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WYTHOFF NIM EXTENSIONS AND CERTAIN BEATTY
SEQUENCES

URBAN LARSSON

Abstract. The solution of Wythoff’s game—the set of P -positions—
may be represented as a pair of sequences of non-negative integers, sat-
isfying Beatty’s well-known theorem.

We generalize the solution of Wythoff’s game to a pair of so-called
m-complementary Beatty sequences. Our main result is that these se-
quences give the solution to three new extensions of Wythoff’s game—of
which one has a certain blocking manoeuvre on the rook-type options.

1. Introduction and some notation

The game of Wythoff Nim is an impartial game played on two piles of
tokens, see [Wy]. As an addition to the rules of the game of Nim, where a
player may remove tokens from precisely one of the piles, Wythoff’s game
also allows removal of the same number of tokens from both piles. The
game is more commonly known as “Corner the queen”, invented by Rufus
P. Isaacs (1960), because the game can be played on a chessboard with one
single queen. The queen may be moved as in a game of chess but with the
restriction that for each move, the ‘distance’ to the lower left corner must
decrease. The two players move alternately until one of them cannot do so
any longer. The last player to move wins.

The solution of Wythoff’s game is given by {{ai, bi}1 | i ∈ N0}, where, for
all n,

an =

⌊
n(1 +

√
5)

2

⌋

and

bn =

⌊
n(3 +

√
5)

2

⌋
.

Then (ai)i∈N and (bi)i∈N are so-called complementary sequences ([Kim07,
Kim08]), which is a consequence of Beatty’s theorem ([Ray, Bea, OsHy]):

Theorem 1.1. Suppose α, β are positive irrational numbers such that
1
α

+
1
β

= 1.

Date: September 30, 2008.
Key words and phrases. Beatty sequence, Blocking manoeuvre, Complementary se-

quences, Congruence, Impartial game, Integer sequence, Muller Twist, Wythoff Nim.
1As usual, {x, y} denotes an unordered pair of integers, that is (x, y) and (y, x) are

considered the same.

1



2 URBAN LARSSON

Then for all x ∈ N there is an n = n(x) ∈ N, such that precisely one of αx
and βx lies in the interval [n− 1, n).

This result is a special case of Theorem 3.1. In Section 2 we give some
background material for our extensions of Wythoff’s game, including one of
the main ideas in this paper - a variation of Wythoff’s game where a move
consists of two parts, the move in itself and a blocking manoeuvre, also
known as a Muller Twist (see for example [GaSt, HeLa, HoRe, Lar, SmSt]).
In Section 3 we discuss the sequences that constitute the solutions of our
three families of games. We rely on a generalization of Beatty’s theorem to
m-complementary sequences.

Definition 1. Let m ∈ N. Two sequences (ai) and (bi) of (positive) integers
are m-complementary, if for any (positive) integer, say n,

#{i | ai = n}+ #{i | bi = n} = m.

A 1-complementary pair of sequences is simply denoted complementary.

In Section 4 we define three (families of) games—here we give a rough
outline: Fix positive integers k and m as game constants (for our third game
there is also another integer constant 0 ≤ l < m).

For each game the players may move along a widened bishop-type diag-
onal, namely for the first two games a player may ’deviate’ at most k − 1
squares and for the third game at most km− 1 squares. In addition, for the
game

(I) kWNm: The previous player may block off at most m−1 non-diagonal
positions;

(II) kWN(m): The rook-type moves are restricted to moving a multiple of
m squares;

(III) k×mWNl: A rectangle with circumference 2m and one side l, is re-
moved from the lower left corner of the game board. A rook-type
move is as in Nim.

Then we illustrate our games by some examples. In Section 5, by making use
of the results in Section 3, we prove that for each game—given the constants
k and m—a winning strategy is (if possible) to move to a position of the
form {⌊

nΦkm

m

⌋
,

⌊
n(Φkm + km)

m

⌋}
,

where

Φx =
2− x +

√
x2 + 4

2
.(1)

Finally, in Section 6 we consider some other ways to define the solutions
of our games, namely via the notion of minimal exclusive algorithms.

2. Background and some discussion of rules

Denote the positive integers by N and the non-negative integers by N0.
Let G be a 2-player impartial game; for an introduction to impartial games
see [BeCoGu]. We follow the convention to denote our players as the next
player (the one whose turn it is) and the previous player. A P -position is
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Figure 1. A rough sketch: The Beatty-pair at the top, to-
gether with the theorem and the lemma motivate the rules
for our games (in grey)—namely, the formula represents a
winning strategy (the dotted lines).

a position from which the previous player can win (given perfect play). An
N -position is a position from which the next player can win. A position is
either a P -position or an N -position. The set of all P -positions is denoted
by P = P(G) and the set of all N -positions by N = N (G).

2.1. Connell’s game. In [Con] I.G. Connell studies the solution of a varia-
tion of Wythoff’s game, which we call Connell’s game and denote by WN(m):
The queen’s bishop-type options are as in Wythoff’s original game, but the
rook-type options consist of all integer multiples of a fixed positive integer.

Hence, for a positive integer m, a rook-type moves is (x, y) → (x, y−mi)
or (x, y) → (x−mj, y), where i, j ∈ N and mi ≤ y, mj ≤ x.

Example 1. The first few P -positions {cn, dn} of WN(3) are:

dn 0 1 2 4 5 7 8 10 11 12 14 15 17 18 20 21 22
cn 0 0 0 1 1 2 2 3 3 3 4 4 5 5 6 6 6
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 1. Some values of cn = bnΦ3
3 c and dn = cn + n.

The values in Table 1 are actually given by:

cn =

⌊
n(
√

13− 1)
6

⌋
,
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Figure 2. P -positions of Connell’s game, WN(3); the posi-
tions nearest the origin such that there are precisely three
positions in each row and column and one position in each
NE-SW-diagonal.

and

dn =

⌊
n(
√

13 + 5)
6

⌋
.

In fact, the general solution, which can be derived from [Con], is given by

cn =
⌊

nΦm

m

⌋
,

and

dn = cn + n.

Remark 1. In Connell’s presentation, for the proof of the above formulas,
he rather uses m pairs of complementary sequences of integers (by analogy
with the discovery of a new formulation of Beatty’s theorem in [Sko]). We
have indicated this pattern of P -positions by different shades in Figure 1.
We will see that, in fact, the squares of darkest shade, starting by (0, 0),
are P -positions of the game in the next paragraph (for k=3) and the lighter
shades are P -positions of special cases of games that we study in Sections 4
and 5.

2.2. Fraenkel’s k-Wythoff Nim. We define an extension of Wythoff’s
game which is studied in [Fra82] by A. Fraenkel. Our definition of Fraenkel’s
game differs somewhat from the original definition. However, it does not
change the rules of the game; namely, we have introduced an overlap of the
type (I) and (II) options below. The reason for this minor technical change
will become clear in Section 3.

Definition 2. Let k ∈ N. For the game of k-Wythoff Nim, or just kWN,
the queen’s moves (options) are of two types:

(I) A rook-type move as in Nim;
(II) A k-bishop-type move is a composition of a (restricted) rook-type

move and a bishop-type move, all in one and the same move. Namely,
first move 0 ≤ i < k rook-type positions and then, from the new
position, move 0 ≤ j bishop-type positions as long as i + j > 0.
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The first few P -positions of 3WN are {an, bn}, where:

bn 0 4 8 12 17 21 25 30 34 38 43 47 51 55 60 64 68
an 0 1 2 3 5 6 7 9 10 11 13 14 15 16 18 19 20
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 2. Some values of an = bnΦ3c and bn = an + 3n.

As we have remarked at the end of the last paragraph, and according to
Table 2, at least for the first few n we get that (an, bn) = (c3n, d3n). That
this holds for all n is evident by the following result (where the minimal
exclusive algorithm is defined as usual: for a strict subset X of the non-
negative integers mexX := min(N0\X)):

Theorem 2.1. Let k be a positive integer. The P -positions {an, bn} of
k-Wythoff Nim are characterized by either of the two equivalent formulas:

(I) For n ≥ 0 put an = mex{ai, bi | i ∈ [0, n− 1]} and bn = an + kn;
(II) For n ∈ N0 put an = bnΦkc, bn = an + kn, where Φk is as above.

The minimal exclusive algorithm in (I) gives an exponential time solution
to kWN, in succinct input size, but the Beatty-type solution in (II) gives a
polynomial time solution. For a discussion on complexity issues for combi-
natorial games, see for example [Fra04]. For the main part of this paper, we
will focus on the Beatty-representation of a solution. It is not only faster,
but also more explicit in its formulation.

We note that k-Wythoff Nim is included as a special case of a variant of
Wythoff’s game in [FrBo], where Fraenkel and I. Borosh study an extension
of Connell’s game (different from ours in Section 4), which includes a Beatty-
type characterization of the P -positions.

Before we study the solution to our generalizations of Connell’s and
Fraenkel’s games, let us give some background to the so-called blocking
manoeuvre, in the context of Wythoff Nim.

2.3. A bishop-type blocking variation of k-Wythoff Nim. Let p, k ∈N.
In [HeLa] the authors give an exponential time solution to a variation of
k-Wythoff Nim with a blocking manoeuvre, denoted by p-Blocking k-Wythoff
Nim (and by (p, k)-Wythoff Nim in [Lar]). For this game there is a certain
“twist” included to each move. The rules are as in k-Wythoff Nim, except
that before the next player moves, the previous player is allowed to select
(at most) p − 1 bishop-type options and declare that the next player may
not make any of these moves.

The solution of this game is in a certain sense “very close” to pairs of
Beatty sequences (see also the Appendix of [Lar]) of the form(⌊

n(
√

k2 + 4p2 − k)
2p

⌋)
and

(⌊
n(

√
k2 + 4p2 + k)

2p

⌋)
.

But the authors explain why there can be no Beatty-type solution to this
game for p > 1 and k - p (For k | p, the ’Beatty-type solution’ is given
in [Lar]). For these type of questions, see also [BoFr]. However, a recent
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discovery, in [Had], provides a polynomial time algorithm for the solution of
(p, k)-Wythoff Nim (for any combination of k and p).

An interesting connection to 4-Blocking 2-Wythoff Nim is presented in
[DuGr], where the authors give an explicit bijection of solutions to a variation
of Wythoff’s original game, where a player’s bishop-type move is restricted
to jumps by an even number of squares.

For another variation, [Lar] defines the rules of a so-called move-size
dynamic variation of two-pile Nim, (p, k)-Imitation Nim, for which the
P -positions, treated as starting positions are identical to the P -positions
of (p, k)-Wythoff Nim.

We will not discuss (p, k)-Wythoff Nim any more in this paper.

3. Solutions represented as pairs of integer sequences

As we have seen, it is customary to represent the solution of a “Wythoff-
type” game as a sequence of pairs of non-negative integers; or more precisely,
as pairs of increasing sequences of non-negative integers. This leads us to a
certain extension of Beatty’s original theorem.

3.1. Beatty sequences. We generalize Beatty’s original theorem to the
notion of (a pair of) m-complementary sequences. In the literature we have
found a proof of this theorem in [Bry02], where K. O’Bryant uses generating
functions (a method adapted from [BoBo]). Here, we have chosen to include
an elementary proof, in analogy to ideas presented in [OsHy] and [Fra82].

Theorem 3.1. Let 0 < α < β be irrational numbers such that
1
α

+
1
β

= 1

and let m ∈ N. Then n ∈ N implies

m = #
{

i ∈ N | n =
⌊

iα

m

⌋}
+ #

{
i ∈ N | n =

⌊
iβ

m

⌋}
.

In other words, (Ai) = (b iα
m c) and (Bi) = (b iβ

m c) are m-complementary.

Proof. It suffices to establish that exactly m members of the set

S = {0, α, β, 2α, 2β, . . .}
are in the interval [n, n + 1) for each n ∈ N, or to say slightly more, that
N ∈ N0 implies #S ∩ [0, N) = mN . But

#(S ∩ [0, N ] = #({0, α, 2α, . . .} ∩ [0, N ]) + #({β, 2β, . . .} ∩ [1, N ])

= bmN/αc+ 1 + bmN/βc,
and since

mN/α + mN/β − 1 < bmN/αc+ 1 + bmN/βc
< mN/α + mN/β + 1,

we are done.

For one of our games (see Figure 4) we will need somewhat more precise
information on the sequences (Ai) and (Bi). In fact, the following corollary
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contains the essence of the ideas in Connell’s proof in [Con]. It is a special
case of the generalization of Beatty’s theorem in [Sko, Fra69, Bry03]. We
have included a proof to make the paper self-contained.

Corollary 3.2. With notation as in Theorem 3.1 and provided m > 1, for
any integer 0 < l < m, the sequences (Ami+l)i∈N0 and (Bm(i+1)−l)i∈N0 are
complementary. If l = 0 then (Ami)i∈N and (Bmi)i∈N0 are complementary.

Proof. Clearly 1 < α < 2 < β. Then for all i, 0 < Bi+1 − Bi, so that by
Theorem 3.1,

#
{

i ∈ N | n =
⌊

iα

m

⌋}
= m− 1 and #

{
i ∈ N | n =

⌊
iβ

m

⌋}
= 1(2)

or

#
{

i ∈ N | n =
⌊

iα

m

⌋}
= m and #

{
i ∈ N | n =

⌊
iβ

m

⌋}
= 0.(3)

Then, for any n, the number of elements of (Ai) in the interval [Bn, Bn+m)
is

cm + m(m− 1) ≡ 0 (mod m),(4)

where c is some non-negative integer constant.
The result follows by an inductive argument, where the base cases are

0 = B0 = A1, A2, . . . , Am−1;
1 = B1 = Am, Am+1, . . . , A2m−2;
2 = B2 = A2m−1, A2m, . . . , A3m−3;

...
m− 1 = Bm−1 = Am2−2m+2, Am2−2m+3, . . . , Am2−m.

Namely, let n be as in (2). Then, since (Ai) is non-decreasing, (4) together
with the base cases give that there is precisely one x in each congruence class
modulo m, such that n = Ax (and these indexes are consecutive), except
for, say the congruence class z, where n = Bm′m−z for some integer m′. If n
is as in (3), then, trivially, there is precisely one x in each congruence class
modulo m, such that n = Ax.

3.2. Some special sequences. Let Φx be as in (1). Then Φx is irrational
and so, since

1
Φx

+
1

Φx + x
= 1,

the next result follows from Theorem 3.1 together with some elementary
arithmetics (we omit the proof).

Lemma 3.3. For k, m ∈ N with m > 1, for each n ∈ N0, let

an = an(k, m) =
⌊

nΦkm

m

⌋

and

bn = bn(k, m) =
⌊

n(Φkm + km)
m

⌋
.
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Figure 3. A family tree of some extensions of Wythoff’s
original game.

Then
(I) #{ai, bi | i ∈ N} = m;

(II) bn − an = kn;
(III) if m = 1, then

(a) an+1 − an = 1 and bn+1 − bn = k + 1, or
(b) an+1 − an = 2 and bn+1 − bn = k + 2.

(IV) if m > 1, then
(a) an+1 − an = 0 and bn+1 − bn = k, or
(b) an+1 − an = 1 and bn+1 − bn = k + 1.

4. Three Extensions of Wythoff’s, Connell’s and Fraenkel’s
games

As we have remarked in Section 2.2, the rook-type options intersect the
k-bishop-type options precisely when k > 1. For example, for 2-Wythoff
Nim (2, 3) → (1, 3) is both a “diagonal” and a rook-type move. We will
make use of this fact when defining the blocking manoeuvre. Therefore, let
us introduce the following non-standard notation.

Fix positive integers k and m. If an option of k-Wythoff Nim is not of
the form of the k-bishop as in Definition 2 (II), it is a roob(-type)2 option.
Then for 2WN (2, 3) → (2, 1) is a roob option, but (2, 3) → (2, 2) is not a
roob option (both options are rook options).

Let us define our games:
kWNm: k-Wythoff m-Blocking Nim is a variation of Wythoff’s game with a

roob-type blocking manoeuvre. The players move as in k-Wythoff
Nim, but with one exception: before the next player moves, the
previous player may block off (at most) m − 1 of the next player’s

2Think of ’roob’ as ’ROOk minus k-Bishop’, or maybe ’ROOk Blocking’
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roob options. The blocked off options are excluded from the next
player’s set of options. Each blocking manoeuvre is particular to a
specific move; that is, when the next player has moved, the previous
player’s blocking manoeuvre has no further impact of the game.

kWN(m): k-Wythoff Modulo-m Nim is a variation of Wythoff’s game, where
the players move as in k-Wythoff Nim (where the k-bishop-type
options are as in Definition 2) with one exception. The length of
a rook-type move must be some positive multiple of m. Note: By
this definition there is no congruence restriction on a k-bishop-type
option (even when it intersects the rook-type options).

k×mWNl: l-Shifted (final positions of) k×m-Wythoff Nim. For an integer

0 < l < m,

a player moves as in (km)-Wythoff Nim, except that a player cannot
move to any of the positions in the rectangle

{(i, j) | 0 ≤ i < kl, 0 ≤ j < k(m− l)}3.

Hence the new terminal positions are (kl, 0) and (0, k(m−l)). On the
other hand, if l = 0, k×mWN0 reduces to the game (km)-Wythoff
Nim.

We let the two players Alice and Bob illustrate our games with some easy
examples; Alice makes the first move (and Bob makes the first blocking
manoeuvre in case the game has a Muller twist).

Example 2. Suppose the starting position is (0, 2) and the game is 2WN2.
Then the only bishop-type move is (0, 2) → (0, 1). There is precisely one
roob option, namely (0, 0). Since this is a terminal position it will be blocked
off from the next player’s options, so that Alice has to move to (0, 1). Then
the move (0, 1) → (0, 0) cannot be blocked off for the same reason, so Bob
wins. Hence (0, 2) is a P -position.

Example 3. Suppose the starting position is (0, 2) and the game is 2WN(2).
Alice can move to (0, 0), since 0 ≡ 2 (mod 2), and wins. Hence (0, 2) is an
N -position.

Example 4. Suppose the starting position is (0, 4) and the game is 2WN3.
Then the only bishop-type move is (0, 4) → (0, 3), so that the roob op-
tions are (0, 0), (0, 1), (0, 2). Bob may block off 2 of these positions, say
(0, 0), (0, 2). Then if Alice moves to (0, 1) she will loose (since she may not
block off (0, 0)), so suppose rather that she moves to (0, 3). Than she may
not block off (0, 2) so Bob moves (0, 3) → (0, 2) and blocks off (0, 0). Hence
(0, 4) is a P -position.

Example 5. Suppose the starting position is (0, 4) and the game is 2WN(3).
Alice can only move to (0, 1). Then Bob may move (0, 1) → (0, 0), a
2-bishop-type option. This shows that (0, 4) is a P -position.

Notice in Examples 2 and 3 that the P -positions are distinct inspite
the identical constants (k = m = 2). But in the Examples 4 and 5 the
P -positions are the same.

3One may think of the game as if this lower left rectangle is cut out from the gameboard.
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Figure 4. P -positions of 2WN(3), 2WN3 and 2×3WNl for
0 ≤ l ≤ 2; the positions nearest the origin such that there
are precisely three positions in each row and column and one
position in every second NE-SW-diagonal.

Example 6. If the starting position is (0, 4) and the game is 2×3WN1,
then Alice cannot move so that Bob wins. If, on the other hand, the game
is 2×3WN2, the position (0, 2) is terminal and so Alice wins (by moving
(0, 4) → (0, 2)).

Suppose now that the starting position of 2×3WN2 is (1, 8). Then, Alice
may move to (0, 2) to win. But if the starting position of 2×3WN0 is (1, 7)
Alice may not move to (0, 0) and hence Bob wins.

In Table 3 we present the values of an(2, 3) and bn(2, 3) as defined in
Lemma 3.3. In Figure 3 we see that {an, bn} are the first few P -positions
of 2WN(3) and 2WN3 respectively and that the positions (a3n+l, b3n+l) and
(b3(n+1)−l, a3(n+1)−l) correspond to the P -positions of 2×3WNl for 0 ≤ l ≤ 2
and n ≥ 0. For example, the dark positions in Figure 3 are the first few
P -positions of 2×3WN0.

bn 0 2 4 7 9 11 14 16 19 21 23 26 28 31 33 35 38
an 0 0 0 1 1 1 2 2 3 3 3 4 4 5 5 5 6
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3. Some values of an = bnΦ6
3 c and bn = an + 2n

5. Three games—one solution

The solution of our congruence variation, kWN(m) (see also Figure 4),
depends on a certain structure of our sequences. It suffices to use Lemma
3.3 (I),(II) and (IV) to establish the next result. Namely, let n ∈ N0,
i′ = min{i | ai = bn} and j′ = min{i | ai = bn+1}. Then

bj′ − bi′ = aj′ − ai′ + k(j′ − i′)

= bn+1 − bn + k(j′ − i′)

= an+1 − an + k(j′ − i′ + 1)

≡ an+1 − an (mod km),
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Figure 5. The structure of the proof of a winning strategy
for our respective games. The solution of the blocking varia-
tion follows directly from Lemma 3.3. For a Beatty-type (as
in Lemma 3.3) solution of kWN(m) we demand gcd(k, m) = 1.

since j′−i′ = km−1 or (k+1)m−1. We may as a base case use a0 = 0, b1 =
k, . . . , bm−1 = k(m− 1). Then, via an inductive argument, we obtain:

Lemma 5.1. Let x ∈ N0. With notation as in Lemma 3.3, either

(I) there is an i, such that ai = ai+1 = . . . = ai+m−1 = x, where

bi − x

k
,
bi+1 − x

k
, . . . ,

bi+m−1 − x

k

are consecutive integers; or
(II) there is an n such that bn = x, and if m > 1, there is an i > n such

that x = ai = ai+1 = . . . = ai+m−2, where

an ≡ bi − k (mod km),

and such that
bi − x

k
,
bi+1 − x

k
, . . . ,

bi+m−2 − x

k

are consecutive integers.

Let X, Y and Z be sets. Then we denote Y tX = Z if Y ∪X = Z and
Y ∩X = ∅. Let us state the main theorem.

Theorem 5.2. Let k,m ∈ N and let (ai) and (bi) be the sequences of
integers defined in Lemma 3.3. Then

(I) P(kWNm) = {{ai, bi} | i ∈ N0};
(II) P(kWN(m)) = {{ai, bi} | i ∈ N0} if and only if gcd(k, m) = 1;

(III)
⊔

0≤l<m P(k×mWNl) = {{ai, bi} | i ∈ N0}.
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Proof. For m = 1, the games have identical rules. This case has been
established in [Fra82]. The case k = 1 has been studied in [Con] for games
of form (II) (and implicitly for 1×mWNl).

For the rest of the proof assume that m > 1. Let us first explain the ’only
if’ direction of (II). Denote by

γ = gcd(k, m), m′ = m/γ, k′ = k/γ.

Then the positions of the form (0, ki), where 0 ≤ i < m′, are P -positions
of kWN(m). Now, (0, km′) is an N -position because k′m = km′ implies
(0,m′k) → (0, 0). But, by definition, bm′ = km′ if m′ < m, which holds if
and only if γ > 1.

For convenience, we may think of the games in (III) as one game, denoted
by k×mWN, where, before the next player makes her first move the previous
player decides the parameter l which then stays fixed for the rest of the
game. Otherwise the rules are as in (III). Then, if the proposition holds,
the P -positions of k×mWN, treated as starting positions, are identical to (I)
(and (II) for relative prime k and m).

Fix k and m and let G be one of our games. Suppose there exists a least
index ξ > 0 such that, either

(i) (aξ, bξ) ∈ N , or
(ii) there is a P -position (aξ, y) 6∈ {(ai, bi)}.

Suppose first that (i) holds and if (ii) holds then y > bξ.
Case kWNm: By Lemma 3.3 (IV) and our assumption, there is no k-

bishop-type move to a P -position. Again, by Lemma 3.3 (I) and
(IV) the previous player can block off all followers of (aξ, bξ) in the
set {(ai, bi)}. But then, by assumption, there is no rook-type move
to a P -position.

Case kWN(m): As before, there is no k-bishop-type move to a P -position.
By Lemma 5.1

bξ ≡ bi (mod m)

implies aξ 6= ai, so there is no rook-type move

(aξ, bξ) → (ai, bi)

for any i < ξ.
Case k×mWN: There is an 0 ≤ l < m and an index i such that

(aξ, bξ) = (ami+l, bmi+l).

By Corollary 3.2 there can be no rook-type move to a position

(amj+l, bmj+l)

or
(bm(j+1)−l, am(j+1)−l)

for any 0 ≤ j < i. By Lemma 3.3 (IV)

bmi+l − bm(i−1)+l − (ami+l − am(i−1)+l) = mk

for any i. But, by Definition 2, a (km)-bishop-type option is dis-
tanced less than mk − 1 rook-type positions from the queens main
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diagonal. Since (bi) is strictly increasing, there is no (km)-bishop-
type move to a position of the form

(amj+l, bmj+l)

(or trivially of the form (bm(j+1)−l, am(j+1)−l)). By assumption, this
implies that the previous player can choose l as the parameter for
this game and be certain that the next player must move to an N -
position of k×mWNl.

Then, if (i) holds for some game, we must have y ≤ bξ, which leads us
to consider (ii). Suppose that (ii) holds with y > bj for each j such that
x := aj = aξ.

Case kWNm: Suppose the next player is about to move from (x, y). By
the blocking rule the previous player may block off at most m − 1
positions in a rook-type direction. Then, by Lemma 3.3 (I) together
with our assumption, (x, y) must be an N -position.

Case kWN(m): Lemma 5.1, gives a contradiction for this case. Namely,
by gcd(k,m) = 1 there has to be an index j such that aj = x and
y > bj where

y ≡ bj (mod m)

or a j′ < j such that bj′ = x and

y ≡ aj′ (mod m).

Hence there is a move

(x, y) → (x, bj)

or
(x, y) → (x, aj′)

and so (x, y) ∈ N .
Case k×mWN: Suppose (x, y) is the starting position of G. There are pre-

cisely m possible choices of the parameter l for the previous player,
hence by Corollary 3.2 and the assumption, the pigeonhole principle
gives a contradiction.

Suppose that (ii) holds with bj > y for some j such that aj = aξ.
Case kWNm: We may assume that there is a position (ai, bi) with

0 < i < ξ such that

bi − ai ≤ y − x < bi+1 − ai+1.

Then, by Lemma 3.3,

0 ≤ y − x− (bi − ai) < k(i + 1)− ki = k,

so that there is a k-bishop-type move

(x, y) → (ai, bi);

which may not be blocked off by the previous player even if ai = x,
since in this case y − bi < k and so (ai, bi) is not a roob option.

Case kWN(m): This case is a consequence of the previous argument (omit
the discussion of the blocking manoeuvre).
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Case k×mWN: For any choice of l, by assumption, there is a position
(ami+l, bmi+l) with mi + l < ξ such that

bmi+l − ami+l ≤ y − x < bm(i+1)+l − am(i+1)+l

and so, by Lemma 3.3,

0 ≤ y − x− (bmi+l − ami+l) < km(i + 1)− kmi = km.

Hence, for each choice of l, (x, y) must be an N -position.

6. And finally, the minimal exclusive algorithms

As a round off, we will give a minimal exclusive algorithm for each one of
our games—where each algorithm ’mimics’ the idea of a particular game.

To this purpose, we need another notation. A multiset is a sequence of
non-negative integers, say (ξi)i∈N0 , where for each i ∈ N0, ξi represents the
unique non-negative integer that counts the number of occurences of i in
(ξi). For a positive integer m, let mexm(ξi) denote the least non-negative
integer i ∈ (ξi) such that ξi < m.

One may verify that the properties in Lemma 3.3 are satisfied for each
pair of sequences in the following proposition. Then the result follows by
induction (we omit the proof).

Proposition 6.1. Let k > 0 and m > 1 be integers. Then the algorithms
I, II and III are equivalent, and, for each i ∈ N0, the pair (ai, bi) is as in
Lemma 3.3. For n ≥ 0,

Algorithm I:

an = mexm(ζi
n), where ζn is the multiset, where for each i ∈ N0,

ζi
n = #{j | i = aj or i = bj | 0 ≤ j < n},

bn = an + kn;

Algorithm II:

an = mex{ai, bi | ai + kn ≡ bi (mod km), bi + kn ≡ ai (mod km), 0 ≤ i < n},
bn = an + kn;

Algorithm III: for each 0 < l < m,

amn = mex{ami, bmi | 0 ≤ i < n},
bmn = amn + kmn,

amn+l = mex{ami+l, bm(i+1)−l | 0 ≤ i < n},
bmn+l = amn+l + k(mn + l).

We are left with the following question: What is the solution of kWN(m)

whenever gcd(k, m) 6= 1?
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