighborhood of Supp(ρ) we have local coordinates x such
that f̂j = ujx

α(j), where uj are invertible and holomorphic. We let
m be the number of vectors in a maximal linearly independent subset
of {α(1), . . . , α(p)}, and we assume for notational convenience that
α(1), . . . , α(m) are linearly independent. As in [22], p. 46, we can
define new coordinates, still denoted x, so that u1 = · · · = um = 1.
For m + 1 ≤ j ≤ p we write ∂̄χεj = χ̃εj · (dx̄α(j)/x̄α(j) + dūj/ūj), where
χ̃j(t) = tχ′j(t) are smooth on [0,∞], vanish to order `j at 0, and map
∞ to 0. We will omit the tildes in the computations below, and hence,
with abuse of notation, the term of (20) under consideration can be
written
(21)∫

V

|ĥ|2λ

ĥ

∂̄χε1 ∧ · · · ∧ ∂̄χεmχεm+1 · · ·χεq
f̂ `11 · · · f̂

`q
q

p∧
m+1

(dx̄α(j)

x̄α(j)
+
dūj
ūj

)
φ1 ∧ φ2

∣∣∣
λ=0

From exterior algebra it follows that dx̄α(1) ∧ · · · ∧ dx̄α(m) ∧ dx̄α(j) = 0
if m + 1 ≤ j ≤ p since α(1), . . . , α(m), α(j) are linearly dependent.
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Thus, since ∂̄χε1 ∧ · · · ∧ ∂̄χεm is proportional to dx̄α(1) ∧ · · · ∧ dx̄α(m),
we may erase the factors dx̄α(j)/x̄α(j), m + 1 ≤ j ≤ p from (21). We
now let K be the set of indices i such that xi divides some xα(j) with
p+ 1 ≤ j ≤ q and we apply Lemma 9 with in data K and dz̄I . We find
that we may replace dūm+1∧· · ·∧dūp∧φ1 by an anti-holomorphic form
ξ =

∑
|J |=n−m ξJdx̄J , which has the property that each ξJ is divisible

by all x̄i, i ∈ K, without affecting the integral (21). We may of course
assume that ξ consists of one term only, and for notational convenience
we assume that ξ = ξ′dx̄m+1∧· · ·∧dx̄n. We assume, also for simplicity,
that K \ {m + 1, . . . , n} = {k + 1, . . . ,m} so that ξ′ may be written
x̄k+1 · · · x̄mξ′′ =: x̄1mk ξ′′ for some anti-holomorphic function ξ′′. We can
now re-write the integral (21) as

(22)
∫
V

|ĥ|2λ

ĥ

∂̄χε1 ∧ · · · ∧ ∂̄χεmχεm+1 · · ·χεq
f̂ `11 · · · f̂

`q
q

x̄1mk ξ′′
∧n
m+1 dx̄j ∧ φ2

ūm+1 · · · ūp

∣∣∣
λ=0

.

Now consider the form ∂̄χε1∧· · ·∧∂̄χεm∧nm+1dx̄j. We write ∂̄ = ∂̄′+∂̄′′,
where ∂̄′ differentiates with respect to the variables x′ = (x1, . . . , xk)
and ∂̄′′ differentiates with respect to the variables x′′ = (xk+1, . . . , xn),
and we compute:
(23)

∂̄χε1 ∧ · · · ∧ ∂̄χεm
n∧

m+1

dx̄j = (∂̄′χε1 + ∂̄′′χε1) ∧ · · · ∧ (∂̄′χεm + ∂̄′′χεm)
n∧

m+1

dx̄j

=
∑

i1<···<ik
ik+1<···<im

sign(j 7→ ij)∂̄
′χεi1∧· · ·∧ ∂̄

′χεik∧ ∂̄
′′χεik+1

∧· · ·∧ ∂̄′′χεim
n∧

m+1

dx̄j.

Let us consider the first term in this sum. It equals

det Ã ∂̄χε1 ∧ · · · ∧ ∂̄χεk ∧
dx̄k+1 ∧ · · · ∧ dx̄m

x̄k+1 · · · x̄m
χ̃εk+1 · · · χ̃εm

n∧
m+1

dx̄j,

where Ã is the (m − k) × (m − k)-matrix (α(i)j)
m
i,j=k+1 and χ̃εj =

(|f̂j|2/εj) · χ′j(|f̂j|2/εj). (As usual, we omit the tildes below.) The
other terms in the sum on the right hand side of (23) are of the same
type. In particular, each such term has x̄k+1 · · · x̄m = x̄1mk as denom-
inator. Recall also that ĥ = vxβ with v invertible and holomorphic.
Substituting (23) into (22) we thus obtain finitely many integrals of
the type

(24)
∫
V

∂̄χε1 ∧ · · · ∧ ∂̄χεk
x`α+β

|vxβ|2λχεk+1 · · ·χεq
n∧
k+1

dx̄j ∧ ψdx
∣∣∣
λ=0
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where ψdx = ξ′′φ2/(vu
`m+1

m+1 · · ·u
`q
q ūm+1 · · · ūp) and `α =

∑q
1 `jα(j).

Note that ψ has compact support, and, perhaps after scaling, we may
assume it has support in the unit polydisc ∆.

We now introduce the smoothing parameters

tj = |xα(j)|2/εj, for j = k + 1, . . . , q,

and we put

Ψ(λ, x, tk+1, . . . , tq) = |v|2λΠm
k+1χi(ti) · Π

q
m+1χj(tj|uj|2) · ψ(x).

The function Ψ(λ, x, t) is smooth on C×Cn× [0,∞]q−k and by Lemma
6 in [27] it has the Taylor-like expansion

Ψ(λ, x, t) =
∑

K+L<`α+β−1

xK x̄LΨK,L(λ, x, t)(25)

+
∑

K+L=`α+β−1

xK x̄LΨK,L(λ, x, t).

When doing this expansion we consider t = (tk+1, . . . , tq) as indepen-
dent real variables and λ as a parameter. If K + L < `α + β − 1, the
function ΨK,L(λ, x, t) is independent of at least some coordinate xj and,
moreover, we have the following explicit expression for the “remainder”
part of the expansion:

(26)
∑

K+L=`α+β−1

xK x̄LΨK,L(λ, x, t)

=

∫
y∈[0,1]n

(1− y)`α+β−2

(`α + β − 2)!

∂|`α+β−1|

∂y`α+β−1
Ψ(λ, y1x1, . . . , ynxn, t)dy.

If we evaluate the smoothing parameters, i.e., let tj = |xα(j)|2/εj, we
have that |v|2λχεk+1 · · ·χεqψ = Ψ(λ, x, t) and we can substitute the de-
composition (25) of Ψ into (24). By changing to polar coordinates and
using that ΨK,L(λ, x, t) is independent of some xj if K+L < `α+β−1
it is not very hard to see that the first part of the expansion (25) does
not contribute; see [22] p. 47, 48, for details. In polar coordinates, the
integral (24) thus equals

(27)
∫
r∈[0,1]n

J (λ, r, t)r2λβdχε1 ∧ · · · ∧ dχεk ∧ drk+1 ∧ · · · ∧ drn
∣∣∣
λ=0

,

where

J (λ, r, t) = cn,k

∫
θ∈[0,2π)n

∑
K+L=
`α+β−1

ΨK,L(λ, r, θ, t)eiθ·(K−L−`α−β+1k1 )dθ.

Here, χεj = χj(r
2α(j)/εj) for j = 1, . . . , k, tj = r2α(j)/εj for j = k +

1, . . . , q, and cn,k = (−1)n
2
in2n−k. Since the singularity has disappeared

it is innocuous to put λ = 0 in (27) and from now on we omit all
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occurrences of λ. We here also note the following properties of the
function J (r, t) = J (0, r, t).

a) J (r, t) is bounded on [0, 1]n × [0,∞]q−k.
b) If some tj < δ for some k + 1 ≤ j ≤ q then |J (r, t)| ≤ Cδ.
c) If tj > 1/δ for some k + 1 ≤ j ≤ p then |J (r, t)| ≤ Cδ.
d)

|J (r, tk+1, . . . , tq−1, tq)−J (r, tk+1, . . . , tq−1,∞)|

≤

{
C‖ψ‖|`α+β−1|/tq, tq ≥ 1

C‖ψ‖|`α+β−1|, tq ≤ 1

Property a) follows easily from formula (26) and the definition of Ψ(x, t) =
Ψ(0, x, t). Properties b) and c) follow by Taylor expanding tj 7→
χj(tj|uj|2) at 0 and∞ respectively in the definition of Ψ(x, t). Property
d) follows by Taylor expanding tq 7→ χj(tq|uq|2) at ∞ in the definition
of Ψ(x, t) and inspection in the formula (26). We note also that the
constant(s), C, depend on the C |`α+β−1|-norm of χj if uj 6= 1. Now, by
Fubini’s theorem we may write (27) as

(28)
∫
r′′∈[0,1]n−k

(∫
r′∈[0,1]k

J (r′, r′′, t)dχε1 ∧ · · · ∧ dχεk
)
drk+1 ∧ · · · ∧ drn

and by property a), the modulus of the inner integral can be esti-
mated by a constant times

∫
s∈[0,∞)k

|dχ1(s1) ∧ · · · ∧ dχk(sk)| ≤ C <∞
uniformly in all parameters. Thus, by Dominated Convergence, the
study of possible limits of (27), and hence of (19), is reduced to the
study of possible limits of the inner integral in (28) for fixed r′′ =
(rk+1, . . . , rn) ∈ [0, 1]n−k. We note here also that dχε1 ∧ · · · ∧ dχεk =
detA · χ̃ε1 · · · χ̃εkdr1 ∧ · · · ∧ drk/(r1 · · · rk), where A is the k × k-matrix
(2α(i)j)

k
i,j=1. We may thus assume that A is invertible.

We want to estimate the difference |Iϕf,µ(ε)− limεq→0 Iϕf,µ(ε)| and by
our computations this far it can be estimated by a finite sum of terms
like∫

[0,1]n−k

(∫
[0,1]k
|J (r′, r′′, t)− lim

εq→0
J (r′, r′′, t)| · |dχε1 ∧ · · · ∧ dχεk|

)
dr′′

=

∫
[0,1]n−k

(∫
[0,1]k
|J (r′, r′′, t)−J (r′, r′′, t)|tq=∞|·|dχε1∧· · ·∧dχεk|

)
dr′′.

The equality limεq→0 J (r′, r′′, t) = J (r′, r′′, t)|tq=∞ holds for each
fixed r′′ ∈ (0, 1]n−k because tq = r2α(q)/εq and, since K ⊆ {k+1, . . . , n},
we have α(q)1 = · · · = α(q)k = 0. By property d) we can therefore
estimate |Iϕf,µ(ε)− limεq→0 I

ϕ
f,µ(ε)| by a finite sum of terms of the form

C‖ψ‖|`α+β−1|
( ∫

r′′∈[0,1]n−k

r2α(q)≤εq
dr′′ +

∫
r′′∈[0,1]n−k

r2α(q)≥εq
εq/r

2α(q)dr′′
)



REGULARIZATIONS OF RESIDUE CURRENTS 17

≤ C‖ψ‖|`α+β−1|ε
ω
q .

The last estimate follows from Lemmas 9 and 10 in [27], from which
we also see that any ω < 1/(2|α(q)|) works. To conclude the proof we
just have to note that ψ depends continuously on ϕ in Cm-norm if m
is sufficiently large. �

4.1. The division lemma. We keep the notation from the proof of
Proposition 8 so that V → V ⊆ B is a modification, the pull-back
under this map is denoted by ·̂, and x are local coordinates on V such
that f̂j = xα(j), 1 ≤ j ≤ m, and f̂j = ujx

α(j), m + 1 ≤ j ≤ q. We
recall also that our set-up in the proof of Proposition 8 implies that the
exterior product of ∧m1 dxα(i) with any dxα(j), m+ 1 ≤ j ≤ p, is zero.

Lemma 9. Let K ⊆ {1, . . . , n} be any set of indices i such that xi
divides some xα(j) with p+1 ≤ j ≤ q. If σ is an anti-holomorphic n−p-
form in B, then one can find, in the x-chart on V, an anti-holomorphic
n−m-form ξ that depends continuously on σ in any Ck-norm and such
that

i) dx̄j
x̄j
∧ ξ is non-singular for all j ∈ K, and

ii) dx̄α(1) ∧ · · · ∧ dx̄α(m) ∧ (dūm+1 ∧ · · · ∧ dūp ∧ σ̂ − ξ) = 0.

Proof. Put Ψ = dūm+1 ∧ · · · ∧ dūp ∧ σ̂ and define

ξ̃ =
∑
j∈K

Ψj −
∑
i,j∈K
i<j

Ψij + · · ·+ (−1)|K|−1Ψi1···i|K| ,

where Ψi1···i` means that we pull Ψ back to {xi1 = · · · = xi` = 0} and
extend trivially to Cn, (i.e, Ψi1···i` = τ ∗Ψ, where τ is the composition
of the standard projection Cn → Λ = {xi1 = · · · = xi` = 0} and the
inclusion Λ ↪→ Cn). A straight forward induction over |K| shows that
ξ := Ψ− ξ̃ satisfies i); see, e.g., [28]. To see that ξ satisfies ii), consider
a Ψi1···i` . Let L ⊆ {1, . . . , p} be the set of indices j such that no xik ,
1 ≤ k ≤ `, divides f̂j and write L = L′∪L′′, where L′ = {j ∈ L; j ≤ m}
and L′′ = {j ∈ L; m+ 1 ≤ j ≤ p}.

Now, the variety {xi1 = · · · = xi` = 0} lies in the zero set of all
the f̂j with j ∈ {1, . . . , p} \ L by the definition of L, and moreover, it
is contained in the zero set of (at least) some f̂ν with p + 1 ≤ ν ≤ q
since the xij are in K. Thus, {xi1 = · · · = xi` = 0} is contained in the
preimage of a subvariety of V of dimension at most n − p + |L| − 1.
The form ∧j∈Ldf̄j ∧σ has degree n− p+ |L| and so its pullback to this
variety must vanish. Hence,

̂∧
j∈L

df̄j ∧ σ =
∧
j∈L

d ˆ̄fj ∧ σ̂ =
∧
i∈L′

dx̄α(i) ∧
∧
j∈L′′

d(ūjx̄
α(j)) ∧ σ̂
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has a vanishing pullback to {xi1 = · · · = xi` = 0}. But this means that

x̄
P
i∈L′′ α(i)

∧
j∈L′

dx̄α(j) ∧ (
∧
k∈L′′

dūk ∧ σ̂)i1···i`

+
∧
ι∈L′

dx̄α(ι) ∧
∑
ν∈L′′

dx̄α(ν) ∧ τν = 0,

where the first term arises when no differential hits x̄α(j), j ∈ L′′.
Taking the exterior product with ∧j /∈L′′(dūj)i1···i` we obtain

x̄
P
i∈L′′ α(i)

∧
j∈L′

dx̄α(j) ∧Ψi1···i` +
∧
ι∈L′

dx̄α(ι) ∧
∑
ν∈L′′

dx̄α(ν) ∧ τ̃ν = 0.

We now multiply this equation with the exterior product of all dx̄α(j)

with j ≤ m and j /∈ L′. Then we get dx̄α(1) ∧ · · · ∧ dx̄α(m) in front of
the sum and this makes all terms under the summation sign disappear
by the comment just before Lemma 9. It thus follows that

x̄
P
i∈L′′ α(i)dx̄α(1) ∧ · · · ∧ dx̄α(m) ∧Ψi1···i` = 0,

and since this holds everywhere we may remove the factor x̄
P
i∈L′′ α(i)

and conclude that ξ has the property ii). �

5. Non-characteristic restrictions

Let Ω ⊆ Rk be an open set, let u ∈ D ′(Ω), and let M ⊆ Ω be a
smooth submanifold. Let also N (M) be the subbundle of T ∗(Ω) |M of
covectors that annihilate T (M). We say that M is non-characteristic
for u if N (M) ∩ WF (u) = ∅, where WF (u) is the wave front set
of u. If M is non-characteristic for u, then there is a well defined
“restriction”, u|M , of u to M and moreover, if uε → u is any smooth
regularization of u and i : M → Ω is the inclusion map, then i∗uε → u|M
is a regularization of u|M ; see [19] Chapter VIII.

Let µ ∈ CHV (X), where X ⊆ Cn is a domain and V is a pure
dimensional analytic subset. Then, since µ generate a regular holo-
nomic DX-module, [12], it follows from a deep result of Andronikof,
[7], that WF (µ) = WFA(µ) is a C∗-conic complex Lagrangian sub-
set of T ∗(X). Thus, by the Morse-Sard theorem, there are “many”
non-characteristic hypersurfaces for µ, e.g., in appropriate coordinates,
x, centered at an arbitrary point in X, all Hj,s = {xj = s}, s ∈ C,
0 < |s| < 1, are non-characteristic for µ. Now, let f = (f1, . . . , fp)
be a holomorphic tuple defining a complete intersection in X and let
Rf = ∂̄(1/f1) ∧ · · · ∧ ∂̄(1/fp) be the Coleff-Herrera product.

Theorem 10. Let Y ⊆ X be a complex submanifold that is non-
characteristic for µ and such that f1|Y , . . . , fp|Y define a complete in-
tersection on Y . Then

Rf |Y = ∂̄
1

f1|Y
∧ · · · ∧ ∂̄ 1

fp|Y
,
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i.e., the Coleff-Herrera product commutes with non-characteristic re-
strictions.

Proof. This follows immediately from our main theorem since

Rf |Y = lim
ε→0

i∗
( ∂̄χε1 ∧ · · · ∧ ∂̄χεp

f1 · · · fp

)
= ∂̄

1

f1|Y
∧ · · · ∧ ∂̄ 1

fp|Y
,

where i : Y → X is the inclusion. �

Remark 11. To prove this theorem it is sufficient to use Passare reg-
ularizations. In fact, one only has to ensure that ε→ 0 inside Passare
sectors for both of the tuples (f1, . . . , fp) and (f1|Y , . . . , fp|Y ).

We conclude this section with an application of Theorem 10. For-
mally computing the average of Iϕf (t) (cf., the introduction) for t ∈
{ξ ∈ Rp

+;
∑

j ξj = ε} one obtains

cp

∫
|f |2=ε

∑
j(−1)j−1f̄j

∧
k 6=j df̄k

|f |2p
∧ ϕ,

where cp = (−1)p(p−1)/2(p − 1)!/
√
p. Using Hironaka’s theorem and

toric resolutions one can show that the limit of this integral exists and
defines a Bochner-Martinelli type current Rf

BM ∈ CHf−1(0) that can
be regularized by

∂̄χ(|f |2/ε) ∧ cp

∑
j(−1)j−1f̄j

∧
k 6=j df̄k

|f |2p
,

see, e.g., [25] and [27]. If the test form ϕ is ∂̄-closed in a neighborhood
of f−1(0), then Iϕf (t) is independent of sufficiently small t and the
formal computation above becomes rigorous . However, it is a non-
trivial, but well known fact that actually Rf = Rf

BM , see [25], [2]. In
fact, following [2], Rf and Rf

BM are ∇-cohomologous, (see, e.g., Section
6 for the definition of the ∇-operator) and, unlike the ∂̄-operator, the
∇-operator admits localizations, i.e., there are ∇-closed “cut off forms”.
Thus, one can find a current µ with support close to f−1(0) such that
∇µ = Rf−Rf

BM and this yields a current µ′, supported close to f−1(0),
such that ∂̄µ′ = Rf − Rf

BM . This implies that Rf = Rf
BM since a

CHf−1(0)-current cannot be ∂̄-exact in this sense unless it is 0.
By Theorem 10 we get an independent proof of the equality Rf =

Rf
BM based on induction over n. In the the absolute case, i.e., when

p = n, it is easy to verify the equality by Taylor expanding the test form
at the discrete set of points of f−1(0); we may assume that f−1(0) = 0

and then both Rf and Rf
BM are annihilated by any x̄j and we know

that they coincide on holomorphic monomials. Theorem 10 provides us
with the induction step since the set of non-characteristic hyperplanes,
Hj,s, is sufficiently ample. We thus get
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Corollary 12. The Bochner-Martinelli type current Rf
BM is equal to

the Coleff-Herrera product Rf in the case of a complete intersection.

Remark 13. For the currents of Cauchy-Fantappiè-Leray type intro-
duced in [1] we have the same result.

6. Proof and extensions of Theorem 1

Proof of Theorem 1. The proof is based on induction over p. The in-
duction start, p = 0, follows immediately from Proposition 8 (and an
obvious induction over q). Now assume that Theorem 1 is true for
p = r − 1 ≥ 0. By induction over q, what we have to show is that

(29)
∣∣∣ ∂̄χε1 ∧ · · · ∧ ∂̄χεr

f `11 · · · f
`p
r

∧ µ̃.ϕ− ∂̄ 1

f `11

∧ · · · ∧ ∂̄ 1

f `rr
∧ µ̃.ϕ

∣∣∣ ≤ Cεω‖ϕ‖M ,

where µ̃ = (1/(f
`r+1

r+1 · · · f
`q
q ))µ ∈ CHV [∗S], S := {fr+1 · · · fq = 0}. An

easy set-theoretic computation shows that (f1, . . . fr) defines a complete
intersection on V ∩S and by Proposition 5 we have ∂̄µ̃ ∈ CHV ∩S. The
left hand side of (29) can be estimated by∣∣∣ ∂̄χε∧ · · · ∧ ∂̄χεpχεr

f `11 · · · f `rr
∧ µ̃. ∂̄ϕ− ∂̄ 1

f `11

∧ · · · ∧ ∂̄ 1

f
`p
p

1

f `rr
∧ µ̃. ∂̄ϕ

∣∣∣+
+
∣∣∣ ∂̄χε1 ∧ · · · ∧ ∂̄χεpχεr

f `11 · · · f `rr
∧ ∂̄µ̃. ϕ− ∂̄ 1

f `11

∧ · · · ∧ ∂̄ 1

f
`p
p

1

f `rr
∧ ∂̄µ̃. ϕ

∣∣∣.
By induction, the last term can be estimated by Cεω‖ϕ‖M . The first
term can, by Proposition 8, be estimated by Cεωr ‖∂̄ϕ‖M plus∣∣∣ ∂̄χε∧ · · · ∧ ∂̄χεp

f `11 · · · f
`p
p

∧ µ′. ∂̄ϕ− ∂̄ 1

f `11

∧ · · · ∧ ∂̄ 1

f
`p
p

∧ µ′. ∂̄ϕ
∣∣∣,

where µ′ = (1/f `rr )µ̃ ∈ CHV [∗S ′], S ′ = S ∪ f−1
r (0). Another “inte-

gration by parts” and the induction hypothesis finally shows that this
term can be estimated by Cεω‖∂̄ϕ‖M and we are done. �

Finally we present some extensions of our main theorem. By going
through the proof one verifies the following. Let f̃ = (f̃1, · · · , f̃q) be
a holomorphic tuple such that (f̃1, . . . , f̃p, f̃j) define a complete inter-
section on V for all j = p + 1, . . . , q and assume that f̃−1(0) ⊇ f−1(0)
and that the χj vanish to infinite order at 0. We may then replace the
χj(|fj|2/εj) in Theorem 1 by χj(|f̃j|2/εj) with the same conclusion; the
constants C, M , and ω are unaffected.

Let V be an analytic set of pure dimension n defined in a neighbor-
hood of B̄ ⊂ CN ; put codim(V ) = P = N − n. In a slightly smaller
neighborhood of B̄ one can find a free resolution

(30) 0→ O(Eν)
Fν−→ · · · F2−→ O(E1)

F1−→ O(E0)
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of the sheaf OCn/JV ; the Ej are trivial holomorphic vector bundles of
ranks rj with r0 = 1 and the Fj are rj−1 × rj-matrices of functions
holomorphic in a neighborhood of B̄. Let Vj be the set of points z ∈ B
such that Fj(z) does not have optimal rank. These sets are analytic
subsets of B that are independent of the choice of resolution ofOCn/JV ,
i.e., invariants of V . Moreover, Vj ⊆ Vj−1 ⊆ · · · ⊆ VP = VP−1 = · · · =
V and since V has pure dimension in our case, Corollary 20.14 in [15]
implies that for j > P one has Vj ⊆ Vsing and codim(Vj) ≥ j + 1. If
k = max{j;Vj 6= ∅} then one can find a new resolution with ν = k. Let
us assume that (30) is such a minimal resolution. Let us also note that
if V is defined by a complete intersection, then the Koszul complex
provides a minimal resolution.

Given Hermitian metrics on the Ej, Andersson-Wulcan, [6], con-
struct a current, RV , whose annihilator sheaf is JV . This current has
the form

RV = RV
P + · · ·+RV

ν ,

where the RV
j are Ej-valued (0, j)-currents with support in V and with

the Standard Extension Property with respect to V . For some recent
applications of RV we refer to [3] and [4]. If JV is Cohen-Macaulay
then ν = P and RV = RV

P is ∂̄-closed, in fact, RV is then a tuple
of CHV -currents. In general, RV is not ∂̄-closed but satisfies instead
∇FR

V = 0, where ∇F =
∑

j Fj − ∂̄; in the case that (30) is the Koszul
complex this is the ∇-operator referred to in Section 5.

Let f1, . . . , fq ∈ O(B) and assume that for each ` ≥ P

(31) codim (V` ∩ {f1 = · · · = fp = fj = 0}) ≥ `+ p+ 1, ∀j ≥ p+ 1.

Then one can define the product

(32) ∂̄
1

f1

∧ · · · ∧ ∂̄ 1

fp

1

fp+1

· · · 1

fq
∧RV

by an iterative procedure similar to the one described in Section 3 and
the product has the natural suggestive commutation properties, see the
end of Section 2 in [5]. With our techniques one can prove

Theorem 14. Let RV be the current in B described above and let
(f1, . . . , fq) be a tuple of holomorphic functions in B that satisfies (31).
Then, with the notation and the hypothesis on the χ-functions from
Theorem 1, we have∣∣∣ ∂̄χε1 ∧ · · · ∧ ∂̄χεpχεp+1 · · ·χεq

f1 · · · fq
∧RV .ϕ

−∂̄ 1

f1

∧ · · · ∧ ∂̄ 1

fp

1

fp+1 · · · fq
∧RV .ϕ

∣∣∣ ≤ C‖ϕ‖Mεω,

for ⊕jE∗j -valued test forms ϕ in B.
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To prove this we need Proposition 8 with µ replaced by RV
j , j =

P, . . . , ν. Then Theorem 14 follows, e.g., by a double induction over
p and q and using that we already know that the product (32) has
nice commutation properties. In the induction steps one uses that the
involved ∂̄-operators may be replaced by −∇F -operators.

Let us indicate how to prove the required analogue of Proposition 8.
First of all, RV

P has an integral representation similar to (10); see, e.g.,
Proposition 2.1 in [4] for details. Using this, the proof of Proposition
8 goes through with µ replaced by RV

P . For RV
j with j > P one uses

that RV
j = aj ∧ RV

j−1, where aj is a Hom(Ej−1, Ej)-valued (0, 1)-form
that is smooth outside Vj and moreover has the property that in a
suitable resolution π : V → V , π∗aj is a smooth (0, 1)-form bj divided
by a holomorphic monomial; again, see Proposition 2.1 in [4].

Now, for simplicity, consider RV
P+1 = aP+1 ∧ RV

P and choose such
a resolution π : V → V that, apart from having the properties in the
proof of Proposition 8, also is such that the preimage of VP+1 is a
normal crossings divisor. The proof then goes through if we establish
a somewhat more general division lemma, namely (see the proof of
Proposition 8 for the notation):

One can replace Ψ := dūm+1∧· · ·∧dūp∧bP+1∧π∗(dz̄I), |I| = n−p−1,
by a smooth form ξ, without affecting the integral (corresponding to
(21)), such that (dx̄i/x̄i) ∧ ξ is Cr-smooth for an appropriate large r
and all i ∈ K.

This can be achieved as follows. Put

ξ′ =
∑
J⊆K

(−1)|J |+1Ψr
J , where Ψr

J :=
r+1∑

j∈J,kj=0

∂|k|Ψ

∂xkJ

∣∣∣
xJ=0
· x

k
J

k!
,

cf., the beginning of the proof of Lemma 9. One verifies by induction
that ξ := Ψ − ξ′ satisfies (dx̄i/x̄i) ∧ ξ ∈ Cr for all i ∈ K. Moreover,
using (31) for ` = P + 1 and the technique of the proof of Lemma 9
one shows that ∂̄χε1 ∧ · · · ∧ ∂̄χεm ∧ ξ′ = 0 so that Ψ may be replaced by
ξ without affecting the integral.
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