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Optimization of opportunistic replacement activities:
A case study in the aircraft industry

Torgny Almgren,* Niclas Andréasson,” Dragi Anevski,?
Michael Patriksson, Ann-Brith Strémberg,’
and Johan Svensson?

Abstract

In the aircraft industry maximizing availability is essential. Maintenance schedules must there-
fore be opportunistic, incorporating preventive maintenance activities within the scheduled as well
as the unplanned ones. At the same time, the maintenance contractor should utilize opportunistic
maintenance to enable the minimization of the total expected cost to have a functional aircraft engine
and thus to provide attractive service contracts. This paper provides an opportunistic maintenance
optimization model which has been constructed and tested together with Volvo Aero Corporation in
Trollhdttan, Sweden for the maintenance of the RM12 engine. The model incorporates components
with deterministic as well as with stochastic lives. The replacement model is shown to have favourable
properties; in particular, when the maintenance occasions are fixed the remaining problem has the
integrality property, the replacement polytope corresponding to the convex hull of feasible solutions is
full-dimensional, and all the necessary constraints for its definition are facet-inducing. We present an
empirical crack growth model that estimates the remaining life and also a case study that indicates
that a non-stationary renewal process with Weibull distributed lives is a good model for the recur-
ring maintenance occasions. Using one point of support for the distribution yields a deterministic
replacement model; it is evaluated against classic maintenance policies from the literature through
stochastic simulations. The deterministic model provides maintenance schedules over a finite time
period that induce fewer maintenance occasions as well as fewer components replaced.

Introduction

Industrial activities are often characterized by the use of very expensive equipment that needs to be
utilized as efficiently as possible to pay back the cost of investment. This essentially means that the
equipment should be used with as few and short interruptions as possible. Typical examples are power
plants (e.g., water and nuclear plants), processing industry (e.g., paper plants) and the aviation industry.
A vital part of the latter case is concerned with the maintenance of aircraft engines.

When an aircraft engine is removed for overhaul, it needs to be replaced by a spare engine to facilitate
the use of the airframe as it is the operator’s main interest to have access to operational aircrafts during
the maintenance period. This is normally achieved by the use of spare engines. These engines could be
owned by the operator or the maintenance supplier, but also be leased from a third party. The cost for
the spare engine is always high, irrespective of how it is obtained. Every maintenance event is therefore
associated with a large, more or less fixed, cost in addition to the variable cost (e.g., material costs).
As this fixed cost is independent of the actions that are performed, there is a need to consider that the
maintenance event is an opportunity for preventive maintenance—an opportunity that should be used in
an optimum way! In essence the cost for production interruption must be balanced versus the variable
cost of the maintenance event. (This is often denoted opportunistic maintenance, cf. [9].)

An aircraft engine consists of thousands of parts. Some of the parts are safety-critical, which means
that if they fail there will be an engine breakdown, possibly with catastrophic consequences. Therefore,
the safety-critical parts have fixed life limits, and must be replaced before these are reached. Hence
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we consider the safety-critical parts as having deterministic life limits. These limits are measured in
"cycles" (to be defined below) and are strictly regulated. All other parts of the engine are considered to
have stochastic lives. The problem with them is that their lives need to be estimated, which makes it
difficult to compute a reliable replacement schedule. For some of these parts failure distributions may be
computed from historical data and monitoring observations. This information could then be discretized
and be used as an input into optimization models.

When a deterministic life limit is reached, or when there is another indication that the engine is not
performing as it should, the engine must normally be taken out of service and sent to the workshop. This
is, as earlier indicated, an opportunity for preventive replacements of non-failed parts with stochastic
lives and of deterministic parts that have not yet reached their respective life limits! An issue at this
point is thus to know which actions should be taken and which parts should be replaced.

A current trend in service workshops in the aircraft industry is to offer the complete undertaking of
the maintenance of all engines belonging to the customer. This results in contracts where the customer
pays a fixed price per flight hour and the maintenance supplier ensures access to a working fleet of engines
throughout the contract period. The ability to offer attractive contracts is therefore to a large extent
dependent on the actual flight hour cost that can be achieved by the use of good planning practices.
When the maintenance contract has been signed, the profit for the supplier obviously is directly related
to how well the maintenance is carried out.

In this article we develop maintenance optimization models to minimize the total expected cost to have
a functional aircraft engine (consisting of parts with deterministic life limits and stochastic lives) during
a finite time period (such as the contract period or the expected life span of the engine). The output
from these models is replacement schedules for each maintenance occasion. The optimization models are
however primarily intended to be used to determine a preliminary work scope when the aircraft engine
is taken to the service workshop.

1 Maintenance activities at Volvo Aero Corporation

VAC (Volvo Aero Corporation, Trollhdttan, Sweden) manufacture and maintain the RM12 engine, which
is the engine of the military aircraft JAS 39 Gripen. Gripen is mainly used by the Swedish Air Force
(SAF), whose fleet encompasses about 200 RM12 engines. The discussion below is mainly restricted to
the RM12 and the relationship between VAC and SAF where SAF and VAC jointly strives for as low
total flight hour cost as possible.

The RM12 engine consists of several modules, each comprising several components (the modular
concept is briefly discussed in [11]). The modules, that each contain a number of components or parts,
can individually be removed (and replaced), and shipped to and from the workshop. When a component
is to be replaced the corresponding module is, if required, sent to the service workshop.

Some of the parts in the RM12 engine are life limited. The life limits of these parts are measured
in the number of "cycles" they may be used. For a given part this number depends on the load profile
during the use of the engine up to that time, so when the engine is driven hard the number of cycles
accumulates faster. The life limits are calculated such that the probability that a part fails before its
estimated life limit is over is lower than one per mille.

In order to remove a specific part from a module it is most often necessary to remove others as well.
Figure 1 illustrates the structure of the deterministic parts of the RM12 engine. Often there are several
ways to reach a specific part. Here, there are two possible ways to remove part 8 in the fan module.
First, one has to remove parts 1, 2, and 3 (in this order), then either part 5 or part 6, and finally part 8.

1.1 Components and maintenance schedules

The maintenance of aircraft engines is either planned or un-planned (on condition). In each engine there
are sensors at different locations that continuously measure, for example, pressure, temperature, the
number of ignitions, and the number of cycles accumulated for each part, which are also kept on record.
This data is used to establish when on condition maintenance need to be performed, but also supplies
the basis for the life usage calculations.

A need for maintenance (or replacement) appears when a part reaches its life limit, fails or if the
engine monitoring system indicates that the engine does not perform as well as it should. Unplanned
maintenance also occurs due to unexpected events as accidents—sometimes birds are sucked into the
turbine and through the engine, causing heavy damages—or the failure of a part with stochastic life.
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Figure 1: A graphical representation of the deterministic parts of the RM12 engine. Each box represents a
module, each node part, and each arc a possible path to reach the part towards which the arc is pointing.

When this happens SAF places a maintenance order at VAC. The engine or module(s) that needs to be
serviced is then sent to the service workshop.

When a module arrives at the service workshop at VAC the preliminary work scope is determined.
Inspection, using advanced techniques, such as fiber optics, can be used at this stage. The module is then
disassembled to the level required; parts are removed, cleaned and further inspected. A decision of the
final work scope (e.g., which components to replace etc) is then decided jointly by SAF and VAC. Repair
times, but especially the delivery times, for new replacement parts, are often very long. Because of this,
components are often replaced by components from stock to save time. Both new and used components
are kept in stock, where the used parts generally have a shorter remaining life span.

When the engine is taken to the workshop in order to replace any part there is an opportunity to
replace also parts with stochastic lives that have not yet failed and deterministic parts that have not yet
reached their estimated life limits. This is often denoted opportunistic maintenance ([9]) and is mainly
motivated by the fixed cost—independent of which parts that are replaced—associated with taking the
engine to the workshop. When the engine is at the workshop the parts with stochastic lives are inspected
and their respective conditions are estimated. Based on this estimation and historical data their failure
distributions can be computed using methods described in Section 4. The optimization model computes
what to replace at the specific maintenance occasion in order to minimize the total expected maintenance
cost within the planning horizon, given inputs from the failure distributions and the remaining lives of
the deterministic parts, as well as material costs of new parts, work-cost to replace parts, etcetera.

At every maintenance event a new optimization of the maintenance schedule is performed. Each time
a part with a stochastic life is inspected more information is also received about its condition; its failure
distribution can then be updated, which results in a smaller variance.

To summarize, the optimization model described in this paper aims at minimizing the total expected
cost during a given time period. The model is designed to consider the cost for production interruptions
while minimizing the cost of maintenance. In practice the means that the optimization will strive to
create a maintenance plan with as infrequent maintenance occurrences as possible while maintaining a
sound use of replacement parts, new as well as used.

1.2 Contracts

When the time period for a maintenance contract runs out it is typically advantageous for the workshop
that the remaining lives of the parts of the engine are small (at least if a sequel contract has not been
signed). Contracts however often describe how the difference in engine status, between the start and
end of the contract period, should be regulated. How the value of this status should be computed must
therefore be stated within the contract, so that it can be taken into consideration when the maintenance
is planned. It can then be considered as a constraint in the optimization model (in fact, this is a type
of availability constraint). It is also possible to assign a value to the engine (for the workshop) at the
end of the contract period that depends on the remaining lives of the parts. The earlier a customer signs
a new contract the better the maintenance activities can be planned; a reasonable policy is to give the
customer some type of discount if a new contract is signed before the current contract runs out.



1.3 Maintenance principles

The literature on maintenance principles has been reviewed; see [3, Chapter 8]. We provide here a
brief summary of our findings. (For general reviews, see [6, 9].) Under an age replacement policy (e.g.,
[4]) a component is replaced at failure or at a specified age, whichever occurs first. Age replacement
policies can also be governed by condition monitoring devices, or be based on fixed intervals (e.g., the
block replacement policy in [4]). Their main drawback is that practically new items may be replaced
at planned replacement times. (See [5] and below for modifications dealing with this issue.) Sometimes
failed components can be detected and replaced only by inspection. There is a cost related to the time a
component is not operative. Under an inspection policy the objective is to find the inspection schedule
that minimizes the expected average cost. Age and block replacement policies are examples of scheduled
maintenance policies. They are easy to implement since they have a clear structure. Nevertheless,
often condition based maintenance can be better and more cost effective. Under a condition based
maintenance policy a technical state of the system is monitored or inspected, and when a specific threshold
value is reached the system is replaced or preventive maintenance is performed. The principles and
implementations of condition-based preventive maintenance are discussed in [14].

Opportunistic maintenance refers to the situation in which preventive maintenance is carried out at
opportunities. In the literature it is sometimes assumed that these opportunities arise independently of
the failure process; sometimes the opportunities are by definition equal to failure epochs of individual
components. In the latter case, due to economies of scale (for example, fixed costs at each maintenance
occasion independent of what is replaced), the unpleasant event of a failing component is at the same
time considered as an opportunity for the preventive maintenance of other components. This situation
is typical for the maintenance of aircraft engines.

In [12] the assumption is that the non-safety-critical parts do not fail, but the cost of loss of performance
increases with age. A safety-critical part has a life distribution; when it fails it destroys the whole system
but it has no associated cost for loss of performance. The authors conclude that optimal policies are
likely to be extremely difficult to compute and also very difficult to communicate and use in practice.
Therefore, heuristics are suggested for the case of a system with zero or one safety-critical component
and multiple non-safety-critical components. In [13] the maintenance of the compressor of an aircraft
engine is considered. Fatigue crack is the underlying failure mechanism and the crack growth is due to the
number of “shocks” monitored by sensors. The available information about the crack growth process is
the crack size observed at the most recent inspection/replacement and the number of shocks experienced
since then. At the beginning of each flight it is decided—based on the observed state and the number
of shocks to be incurred during the flight—whether or not to schedule an inspection at the end of the
current flight. After inspection the true crack size will become known, and it must be decided whether
a blade replacement is needed or not. A dynamic programming recursion for the problem is developed.
The authors point out that a general policy from a complex dynamic program can be difficult to compute
and communicate, and therefore it is useful to characterize the optimal policy as having some kind of
simple structured form. This turns out to be possible for the compressor maintenance problem. (Crack
growth modelling and monitoring is also a basis of our maintenance model.)

1.4 Scope and outline

The main part of this article deals with the development of optimization models for the maintenance
of multi-component systems consisting of parts with deterministic or stochastic lives. Related literature
mainly assumes that the systems consist of parts with stochastic lives only, the time horizon is infinite,
and a policy is used to find a replacement scheme. Also, it is clear from the literature that it is extremely
hard to find an optimal replacement schedule when the number of parts is large, and hence different
replacement policies are developed. Such policies reduce the complexity of the problems, but the solutions
found are most often not optimal. Further, the literature points out that the case of a finite time horizon
is even harder than the infinite time horizon case. In our aircraft application the time horizon is finite
and the number of parts is large, so if all of them were stochastic it would be necessary to use replacement
policies. However, about 75% of the components considered in an aircraft engine are deterministic, so
our problem is more structured than the completely stochastic systems considered in the literature.
The contribution of this paper is three-fold. First, we provide a linear integer opportunistic main-
tenance model for aircraft engine modules. We establish its advantages over simpler policies from the
literature and current practice at VAC in providing good schedules. Second, we establish attractive math-



ematical properties for its efficient solution; this is especially important because in a future development,
maintenance schedules are to be optimized for entire engine fleets, wherein the model developed here
will be a sub-model. Third, we establish statistically valid methodologies for incorporating parts with
stochastic lives in our model, through the estimation of their remaining lives.

The remainder of the paper is organized as follows. In Section 2 we present a mathematical model
for generating optimal replacement schedules over finite time horizons and provide a numerical example
showing the influence of fixed costs for the maintenance of a module on the importance of opportunistic
maintenance. In Section 3 we perform a polyhedral study of the convex hull of the set of feasible solutions
to this model, referred to as the replacement polytope. We show that the replacement polytope is full-
dimensional under general assumptions. Also, we show that if the variables associated with the fixed
costs in the model are fixed to integers, then the polyhedron arising from the continuous relaxation of
the variables associated with the replacement of the parts is integral. The inequality constraints in the
original formulation are studied and we show that the necessary ones are facet-defining. Further, we show
that the inequalities in the original formulation are not sufficient to completely describe the replacement
polytope. By using Chvatal-Gomory rounding we construct a new class of valid inequalities and show
that these inequalities (in some cases) are facet-defining. In Section 4 we outline survival estimation
models, and show how measurements of crack development in parts with stochastic lives can be used to
define, and enrich, Weibull distributions for the estimation of conditional life distributions. Section 5
presents the current maintenance policy used at VAC, as well as an age replacement policy. Section 6
is devoted to a numerical study of the stochastic properties of the optimization model and the policies
in the form of stochastic simulations; it shows that the optimization model always is to prefer to simple
policies, even when the uncertainty in the lives of the stochastic parts is quite substantial.

2 A deterministic, opportunistic maintenance model for an
engine module

Consider a system consisting of N deterministic parts and a finite time horizon discretized into T + 1
time steps t = 0,1,...,7 > 2. At time step ¢t = 0 all of the parts of the system are new and at t = T
the system will be discarded. We define A" = {1,..., N}. The life of a new part of type i € N is T; > 1
time steps and its purchase cost is ¢; > 0 monetary units. There is a fixed cost of d > 0 monetary units
associated with each replacement occasion, independent of the number of parts replaced. The objective
is to minimize the cost of having a working system between the time steps 0 and 7.

In order to formulate a linear integer programming model that solves the replacement problem, we
introduce the variables

1, if any of the parts ¢ € N is to be replaced at time ¢,
2y =
! 0, otherwise,

1, if part ¢ is to be replaced at time ¢,

Tit = . teN, t=1,...,T—1.
0, otherwise,

The variables z; and x;; are not defined for ¢t € {0,T}, since it is not beneficial to replace any part at
these times. Each part has a life limit 7; < T — 1; it must be replaced at least once every 7T; time steps,
which is forced by the constraints

T;+£4—1
Z zy>1, ieN, (=1,...,T T (1)
t=~

Every time the replacement of some part i € A is triggered, a fixed cost must be paid, indicated by
the variable z; having the value 1, leading to the constraints
i < 2, ieN, t=1,...,T—1. (2)

The model presented in [10] includes the constraints ), \ i < Nzs, t =1,...,T — 1, instead of (2),
which are stronger in the sense that the set defined by (2) is included in that defined by these constraints.



A complete model of the minimization of the total cost for having a working system between the time
steps 0 and 7' is called the replacement problem and is given by the problem to

T-1
minimize Z (Z ciTit + dzt> , subject to (z,2) €5, (3)
t=1 \ieN
where
S = {(x, 2) € BN(T-1) y gT-1 ] (z, 2) fulfils (1) and (2)} . 4)

ExXAMPLE 1 (numerical illustration) We consider an instance of (3) with T'= 60, N = 4, Ty = 13,75 = 19,
T3 =34, Ty = 18, ¢c1 = 80, co = 185, ¢3 = 160, and ¢4 = 125. The data is chosen so that the relations
between the life limits and the costs are similar to those for the fan module of the RM12 engine. The
model is solved for d = 0, 10, and 1000 (where d = 10 represents the most reasonable value in a real
maintenance situation). For d = 0, the optimal total number of replacement occasions is 11 and there
is no advantage with replacing a component before its life limit is reached. Increasing d from 0 to 10
decreases the optimal total number of replacement occasions from 11 to five. It is now beneficial to
replace the components in larger groups and they are often replaced before their respective life limits are
reached. For d = 1000 it is very important to utilize the opportunity to replace several components at a
time. The optimal total number of replacement occasions is four (the least feasible number of replacement
occasions for this instance).

(S T S Y T

Figure 2: Optimal maintenance schedules for d = 0, 10, and 1000. When d increases from 0 to 10 the
replacement occasions 1-3, 5-7, and 9-11, are grouped into one occasion for each of the three groups.
When d is increased from 10 to 1000, the last four maintenance occasions are rearranged into three
occasions; the reduction from five to four occasions results in several more component replacements.

Figure 2 shows the maintenance occasions for the three cases. The horizontal axis represents the
60 time steps and each maintenance occasion is represented by a vertical bar, where a dot at a certain
height represents a component of the corresponding type being replaced. The figure clearly illustrates
how opportunistic maintenance becomes more beneficial with an increasing fixed cost. O

3 The replacement polytope

We study the structure of the set S, defined in (4), of feasible solutions to (3). The convex hull of S,
denoted conv S, is called the replacement polytope. By studying the facial structure of S and thereby
describe its convex hull by a finite set of linear inequalities, it is possible to solve the problem using linear
programming techniques. Our ambition here is to take the first steps towards such a complete linear
description of the replacement polytope.

We first review some basic results on polyhedral combinatorics. Then we compute the dimension of
the replacement polytope and conclude that most of the inequalities in (4) define facets of the same.
However, by an example we show that these basic inequalities do not completely define conv .S. We then
derive a new class of facets by using Chvatal-Gomory rounding.

3.1 Polyhedral combinatorics

We review the results on polyhedral combinatorics necessary for deriving our results on the facial structure
of the replacement polytope. A comprehensive survey of polyhedral combinatorics is given in [15].



Let X be a subset of R™. The set X is an affine set if Ax + py € X whenever z,y € X and A\, u € R
are such that A + p = 1. A point € R” is an affine combination of the points z!,...,2™ € R" if there
exist scalars Ai,..., A\ with \{ + .-+ 4+ \,, = 1 such that £ = Aj2' + - - + A\n2z™. The affine hull of
X, denoted by aff X, is the set of all (finite) affine combinations of points of X. The set X is affinely
dependent if there exists an x € X such that z € aff (X \ {z}). Finally, the dimension of the set X,
denoted by dim X, is one less than the maximum cardinality of an affinely independent set K C X.

A polyhedron in R” is a set of the form P = {x € R" | Az < b}, where A € R™*™ and b € R™.
The equality subsystem (A=,b~) of P is defined by the rows of the system Az < b that are fulfilled with
equality for all z € P. The dimension of P is given by dim (P) + rank (A=,b=) = n ([15, p. 87]). If
dim P = n we say that P is full-dimensional.

If V is a finite set in R”™ and X = conv V, then each extreme point of X liesin V' ([20, p. 81]). Moreover,
every polytope equals the convex hull of its extreme points ([7, p. 206]), and an obvious relation is then
that, if V' C R™ then dim V' = dim(conv V). Another useful result is that a set is a polytope if and only
if it is a bounded polyhedron ([20, p. 114]).

If all of the extreme points of a polyhedron are integral the polyhedron is called integral. A matrix is
said to be totally unimodular (TU), if all of its square submatrices have the determinant 0, 1, or —1. If
A € R™*" ig a totally unimodular matrix and b € R™ is integral, then the polyhedron defined by Az <b
is integral (|7, p. 221]). We will utilize the following characterization of total unimodularity.

PROPOSITION 2 (characterization of the TU property, [15, pp. 542-543]) Let A be a matrix in Z™*™. The
statements (i) and (ii) are equivalent:

(i) Ais TU;

(ii) For every J C {1,...,n} there exists a partition {J1, Jo} of J such that the inequality
’ZSQJI arsfzseham‘ <1 holds forr =1,...,m. O

Let the polyhedron P be given as above. The inequality max < 7 is called a valid inequality for P if
it is satisfied by all points in P. If 7z < 7 is a valid inequality for P, and F = {z € P | 7z = 79 },
then F is called a face of P, and we say that 7z < 7y defines F'. A face F' of P is said to be proper if
F & {0,P}. A face F of P is called a facet of P if dim F' = dim P — 1. It holds (cf. [15, p. 89]) that if F
is a facet of P, then there exists some affine inequality defining F'.

A full-dimensional polyhedron P has a unique (to within scalar multiplication) minimal representation
by a finite set of affine inequalities ([15, p. 91]), and in particular, for each facet F; of P there is an
inequality a’z < b; (unique within scalar multiplication) representing F; and P = {z € R" | a'z <
bi, i=1,...,k}, where a® € R" and b; € R.

From the previous it follows that if V' C R™ is a finite set, then the polytope conv V is a polyhedron.
Hence, if convV is full-dimensional, it then follows that the union of all facet-defining inequalities of
conv V' defines an affine description of it. Therefore, it is of interest to find facets of a polytope defined by
inequalities and integrality constraints. The following characterization, based on the uniqueness property,
is useful when proving that a certain valid inequality defines a facet.

PROPOSITION 3 ([15, pp. 91-92]) Let P be a full-dimensional polyhedron and let F = {x € P | mx =
mo } be a proper face of P. Then the following two statements are equivalent:

(i) F is a facet of P;
(i) If \x = X\o for all x € F, then (\, \g) = a(m, mo) holds for some « € R. O

We close this subsection by remarking that all of the extreme points of the replacement polytope
conv S belong to S. Hence, if we can find a polyhedral description of conv.S, then the replacement
problem (3) can be solved by standard linear programming techniques.

3.2 The dimension and basic facets of conv S and a new class of facets

In this section we derive the dimension of the replacement polytope conv S and investigate the inequalities
used to define S in (4). Under weak and natural assumptions we show that the replacement polytope
is full-dimensional. Further, we show that all inequalities that are necessary to define the replacement
polytope are facets of the same.



LEMMA 4 The polyhedron defined by (1) and
*-T'Lt2717 Z€N7 til,...7T*1, (5)
is integral. O

PRrROOF We derive the result by showing that the constraint matrix of (1), (5) is TU using the character-
ization in Proposition 2. The inequalities (1), (5) separate over i € N; therefore it suffices to show that
the constraint matrix of the inequality system

Ti+0—1
Y w1, (=1,...T-T, (6a)
t=¢
x> -1, t=1,...,T—1, (6b)

is TU for each i € N. Let A* € B(T-T)x(T-1) be the constraint matrix defined by the left hand sides
of the inequalities (6a), that is, for each r» € {1,...,T — T;}, let a’, = 1 for s € {r,...,T; +7 — 1} and
aly,=0for s € {l,...,T —1}\ {r,...,T; +r — 1}. The essential property of the matrix A’ is that the
ones appear consecutively in each row, that is, if a’, = a’, =1land 1 < ¢ <k <T —1, then a’, =1
for all s € {¢,...,k}; this property is closed under column deletions. Let B € BT-Dx(T-1) phe the
constraint matrix defined by the left hand sides of the inequalities (6b). Then B = —I7~! (minus the
identity matrix); if columns are deleted from B, each row will consist of zeros and at most a single —1.
Therefore, it is enough to show that property (ii) of Proposition 2 is satisfied for J = {1,...,7 —1}. Let
Ji={jeJ|jodd} and Jo = J\ Ji. For each ¢ € {1,...,T —T;} it holds that

1, if T; is odd and ¢ is odd,
Z aj, — Z ay, =< —1, if T; is odd and ¢ is even,
s€J1 s€J2 0, if T;is even,

and for each £ € {1,...,T — 1} it holds that

-1, if £ is odd,
> b= > bre=11, if ¢ is even,
s€J1 s€J2 0, if column /¢ is deleted.

It follows that the property (ii) stated in Proposition 2 holds. Hence, the constraint matrix ((A%)T, BT)T

of (6) is TU. Since the right-hand sides of (6) are all integral it follows from [7, p. 221] that the corre-
sponding polyhedron is integral. O

PROPOSITION 5 (dimension of the replacement polytope) If T; > 2 for all i € N, then the dimension of
conv S is (N + 1)(T — 1), that is, conv S is full-dimensional. O

PROOF First note that since S € RNFD(T=1) it holds that dim(convS) < (N + 1)(T —1). Let the
vectors (z¥, 2F) € BIN+DT =1 L ¢ {0,...,(N 4 1)(T — 1)}, be given by the following. For i € N and
t=1,....,T—1,let 2% = 0if k € {(N+1)(t—1)+14,(N+1)t} and =¥, = 1 otherwise. Fort =1,...,T—1,
let 27 = 0if k= (N + 1)t and 2} = 1 otherwise. Since 7; > 2 for i € A it holds that ZtT;'Jge*l zk > 1 for
allie N,all ¢ e {1,....,T—T;},and all k € {0,...,(N + 1)(T — 1)}.

Moreover, for all t = 1,..., 7 —1 and k € {0,...,(N + 1)(T — 1)} such that zF = 0 it holds that
% =0,i € N. It follows that (2, 2%) € S, as defined in (4). Further, it can be verified that the only
solution to the system

(N+1)(T—1) (N+1)(T—1) (N+1)(T—1)
Z hop =0, ieN, Z 2oy, =0, t=1,...,T -1, Z ay =0,

isap=0,k€{0,....,(N+1)(T —1)}, implying that the vectors (z*, 2%), k € {0,...,(N+1)(T'— 1)}, are
affinely independent. Hence, it holds that dim(conv S) > (N+1)(7—1), thus implying that dim(conv S) =
(N +1)(T — 1). The proposition follows. O



The replacement polytope is not full-dimensional if T; = 1 for some i € N, since it then holds that
i =2z =1,t=1,....,T —1, for all (x,z) € convS. Letting A= denote the matrix corresponding to
the equality subsystem of conv S, this would yield that rank A= > 2(T — 1) and thus that dim(conv S) <
(N —1)(T — 1). However, the case that T; = 1 is not interesting in practice since it would mean that
component 7 must be replaced at every time step.

PROPOSITION 6 IfT; > 2 for all i € N, then each of the inequalities Ztﬁl Yoy > 1,¢0=1,...,T—1T;,
i € N, defines a facet of conv S.

PROOF Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 5). Hence, we can use the
uniqueness characterization of the facet description from Proposition 3 to show the assertion.

For each r € N and each ¢ € {17 ,T—T,},let Fry = {(x,2) € conv S | ZT "1 g, =1}, Further,
let 2% =20 =1,ie N, te{l,...,T - 1}. Since T; > 2 it follows that (2° ,z € S\ Fys. Then, deﬁmng
the vector (z2,2%) as 25y =0ifi =rand t € {{+1,...,T, + £ — 1}, 25} = 1 otherwise, and z{* = 1,
te{l,...,T—1}, it follows that (z*,2*) € F,¢ and hence that F,, is a proper face of conv S. Moreover,
there exist values of A € RN*(T=1 , « RT=! and p € R such that the equation

i <Z AitTit + Nt%) =p (7

t=1 \ieN

is satisfied for all (z,z) € Fl.,. We will show that for any value of a € R, in a solution to (7) it holds that
A =aifi=randte{l, ...,T.+¢—1}, Ayt =0 otherwise, s =0,t € {1,..., T — 1}, and p = «.

For each i € N\ {r} and each t € {1,...,T — 1}, let, for j € N and k € {1,...,T — 1}, zj, = 0 if
j=iand k=t, x} = xfk otherwise, and z} = 22, t € {1,...,T —1}. It follows that (2!, z!) € F,;. The
vectors (z*,z%) and (x!, 2!), respectively, inserted in (7) then yield that \;; = 0 for all i € A"\ {r} and
allte{l,...,T—1}.

For each! ¢t € {1,....0 —1}U{T. +4+1,....,T — 1}, let, for i € N and k € {1,...,T — 1},
z3 =0ifi =r and k = t, 2%, = ) otherwise, and let 2} = 2z, t € {1,...,7 — 1}. It follows that
(22,22) € Fyy. The vectors (2, z) and (22, 22), respectively, inserted in (7) then yield that A, = 0 for
allte{1,....0—1}U{T, +¢+1,...,T 1)

Further, let, for i € N, 25 :Oifi:randt:f, B =1ifi=randt="T +0—1, 28 = 24

otherwise, and let 2P = 2, t € {1,. —1}. Moreover, let, for i € N, 23, = 0if i =7 and t = T} + ¢,
z3 = ab otherw1se and let 2} = 2P, t e {1,. — 1}. Tt follows that (23,2%) € F,4. The vectors

(2B, 2B) and (2®, 3), respectively, inserted in (7 ) then yield that A\, 1.1¢ = 0. The equation (7) can then
be rewritten as

Tr+0—1

Z Wiz + Z ArtTrt = P (8)

Foreach t € {1,...,T — 1} \ {¢, T, + ¢}, let, for i € N, z¥, = 0 if k = ¢, x}, = x}), otherwise, and let
22 =0if k =t, and z} = 2 otherwise. It follows that (z*,2%) € F,4. The vectors (z*,z*) and (2%, 2%),
respectively, inserted in (8) then yield that u; =0 forall t € {1,..., T —1}\ {¢, T, + E}.

Further, for each t € {{, T} + ¢}, let, for i € N, 2, = 0if k = t, 23, = 25 otherwise, and let
22 = 0if k =t, and 2} = 2B otherwise. It follows that (z°,2%) € F,. The vectors (2B, 2B) and (2%, 2%),
respectively, inserted in (8) then yield that us = pr.+¢ = 0. Equation (8) can then be rewritten as

Tr+0—1

Z )\rt-rrt =p (9)
t=¢

Foreachte{€+1,...,TT+671},1etforiENandkE{1,...,T—1},:r?k:()ifi:randsz,
28 =1ifi=rand k =¢, and 25, fxﬁc otherwise, and let 28 = 2, t € {1,...,T — 1}. It follows that

(x 28) € F,y. The vectors (2, z%) and (2%, 26), respectively, inserted in (9) then yield that Ay = A
Hence, \,; is constant over ¢t € {E, ooy T+ € — 1} and we define A\, =\, t € {¢,..., T, + ¢ — 1}. Since

¥or € {1,T - T, —1,T — T} the sets {1,...,£— 1} and {7 + £+ 1,...,T — 1}, respectively, should be interpreted
as 0 (and analogously for analogous cases).



(z2,22) € Fq it follows that A = p. Letting o = p, the equation (9) can be written as 3,7 oz, = a.

Proposition 3 then yields that the inequality ZtT;ZZ_l zr¢ > 1 defines a facet of conv S. O

The technique used to prove Proposition 6 can be applied to Propositions 7-9, whose proofs are
therefore omitted here.

PROPOSITION 7 IfT; > 2 for all i € N/, then each of the inequalities x;; < z;, i € N, t=1,...,T — 1,
defines a facet of conv S. O

PROPOSITION 8 If T; > 2 for all i € N, then each of the inequalities z; < 1,t =1,...,T — 1, defines a
facet of conv S. O

PROPOSITION 9 If T; > 2 for all i € N, then each of the inequalities i > 0, k € N : T > 3,
t=1,...,T — 1, defines a facet of conv S. O

The inequalities in Proposition 9 do not define facets for any & € N such that T, < 2 due to the
following. If T}, = 2 then, for each s € {1,...,T — 2}, xxs = 0 implies that zj 511 = zs41 = 1 (likewise,
xp,r—1 = 0 implies that xy r—2 = zr—_2 = 1) which yields that rank A= > 2, where A= denotes the matrix
corresponding to the equality subsystem of conv S. Letting Fi, = { (2, 2) € conv S | zs = 0}, it follows
that dim Fy, < (N 4+ 1)(T — 1) — 2, which implies that F.s is not a facet of conv S.

Now, the set S is defined by the constraints (1), (2), and

xitZO, Ztglv Tit, ZtEE; til,...7T*17 ZGN? (]‘0)

and it follows from Propositions 69 that all of the inequalities necessary in the description of the set S
define facets of conv S. A natural question then arises: Is conv .S completely described by the continuous
relaxation of the system (1)—(2), (10)? Unfortunately, this is not the case, which is shown by the following
example.

ExAMPLE 10 (continuous relaxation) Consider a system with N =2, 77 = 3, 7> = 4, and T = 5. Then
the problem to

minimize 17 4+ T12 + 2213 + 14 + 21 + 100292 + 100293 + 294 + 1021 + 1029 + 23 + 1024,
subject to  (1)—(2) and (10),

has the optimal solution
(211, T12, T13, T14; T21, T2z, T23, T24; 21, 22, 23, 24) = (0,0,1,0;1,0,0,0;1,0,1,0), (11)
with objective function value 14. Relaxing the integrality requirements, yields the optimal solution
(211, T12, T13, T14; T21, Tog, T23, T2a; 21, 22, 23, 24) = (0.5,0,0.5,0.5;0.5,0,0,0.5;0.5,0,0.5,0.5), (12)

with objective function value 13.5. Hence the convex hull of feasible solutions to the system (1)—(2), (10)
is not completely defined by the inequalities therein. O

Example 10 shows that the inequalities in (1)—(2), (10) are not sufficient to describe conv S. However,
according to the Propositions 6-9, almost all of these inequalities define facets of conv S. Since, by
Proposition 5, conv S is full-dimensional (under reasonable assumptions) the minimal description of
conv S is unique. Therefore, all of these facets are necessary in the description of conv S.

To completely describe conv .S we need however also facets other than those in (1)—(2), (10). By using
Chvatal-Gomory rounding (see [15, p. 210]) it can be shown that the inequalities

0+T;—2
2+ Y (@it wp) tayno1 =2, Le{l,... . T-T}, ijeN:2<T;<T—1<2(T;—1), (13)
t=0+1

are valid for S. For the replacement problem in Example 10, the inequalities (13) reduce to the single
inequality 21 + 12 + 13 + X22 + x23 + 24 > 2, which is not satisfied by the optimal solution (12) to the
continuous relaxation of the replacement problem in Example 10. In fact, by adding this inequality to
the continuous relaxation, the optimal solution given in (11) is obtained. Using the same technique as in
the proof of Proposition 6 the following result can be shown:
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PROPOSITION 11 IfT; > 2 for all i € N/, then each of the inequalities (13) defines a facet of conv S. [0

The Chvatal-Gomory rounding applied here can be generalized to find new classes of facets for the
general replacement problem. However, it still remains to investigate the strength of the continuous
relaxation resulting from new classes of facets being added to the replacement problem.

4 Towards a model for the stochastic optimization problem

We introduce stochastic modeling of the lifes of the components, to obtain a more applicable mathematical
model. We also treat a more informative data type when one has measurements on the path to failure
of a component. A further topic is discretization of the obtained distributions, which is necessary for the
optimization problem.

We treat the distribution of time to failure for only one component; in a real type situation one typically
has measurements on failures for several components. If an aircraft engine is made up of m components
and T1,...,T,, are their failure times (lives), then the aircraft engine’s life is T' = f(71,. .., Ty, ) for some
function f. If f is known the approach below can be applied to estimation of the distribution of T". If
the individual components are dependent one needs to model and estimate the simultaneous distribution
of Ty, ..., T, and the approach below needs to be modified.

Let us treat a fixed component for which we have measurements on several engines, or units. Assume
that {z(t),t € [0,T]} is an RP-valued stochastic process modeling the crack size for the component,
during it’s life span [0,7]. When we have n units the R? valued processes x1(t),...,z,(t) model the
crack sizes in the units, and thus {x;(¢)}?_; is a sequence of independent and identically distributed
stochastic processes. During it’s life the unit ¢ will be serviced, at some time points ¢;1, t;2, . . ., defined as

ti1 = inf{t >0: xl(t) € 0}7 ti,k+1 = inf{t >t : $i(t) S C} — ik, for k > 1, (14)

where C' C RP? is the critical region for the process.

We assume that C is independent of ¢, i.e. that the time dynamics of the process do not influence the
reliability of the choice to make a repair. Furthermore C' is assumed to be the same for all units i, so
that the unit’s failure times ¢; = (¢;1,...,%; n;) are independent random vectors.

The objective of Section 4.1 is the transfer of structural information: There are two types of engines,
I and I1. They are structurally different, and the amount of data differs significantly; for type I there
exists a large data set whereas for type I data is limited. The more interesting engine is type 11, being
a replacement of type I. Let z(t) be a random element (a real number, p = 1, or a finite-dimensional
vector, p > 1) with unknown distribution F' = F(;0) parameterized by § € © C R®, with s < co. Let
Fr (resp. Fyr) denote the distribution for type I (resp. I1) engines. A natural assumption is that the
distribution functions belong to the same parametric class of distributions P = {F(-;6) : § € ©}, and
that only the parameter values differ: F;r = F(-;0;) and Fr; = F(+;0;5), with F(-,-) a known function.

The observations of the feature processes are of two types. One type of data consists of times to service,
t;k, for the units, with or without the corresponding feature values, x;(t;;). A finer type of data consists
of repeated measurements in the same cycle k of the feature process x;(s;1), z;(s:2), ..., with time points
s;; possibly passing the time to repair so that possibly s;; > t;, for some j and k. Thus, assume that the
time-dependent crack size z;(t) in unit ¢ of a component has distribution F,, = Fy(+;0,) with unknown
parameter 6,. The stochastic process x;(t) is not completely observed, because of a measurement error e;
with distribution F,(-;6.) at times s;;: the observations consist of g(z(s;),€;), for some function g, and
are distribution according to F'(-;0,,6.). Let C be the critical region for x;(¢) and t;, = inf{¢ : z;(t) € C}
the failure time. It is then possible to obtain the distribution F},, = Fy,, (-, 0s,0c) of t;, treating the
parameter 0. as a nuisance parameter, and t;; as the interesting random variable for which we want to
estimate the distribution based on the data g(z(sk), €;)-

The resulting estimators of life distributions are continuous. Since the optimization models in Sections
2 and 4.2 treat discrete probability functions we discretize the distributions, using as few points of support
as possible, in order to limit the complexity of the corresponding optimization model; this is the topic for
Section 4.2.2. In Section 4.3 we then draw some conclusions and discuss the implications of the stochastic
modeling for the optimization model.
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4.1 Structural models for time between repairs

Assuming that the data at hand are the times between repairs, we study parametric models that describe
these well, with a view of transformation of structural information from type I to type I engines. We
study the fit of two types of models: non-stationary renewal processes (NSRP) and non-homogeneous
Poisson processes (NHPP).

The data consists of times between repairs for a number of units for three components in the flame
holder. For a fixed component and every unit ¢ we observe a sequence t; = {t;1, ..., ti¢} of times between
repairs where observation £ is possibly (right-) censored, meaning that the time to repair £ + 1 is longer
than the time observed. We model different details as independent, that is, the corresponding random
vectors ¢; and t; are independent if ¢ # j.

Consider a fixed unit ¢ for an arbitrary component. Let ¢;; be the time between the j — 1’th and the
j’th repair, and let F;(t) = P(t;; < t) be the corresponding distribution function. Let N;(t) = #{t;; <
t|j=1,...,4} be the corresponding counting process that counts the number of events (repairs) that
have occurred by time t.

DEFINITION 12 (renewal process) An independently distributed sequence {t;};>1 is called a non-stationary
renewal process (NSRP); it is called stationary if F; = F for all j and some F. O

The inference problem consists of finding appropriate functions F; and assessing whether in fact
Fj =F.

DEFINITION 13 (Poisson process) Let {N(¢) : t > 0} be a counting process with intensity function w(t).
If the process has independent and Poisson distributed increments it is called a non-homogeneous Poisson
process (NHPP); if w(t) = w is a constant function the process is a homogeneous Poisson process. O

4.1.1 Survival analysis

For a particular unit, the last observation is possibly incomplete in that the unit does not yet satisfy the
criteria for repair. In this case the unit’s last observation time is censored, i.e., it is only known that the
time until failure is larger than the time observed. One typically assumes that censoring is due to other
mechanisms than the ones governing the failure time, cf. Andersen et al. [2]. Thus the data consists of
pairs (¢;;,0;;) with ¢;; being the observed j’th time between repairs for unit ¢ and d;; € {0, 1} indicating
whether the observed time is a failure or a censoring. Let us suppress the index j in the sequel.

Define the survival function S;(¢) = 1 — F;(¢) and the hazard function h,(t) = —S.(¢)/S:(t). Given
(possibly right censored) data {(¢;,d;)};, the standard estimator of the survival function is the Kaplan—
Meier estimator Sp(t) = [[,.;, < (1 - #), with ¢;,— = limp o t; — h, where Y,,(¢) = Y i 1{t; > t}
is the number of units at risk to fail at time ¢. The standard estimator of integrated hazard function
H(t)= fot h(u) du is the Nelson—Aalen estimator H,(t) =>_, -, #

A refinement of the above is possible if there are variables that influence the distribution of the
time between failures. Thus we assume that for each unit ¢ we are able to measure a vector z; =
(zi1,--.,2ip) of covariates and that these affect the survival and hazard functions so that S;(t) = S(¢; z)
and h;(t) = h(t; z;) are unit-dependent survival and hazard functions. The standard approach to modeling
for inclusion of covariates is the Cox proportional hazards model, cf. Cox [8] and Andersen et al. [2].
However, in our case the potentially interesting covariates are highly correlated with the lives, and
therefore not amenable to analysis.

Another approach to modeling the underlying causes for the distribution of lives is via a physical model;
this is more informative than e.g. a Cox regression model, since the latter has no physical justification.
Assuming that the feature process {x(¢) : t > 0} follows a particular form, e.g., based on physical
modeling, it is possible to derive a formal expression for the distribution of the time between repairs.

4.1.2 Model fit

Let {¢;}"_; be times between repairs for n units with unknown distribution F. We make a formal test of
the hypothesis H : F' = F, using the test statistic M = 13" (Ep, (T;) — t;)%, where T} is the random
variable of which ¢; is an observation and Er(T;) is the expectation of T; under the null distribution Fp.

For the NSRP model T; is Weibull distributed and Eg,[T;] then has a known parametric form, cf.
Table 1. The fact that M, is mostly bigger than M may be a consequence of the true distribution having
shorter tails than the Weibull distribution.
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Table 1: Prediction errors, observed (M) and expected (M. = Er, (T — Er,(T1))?), of the NSRP model
for components 1, 2, and 3 for the four first failures and average time to failure.

Component Failure 1 Failure 2 Failure 3 Failure 4 Average
10 M M, M M, M M, M M., M M,
1 3.28 341 192 212 1,57 1.89 1.61 250 212 245
2 2.02 202 0.06 006 0.06 006 0.06 006 034 0.34
3 720 745 022 021 0.29 0.26 0.28 0.26 1.05 1.08

In the NHPP model the prediction at time ¢y of the time to the next failure 7; is given by

En|T) = / o~ G0+~ (1)) gy
0

where H is the cumulative intensity (or cumulative hazard function) H(t) = fot h(u) du and where h = w
is defined in Definition 13. It is not possible to estimate H for values of ¢ larger than the largest observed
life without assuming parametric models; one remedy for calculating Er,(T') is to integrate up to the
largest observation, cf. Table 2.

Table 2: Prediction error of the NSRP model for components 1, 2, and 3 for the four first failures and
for the average time to failure.

Component, Failure 1 Failure 2 Failure 3 Failure 4 Average
104 x M M M M M
1 4.71 1.89 1.65 1.43 2.39
2 2.23 0.42 0.28 0.16 0.43
3 9.77 0.94 0.88 0.72 1.60

Table 3 shows that the NSRP model seems to be a better model for this data set; note that Myugpp
and Mysrp are the average errors in the respective models given in Tables 1 and 2.

Table 3: Relative errors for the two models NSRP and NHPP (for the average time to failure).

Component  Mysgrp X 104 Mnupp X 104 Mnmep

Mnsrp
1 2.12 2.39 1.13
2 0.34 0.43 1.26
3 1.05 1.60 1.48

Repairs are performed at repair stations within a close range of the aircraft (A) and the main central
repair station (B). To test for a difference between the two types of repairs, we estimate the mean time
to repair for the three details but distinguish between the repairs A and B. In Figure 3 this is shown for
the first five repairs with 95% confidence interval for the mean. There seems to be a difference between
the repairs A and B, at least for components of type 1 and 3.

To test whether F,, depends on n, we have estimated 6, «, and the mean p, under the Weibull
distribution, and of the mean p under the the non-parametric distribution, for the time to first failure
and for the following five times to failure after repair for components 1, 2, and 3, cf. Svensson [17] for more
details. We noticed that the estimates of § and « do not change very much between successive repairs if
we disregard new components, which makes it natural to suggest a model with the same distribution for
T;, i > 2. There seems to be two classes of repairs: repair of new components and repair of old ones.

To test whether the time to the next repair decreases with the number of repairs, we use the model

Fr(t)=1—¢ @ t>0, (0>0,a>0p>0), (15)

n
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Figure 3: Confidence intervals for the expected time to failure after repair numbers 1 to 5. Rings and
stars represent repair type A and B, respectively.

where 7 is the repair number. Then the expected time to failure after repair n is E[T},] = 6p™-I'(% + 1),
and p < 1 indicates aging. Maximum likelihood estimates of the parameters (6, , p) are shown in Table
4 together with 95% confidence intervals over the true parameter p based on profile likelihood. It seems

that if we use p = 1 the resulting error is very small; no aging parameter is therefore necessary.

Table 4: Parameters in modified Weibull distribution when T;, i > 2, have the same distribution and a
95% confidence intervals over the parameter p.

Detail Repair type 0 a D 95% confidence interval
1 A 164 1.43 0.92 (0.8412 , 1.0146)
1 B 371 3.04 0.95 (0.9205 , 1.0026)
2 A 45.7 1.79 0.98 (0.9666 , 0.9902)
2 B 47.0 1.36 1.01 (0.9205 , 1.0026)
3 A 61.8 1.51 0.99 (0.9794 , 1.0058)
3 B 101.9 1.56 1.01 (0.9846 , 1.0426)

4.1.3 Crack length modeling

Let {z(t) : t > 0} be a real valued stochastic process that describes the growth of a crack in a part of
a unit. Assume that a failure occurs when the crack grows past a critical point ¢p, so that the critical
region is C' = [¢p, 00). The crack length a,(t) of crack ¢ at time ¢ is modeled by

aop, lf t < Si, .
a;(t) = i1e{l,... k}, 16
() {a0+ci'(t_si)b; ift >S5, { J (16)
where C; and S; are stochastic variables and b > 0 and a( are parameters, cf. Svensson [18].
The cracks are not observed directly: For each crack i € {1,...,n} there are n; observations x;; =
x;(ti;) at times t;1 < ... < t;p,, following the model
agp, if tij < Sy,
Xi(tiy) = .
max{ao,ai(tij) +5ij}, if tij > 8,
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with ¢;; being a sequence of independent N(0,0?) distributed random variables. This implies that the
distribution of X;(¢;;) is, conditionally on (c;, s;), a mixture of a discrete and a continuous distribution,
the discrete random variable having a point mass ag at s;.

Let 6 = (1,02,b) be the parameter vector; here ¢ are the parameters determining the distribution
for the pairs of random variables (C;, S;) in (16). For crack ¢ we want to find the the distribution of the
time T; = inf{t : a;(t) > amax}, Where amax denotes the minimum length that is registered as a crack.

Assume that the previous observations x; = (x;(¢i1),. .., 2i(tin,)) of crack ¢ are given and that the
parameters 6 of the model are known. Then, using model (16), it is possible to derive expressions for the
conditional distribution

and the corresponding density function fr,x,(¢[x;;6). This implies that fic, s,)x,(ci,;s: | xi;0) =
Ixi10,8: (Xi | ¢iysi:b,02) - fo,,s,(cin sis)/ fx, (%3 60), via Bayes’ formula. Using the model descriptions it
is possible to obtain expressions for all factors in this conditional density.

Let A; be the crack length of crack i at a fixed time ¢. Similarly, we obtain f4,x,(a | x;;0) =
Ixi14, (% | a;0)-fa,(a;0) fx, (x:;0), and it is possible to obtain expressions for all factors in this conditional

density. The likelihood for the parameters given data of cracks x = {x1,...,%x,} is
L(0) = fx(x:0) = [ ] fx. (xi:0), (18)
i=1

In order to take the parameter uncertainty into account we use a profile likelihood approach, cf. Pawitan
[16], and define the predictive profile likelihood for T; given x; as
IN’(t | Xi;X,i) = Slelp le\Xl(t | Xi; ) fX »(sz’ ) (19)

—1

where x_; = {X1,...,Xi—1,Xit1,- -, Xk }-

If the number n of cracks is large the predictive profile likelihood in (19) is numerically demanding
to compute. We then suggest to ignore the uncertainty in the parameter estimation and use ¢ = 6 for
all times ¢. The likelihood then becomes L(6,t | x;;x_;) = Jrx, (t] %3 0) - fx (= 0). The predictive

profile likelihood for inference on the crack length at a specific time is then given by L(4; | x;;x_;) =
Sup&(fAHXi(a’ | Xi; ) fX -(sz’ ))

—1i

4.1.4 Case study

We use the above model to make predictions on crack growth in a low pressure turbine nozzle component,
for a small data set. We present estimates of the joint distribution of C; and S;, and an illustration of
the difference of estimating the remaining life with and without taking the uncertainty in the parameter
estimation into account.

The data available is from so called pri-engines, that are used extensively and accumulate a large
number of flight hours and flight missions. The engines have been observed every 200 flight hours.

We first determine the joint distribution of C; and S;. Figure 4 illustrates the cracks and the crack
model (16) fitted to the cracks with a least squares method. From each picture we get an observation of
S; (censored if no crack was detected) and an observation of C; if a crack was detected.

Using a similar procedure for all cracks (more than the four in Figure 4) indicates that C; and S;
are uncorrelated, which makes it feasible to assume independence between C; and S;. Furthermore,
by examining the empirical distribution of C; and S; we find that the log normal distribution gives a
reasonable fit; we therefore assume that both C; and S; are log-normally distributed with parameters
(s, 0s) and (e, o), respectively.

4.1.5 Model illustration

Assume that we have observed the cracks on the first three components and want to predict when
the crack on the fourth one reaches the length ap.x = 30 mm, that is, to find the distribution of
T = inf{t : a(t) > amax} given the observations of component four. It is also possible to update the
distribution of 7' when we get new observations, at 200, 400, 600, and 800 flight hours (FH), respectively.

15



50

Component 1

50

Component 2

40 40
=] s
2 30 2 30
K o
] o]
T 20 S 20
(@] ]

10 10

0] * * * * 0 ¥ *

0 500 1000 0 500 1000
Time FH Time FH
Component 3 Component 4

50 50

40 40
£ =1 *
2 30 2 30
o 17} *
] 3
& 20 S 20
(8} O

10 10

(o * [} *

0 500 1000 0 500 1000
Time FH Time FH

Figure 4: Model (16) with ag = 0 fitted to the four cracks.

Assume that we know from experience that . = 1 mm, and the other parameters are unknown.
We use the observations from components one, two, and three to estimate the remaining parameters
(ls, Os, [te, Oc, D) using equation (18), i.e. ¥ = (us,0s, fic, 0c). First we calculate the distribution of T
using (17), ignoring the uncertainty in the parameter estimation. The solid line in Figure 5 illustrates
the distribution of 7" when ignoring parameter estimation uncertainty and 6 = 0.

Using the profile likelihood approach (19) we see how much the uncertainty in the parameter estimates
affects the results. In Figure 5 the lines with stars are plots of the distribution of 7" when we consider
the uncertainty of the parameters, the stars indicating where the distribution has been calculated.

The crack length distribution at a fixed time is obtained similarly. Figure 6 shows the crack growth
over time given the information in our observations. Integrating the function in Figure 6 with respect to
crack length yields a marginal function of value 1 for all points in time. The high values in the upper
part of the pictures is the point mass that indicates that the crack length is below size ag. In the case of
one observation, the upper left picture, we can observe how the probability of a crack length of length ag
decreases as time increases. At 0 FH this probability is zero. The observation that there is no crack at
200 FH gives a very slim chance that there would be a crack at this time, hence the probability is almost
one. The other pictures in Figure 6 indicate that even if we are fairly sure of the crack length at a fixed
time the distribution of when the crack reaches a specific length will have a large variance.

Combining the probability model with the profile likelihood based approach yields a comparison of
the effect of the uncertainty in the parameters on the distribution of the crack length at a fixed time.
This is plotted in Figure 7 for the time points 500 FH and 1000 FH.

4.2 Optimal discretization of a continuous distribution

We develop the case with one stochastic component; it can be extended to several stochastic components.
The life U of a new stochastic component is modeled with a distribution G and the remaining life
of a functioning stochastic component of age of ug is modeled with a distribution defined by G(u) =

%&G)(””). We assume that G (u) > 0 if u > 0 and that U is a non-negative random variable.
- 0

We make two simplifications: First, in the sequence of life distributions for the stochastic component
only the first life distribution is modeled as a random variable, the remaining ones are replaced by a
functional of the distribution such as the expected value or the median. Second, we need to discretize
the life distribution, since the optimization model is defined using discrete times.

We distinguish between the first and the second stage models. The first takes into consideration all
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Figure 5: Distribution of the time T = inf{t : a(t) > amax} when the crack of component four will
reach amax = 30 mm both considering uncertainty in parameter estimation (line with stars) and without
uncertainty (solid line). The distribution is updated with the observations at 200 FH (upper left), 400
FH (upper right), 600 FH (lower left) and 800 FH (lower right).
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Figure 6: A three dimensional illustration of how the distribution of the crack length at a fixed time of
component four varies with the numbers of observations. The distribution is updated each time a new
observation is made: first observation at 200 FH (upper left), second observation at 400 FH (upper right),
third observation at 600 FH (lower left) and fourth observation at 800 FH (lower right). The values at
the crack length O corresponds to the probability (a point mass) that there are no cracks.

possible future events, while the second stage model contains one model for each future event.
We minimize the expected cost of maintaining the engine during a fixed time period containing 7'
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Figure 7: Distribution of the crack length at the times 500 and 1000 FH for component four both
considering uncertainty in parameter estimation (line with stars) and without uncertainty (solid line).
The distributions are updated with the observations at 200 flight hours (upper left), 400 flight hours
(upper right), 600 flight hours (lower left) and 800 flight hours (lower right). The observations are
marked in the pictures with "z".

equidistant time points, with components allowed to be replaced only at these time points. The life
limits of the deterministic components are T}, 7 € N, as defined in Section 2. The time to the first failure
of the stochastic component is modeled with the distribution G: The life U of the stochastic component
currently in the engine is defined as 7(u) € {1,...,T—1}. The life of each replacing stochastic component
is defined as 7 =~ ExU (see Altenstedt [1]) such that 7 € {1,...,T — 2} (if 7 > T — 1 the stochastic
component is replaced at most once during the time horizon considered). In addition to the costs defined
in Section 2, ¢ denotes the cost for replacing a stochastic component.

The binary variables x;;, representing the replacement of the deterministic components, and z;, rep-
resenting maintenance occasions, are defined as in Section 2. The binary variables s; are defined as

1, if the stochastic component is replaced at time ¢,

5t { 0, otherwise, te{l,..., T —1}

The first stage binary variables are z;; for the deterministic components ¢ € N, s; for the stochastic
component, and z; for the maintenance occasion. Let x1 = (211,...,%nN1, S1,21) be the replacement
strategy vector X; € argmin, cgn+2 F(X1), the optimal replacement strategy for the first stage, where

Flxi) = / " f (s u) dG(u) = Ealf(x1, U)] (20)

The second stage function f(xi,u) represents the cost for the maintenance schedule conditioned that
the replacement strategy for the first stage is fixed to x; and that the life of the stochastic component
currently in the engine is u. It is defined as

T-1
f&,#(w) =min Y

t=1

(Z CiTi + sy + dzt> , (21)

iEN
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subject to

Z sy > 1, ¢=max{2,7(u) — 7+ 1},...,T — T,

0=2,...,7(u) — T,
D s = s, if F(u)—7>2,

with S defined in (4). The computation of the second stage function (21) requires a discretization of the
distribution G. Let n € {1,...,T —1} and define x,, = {k1,...,kn} C{1,...,T—1} such that k;41 > k;,
je{l,...,n—1}. An n-discretization G,, of the distribution G has the probability mass function

pj, fu==Fk;, j=1,...,n,
(1) = 22
gn(w) {0, if ué k. (22)

4.2.1 Error measure

The n-discretization (22) yields the replacement strategy

X7 € argmin F,(x1), (23)
X1€IBN+2

with F), defined as F in (20) with G replaced by G,,, so that F),(x;) = 2?21 f(x1,kj) - pj.

The distribution using the maximum number of support points in the model is Gr_;. Introduce the
error measure for the expected cost between the two discretizations

e(Gn, Gr—1) = Fr1(X}) — Pr_a(%{ ), (24)

for n € {1,...,T — 1}. The upper bound e(G,,Gr-1) < 2-sup,, epn+z |[Fn(x1) — Fr_i(x1)] < C -
sup,eg |Gn(u) — Gr-1(u)|, for some C > 0, was derived in Svensson [19].

4.2.2 Discretization approaches

When discretizing G(u),u € [0,00) using n < T — 1 points of support, the following questions arise: 1)
How many points of support should we use? 2) Which points of support x,, C x7r—1 should we choose? 3)
How should we distribute the probability mass? Answering the questions 2) and 3) simultaneously may
lead to optimization problems that are as difficult to solve as the original problem. In Section 4.2.3 we try
to answer question 1) using simulation. In Svensson [19] four discretization approaches were described: (i)
Minimizing the sup-norm distance, (ii) using means in brackets, (iii) minimizing the Wasserstein distance,
and (iv) moment preserving discretization; we refer to Svensson [19] for more details and present only
the numerical results here.

4.2.3 Test results
The life of the stochastic component is modeled as
Glu)=1- e~ >0, (25)

where # > 0 is the characteristic life and o > 0 is the shape parameter. The number of time steps is
T = 30, the distance between them is one, and § = 9. Tests were made with « € {1,2}.

We model an engine with one stochastic and one deterministic component. In each time step there
are four alternatives: (1) Replace the deterministic component, (2) replace the stochastic component, (3)
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replace both components, or (4) do not replace any components. Optimal replacement alternatives were
calculated using the optimization model (23) with n € {1,...,10} points of support.

The probabilities were chosen using the method that minimizes the sup-distance, the method that
minimizes the Wasserstein distances, the method that preserves the moments, and the bracket means
method (with Approximation 1, cf. Svensson [19]).

The most accurate discretization possible has 7" — 1 = 30 points of support, one in every time point,
for which an optimal replacement strategy was calculated according to (23) with n = T — 1. The
difference between the two discretizations, using the error measure (24), was calculated. The values
for the parameters and remaining lives of the components used are 7(u) = 4 and 6, 7 = 6 and 10,
¢ = 60,70,100, 130 and 150, d = 70,100 and 150 and o = 1 and 2.

The results in Figure 8 indicate that minimizing the Wasserstein and the sup norm distance seem
preferable to using the moment preserving method. The main conclusions seem to be that using two
points of support is worse than using one (the expected value) of the distribution, furthermore that there
is a large gain in using three points of support and that there is not a large gain in using more than three
points of support, if we disregard the moment method with o = 1.

Further tests showed that the error measure decreases as « increases. A possible explanation for this
is that the variance of the Weibull distribution (25) decreases with an increasing value of the parameter
«a, for constant 0, and for a distribution with large variance many points of support are needed for a good
approximation of the distribution.

Finally, in Svensson [19] it was shown that many details were replaced even when not needed, which
can to be due to the approximation made in that (narrow scenario tree) scheme: Only the first life of
the stochastic component is treated as stochastic and approximated with a discrete distribution, while
the remaining lives are treated as deterministic with lives equal to the expected value under the true
distribution.

Error measure as function of number of points of support, alpha=1
T T T T T T T T

X

(2]
T
o

X O * +
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o B N w A~ O

Number of points of support

Error measure as function of number of points of support, alpha=2
10 T T T T T T T
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Figure 8: The vertical axis represents the mean error measure with parameter values given above. The
horizontal axis represents the number of support points. S, B,W and M refer, respectively, to the method
minimizing the sup norm distance, the bracket method, the method minimizing the Wasserstein distance,
and the moment preserving method.

4.3 Output and relation to the optimization problem

The results of the mathematical modeling of the time between failures consist of three main components:
The first is an empirical evaluation of the distribution of the observed failure times, with respect to the
problem of finding models that accurately describe the process of failure times. The main objective is to
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find a more narrow description of occurring distributions for the lives, that incorporates finite-dimensional
parameters. The goal is to be able to transform structural information from one type of engine—for which
there is a large set of empirical data—to another type of engine—for which the amount of data is more
limited. Therefore, tests were made for two types of stochastic processes (the non-homogeneous Poisson
process and the non-stationary renewal process) to see which was the better fitting.

The second consists of physical modeling of, e.g., the growth of cracks with which one obtains more
specific descriptions of the time until failure, which is defined as the first time the crack reaches a critical
length. This part can be seen as a refinement of the standard approach when using more information.

Finally, since the optimization model for finding a replacement strategy is not developed to deal
with probability distributions as inputs, but rather with discrete data, it was necessary to discretize the
continuous distributions to discrete ones with only a few support points. Methods for the discretization
were evaluated in a simple simulation study. Although the simulations were performed for a simple model
they clearly indicate that increasing the number of support points from only one can make a dramatic
change in the cost savings. In the case studied, typically three support points seem adequate. This seems
promising for the type of optimization problems that we consider.

The random modeling of the lives is decisive for the performance of the optimization model. An
empirical study of the lives indicated that a non stationary renewal process with Weibull distributed lives
was a good model for the recurring maintenance times. This suggests the use of that model directly on
the type II engine data. Using physical modeling of the crack size and finer measurements gave a better
description of the time to failure/maintenance.

In the example studied, using a discrete distribution for the first life of a stochastic component, resulted
in decreased maintenance cost Here, only a few points of support were necessary for a substantial gain.
Further studies are needed to draw conclusions for more realistic situations; however the results seem
promising for improving the performance of the optimization model.

Only modeling the first life in the stochastic component as random gives inefficient maintenance
decisions, sometimes replacing new components. This calls for developing a finer optimization model
treating all recurrent lives in the stochastic components as random. This potentially may blow up the
complexity of the optimization, because of the discretization: If one treats the subsequent lives, 1, ...,
say, as independent random variables the resulting multivariate discretized distribution will have n;-...-ng
points of support, where n; is the number of support points for the discretized distribution of ;.

5 Maintenance policies

Currently VAC do not utilize an optimization model for the determination of maintenance schedules. In
this section we present the policy that VAC use for this purpose as well as an age replacement policy (cf.
Section 1.3). In Section 6 we evaluate these policies against the optimization model through stochastic
simulations.

The methodology currently applied at VAC is a combination of a value policy and manual adjustments.
A tentative replacement schedule for the current maintenance occasion is provided by the following value
policy. If the remaining life of component i € A is T the value of the component is v; = T; - ¢ /T;.
Letting d be the fixed cost per maintenance occasion, according to the value policy, a component with
v; < d is replaced. If v; > d, component i is not replaced.

A problem with this policy is that if component ¢ has a price ¢; < d, then the policy dictates that
it is to be replaced at every maintenance opportunity, regardless of its remaining life. Therefore, the
policy is adjusted using a life limit 7},;,; this value is typically based on customer requirements on the
remaining life of the complete engine after maintenance. The adjusted value policy dictates that if ¢; < d
and Ti > Thin, then component i is not replaced.

The resulting tentative maintenance schedule is then illustrated graphically in an Excel sheet and the
user can make manual adjustments in order to provide a cheaper schedule, if possible. At best, this policy
may provide schedules that are as good as the ones provided by the optimization model (3), but it would
take very great skills to achieve this.

The value policy is developed for safety critical (deterministic) components. On condition (stochastic)
components are included by replacing the deterministic life limits with the estimated lives from the
conditional expectation.

An age replacement policy is defined as follows. Each component i € A is given a life limit a;; if
the age of component 7 is higher than a; then the component is replaced. Finding good values of the
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life limits is a difficult problem, for which we have implemented the following heuristic procedure. Let
a; :=T; — §, where § > 0. An optimal value of ¢ is found by calculating the total maintenance cost using
the age replacement policy for the values 6 = 0,1,...,7T and picking the value of § that corresponds to
the cheapest maintenance schedule.

Stochastic components are included in this policy analogously as in the value policy.

6 Simulations

We investigate how the three models and methods developed above behave in stochastic situations. For
this purpose we create 200 scenarios representing the low pressure turbine’s real behaviour. Among its ten
parts, four are safety critical (SC) (exhaust frame, roller, conical shaft, and air seal), while the remaining
six (stator, seal and nozzle segments, case, disk, and blade) are on condition (OC).

The value of the fixed cost d is based on an estimate of the real cost for transport, inspection,
administration, etcetera, associated with every maintenance activity regardless of which components are
replaced. The value of the time horizon, 7', has been set to 1500 flight hours, which is standard procedure
at VAC when calculating maintenance prognoses. We do not specify costs explicitly, since this information
is classified. Each SC component has a deterministic life limit. Each OC component is given a Weibull
distributed life, which we vary across the simulations.

In order to appreciate the value of performing opportunistic maintenance at all we also compare with
the “method” of never replacing an SC component which has not reached its life limit or an OC component
which is not considered broken, that is, no opportunistic maintenance is performed. Unless we discretize
time this is an unrealistic strategy, since it means that components having only a very small fraction of
their lives left still are not replaced during maintenance with the effect that the module must be taken
back to the work shop almost the instant it is being used again. Thanks to the discretization made, each
time interval consisting of 50 flight hours, it means in our instance that SC components that have a life
less than 25 flight hours left will be replaced.

6.1 The deterministic problem

We begin by assuming that all components have deterministic life limits in order to produce a first,
deterministic, problem. We hence associate also all OC components with deterministic life limits. The
four methods then fare as follows. In relation to the total cost of using no opportunistic maintenance
(below referred to as “None”), the other methods yield a cost of 66% [integer model (3), or “Integer”], 72%
(age policy, or “Age”), and respectively 146% (value policy, or “Value). The total number of maintenance
occasions are 14 (“None”), 4 (“Integer”), 3 (“Age”), and 9 (“Value”); each of the opportunistic methodologies
reduce the former number considerably.

Figure 9 shows for each component how many individuals are replaced for each of the four methods.

Number of parts replaced
10 T T T T T

8f I None 1
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[ lAge
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Figure 9: Number of components replaced for the deterministic problem.

The integer model provides the best solution by far in terms of total maintenance costs, whence we
see that its use is motivated twofold: both the number of maintenance occasions and the total cost is
reduced considerably. The age replacement policy has a similar behaviour but reduces the number of
maintenance occasions even further, however at the cost of replacing components 1, 9, and 10 once too
often. (There is no optimal maintenance schedule with less than four maintenance occasions.) The value
policy reduces the number of maintenance occasions at the cost of a large number of replacements of
components 6, 7, 8, and 9. This is due to the fact that the fixed cost is similar to the cost of each of these
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components, which has the effect that the value policy dictates that these components are to be replaced
(too) often; a close look at the solution shows that 6 replacements of component 6 simply can be stricken.
This effect will also be present in our stochastic simulations to follow. Note finally that the total number
of replacements of each component is the same in the optimal solution to the integer model and in the
case of no opportunistic maintenance, which is also a lower bound on the total number of replacements;
the integer model is simply better at grouping these occasions together.

6.2 Stochastic simulations

We next provide results for stochastic simulations with the purpose of learning how opportunistic main-
tenance fairs when components have stochastic lives. A scenario for an OC component is defined as a
sequence of values of (real) lives of the components that may replace an old component at each mainte-
nance opportunity. A scenario for the whole system of OC components is made up by scenarios for each
component. In simulations we create 200 such sets of scenarios by drawing deterministic life limits from
the respective OC component’s life distribution. Following the creation of these 200 scenarios we run the
three methods for each scenario and calculate the means of total costs, etcetera. The optimal J-value
obtained in the age replacement policy for the above deterministic problem is utilized in these stochastic
simulations. We also similarly apply the method of using no opportunistic maintenance.

The uncertainty becomes more serious with lower values of the parameter (3 in the Weibull distribution,
and with more stochastic components. Our selection of values of § is based on the knowledge that
2 < @ < 6 for aircraft engine components. In order to investigate the role of the size of 3 as well as the
presence of a larger number of stochastic components, we have run simulations with values 6, 4, and 2 of
0, and for each such value we have run tests with a varying number of stochastic components.

First, Figure 10 summarizes the experiments where we have, for components 1, 4, 5, 6, 9, and 10 let a
common value of 3 vary among the values 6, 4, and 2, thus gradually increasing the level of uncertainty.

Number of maintenance occasions Normalized costs

I Nore | 15
[ integer 1
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Figure 10: Number of maintenance occasions and cost when the § value is the same across parts.

Clearly, maintenance planning becomes more and more difficult as the value of 3 decreases; however,
while the uncertainty is quite substantial in the last example, the integer model still reduces the total
cost by 7 % compared to performing no opportunistic maintenance, and for higher values of 5 the gain
is significantly higher still.

Assume finally that the components have different 5 values, which is the most likely scenario; let
components 1 and 4 have § = 2, components 5 and 6 have § = 4, and components 9 and 10 have 3 = 6.
In relation to the total cost of using no opportunistic maintenance (“None”), the other methods then yield
a cost of 83% [“Integer”], 96% (age policy, or “Age”), and respectively 126% (“Value). The total number
of maintenance occasions are 15.01 (“None”), 7.73 (“Integer”), 6.07 (“Age”), and 8.35 (“Value”).

Figure 11 shows for each component how many individuals are replaced for each of the four methods.
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Figure 11: Number of components replaced when the (8 value varies among parts.
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While the uncertainty is quite substantial in this last example, and therefore the maintenance difficult
to plan successfully, the integer model still reduces the total cost by 17 % compared to performing no
opportunistic maintenance; the age replacement policy is however only marginally better.

In summary, maintenance planning should be performed in an opportunistic manner, even when
the uncertainty in the life estimates for the OC components is quite substantial. Using the optimization
model always provides a quite large improvement over the current VAC method, while the age replacement
policy in some cases is even more expensive than the latter. The optimization model provides the best
maintenance schedule in each and every case; the effectiveness of the age replacement policy is however
problem dependent—it is not difficult to construct examples when this heuristic provides schedules that
are 50 % more expensive than that provided by the optimization model.

The optimization model also has the clear advantage over all the other ones that it is general, in
the sense that more general settings can be relatively easily incorporated. Such extensions could include
subsets of the following: additional (side) constraints on the life limits of some (or all) components at the
end of the planning period; the presence of a warehouse of cheaper, used spare parts; the consideration
of the complete engine, including the associated work costs in disassembling the different modules; and
so on. It is not obvious how to extend, for example, the age replacement policy to treat this problem.

7 Conclusions

The optimization model described in this paper aims at minimizing the total expected cost during a
given time period. The optimization model developed is designed to consider the cost for interrupted
production while minimizing the cost of maintenance, in practice meaning that the model will strive to
create a maintenance plan with as infrequent maintenance occurrences as possible while maintaining a
sound use of replacement parts, new as well as used components.

This is obviously a very useful feature for any organization that needs to operatively schedule and plan
the maintenance of any expensive equipment. This type of tool may also be used to create such values
that its use can be sold as an additional service product. The described method has been developed and
tested for a military aircraft engine, but the potential for use in a commercial context is also encouraging
and depends on the kind of agreement between the maintenance provider and the customer. The flight
hour agreements mentioned earlier in the text are fairly common within the aero industry.

The usefulness, however, does not end at operative aspects. It also has strategically and tactical
uses, for instance, when performing analyses about which components would gain the most on product
development, i.e., to get its expected life span prolonged. The engineering work, and cost, required to
prolong the life span of a component can be significant. The outlined methodology offers, for example,
the opportunity to perform tests in order to select better development projects.
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