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ABSTRACT
Gaussian isoperimetric results have recently played an important role in prov-
ing fundamental results in hardness of approximation in computer science and
in the study of voting schemes in social choice theory. In this thesis we prove
a generalization of a Gaussian isoperimetric result by Borell and show thatit
implies that the majority function is optimal in Condorcet voting in the sense
that it maximizes the probability that there is a single candidate which the so-
ciety prefers over all other candidates. We also show that a different Gaus-
sian isoperimetric conjecture which can be viewed as a generalization of the
“Double Bubble” theorem implies the Plurality is Stablest conjecture and also
that the Frieze-Jerrum semidefinite programming based algorithm for MAX-q-
CUT achieves the optimal approximation factor assuming the Unique Games
Conjecture. Both applications crucially depend on the invariance principle of
Mossel, O’Donnell and Oleszkiewicz which lets us rephrase questions about
noise stability of low-influential discrete functions in terms of noise stability
of functions onRn under Gaussian measure. We prove a generalization of this
invariance principle needed for our applications.

Keywords: Gaussian noise stability, inapproximability theory, invariance principle,

max-q-cut, condorcet voting.
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This thesis contains the following papers:

⊲ Marcus Isaksson and Elchanan Mossel, “Some Gaussian Noise
Stability Conjectures and their Applications”.

⊲ Marcus Isaksson, “K-wise Gaussian Noise Stability”.
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1
Introduction

1.1 Gaussian Noise Stability

Gaussian noise stability measures the stability of partitions of Gaussian space
under noise. In the simplest form we have two jointly standard Gaussian vectors
X andY in R

n, with a covariance matrixCov(X, Y ) = E[XY T ] = ρIn, i.e.

the coordinate pairs(Xi, Yi) are i.i.d. N

(
0,

[
1 ρ

ρ 1

])
. The stability of a

subsetA of R
n is defined to be the probability that bothX andY fall into A.

Borell [3] proved that for sets of fixed Gaussian measure, half-spaces maximize
this stability (it follows from his result that in an Ornstein-Uhlenbeck process
the hitting time of sets of fixed measure is maximized by half-spaces). For
simplicity, we will restrict attention to balanced partitions, i.e. sets of Gaussian
measure12 .

THEOREM 1. [3] Fix ρ ∈ [0, 1]. SupposeX, Y ∼ N(0, In) are jointly normal
andCov(X, Y ) = ρIn. LetA ⊆ R

n with P(X ∈ A) = 1
2 . Then

P(X ∈ A, Y ∈ A) ≤ P(X ∈ H, Y ∈ H)

whereH = {x ∈ R
n|x1 ≥ 0}.

3
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In this thesis, several generalizations of this theorem are considered which
are also motivated by applications.

• We may consider the situation withk > 2 correlated vectors.

• We may consider vectors that are negatively correlated, i.e.ρ ∈
[
− 1

k−1 , 0
]
.

• Instead of selecting one set (and implicitly its complement) we may con-
sider a partition ofRn into q > 2 subsets and ask for the probability that
all k vectors fall into the same subset.
We will still restrict attention to balanced partitions, i.e. into disjoint sets
A1, . . . Aq ⊆ R

n with equal Gaussian measure1
q .

It is conjectured that

• For fixedq, increasingk will not change the optimal partition. For in-
stance, forq = 2 butk ≥ 3 half-spaces would still be optimal.

• The most stable partition for positiveρ is the least stable partition for
negativeρ. 1

• If partitions with q > 2 subsets are considered then the stability, now
defined as

P


(X, Y ) ∈

q⋃

j=1

A2
j


 (1)

(whereA2
j denotes the Cartesian productAj × Aj) is maximized by a

standard simplex partition(for n ≥ q − 1).

A standard simplex partition dividesRn into q partitions depending on which of
q maximally separated unit vectors are closest (ties may be broken arbitrarily):

DEFINITION 1. For n+1 ≥ q ≥ 2, A1, . . . , Aq is a standard simplex partition
of R

n if for all i

Ai = {x ∈ R
n|x · ai > x · aj ,∀j 6= i}

wherea1, . . . aq ∈ R
n are q vectors satisfyingai · aj =

{
1 if i = j

− 1
q−1 if i 6= j

1This is known fork = q = 2
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Whenn ≥ q a standard simplex partition can be formed by pickingq or-
thonormal vectorse1, . . . , eq, subtracting their mean and scaling appropriately,
i.e.

ai =

√
q

q − 1

(
ei −

1

q

q∑

i=1

ei

)

and forn = q−1 it is enough to project these vectors onto theq−1-dimensional
space which they span.

Whenq = 3 the standard simplex partition, also known as thestandard
Y partition or thepeace sign partition, is described inR2 by three half-lines
meeting at an120 degree angle at the origin (Figure 1.1) and inR

n, where
n > 2, it can be exemplified by taking the Cartesian product of the peace sign
partition andRn−2.

Figure 1.1: The peace sign partition

Paper I considers applications of two specific generalizations of Theorem
1. The first generalization was proved in Paper II:2

THEOREM 2. Fix ρ ∈ [0, 1]. SupposeX1, . . . , Xk ∼ N(0, In) are jointly
normal andCov(Xi, Xj) = ρIn for i 6= j. LetA ⊆ R

n with P(Xi ∈ A) = 1
2 .

Then
P(∀i : Xi ∈ A) ≤ P(∀i : Xi ∈ H)

whereH = {x ∈ R
n|x1 ≥ 0}.

The second generalization is still open:

CONJECTURE1. Fix ρ ∈ [0, 1] and3 ≤ q ≤ n+1. SupposeX, Y ∼ N(0, In)

are jointly normal andCov(X, Y ) = ρIn. Let A1, . . . , Aq ⊆ R
n be a bal-

anced partition ofRn. Then,

P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q) ≤ P
(
(X, Y ) ∈

(
S2

1 ∪ · · · ∪ S2
q

))
(2)

2This result has also been obtained independently by Guy Kindler and Elchanan Mossel.
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whereS1, . . . , Sq is a standard simplex partition ofRn. Further, for ρ ∈
[−1, 0], (2) holds in reverse:

P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q) ≥ P
(
(X, Y ) ∈

(
S2

1 ∪ · · · ∪ S2
q

))

Since it is not known whether the second conjecture holds and the stan-
dard simplex partition is optimal, it should be pointed out that one of the main
contribution of paper I is to show that the optimality of certain discrete prob-
lems can be reduced to the question of finding optimal partitions with respect
to Gaussian noise stability.

1.2 The Invariance Principle

By the Fourier-Walsh transform, any Boolean functionf : {−1, 1}n → {−1, 1}
can be written uniquely as a multilinear polynomial in the input variables

f(x) =
∑

S⊆[n]

f̂(S)
∏

i∈S

xi (3)

The degree off is
deg f = max

S|f̂(S) 6=0
|S|

We will usually think of the input as being uniformly distributed over{−1, 1}n
and denote it byX. For any coordinatei ∈ [n] we may define its influence on
f(X) as the probability that changing the value of that coordinate will change
the value off(X), i.e.

Infi(f) = P(f(X) 6= f(X(i)))

whereX(i) is obtained fromX by flipping thei:th coordinate. Note that for
a dictator function DICTn,i(x) := xi exactly one coordinate has influence
1 while the others have influence0. For themajority function MAJn :=

1Pn
i=1

xi>0 one can show that each coordinate has influenceΘ
(

1√
n

)
. Think-

ing of the functions as social choice functions, that givenn voters preferences
between two candidates determines the winning candidate it is natural to ask
which function minimizes the most influential voter. This was answered by the
KKL theorem [4],
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THEOREM 3 (KKL). For anyf : {−1, 1}n → {−1, 1} there exists ani ∈ [n]

such that

Infi(f) ≥ Ω

(
Var(f)

log(n)

n

)

In its simplest form, the invariance principle of [7], states that iff is of low
degree and each coordinate has small influence onf , then the distribution of
f(X) will not change by much if we replace theXi’s in (3) by i.i.d. standard
GaussiansZi ∼ N(0, 1). The change of the distribution is measured by an
arbitraryC3 functionΨ having bounded third order derivatives.

THEOREM 4. ( [7], special case of Theorem 3.18)
SupposeX1, . . . , Xn are i.i.d. uniform on{−1, 1}, f : {−1, 1}n → {−1, 1}
hasdeg f ≤ d and Infi f ≤ τ, ∀i. Let Ψ : R → R be aC3 function with
|Ψ(r)| ≤ B for |r| = 3. Then,

∣∣∣∣∣∣
EΨ(f(X))−EΨ



∑

S⊆[n]

f̂(S)
∏

i∈S

Zi




∣∣∣∣∣∣
≤ B10dτ

whereZ1, . . . Zn are i.i.dN(0, 1).

The theorems in [7] and [6] are much more general. For example

• The underlying probability space is generalized to an arbitrary finite
product space(Ω, µ) = (

∏n
i=1 Ωi,

∏n
i=1 µi) where|Ωi| <∞, ∀i. Func-

tions f : Ω → R can still be written as a multilinear polynomial by
constructing an orthonormal basisXi = (Xi,0 = 1,Xi,1, . . . ,Xi,|Ωi|−1)

for the space of functionsΩi → R and expressingf as

f(x) =
∑

σ

f̂(σ)
n∏

i=1

Xi,σi
(x)

where the sum is over all tuplesσ = (σ1, . . . , σn) such that0 ≤ σi <

|Ωi|.

• Multidimensional functionsf : Ω → R
k can be handled similarly using

a test functionΨ : R
k → R.

Paper I introduces a few more generalizations that are useful in applications.
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• TheC3 restriction onΨ is removed and replaced with a Lipschitz conti-
nuity requirement.

• Non-orthonormal bases for the functions spacesΩi → R are handled
(this was also discussed in [6]).

1.3 Plurality is Stablest

Consider an election withn voters choosing betweenq candidates. We call a
functionf : [q]n → [q], which given then votes determines the winning can-
didate, a social choice function. Letting∆q = {x ∈ R

q|x ≥ 0,
∑q

i=1 xi = 1}
denote the standard q-simplex, we can generalize this notion a bit and call a
functionf : [q]n → ∆q, which given then votes assigns a probability distribu-
tion to the set of candidates, a “fuzzy” social choice function.

The noise stability of such functions measures the stability of the output
when the votes are chosen independently and uniformly at random, and then
re-randomized with probabilityρ.

DEFINITION 2. For ρ ∈ [0, 1], the noise stability off : [q]n → ∆q is

Sρ(f) = E

q∑

j=1

fj(ω)fj(λ)

whereω is uniformly selected from[q]n and eachλi is independently selected
using the conditional distribution

µ(λi|ωi) = ρ1{λi=ωi} + (1− ρ)
1

q

We say that a social choice functionf is balanced ifE fj(ω) = 1
q when

ω ∈ [q]n is chosen uniformly at random.
It is natural to require that a social choice function has low influence in

each coordinate, so that a single voter has a very small chance of changing the
outcome of the election. Another natural requirement is for the function to beas
noise stable as possible, so that even if anǫ fraction of the votes are miscounted
the result is unlikely to change. One application considered in Paper I is to
show that for balanced functionsf having low influence in each coordinate, the
most stable function is essentially determined by the most stable partition of
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Gaussian space intoq subsets as in (1). It is conjectured that the noise stability
is maximized by the plurality functionPLURn,q, which assigns a mass 1 to the
most popular candidate (ties broken arbitrarily).

CONJECTURE2 (Plurality is Stablest).
For anyq ≥ 2, ρ ∈ [0, 1] andǫ > 0 there exists aτ > 0 such that iff : [q]n →
∆q is a balanced function withInfi(fj) ≤ τ , ∀i, j, then

Sρ(f) ≤ lim
n→∞

Sρ(PLURn,q) + ǫ if ρ ≥ 0

This is already known [7] under the nameMajority is stablestin the caseq = 2.
In paper I we show that the general Plurality is Stablest conjecture followsfrom
Conjecture 1.

THEOREM 5. Conjecture 1⇒ Conjecture 2

1.4 Inapproximability Theory

1.4.1 Introduction to computational complexity theory

In computational complexity theory, one is interested in the asymptotics of the
amount of time (or space) required to compute discrete functions. For simplic-
ity we will assume that all combinatorial objects used (numbers, sets, graphs,
formal mathematical proofs etc.) are represented as binary strings, i.e. ele-
ments inΣ∗ =

⋃
n∈N
{0, 1}n. The exact encoding used for different objects

does not matter for our purposes (as long as it is a reasonable one). The length
of a stringx ∈ Σ∗ is denoted by|x|.

In general acomputational problemis defined by a functionf : Σ∗ → Σ∗.
A decision problemis a problem which can be answered byyesor no. For
instance,

• 3-COLOR: given a graph, can the vertices be colored using 3 colors such
that no neighboring vertices have the same color?

• TRUEΓ: given a propositionT in a formal mathematical theoryΓ and an
empty proof consisting ofn zeroes3 , does there exist a formal proof of

3The reason that we include an empty proof of lengthn in the instance and not just the
numbern is that the numbern is encoded by a string of lengthΘ(log(n)) but we later want a
polynomial in the length of the instance to be polynomial inn.
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T of length at mostn?

DEFINITION 3. A decision problemL is a subset ofΣ∗.

The complexity classP consists of all decision problems that can be com-
puted in polynomial time (on any (and thus all) universal Turing machines,
which the reader may think of as a regular computer equipped with unlimited
amount of memory). If an algorithm’s running time is bounded above by a
polynomial in the length of the input (for some fixed universal Turing machine)
we say that it is a polynomial time algorithm.

DEFINITION 4. The complexity classP consists of all decision problemsL for
which there exists a polynomial time algorithmA such that

{
x ∈ L⇒ A(x) = yes

x /∈ L⇒ A(x) = no

The complexity classNP consists of all decision problems for whichyes
instances have proofs that can be verified in polynomial time.

DEFINITION 5. The complexity classNP consists of all decision problemsL
for which there exists a polynomialq and a polynomial time algorithm (verifier)
V such that

{
x ∈ L⇒ ∃Π ∈ Σ∗ such that|Π| ≤ q(|x|) andV (Π) = yes
x /∈ L⇒ ∀Π ∈ Σ∗ : V (Π) = no

Note that both 3-COLOR and TRUEΓ are in NP. For instance, for 3-
COLOR the verifierV can be taken to be an algorithm that simply checks that
Π is a string that describes a coloring of all vertices in the graph in a way such
that no neighboring vertices have the same color. Clearly, such aΠ exists iff
x ∈ 3-COLOR.

Further,P ⊆ NP, since forL ∈ P we can simply ignore the proofΠ and
use the algorithmA as verifier. It remains an open problem whetherP = NP,
although equality would be very surprising (implying e.g. that mathematical
theorems can be proved in time polynomial in the statement and the length of
the proof).

In inapproximability theory one is interested in showing non-existence of
polynomial time algorithms for approximating combinatorial optimization prob-
lems (assumingP 6= NP). Let us first define combinatorial optimizations prob-
lems.
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DEFINITION 6. A combinatorial maximization problem is defined by a function
f : Σ∗ × Σ∗ → R ∪ {−∞} assigning a valuef(x, l) to any solutionl of an
instancex such that for eachx, there are only a finite number of solutionsl

(called feasiblefor x) for whichf(x, l) 6= −∞.
An instancex is said to be valid if it has a feasible solutionl.
The value of an instancex ∈ Σ is

VAL(x) = max
l

f(x, l)

A minimization problem is defined similarly by replacing themax by min and
−∞ by+∞.

We can now define the corresponding complexity classesPO andNPO.

DEFINITION 7. The complexity classNPO consists of all combinatorial opti-
mization problemsf for which there exist

i) a polynomial time algorithm that determines whether an instancex is
valid.

ii) a polynomialq such that for any instancex, all feasible solutionsl satisfy
|l| ≤ q(|x|).

iii) a polynomial time algorithm that computesf .

PO is the subset ofNPO for whichVAL(x) is computable by a polynomial time
algorithm.

There is a natural pre-ordering of computational problems given by poly-
nomial time reducibility.

DEFINITION 8. Given two computational problemsX andY , we say thatX is
polynomial time reducible toY , denotedX ≤P Y , if there exists a polynomial
time algorithmA which computes the value of instancesx ∈ X in polyno-
mial time, given access to an oracle forY (i.e. a hypothetical algorithm that
computesY in constant time).

From this we may define the complexity classesNP-completeconsisting
of the hardest problems inNP andNP-hard consisting of all problems that are
at least as hard asNP. More generally,
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DEFINITION 9. LetC be a complexity class. ThenC−hard consists of all com-
putational problemsY such thatX ≤P Y,∀X ∈ C. Further,C−complete =

C−hard ∩ C

1.4.2 Approximation algorithms

Many NP-hard optimization problems (for which no polynomial time algorithm
exists unlessP = NP) are possible to approximate within a constant factor in
polynomial time. For instance, for the Euclidean Traveling Salesman Problem
where one is given a set of points in Euclidean space, computing the shortest
round-trip route visiting all points is NP-hard. However, for anyǫ > 0 there
exist a polynomial time approximation algorithm that computes a route no more
than1 + ǫ times longer than the optimal route.

DEFINITION 10. If f : Σ∗ × Σ∗ → R ∪ {−∞} is a maximization problem in
NPO, A is an algorithm andr ∈ [0, 1), we say thatA is anr-approximation
algorithm forf if for all valid instancesx,

f(x, A(x)) ≥ r VAL(x)

Similarly, if f is a minimization problem andr > 1 we say thatA is an r-
approximation algorithm forf if for all valid instancesx,

f(x, A(x)) ≤ r VAL(x)

Thus the Euclidean Traveling Salesman Problem has a polynomial time1+ǫ-
approximation algorithm for anyǫ > 0.

Other problems can only be efficiently approximated up to a certain ap-
proximation constant. For instance, consider MAX-3-SAT defined as

DEFINITION 11. An instance of the MAX-3-SAT problem consists ofm clauses,
each being a disjunction (logical or) of at most three literals, where eachliteral
is either a variable or the negation of a variable from a set ofn Boolean vari-
ablesb1, . . . , bn. A feasible solution is an assignmentl : [n]→ {0, 1} to these
variables. The valuef(x, l) of an assignment is the fraction of clauses that are
satisfied by the assignment.
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For MAX-3-SAT there exist a78 approximation algorithm based on semidefinite
programming [10]. For the restricted problem MAX-E3-SAT, where we require
that each clause contains exactly three (different) variables, then this can be
achieved by picking a random assignment which will satisfy a7

8 fraction of
the clauses in expectation (this algorithm can be derandomized by repeatedly
setting each variable to the value which maximizes the conditional expectation
over the remaining variables). On the other hand it is known [9] that no7

8 + ǫ

polynomial time approximation can be achieved (unlessP = NP), for any
ǫ > 0.

(b1 ∨ ¬b2 ∨ b4) ∧ (¬b1 ∨ ¬b3 ∨ b2) ∧ (¬b2 ∨ b3 ∨ b5)

Figure 1.2: A MAX-E3-SAT instance. All 3 clauses can be satisfied simultaneously so

the value is 1.

MAX-3-SAT is an example of class of optimization problems called Con-
straint Satisfaction Problems (CSP’s).

DEFINITION 12. A Constraint Satisfaction Problem (CSP)Λ = (P, q) is spec-
ified by a set of predicatesP over the finite domain[q]. The arity ofΛ is the
maximal arity of the predicates inP .
An instance ofΛ consists of a set of variablesx1, . . . , xn and a set of predicates
fromP , each applied to a subset of the variables and their negations.

Thus, MAX-3-SAT is a ternary CSP over a Boolean domain.

1.4.3 The PCP Theorem and the Unique Games Conjecture

The 7
8 + ǫ inapproximability result for MAX-3-SAT (and similar results for

other CSP’s) is obtained by a reduction from a standard problem called the
Label Cover problem for which arbitrarily good inapproximability results exist.

DEFINITION 13.
An instance of theLabel Coverproblem,L(V, W, E, M, N, {σv,w}(v,w)∈E),
consists of a bipartite graph(V ∪W, E) with a functionσv,w : [M ] → [N ]

associated with every edge(v, w) ∈ E ⊆ V ×W . A labelingl = (lV , lW ),
wherelV : V → [M ] andlW : W → [N ], is said to satisfy an edge(v, w) if

σ(v,w)(lW (w)) = lV (v)
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The value of a labelingl, VALl(L), is the fraction of edges satisfied byl and
the value ofL is the maximal fraction of edges satisfied by any labeling,

VAL(L) = max
l

VALl(L)

The PCP (Probabilistically Checkable Proofs) theorem [1, 2] asserts that
the Label Cover problem is NP-hard to approximate within any constantǫ > 0,
for suitable choices ofM andN .

THEOREM 6 (Label Cover version of the PCP Theorem).For anyǫ > 0 there
exists aM andN such that it is NP-hard to distinguish between instancesL
of the Label Cover problem with label set sizesM andN havingVAL(L) = 1

from those havingVAL(L) ≤ ǫ.

This implies that any problem inNP (for instance TRUEΓ) has a proba-
bilistically checkable proof, which can be verified by looking only at a constant
(depending onǫ, but not on the length of the instance|x|) number of bits in such
a way that a false proof is accepted with probabilityǫ while a correct proof is
always accepted. The proof structure is given by the polynomial time reduction
from theNP problem to a Label Cover problem for which a correct proof (as-
signment) satisfies all edges while any other (incorrect) proof satisfies atmost
anǫ fraction of the edges.

However, the PCP theorem is not strong enough to give sharp inapproxima-
bility results for binary CSP’s (2-CSP’s). To this end Khot [5] introduced the
Unique Games Conjecture.

DEFINITION 14. A Label CoverproblemL(V, W, E, M, N, {σv,w}(v,w)∈E) is
calleduniqueif M = N and eachσv,w : M →M is a permutation.

CONJECTURE3 (Unique Games Conjecture).For anyη, γ > 0 there exists a
M = M(η, γ) such that it is NP-hard to distinguish instancesL of the Unique
Label Cover problem with label set sizeM havingVAL(L) ≥ 1−η from those
havingVAL(L) ≤ γ.

It was recently shown [8] how to obtain optimal approximation algorithms
for any CSP including 2-CSP’s assuming the Unique Games Conjecture. How-
ever, the optimal approximation constants in [8] are generally not very explicit
but given as the optimum of certain optimization problems. It should be noted
that it is still not known whether the Unique Games Conjecture holds.
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1.4.4 MAX-q-CUT

In Paper I, we consider the MAX-q-CUT problem or Approximate q-Coloring,
where given a (possible edge weighted) graph one seeks a coloring ofthe ver-
tices using q colors that minimizes the number of edges between nodes of the
same color (i.e. maximizes the number of edges between different colors).

DEFINITION 15.
An instance of the weighted MAX-q-CUT problem,Mq(V, E, w), consists of a
graph(V, E) with a weight functionw : E → [0, 1] assigning a weight to each
edge. A q-cutl : V → [q] is a partition of the vertices into q parts. The value
of a q-cutl is

VALl(Mq) =
∑

(u,v)∈E:l(u) 6=l(v)

w(u,v)

The value ofMq is

VAL(Mq) = max
l

VALl(Mq)

Figure 1.3: In MAX-3-CUT we want to find a partition of the vertices into 3 sets so as

to maximize the weight of edges between different sets.

Note that MAX-q-CUT is a (weighted) binary CSP over the alphabet[q].
In Paper I we find the optimal inapproximability constant for MAX-q-CUT

assuming the unique games conjecture and Conjecture 1.

THEOREM 7. Assume Conjecture 1 and the UGC. Then, for anyǫ > 0 there
exist a polynomial time algorithm that approximates MAX-q-CUT withinαq−ǫ

while no algorithm exists the approximates MAX-q-CUT withinαq + ǫ.
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Here,

αq = inf
− 1

q−1
≤ρ≤1

q

q − 1

1− qI(ρ)

1− ρ

whereqI(ρ) is the noise stability the standard simplex partition, i.e.

qI(ρ) = P((X, Y ) ∈ S2
1 ∪ · · · ∪ S2

q )

whereX, Y ∼ N(0, Iq−1) are jointly normal withCov(X, Y ) = ρIq−1 and
S1, . . . Sq is a standard simplex partition ofRq−1.

For instance, forq = 3 this value is given by

α3 = inf
− 1

2
≤ρ≤1

1− 9
8π2 (arccos(−ρ)2 − arccos(ρ/2)2)

1− ρ
≈ 0.83601
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ABSTRACT
Gaussian isoperimetric results have recently played an important role in prov-
ing fundamental results in hardness of approximation in computer science and
in the study of voting schemes in social choice. We propose two Gaussian
isoperimetric conjectures and derive consequences of the conjecturesin hard-
ness of approximation and social choice. Both conjectures generalize isoperi-
metric results by Borell on the heat kernel. One of the conjectures may be also
be viewed as a generalization of the "Double Bubble" theorem. The applica-
tions of the conjecture include an optimality result for majority in the context
of Condorcet voting and a proof that the Frieze-Jerrum SDP for MAX-q-CUT
achieves the optimal approximation factor assuming the Unique Games Con-
jecture.

2.1 Introduction

Recent results in hardness of approximation in computer science and in the
study of voting schemes in social choice crucially rely on Gaussian isoperi-
metric results. The first result in hardness of approximation established a tight
inapproximability result for MAX-CUT assuming unique games [11] while the

23
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latest results achieve optimal inapproximation factors for very general families
of constraint satisfaction problems [16]. Results in social choice include opti-
mality of the majority function among low influence functions in the context
of Condorcet voting on3 candidates [8] and near optimality for any number of
candidates [13]. A common feature of these results is the use of "Invariance
Principles" [13, 15] together with optimal Gaussian isoperimetric results [1].

In the current paper we propose two conjectures generalizing the results of
Borell [1] and develop an extension of the invariance principle so that assuming
the conjectures new results in hardness of approximation and in social choice
are obtained. In the introduction we state the conjectures and their applica-
tions.

2.1.1 The Conjectures

We will be concerned with finding partitions ofR
n that maximizes the prob-

ability that correlated Gaussian vectors remain within the same part. More
specifically we would like to partitionRn into q ≥ 2 disjoint sets of equal
Gaussian measure.

Borell [1] proved that whenq = 2 and we have two standard Gaussian
vectors with covarianceρ ≥ 0 in corresponding coordinates then half-spaces
(e.g. H := {x ∈ R

n|x1 ≥ 0}) are optimal. LetIn be then × n identity
matrix. For twon-dimensional random variablesX = (X1, . . . , Xn) andY =

(Y1, . . . , Yn) write Cov(X, Y ) for the n × n matrix whose(i, j)’th entry is
given byCov[Xi, Yj ] = E[XiYj ] − E[Xi]E[Yj ]. Borell’s result states the
following:

THEOREM 1. [1] Fix ρ ∈ [0, 1]. SupposeX, Y ∼ N(0, In) are jointly normal
andCov(X, Y ) = ρIn. LetA ⊆ R

n with P(X ∈ A) = 1
2 . Then

P(X ∈ A, Y ∈ A) ≤ P(X ∈ H, Y ∈ H)

We conjecture that Theorem 1 can be generalized in two different directions
. The first conjecture claims that half-spaces are still optimal if we havek > 2

correlated vectors and seek to maximize the probability that they all fall into
the same part.
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CONJECTURE1. Fix ρ ∈ [0, 1]. SupposeX1, . . . , Xk ∼ N(0, In) are jointly
normal andCov(Xi, Xj) = ρIn for i 6= j. LetA ⊆ R

n with P(Xi ∈ A) = 1
2 .

Then

P(∀i : Xi ∈ A) ≤ P(∀i : Xi ∈ H) (1)

We call the conjecture above theExchangeable Gaussians Conjecture(EGC).
Recall that a collection of random variables is exchangeable if its distribution
is invariant under any permutation.

The second conjecture generalizes Theorem 1 by asking for the optimal
partition ofRn into q > 2 sets of equal measure. We conjecture that the optimal
partition can be formed by splitting the standard(q−1)-simplex intoq parts
determined by the closestq-dimensional basis vector and further that this is
the least stablepartition forρ ≤ 0.

Let S′
q = {x ∈ R

q|∑q
j=1 xi = 1} be the affine hyperplane containing the

standard(q−1)-simplex and takeM : R
q → R

q−1 to be a mapping from this

hyperplane toRq−1 by letting M = M2M1, whereM1 = Iq − 1q1q
t

q is the
projection along the vector1q andM2 is any orthogonal linear mapping with
nullspace{a1q|a ∈ R}. For1 ≤ j ≤ q, let S′

q,j = {x ∈ S′
q|xj > xi,∀i 6= j}

with mappingSq,j = M(S′
q,j) ⊆ R

q−1.

We call A1, . . . , Aq a balanced partition ofRn if A1, . . . , Aq are disjoint
with P(X ∈ Aj) = 1

q , ∀j.

CONJECTURE2. Fix ρ ∈ [0, 1] and3 ≤ q ≤ n+1. SupposeX, Y ∼ N(0, In)

are jointly normal andCov(X, Y ) = ρIn. Let A1, . . . , Aq ⊆ R
n be a bal-

anced partition ofRn. Then,

P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q) ≤ P
(
(X, Y ) ∈

(
S2

q,1 ∪ · · · ∪ S2
q,q

)
× R

n+1−q
)

(2)
Further, forρ ∈ [−1, 0], (2) holds in reverse:

P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q) ≥ P
(
(X, Y ) ∈

(
S2

q,1 ∪ · · · ∪ S2
q,q

)
× R

n+1−q
)

The particular case ofq = 3 is easier to visualize and we call this the
“Peace Sign Partition”. For this reason we call the conjecture above, the Piece
Sign Conjecture (PSC ).



26 CHAPTER 2. PAPER I

Figure 2.1: The peace sign partition

2.1.2 Applications

We show that the two conjectures have natural applications in Social Choice
Theory. The conjectures imply

• The Plurality is Stablest conjectureas well as showing that the Frieze-
Jerrum [4] SDP relaxation obtains the optimal approximation ratio for
MAX-q-CUT assuming the Unique Games Conjecture.

• Certain optimality of majority in Condorcet Voting. More specifically,
it asymptotically maximizes the probability of a unique winner in Con-
dorcet voting with any number of candidates.

The main tool for proving these applications is the invariance principle
of [13, 15] which we extend to handle general Lipschitz continuous functions.
We note that previous work proved the invariance principle forC3 functions
and some specific Lipschitz continuous functions. The generalization of the
invariance principle may be of independent interest.

We proceed with formal statements of the applications.

2.1.2.1 Plurality is Stablest

Consider an election withn voters choosing betweenq candidates. We call a
functionf : [q]n → [q], which given then votes determines the winning can-
didate,a social choice function. Letting ∆q = {x ∈ R

q|x ≥ 0,
∑q

i=1 xi =

1} denote the standard q-simplex, we generalize this notion a bit and call a
function f : [q]n → ∆q assigning a probability distribution to the set of
candidates a“fuzzy” social choice function. To be able to treat non-fuzzy
social choice functions at the same time, we will usually embed their out-
put into ∆q and think of them as functionsf : [q]n → Eq, whereEq =

{(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} are theq extreme points of∆q corresponding
to assigning a probability mass1 to one of the candidates.
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The noise stability of such functions measures the stability of the output
when the votes are chosen independently and uniformly at random, and then
rerandomized with probability1− ρ.

DEFINITION 1. For − 1
q−1 ≤ ρ ≤ 1, the noise stability off : [q]n → R

k is

Sρ(f) =

k∑

j=1

E[fj(ω)fj(λ)]

whereω is uniformly selected from[q]n and eachλi is independently selected
using the conditional distribution

µ(λi|ωi) = ρ1{λi=ωi} + (1− ρ)
1

q
(3)

Note that whenf : [q]n → Eq is a non-fuzzy social choice functionSρ(f) =

P(f(ω) = f(λ)).
We say thatf : [q]n → ∆q is balancedif E[f(ω)] = 1

q1 whereω is
uniformly selected from[q]n and say that the influence of thei:th coordinate on
f : [q]n → R is

Infi f(ω) = E
ω
[Varωi

f(ω)]

Let PLURn,q : [q]n → ∆q denote the plurality function which assigns a
probability mass1 to the candidate with the most votes (ties can be broken ar-
bitrarily, e.g. by splitting the mass equally among the tied candidates). The
Plurality is Stablestconjecture claims that plurality is essentially the most sta-
ble of all low-influence functions under uniform measure:

CONJECTURE3 (Plurality is Stablest).For any q ≥ 2, ρ ∈ [− 1
q−1 , 1] and

ǫ > 0 there exists aτ > 0 such that iff : [q]n → ∆q is a balanced function
with Infi(fj) ≤ τ , ∀i, j, then

Sρ(f) ≤ lim
n→∞

Sρ(PLURn,q) + ǫ if ρ ≥ 0 (4)

and
Sρ(f) ≥ lim

n→∞
Sρ(PLURn,q)− ǫ if ρ ≤ 0

The case whereq = 2, theMajority is stablest theorem, was proved in [15].
We show that the general case follows from PSC.
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THEOREM 2. PSC (Conj. 2)⇒ Plurality is Stablest (Conj. 3)

It should be pointed out that our results imply a slightly stronger result
where the low influence requirement is replaced by a lowlow-degree influence
requirement. This strengthening turns out to be crucial to applications in hard-
ness of approximation.

It is known [11] that the bound (4) in Conjecture 3 holds asymptotically as
q →∞ up to a small multiplicative constant, i.e.

Sρ(f) ≤ Oq(1) · lim
n→∞

Sρ(PLURn,q) + ǫ if ρ ≥ 0

It may be helpful to think of the theorem in terms of a pure social choice
functionf : [q]n → [q]. In this case, there aren voters and each voter chooses
one out ofq possible candidates. Given individual choicesx1, . . . , xn, the win-
ning candidate is defined to bef(x1, . . . , xn). In social choice theory it is
natural to restrict attention to the class of low influence functions, where each
individual voter has small effect on the outcome. We now consider the sce-
nario where voters have independent and uniform preferences. Moreover, we
assume that there is a problem with the voting machines so that each vote cast
is rerandomized with probability1− ρ. Denoting byX1, . . . , Xn the intended
votes andY1, . . . , Yn the registered votes, it is natural to wonder how correlated
aref(X1, . . . , Xn) andf(Y1, . . . , Yn). The theorem above states that under
PSC, the maximal amount of correlation is obtained for the plurality function if
ρ ≥ 0. The case whereρ < 0 corresponds to the situation where the voting ma-
chine’s rerandomization mechanism favors votes that differ from the original
vote. In this case the theorem states that plurality will have the least correla-
tion between the intended outcomef(X1, . . . , Xn) and the registered outcome
f(Y1, . . . , Yn). In the next subsection we discuss applications of the result for
hardness of approximation.

2.1.2.2 Hardness of approximating MAX-q-CUT

For NP-hard optimization problems it is natural to search for polynomial time
approximation algorithms that are guaranteed to find a solution with value
within a certain constant of the optimal value. Hardness of approximation re-
sults on the other hand bound the achievable approximation constants away
from 1. For some problems, tight hardness results have been show where the
bound matches the best known polynomial time approximation algorithm. For
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instance, Håstad [6] showed that for MAX-E3-SAT one cannot improved upon
the simple randomized algorithm picking assignments at random thus achiev-
ing an approximation ratio of78 .

In general, for constraint satisfaction problems (CSP’s) where the object is
to maximize the number of satisfied predicates selected from a set of allowed
predicates and applied to a given set of variables, algorithms based on relax-
ations to semi-definite programming (SDP), first introduced by Goemans and
Williamson [5] has proved very successful.

Still optimal hardness results are not known for many CSP’s. To make
progress on this Khot [10] introduced the Unique Games Conjecture (UGC),
a strengthened form of the PCP Theorem. Recently Raghavendra [16] showed
tight hardness results for any CSP assuming the UGC, albeit without giving
explicit optimal approximation constants.

We consider the MAX-q-CUT or the Approximate q-Coloring problem
where given a weighted graph on seeks aq-coloring of the vertices that maxi-
mizes the total weight of edges between differently colored vertices.

DEFINITION 2.
An instance of the weighted MAX-q-CUT problem,Mq(V, E, w), consists of a
graph(V, E) with a weight functionw : E → [0, 1] assigning a weight to each
edge. A q-cutl : V → [q] is a partition of the vertices into q parts. The value
of a q-cutl is

VALl(Mq) =
∑

(u,v)∈E:l(u) 6=l(v)

w(u,v)

The value ofMq is

VAL(Mq) = max
l

VALl(Mq)

Frieze-Jerrum gave an explicit SDP relaxation of MAX-q-CUT (see Section
2.6.3) which was rounded using the standard simplex partition of Conjecture 2.
We show that Conjecture 2 implies that this is optimal.

THEOREM 3. Assume Conjecture 2 and the UGC. Then, for anyǫ > 0 there
exist a polynomial time algorithm that approximates MAX-q-CUT withinαq−ǫ

while no algorithm exists the approximates MAX-q-CUT withinαq + ǫ.
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Here,

αq = inf
− 1

q−1
≤ρ≤1

q

q − 1

1− qI(ρ)

1− ρ

whereqI(ρ) is the noise stability of the standard simplex partition ofR
q−1, i.e.

qI(ρ) = P((X, Y ) ∈ S2
q,1 ∪ · · · ∪ S2

q,q)

whereX, Y ∼ N(0, Iq−1) are jointly normal withCov(X, Y ) = ρIq−1.

2.1.2.3 Condorcet voting

Supposen voters rankk candidates. It is assumed that each voteri has a linear
order σi ∈ S(k) on the candidates. InCondorcet voting, the rankings are
aggregated by deciding for each pair of candidates which one is superior among
then voters.

More formally, the aggregation results in a tournamentGk on the set[k].
Recall thatGk is a tournamenton [k] if it is a directed graph on the vertex set
[k] such that for alla, b ∈ [k] either(a > b) ∈ Gk or (b > a) ∈ Gk. Given
individual rankings(σi)

n
i=1 the tournamentGk is defined as follows. Let

xa>b
i =

{
1 if σi(a) > σi(b)

−1 else
, for i ∈ [n] anda, b ∈ [k].

Note thatxb>a = −xa>b. The binary decision between each pair of candidates
is performed via a anti-symmetric functionf : {−1, 1}n → {0, 1} so that
f(−x) = 1 − f(x) for all x ∈ {−1, 1}n. The tournamentGk = Gk(σ; f) is
then defined by letting(a > b) ∈ Gk if and only if f(xa>b) = 1. A natural
decision function is the majority functionMAJn : {−1, 1}n → {0, 1} defined
by MAJn(x) = 1Pn

i=1
xi≥0.

Note that there are2(k
2) tournaments while there are onlyk! = 2Θ(k log k)

linear rankings. For the purposes of social choice, some tournaments make
more sense than others.

Following [8, 9, 13], we consider the probability distribution overn vot-
ers, where the voters have independent preferences and each onechooses a
ranking uniformly at random among allk! orderings. Note that the marginal
distributions on vectorsxa>b is the uniform distribution over{−1, 1}n and that
if f : {−1, 1}n → {0, 1} is anti-symmetric thenE[f ] = 1

2 . The previous
discussion and the following definition are essentially taken from [13].
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DEFINITION 3. For any anti-symmetric functionf : {−1, 1}n → {0, 1} let
UniqueBestk(f) denote the event that the Condorcet voting system described
above results in a unique best candidate andUniqueBestk(f, i) the event that
the i:th candidate is unique best.

The case that is now understood isk = 3. Note that in this caseG3 is
unique max if and only if it is linear. Kalai [8] studied theprobability of a
rational outcome given that then voters vote independently and at random from
the 6 possible rational rankings. He showed that the probability of a rational
outcome in this case may be expressed as3 S1/3(f).

It is natural to ask which functionf with small influences is most likely to
produce a rational outcome. Instead of considering small influences, Kalai con-
sidered the essentially stronger assumption thatf is monotone and “transitive-
symmetric”; i.e., that for all1 ≤ i < j ≤ n there exists a permutationσ
on [n] with σ(i) = j such thatf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for all
(x1, . . . , xn). Kalai conjectured that asn → ∞ the maximum of3S1/3(f)

among all transitive-symmetric functions approacheslimn→∞ 3 S1/3(MAJn).
This is a direct consequence of the Majority is Stablest Theorem proved in[14,
15]. In [13] similar, but sub-optimal results were obtained for any value of
k. More specifically it was shown that if one considers Condorcet voting on
k candidates, then for allǫ > 0 there existsτ = τ(k, ǫ) > 0 such that if
f : {−1, 1}n → {0, 1} is anti-symmetric andInfi(f) ≤ τ for all i, then

P[UniqueBestk(f)] ≤ k−1+ok(1) + ǫ.

Moreover for the majority function we haveInfi(MAJn) = O(n−1/2) and it
holds that

P[UniqueBestk(MAJn)] ≥ k−1−ok(1) − on(1).

Here we provide tight results for every value ofk assuming EGC by show-
ing that:

THEOREM 4. Assume Conjecture 1. Then, for anyk ≥ 1 and ǫ > 0 there
exists aτ(ǫ, k) > 0 such that for any anti-symmetricf : {−1, 1}n → {0, 1}
satisfyingmaxi Infi f ≤ τ ,

P[UniqueBestk(f)] ≤ lim
n→∞

P[UniqueBestk(MAJn)] + ǫ

.
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2.1.3 The PSC and the Double Bubble Theorem

The famous Double Bubble Theorem [7] determines the minimal area that en-
closes and separates two fixed volumes inR

3. The optimal partition is given by
two spheres which intersect at an120 deg angle having a separating membrane
in the plane of the intersection. The proof of this theorem is the culmination
of a long line of work answering a conjecture which was open for more thana
century.

Figure 2.2: A double bubble inR2

An analogous question can be asked in Gaussian space,R
n equipped with

a standard Gaussian density and the techniques and results used in the proof of
the Double Bubble Theorem allow to find the partition ofR

n(n ≥ 2) into three
volumes each having Gaussian volume1

3 minimizing the Gaussian surface area
between the three volumes. Indeed, the results of [2] show that the optimal
partition is the Peace Sign partition1, which can be seen as the limit of the
double bubble partition scaled up around one point on the intersection.

This indicates that the partition in Conjecture 2 is optimal (at least forq = 3

whenρ→ 1). Indeed Conjecture 2 is stronger than the results of [2]. It is easy
to see that Conjecture 2 withq = 3 imply that the "standard Y" or "Peace
Sign" are optimal by taking the limitρ → 1 (this is done similarly to the way
in which Borell’s result [1] implies the classical Gaussian isoperimetric result,
see Ledoux’s Saint-Flour lecture notes [3]).

2.2 Preliminaries

2.2.1 Multilinear polynomials

Consider a product probability space(Ω, µ) = (
∏n

i=1 Ωi,
∏n

i=1 µi). We will
be interested in functionsf :

∏n
i=1 Ωi → R on such spaces. For simplicity,

we will assume that eachµi as full support, i.e.µi(ωi) > 0,∀ωi ∈ Ωi. Then

1Called the standard Y in that paper
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clearly, for each coordinatei we can create a (possibly orthonormal) basis of
the form

Xi = (Xi,0 = 1, Xi,1, . . . , Xi,|Ωi|−1)

whereE[Xi,j ] = 0 for j ≥ 1, for the space of functionsΩi → R.

DEFINITION 4. We call a finite sequence of (orthonormal) real-valued random
variables where the first variable is the constant1 and the other variables have
zero mean an (orthonormal) ensemble.

Thus, X = (X1, . . . ,Xn) is an independent sequence of (possibly or-
thonormal) ensembles. We will only be concerned with independent sequences
of ensembles, however we will not always require the ensembles to be or-
thonormal2. Another type of ensembles are the Gaussian ensembles, of which
an independent sequence is typically denoted byZ = (Z1, . . . ,Zn) where
Zi = (Zi,0 = 1, Zi,1, . . . , Zi,mi

) and eachZi,j is a standard Gaussian variable.

DEFINITION 5. A multi-indexσ is a sequence of numbers(σ1, . . . , σn) such
thatσi ≥ 0,∀i. The degree|σ| of σ is |{i ∈ [n] : σi > 0}|. Given a set of inde-
terminates{xi,j}i∈[n],0≤j≤mi

, let xσ =
∏n

i=1 xi,σi
. A multilinear polynomial

over such a set of indeterminates is an expressionQ(x) =
∑

σ cσxσ where
cσ ∈ R are constants.

Continuing from (2.2.1) and lettingXσ =
∏n

i=1 Xi,σi
it should be clear

that{Xσ} forms a basis for functions
∏n

i=1 Ωi → R, hence any functionf :∏n
i=1 Ωi → R can be expressed as a multilinear polynomialQ overX :

f(ω1, . . . , ωn) = Q(X1, . . . ,Xn) =
∑

σ

cσXσ (5)

DEFINITION 6. The degree of a multilinear polynomialQ is

deg Q = max
σ:cσ 6=0

|σ|

We will also use the notationQ≤d to denote the truncated multilinear polyno-
mial

Q≤d(x) =
∑

σ:|σ|≤d

cσxσ

and the analogous forQ=d andQ>d.
2Hence, we will deviate from the notation of [13, 15] wheresequences of ensembleswas

used as an abbreviation forsequences of orthonormal ensembles.
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DEFINITION 7. Given a multilinear polynomialQ over an independent se-
quence of ensemblesX = (X1, . . . ,Xn), the influence of thei:th coordinate on
Q(X ) is

Infi Q(X ) = E [Var[Q(X )|X1, . . . ,Xi−1,Xi+1, . . .Xn]]

We also define thed-degree influence of thei:th coordinate as

Inf≤d
i Q(X ) = Infi Q

≤d(X )

Note that neither the degree nor influences ofQ(X ) depends on the ac-
tual basis selected in (2.2.1), hence we can writedeg f = deg Q, Infi f =

Infi Q(X ) andInf≤d
i f = Infi Q

≤d(X ).

2.2.2 Bonami-Beckner noise

Let us first define the Bonami-Beckner noise operator.

DEFINITION 8. Let (Ω, µ) = (
∏n

i=1 Ωi,
∏n

i=1 µi). be a finite product prob-
ability space andα the minimum probability of any atom in anyΩi. For
− α

1−α ≤ ρ ≤ 1 the Bonami-Beckner operator on functionsf :
∏n

i=1 Ωi → R
k

is defined by

Tρf(ω1, . . . , ωn) = E[f(λ1, . . . , λn)|ω1, . . . ωn]

where eachλi is independently selected from the conditional distribution

µ(λi|ωi) = ρ1{λi=ωi} + (1− ρ)µ(λi)

Forρ ∈ [0, 1] this is equivalent toTρf being the expected value off when
each coordinate independently is rerandomized with probability1− ρ.

2.2.3 Orthonormal ensembles

Most of the time we will work withorthonormalensembles. Using indepen-
dence and linearity of expectation it is easy to see that ifQ(X ) =

∑
σ cσXσ is

a multilinear polynomial over an independent sequence oforthonormalensem-
bles, then
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E[Q(X )] = c0 ; Var[Q(X )] =
∑

σ:|σ|>0

c2
σ ; TρQ(X ) =

∑

σ

ρ|σ|cσXσ

E[Q(X )2] =
∑

σ

c2
σ ; Infi Q(X ) =

∑

σ:σi>0

c2
σ ; Inf≤d

i Q(X ) =
∑

σ:
n

σi>0
|σ|≤d

c2
σ

Combining these expressions it is also easy to see thatInf≤d
i f is convex in

f and satisfy the following bound on the sum of low-degree influences:

n∑

i=1

Inf≤d
i f ≤ dVar f (7)

2.2.4 Vector-valued functions

Since we will work extensively with vector-valued functions we make the fol-
lowing definitions:

DEFINITION 9. For a vector-valued functionf = (f1, . . . , fk), let

Var f =
k∑

j=1

Var fj , Infi f =
k∑

j=1

Infi fj

and similarly forInf≤d
i .

Thus (7) holds even for vector-valuedf . Also, all expressions in (6) hold
for vector-valued multilinear polynomialsQ(X ) =

∑
σ cσXσ, wherecσ ∈ R

k

andX is an independent sequence oforthonormalensembles, if we replacec2
σ

with ||cσ||22.
Finally, by expressing functionsf : [q]n → R

k under the uniform measure
on the input space[q]n as a multilinear polynomial

f(ω) =
∑

σ

cσ

n∏

i=1

Xi,σi
(ωi)

this lets us express the noise stability of Definition 1 as

Sρ(f) = E[〈f, Tρf〉] =
∑

σ

ρ|σ|||cσ||22 (8)
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2.2.5 Correlated probability spaces

It will be important for us to bound the effect of the Bonami-Beckner noise
operator on functions on correlated probability spaces.

DEFINITION 10. Let (Ω1 × Ω2, µ) be a correlated probability space. The cor-
relation betweenΩ1 andΩ2 with respect toµ is then

ρ(Ω1, Ω2; µ) = sup
fi:Ωi→R,Var fi=1

Cov(f1(ω1), f2(ω2))

For (Ω1 × · · · × Ωk, µ) we let

ρ(Ω1, . . . ,Ωk; µ) = max
1≤i≤k

ρ




i−1∏

j=1

Ωj ×
k∏

j=i+1

Ωj , Ωi; µ




The following theorem shows that the expected value of products of func-
tions where corresponding coordinates form correlated probability spaces does
not change by much when some small noise is applied to each coordinate:

LEMMA 1. [13, Lemma 6.2] Let(
∏n

i=1 Ωi,
∏n

i=1 µi) be a finite product prob-
ability space whereΩi = (Ω1

i , . . . ,Ω
k
i ) are correlated probability spaces with

ρ(Ω1
i , . . . ,Ω

k
i ; µi) ≤ ρ < 1. Further, letX j = (X j

1 , . . . ,X j
n) be independent

sequences of orthonormal ensembles such thatX j
i forms a basis for functions

Ωj
i → R andQ1, . . . , Qk multilinear polynomials such thatVarQj(X j) ≤ 1.

Then, for allǫ > 0 there exists aγ = γ(ǫ, ρ) > 0 such that
∣∣∣∣∣∣
E

k∏

j=1

Qj(X j)−E

k∏

j=1

T1−γQj(X j)

∣∣∣∣∣∣
≤ ǫ · k

2.2.6 Gaussian noise

DEFINITION 11. Let X ∼ N(0, In). The Ornstein-Uhlenbeck operatorUρ is
defined on functionsf : R

n → R such thatf(X) ∈ L2 by

Uρf(X) = E
[
f(ρX +

√
1− ρ2ξ)|X

]

whereξ ∼ N(0, In) is independent ofX.
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It is easy to see that ifZ = (Z1, . . . ,Zn) is a Gaussian sequence of inde-
pendent ensembles andQ(Z) =

∑
σ cσZσ, then

UρQ(Z) =
∑

σ

ρ|σ|cσZσ

Thus Uρ and Tρ acts identically on multi-linear polynomials over Gaussian
sequences of independent ensembles.

Analogous to the discrete setting we say thatf : R
n → ∆q is balanced if

E[f(X)] = 1
q1 for X ∼ N(0, 1).

The following lemma shows for any fuzzy partition a non-fuzzy partition
with almost the same expectation and noise stability (as measured in 1 and 2)
can be created.

LEMMA 2. Fix ρ ∈
[
− 1

k−1 , 1
]

andq0 ≤ q. SupposeX1, . . . , Xk ∼ N(0, In)

andCov(Xi, Xj) = ρIn for i 6= j. Then, for anyǫ > 0 andf : R
n → ∆q,

there exists ag : R
n → Eq such that

q∑

i=1

|E gi(X1)−E fi(X1)| ≤ kǫ (9)

and ∣∣∣∣∣∣
E

q0∑

i=1

k∏

j=1

gi(Xj)−E

q0∑

i=1

k∏

j=1

fi(Xj)

∣∣∣∣∣∣
≤ ǫ (10)

The proof can be found in Appendix 2.A.
We also need a simple result that states that almost balanced functions can-

not be much more stable than balanced functions:

LEMMA 3. Fix ρ ∈ [− 1
k−1 , 1] andq0 ≤ q. SupposeX1, . . . , Xk ∼ N(0, In)

are jointly normal withCov(Xi, Xj) = ρIn for i 6= j. Letf : R
n → Eq with

E f(X1) = µ, where
q∑

i=1

∣∣∣∣µi −
1

q

∣∣∣∣ = δ

Then, there exists abalancedg : R
n → Eq such that

∣∣∣∣∣∣
E

q0∑

i=1

k∏

j=1

fi(Xj)−E

q0∑

i=1

k∏

j=1

gi(Xj)

∣∣∣∣∣∣
≤ k

δ

2
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Proof. Since the density function is continuous we can easily find a balanced
g such thatP (f(Xj) = g(Xj)) = δ

2 , hence the result follows by the union
bound.

2.3 Invariance Principle

Let f :
∏n

i=1 Ωi → R be a function on a finite product probability space and
express it as a multilinear polynomialQ(X ) over an independent sequence of
orthonormal ensembles as in (5). The invariance principle of [15] showsthat
if Q has low degree and each coordinate has small influence then the distribu-
tion of Q(X ) does not change by much if we replace the variablesXi,j with
independent standard GaussiansZi,j .

In [13] the invariance principle was extended to the case of vector-valued
functionsf = (f1, . . . , fk) wherefj :

∏n
i=1 Ωi → R for each j.

THEOREM5. ( [13], Theorem 4.1 and 3.16) Let(
∏n

i=1 Ωi,
∏n

i=1 µi) be a finite
product probability space,α > 0 the minimum probability of any atom in any
µi andX = (X1, . . . ,Xn) an independent sequence of orthonormal ensembles
such thatXi is a basis for functionsΩi → R. LetQ be a k-dimensional multilin-
ear polynomial such thatVarQj(X ) ≤ 1, deg Qj ≤ d and Infi Qj(X ) ≤ τ .
Finally, let Ψ : R

k → R be aC3 function with|Ψ(r)| ≤ B for |r| = 3. Then,

|EΨ(Q(X ))−EΨ(Q(Z))| ≤ 2dBk3
(
8/
√

α
)d√

τ = O(
√

τ)

whereZ is an independent sequence of standard Gaussian ensembles.

As suggested in [13, Corollary 4.3], since neitherVarQj(X ), deg Qj or
Infi Qj depend on whether the ensembles are orthonormal, we can simply re-
place the orthonormal requirement by a matching covariance structure require-
ment.

DEFINITION 12. We say that two independent sequences of ensemblesX =

(X1, . . . ,Xn) andY = (Y1, . . . ,Yn) have a matching covariance structure if
for all i, |Xi| = |Yi| andE[X t

iXi] = E[Yt
iYi].

THEOREM 6. LetX = (X1, . . . ,Xn) be an independent sequence of ensem-
bles, such thatP(Xi = x) ≥ α > 0. Let Q be a k-dimensional multilinear
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polynomial such thatVarQj(X ) ≤ 1, deg Qj ≤ d and Infi Qj(X ) ≤ τ .
Finally, let Ψ : R

k → R be aC3 function with|Ψ(r)| ≤ B for |r| = 3. Then,

|EΨ(Q(X ))−EΨ(Q(Z))| ≤ 2dBk3
(
8/
√

α
)d√

τ = O(
√

τ)

whereZ is an independent sequence of Gaussian ensembles with the same
covariance structure asX .

Proof. For eachi, let Ωi be theσ-algebra generated by the variables inXi.
Sinceα > 0, Ωi is finite, hence we can find an orthonormal ensembleX ′

i which
is a basis forΩi → R and a linear transformationAi such thatXi = X ′

iAi. Let
Z ′ be any standard Gaussian ensemble andZi = Z ′

iAi. ThenZ has the same
covariance structure asX . Let Q′ be the multilinear polynomial defined by
Q′(X ′) = Q(X ′

1A1, . . . ,X ′
nAn). The result then follows by applying Theorem

5 toQ′(X ′) while noting that it has the same variances, degrees and influences
asQ(X ).

For our applications we will need a version of Theorem 6 for functions
Ψ which are notC3 functions. Instead we will assume thatΨ is Lipschitz
continuous with Lipschitz constantA, i.e. |Ψ(x)−Ψ(y)| ≤ A||x− y||2.

THEOREM 7. LetX = (X1, . . . ,Xn) be an independent sequence of ensem-
bles, such thatP(Xi = x) ≥ α > 0. Let Q be a k-dimensional multilinear
polynomial such thatVarQj(X ) ≤ 1, deg Qj ≤ d and Infi Qj(X ) ≤ τ .
Finally, let Ψ : R

k → R be Lipschitz continuous with Lipschitz constantA.
Then,

|EΨ(Q(X ))−EΨ(Q(Z))| ≤ 4Ak
(
dB3,k

(
8/
√

α
)d√

τ
)1/3

= O(τ1/6)

whereZ is an independent sequence of Gaussian ensembles with the same
covariance structure asX andB3,k are universal constants.

To prove Theorem 7 we need the following lemma which assures that Lip-
schitz continuous functions can be approximated well byC

3 functions.

LEMMA 4. SupposeΨ : R
k → R is Lipschitz continuous, i.e.|Ψ(x)−Ψ(y)| ≤

A||x − y||2 for some constantA > 0. Then, for allλ > 0 there exists aC∞
functionΨλ : R

k → R such that∀x ∈ R
k and∀r : |r| = r ≥ 1,

1. |Ψ(x)−Ψλ(x)| ≤ Aλ
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2. |Ψ(r)
λ (x)| ≤ ABr,k

λr−1

whereBr,k are universal constants.

Proof. Let µ denote the Lebesgue measure onR
k and letφ : R

k → R be the
k-dimensional bump function defined by

φ(x) =

{
Ce

− 1

1−||x||2
2 if ||x||2 < 1

0 else

where the constantC is chosen so that
∫
x∈Rk φ(x)µ(dx) = 1. It is well-known

thatφ(x) is C∞ with bounded derivatives, hence there exist constantsBr <∞
such that|φ(r)(x)| ≤ Br.

For λ > 0, let φλ(x) = 1
λk φ(x

λ). Then
∫
||x||2≤λ φλ(x)µ(dx) = 1 and

|φ(r)
λ (x)| ≤ Br

λk+r . Let Ψλ = Ψ ∗ φλ, i.e.

Ψλ(x) =

∫

||x−t||2≤λ
φλ(x− t)Ψ(t)µ(dt)

By the mean value theorem,Ψλ(x) = Ψ(t), for somet : ||x − t||2 ≤ λ. But
|Ψ(t)−Ψ(x)| ≤ A||x− t||2 ≤ Aλ, which proves 1.
Without loss of generality we may assume thatr = e1 + r2, wheree1 =

(1, 0, . . . , 0)t is the first unit vector. SinceΨ is bounded on||x− t||2 ≤ λ, Ψλ

is C∞ and for anys,

Ψ
(s)
λ (x) =

∫

||x−t||2≤λ
φ

(s)
λ (x− t)Ψ(t)µ(dt)
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Thus we may write

∣∣∣Ψ(r)
λ (x)

∣∣∣ =

∣∣∣∣∣
δ

δx1

∫

||x−t||2≤λ
φ

(r2)
λ (x− t)Ψ(t)µ(dt)

∣∣∣∣∣

=

∣∣∣∣∣
δ

δx1

∫

||t||2≤λ
φ

(r2)
λ (t)Ψ(x− t)µ(dt)

∣∣∣∣∣

=

∣∣∣∣∣ limh→0

∫

||t||2≤λ
φ

(r2)
λ (t)

(Ψ(x + he1 − t)−Ψ(x− t))

h
µ(dt)

∣∣∣∣∣

= lim
h→0

∣∣∣∣∣

∫

||t||2≤λ
φ

(r2)
λ (t)

(Ψ(x + he1 − t)−Ψ(x− t))

h
µ(dt)

∣∣∣∣∣

≤ lim
h→0

∫

||t||2≤λ

∣∣∣φ(r2)
λ (t)

∣∣∣
∣∣∣∣
(Ψ(x + he1 − t)−Ψ(x− t))

h

∣∣∣∣µ(dt)

≤ Br−1

λk+r−1
A(2λ)k =

Br−1

λr−1
A2k

Proof of Theorem 7.Let Ψλ be the approximation given by Lemma 4. Then,

|EΨ(Q(X ))−EΨ(Q(Z))| ≤ |EΨλ(Q(X ))−EΨλ(Q(Z))|+ 2Aλ ≤

≤ 2Aǫ

λ2
+ 2Aλ , whereǫ = dB3,kk

3
(
8/
√

α
)d√

τ

where we have used Theorem 6. Pickingλ = ǫ1/3 gives the result.

Our final version of the invariance principle replaces the bounded degree
requirement with a smoothness requirement which can be achieved by applying
the Bonami-Beckner operatorT1−γ on Q(X ) for some smallγ > 0. Later we
will use Lemma 1 to show that this smoothing is essentially harmless for our
applications.

THEOREM 8. LetX = (X1, . . . ,Xn) be an independent sequence of ensem-
bles, such thatP(Xi = x) ≥ α > 0. Fix γ, τ ∈ (0, 1) and let Q be a
k-dimensional multilinear polynomial such thatVarQj(X ) ≤ 1, VarQ>d

j ≤
(1 − γ)2d and Infi Q

≤d
j (X ) ≤ τ , whered = 1

18 log 1
τ / log 1

α . Finally, let

Ψ : R
k → R be Lipschitz continuous with Lipschitz constantA. Then,

|EΨ(Q(X ))−EΨ(Q(Z))| ≤ CkAτ
γ
18

/ log 1

α
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whereZ is an independent sequence of Gaussian ensembles with the same
covariance structure asX andCk is a constant depending only onk.

To prove Theorem 8 we need following easy lemma which bounds the ef-
fect of small deviations on Lipschitz continuous functions.

LEMMA 5. SupposeΨ : R
k → R is Lipschitz continuous, i.e.|Ψ(x)−Ψ(y)| ≤

A||x− y||2 for some constantA > 0. Then,

|EΨ(X + ξ)−EΨ(X)| ≤ A




k∑

j=1

E ξ2
j




1/2

Proof.

|EΨ(X + ξ)−EΨ(X)| ≤ E |Ψ(X + ξ)−Ψ(X)| ≤ EA||ξ||2 =

= AE




k∑

j=1

ξ2
j




1/2

≤ A




k∑

j=1

E ξ2
j




1/2

Proof of Theorem 8.The proof is by truncation ofQ at degreed = 1
18 log 1

τ / log 1
α .

Without loss of generality we may assume thatα ≤ 1
2 (else, all random vari-

ables are constants and the result is trivial). By noting that Lemma 5 and The-
orem 7 hold for all positive real values ond we have

|EΨ(Q(X ))−EΨ(Q(Z))| ≤
≤
∣∣∣EΨ(Q≤d(X ))−EΨ(Q≤d(Z))

∣∣∣+ A
√

k(1− γ)d ≤

≤ 4AkB
1/3
3,k

(
16/
√

α
)d/3

τ1/6 + A
√

ke−γd

The result now follows by noting that

e−γd = τ
γ
18

/ log 1

α

and
(
16/
√

α
)d/3

τ1/6 = e
d
6

log 256

α τ1/6 = τ− 1

6·18
log 256

α
/ log 1

α τ1/6 ≤
≤ τ− 1

12 τ1/6 = τ
1

12 ≤ τ
γ
18

/ log 1

α

where both inequalities uses thatα ≤ 1
2 and the last also thatγ ≤ 1.
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2.4 Application I: Plurality is Stablest

Here we show that Conjecture 2 implies the Plurality is Stablest conjecture
(Theorem 2).

We start by showing an unconditional result that asserts that the most stable
low low-degree influence functions are essentially determined by most stable
partition of Gaussian space intoq parts of equal measure.

DEFINITION 13. For ρ ∈ [−1, 1] andq ≥ 1, let

Λ−
q (ρ) = lim

n→∞
inf

A1,...,Aq

P((X, Y ) ∈ A2
1 ∪ . . . ∪A2

q) (11)

and
Λ+

q (ρ) = lim
n→∞

sup
A1,...,Aq

P((X, Y ) ∈ A2
1 ∪ . . . ∪A2

q) (12)

whereX, Y ∈ N(0, In), Cov(X, Y ) = ρIn and the inf and sup is over all
balanced partitionsA1, . . . , Aq of R

n.

Note that the limits in (11) and (12) exist since they are limits of bounded
functions which are monotone inn (we can always ignore any number of di-
mensions while specifying the partitions).

THEOREM 9. For anyq ≥ 2, ρ ∈ [− 1
q−1 , 1] andǫ > 0 there existd andτ > 0

such that iff : [q]n → ∆q is a balanced function withInf≤d
i (fj) ≤ τ , ∀i, j,

then
Λ−

q (ρ)− ǫ ≤ Sρ(f) ≤ Λ+
q (ρ) + ǫ

DEFINITION 14. For q ≥ 2, let letf∆q : R
q → ∆q denote the function which

mapsx to the point in∆q which is closest tox.

Proof of Theorem 9.The result is trivial forρ = 1 so assumeρ ∈ [− 1
q−1 , 1).

Let (Ω×Λ, µ), with theρ-correlated measureµ(ω, λ) = ρ1{λ=ω}
1
q +(1−ρ) 1

q2

be our base space and let(ω, λ) ∈ [q]n × [q]n be drawn fromµn.
Fix an orthonormal basisV(x) = {V0(x) = 1, V1(x), . . . , Vq−1(x)} for

functions[q]→ R and construct two sequences of orthonormal ensemblesX =

{X1, . . . ,Xn} andY = {Y1, . . . ,Yn} for functionsΩ → R andΛ → R by
lettingXi,j(ωi) = Vj(ωi) andYi,j(λi) = Vj(λi). Note that this means that

Cov(Xi1,j1 , Yi2,j2) =

{
ρ if i1 = i2 andj1 = j2 > 0

0 else
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Expressingf(x) = f(x1, . . . , xn) as a q-dimensional multi-linear polynomial
Q(V(x1), . . . ,V(xn)) we get

Sρ(f) =

q∑

i=1

E[fj(ω)fj(λ)] =

q∑

i=1

E[Qj(X )Qj(Y)] (13)

Let Q̃ = T1−γQ be a slightly smoothed version ofQ. By Lemma 1 we can
find aγ(ǫ, ρ, q) > 0 s.t.

∣∣∣E[Qj(X )Qj(Y)]−E[Q̃j(X )Q̃j(Y)]
∣∣∣ ≤ ǫ

2q
(14)

SinceQ(X ) has range∆q, the same holds for̃Q(X ). Hence,

f∆qQ̃(X ) = Q̃(X ) (15)

(and similarly forY). We are now ready to apply the invariance principle (The-
orem 8) usingΨ(x, y) = 〈f∆q(x), f∆q(y)〉. To see thatΨ(x, y) is Lipschitz
continuous, first note that the convexity of∆q implies

||f∆q(x)− f∆q(x
′)||2 ≤ ||x− x′||2 (16)

Also, for u, v ∈ R
q,

|〈u, v〉 − 〈u′, v′〉| ≤ |〈u, v〉 − 〈u′, v〉|+ |〈u′, v〉 − 〈u′, v′〉| (17)

≤ ||u− u′||2||v||2 + ||v − v′||2||u′||2

Combining (17) and (16) we get

|Ψ(x, y)−Ψ(x′, y′)| ≤ ||x− x′||2||f∆q(y)||2 + ||y − y′||2||f∆q(x
′)||2

≤ ||x− x′||2 + ||y − y′||2 ≤
√

2||(x, y)− (x′, y′)||2

Hence Theorem 8 implies that for someτ > 0 small enough,
∣∣∣E[〈f∆qQ̃(X ), f∆qQ̃(Y)〉]−E[〈f∆qQ̃(G), f∆qQ̃(H)〉]

∣∣∣ ≤ ǫ

4q
(18)

whereG andH are two Gaussian sequences of orthonormal ensembles with

Cov(Gi1,j1 , Hi2,j2) =

{
ρ if i1 = i2, j1 = j2 > 0

0 else
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f∆qQ̃ applied toG or H can be thought of as a functionRn(q−1) → ∆q

creating a fuzzy partition of then(q − 1)-dimensional Gaussian space. This
partition is not balanced, but lettingµ = E f∆qQ̃(G) and applying Theorem
8 again, usingΨ(x) = f∆q ,j(x) which by (16) is Lipschitz continuous with
A = 1 ≤

√
2, we can bound the total variation distance by

q∑

j=1

∣∣∣∣µj −
1

q

∣∣∣∣ =
q∑

j=1

|E f∆q ,jQ̃(G)−E f∆q ,jQ̃(X )| ≤ q
ǫ

4q
=

ǫ

4

By Lemma 2 and 3 there exists a balanced functiong : R
n(q−1) → Eq such

that ∣∣∣E[〈f∆qQ̃(G), f∆qQ̃(H)〉]−E[〈g(G), g(H)〉]
∣∣∣ ≤ ǫ

4
(19)

But any suchg partitionsR
n(q−1) into q parts of equal Gaussian measure1

q ,
hence

Λ−
q (ρ) ≤ E[〈g(G), g(H)〉] ≤ Λ+

q (ρ) (20)

Combining equations (13), (14), (15), (18), (19) and (20) gives thedesired
result.

In order to prove Theorem 2 we first show that the limit of the noise stability
of PLURn, q corresponds to the right hand side of (2).

LEMMA 6. Fix ρ ∈ [− 1
q−1 , 1] and q ≥ 3. Let X, Y ∼ N(0, Iq−1) and

Cov(X, Y ) = ρIq−1. Then

lim
n→∞

Sρ(PLURn,q) = P((X, Y ) ∈ S2
q,1 ∪ · · · ∪ S2

q,q)

Proof. By definition 1,

Sρ(PLURn,q) = E〈PLURn,q(ω), PLURn,q(λ)〉

whereω, λ are uniform on[q]n and satisfy (3). Represent eachωi andλi by

a q-dimensional unit vectorUi = eωi
andVi = eλi

and letU =
√

q
n

∑n
i=1 Ui

andV =
√

q
n

∑n
i=1 Vi. Then, conditioning on having no ties which will happen

with probability1 asn→∞, we have

Sρ(PLURn,q) = P((U, V ) ∈ (S′
q,1)

2 ∪ · · · ∪ (S′
q,q)

2)

= P((MU, MV ) ∈ (Sq,1)
2 ∪ · · · ∪ (Sq,q)

2)
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The expectations and covariances ofMU andMV are,

E[MV ] = E[MU ] = M
1√
q
1 = 0

E[MV (MV )T ] = E[MU(MU)T ] = MIqM
T = Iq−1

E[MU(MV )T ] = M

(
ρIq − (1− ρ)

1

q
1q1

T
q

)
MT = ρIq−1

Hence, by the central limit theorem,(MU, MV ) converges to a normal distri-
bution with the same parameters as(X, Y ). Thus,

lim
n→∞

P((MU, MV ) ∈ (Sq,1)
2∪· · ·∪(Sq,q)

2) = P((X, Y ) ∈ S2
q,1∪· · ·∪S2

q,q)

Proof of Theorem 2.By Theorem 9 and Lemma 6 we only need to observe that
Conjecture 2 is equivalent to

Λ+
q (ρ) = P((X, Y ) ∈ S2

q,1 ∪ · · · ∪ S2
q,q) for ρ ∈ [0, 1]

and

Λ−
q (ρ) = P((X, Y ) ∈ S2

q,1 ∪ · · · ∪ S2
q,q) for ρ ∈ [−1, 0]

whereX, Y ∼ N(0, In) are jointly normal withCov(X, Y ) = ρIn. That we
may replace the low low-degree influence requirement with the simpler low
influence requirement follows by noting that

Inf≤d
i (fj) ≤ Infi(fj)

2.5 Application II: Condorcet Voting

Here we show that Conjecture 1 implies that majority maximizes the probabil-
ity of having a unique best candidate in Condorcet voting assuming (Theorem
4).
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Remember that we haven voters selecting a linear orderσi ∈ S(k) uni-
formly at random and let

Xa>b
i =

{
1 if σi(a) > σi(b)

−1 else
, for i ∈ [n] anda, b ∈ [k].

By considering the 6 possible linear orders of three candidates its easy to see
that for any distincta, b, c ∈ [k] we have

E[Xa>b
i ] = 0 , VarXa>b

i = 1 and Cov[Xa>b
i , Xa>c

i ] =
1

3

First we will show that the limit of the probability of having a unique best
candidate using the majority function corresponds to the right hand side of (1).

LEMMA 7. LetX2, . . . , Xk ∼ N(0, In) be jointly normal withCov(Xi, Xj) =
1
3In for i 6= j. Then

lim
n→∞

P[UniqueBestk(MAJn)] = P(∀i : Xi ∈ H)

Proof. Let Yj = 1√
n

∑n
i=1 X1>j

i . By definition 3,

P[UniqueBestk(MAJn)] = P(Y2 ≥ 0, . . . , Yk ≥ 0)

But, E[Yj ] = 0, E[Y 2
j ] = 1 andCov[Yi, Yj ] = 1

3 for i 6= j. Thus, by the

central limit theorem,(Y2, . . . , Yk)
D→ (X2, . . . , Xk) and the result follows.

Proof of Theorem 4.Clearly, any candidate has the same probability of being
the unique best candidate. So it’s enough to show that the probability that the
first candidate is the unique best is maximized by majority,

P[UniqueBestk(f, 1)] ≤ lim
n→∞

P[UniqueBestk(MAJn, 1)] +
ǫ

k
(21)

Form orthonormal ensembles

X 1>j
i = (1, X1>j

i ) , for i ∈ [n] and2 ≤ j ≤ k
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and independent sequences of orthonormal ensembles

X j = (X 1>j
1 , . . . ,X 1>j

n )

ThusX j is a basis for real-valued functions on all voters’ preferences between
candidates1 andj and we can compute the (unique) multilinear polynomialQ

such that

f(X1>j
1 , . . . , X1>j

n ) = Q(X j)

Hence we may write,

P[UniqueBestk(f, 1)] = E

k∏

j=2

Q(X j) (22)

Let Q̃ = T1−γQ be a slightly smoothed version ofQ, and let

ρ(k) = ρ(Σ
(
X 1>2

i

)
, . . . ,Σ

(
X 1>k

i

)
;P)

whereΣ(X) denotes theσ-algebra generated byX. Clearly,ρ(k) < 1, so by
Lemma 1 we can find aγ(ǫ, k, n) > 0 such that

|E
k∏

j=2

Q(X j)−E

k∏

j=2

Q̃(X j)| ≤ ǫ

2k
(23)

Let f[0,1](x) = max(0, min(1, x)). SinceQ has range[0, 1], the same holds

for Q̃. Hence, for allj,

Q̃(X j) = f[0,1]Q̃(X j) (24)

We now apply the invariance principle (Theorem 8) usingΨ(x2, . . . , xk) =∏k
j=2 f[0,1](xj) which by convexity of[0, 1]k−1 is Lipschitz continuous with

Lipschitz constantA = 1. Thus, by Theorem 8, there exist someγ > 0 such
that, ∣∣∣∣∣∣

E

k∏

j=2

f[0,1]Q̃(X j)−E

k∏

j=2

f[0,1]Q̃(Gj)

∣∣∣∣∣∣
≤ ǫ

4k2
(25)

whereGj = (G1>j
1 , . . . ,G1>j

n ) , andG1>j
i = (1, G1>j

i ) are Gaussian sequences
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of orthonormal ensembles with

Cov[G1>j1
i1

, G1>j2
i2

] = Cov[X1>j1
i1

, X1>j2
i2

] =





1 if i1 = i2, j1 = j2
1
3 if i1 = i2, j1 6= j2

0 else

Now (f[0,1]Q̃, 1−f[0,1]Q̃) applied toGj can be thought of as a function
R

n → ∆2 creating a fuzzy partition of then-dimensional Gaussian space
which is almost balanced. Letµ = E f[0,1]Q̃(Gj). Then a second application
of Theorem 8 withΨ(x) = f[0,1](x) gives

∣∣∣∣µ−
1

2

∣∣∣∣ ≤
ǫ

4k2

By Lemma 2 and 3, there exists a balanced functiong : R
n → E2.

E

k∏

j=2

f[0,1]Q̃(Gj) ≤ E

k∏

j=2

g1(Gj) +
ǫ

4k
(26)

But any suchg partitionsR
n into 2 parts of equal Gaussian measure1

2 , so
Conjecture 1 and Lemma 7 implies

E

k∏

j=2

g1(Gj) ≤ lim
n→∞

P[UniqueBestk(MAJn)] (27)

Combining equations (22), (23), (24), (25), (26) and (27) gives (21) as
needed.

2.6 Approximability of MAX-q-CUT

In this section we will show that if we assume the Unique Games Conjecture,
then the optimal approximability of MAX-q-CUT is directly related to the most
stable partition of Gaussian space intoq parts of equal measure as described in
Conjecture 2.

2.6.1 The Unique Games Conjecture

The Unique Games Conjecture (UGC) was introduced by Khot in [10] as a pos-
sible way of proving inapproximability results for 2-CSPs and has since been
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used to prove optimal inapproximability results for many important problems,
such as . . . .

The conjecture asserts the hardness of approximating theUnique Label
Coverproblem within any constant.

DEFINITION 15.
An instance of theUnique Label Coverproblem,L(V, W, E, M, {σv,w}(v,w)∈E),
consists of a bipartite graph(V ∪W, E) with a permutationσv,w : [M ]→ [M ]

associated with every edge(v, w) ∈ E ⊆ V ×W . A labelingl : V ∪W → [M ]

is said to satisfy an edge(v, w) if

σ(v,w)(l(w)) = l(v)

The value of a labelingl, VALl(L), is the fraction of edges satisfied byl and
the value ofL is the maximal fraction of edges satisfied by any labeling,

VAL(L) = max
l

VALl(L)

CONJECTURE4. The Unique Games Conjecture. For any η, γ > 0 there
exists aM = M(η, γ) such that it is NP-hard to distinguish instancesL of the
Unique Label Cover problem with label set sizeM havingVAL(L) ≥ 1 − η

from those havingVAL(L) ≤ γ.

Next, we will show that for anyǫ > 0, MAX-q-CUT can be approximated
within αq − ǫ in polynomial time while it is UG-hard to approximate it within
βq + ǫ.

2.6.2 Optimal approximability constants

DEFINITION 16. For q ≥ 1, let

αq = lim
n→∞

sup
A1,...,Aq

inf
− 1

q−1
≤ρ≤1

q

q − 1

1−P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q)

1− ρ
(28)

and

βq = lim
n→∞

inf
− 1

q−1
≤ρ≤1

sup
A1,...,Aq

q

q − 1

1−P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q)

1− ρ
(29)

whereX, Y ∈ N(0, In), Cov(X, Y ) = ρIn and the supremum is over all
disjointA1, . . . , Aq ⊆ R

n with P(X ∈ Aj) = 1
q , ∀j.
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Note that the limit in (28) and (29) exist since they are limits of bounded func-
tions increasing withn (we can always ignore any number of dimensions while
specifying the partition).

We now show thatαq = βq assuming Conjecture 2. To do this, we first
show that we can restrict attention to non-positive values ofρ and for all such
values the standard simplex partition is optimal.

LEMMA 8. Assume Conjecture 2. Then, with the notation of Definition 16, we
have for allρ ∈ [0, 1],

q

q − 1

1−P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q)

1− ρ
≥ 1

with equality forρ = 0.

Proof. By Conjecture 2 and Lemma 6,

P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q) ≤ lim
n→∞

Sρ(PLURn,q)

On the other hand, by (8) and (6)

Sρ(PLURn,q) =
∑

σ

ρ|σ|||cσ||22 ≤ ||E[PLURn,q]||22 + ρVar[PLURn,q] =

=
1

q
+

q − 1

q
ρ

Hence,

P((X, Y ) ∈ A2
1 ∪ · · · ∪A2

q) ≤
1

q
+

q − 1

q
ρ

which holds with equality forρ = 0.

THEOREM 10. Assume Conjecture 2. Thenαq = βq.

Proof. By Lemma 8 the infimums in the definition ofαq andβq are obtained
for − 1

q−1 ≤ ρ ≤ 0. The result now follows from the fact that forρ in this
range, the least stable partition in Conjecture 2 does not depend onρ.

We now proceed to present the approximation algorithm and the inapprox-
imability argument which together implies Theorem 3.
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2.6.3 An approximation algorithm

The approximation algorithm presented here is a generalization of the algo-
rithm presented in [4] allowing for an arbitrary partition to be used when round-
ing the relaxed solution. The algorithm in [4] corresponds exactly to using the
simplex partition of Conjecture 2, which (as we will see) is optimal if Conjec-
ture 2 is true.

Let Ẽq =
√

q
q−1MEq =

{√
q

q−1Mx|x ∈ Eq

}
be the extreme points of

the projected simplex scaled so that each point has unit norm:

LEMMA 9. For x̃, ỹ ∈ Ẽq,

x̃ · ỹ =

{
1 if x̃ = ỹ

− 1
q−1 if x̃ 6= ỹ

(30)

Proof. Let x and y be the preimages of̃x and ỹ, i.e. x̃ =
√

q
q−1Mx and

similarly for y. Then,

x̃·ỹ =
q

q − 1

(
x− 1

q

)
·
(

y − 1

q

)
=

q

q − 1

(
x · y − 1

q

)
=

{
1 if x̃ = ỹ

− 1
q−1 if x̃ 6= ỹ

Labeling the vertices with vectors from̃Eq instead of numbers from[q], we
can write the value of a MAX-q-CUT instanceMq(V, E, w) as the following
discrete optimization problem:

VAL(Mq) = max q−1
q

∑
(u,v)∈E w(u,v)(1− lu · lv)

subject to lu ∈ Ẽq , ∀u ∈ V

To obtain the SDP relaxation we allow the vectors to be arbitrary points on
the unit sphere while adding the constraintzu · zv ≥ − 1

q−1 which by (30) holds

for vectors inẼq,

SDP-VAL(Mq) := max q−1
q

∑
(u,v)∈E w(u,v)(1− zu · zv)

subject to zu ∈ R
n,∀u ∈ V

zu · zu = 1,∀u ∈ V

zu · zv ≥ − 1
q−1 ,∀u, v ∈ V
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wheren = |V | denotes the number of vertices.
The rounding applied to the solution of SDP-VAL is parametrized by an

integerm, a partitionA = {A1, . . . , Aq} of R
m and an error constantδ > 0,

Approximation algorithm R(m,A, δ).

1. Compute an almost optimal solution(zu)u∈V to SDP-VAL(Mq) using
semidefinite programming. This will achieve a value of SDP-VAL(Mq)−
δ.

2. Pick a projection matrixT : R
m×n, by lettingTij be i.i.d.N(0, 1).

3. For eachu ∈ V , let l(u) = i iff Tzu ∈ Ai.

Let R-VAL(Mq) = VALl(Mq) be the value of the rounded labeling.
Then, the expected approximation ratio is:

E[R-VAL(Mq)]

VAL(Mq)
≥ E[R-VAL(Mq)]

SDP-VAL(Mq) + δ
=

=

∑
(u,v)∈E w(u,v) P (l(u) 6= l(v))

q−1
q

∑
(u,v)∈E w(u,v)(1− zu · zv) + δ

≥

≥ q

q − 1
inf

zu,zv∈Sn−1

zu·zv≥− 1

q−1

1−P((Tzu, T zv) ∈ A2
1 ∪ · · · ∪A2

q)

1− zu · zv + δ

But, Tzu, T zv ∈ N(0, Im) andCov(Tzu, T zv) = (zu · zv)Im, so by picking
m large enough andA1, . . . , Aq so that the limit in (28) is almost achieved (bar,
sayδ), and then pickingδ = δ(ǫ) small enough, we get an approximation ratio
of αq − ǫ, for anyǫ > 0. We have proved the following result

THEOREM 11. For any ǫ > 0 there exists a polynomial time algorithm that
approximates MAX-q-CUT withinαq−ǫ.

2.6.4 Inapproximability results

We will now prove that MAX-q-CUT is UG-hard to approximate within any
factor greater thanβq. To do so, we present a reduction from the Unique Label
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Cover problem to MAX-q-CUT following the same outline as the correspond-
ing reduction for MAX-CUT given in [11]. The reduction is based on aProb-
abilistically Checkable Proof(PCP) whose proofΠ consists of the function
tables of{fw}w∈W , wherefw : [q]M → [q] is expected to be thelong codeof
w’s label l(w), i.e. fw(x) = xl(w). In order to be able to reduce the PCP to
MAX-q-CUT, the PCP verifierVρ is designed to use an acceptance predicate
which reads two random function values from the proof and accepts iff they dif-
fer. Thus, a MAX-q-CUT instanceMq can be created from the PCP by letting
the vertices be the function values that can be read byVρ, the edges the pairs
of function values that are compared, and the weights the probability of that
comparison being made byVρ. The verifier is parametrized byρ ∈ [− 1

q−1 , 1].

PCP Verifier Vρ.

1. Pickv ∈ V at random and two of its neighborsw, w′ at random.

2. Pickx ∈ [q]M at random.

3. Picky ∈ [q]M to be aρ-correlated copy ofx, i.e. eachyi is independently
selected using the conditional distribution

µ(yi|xi) = ρ1{yi=xi} + (1− ρ)
1

q

4. Accept iffwPσv,w(x) 6= fw′Pσv,w′ (y), wherePσ : [q]M → [q]M denotes
the function

Pσ(x1, . . . , xM ) = (xσ(1), . . . , xσ(M))

Using a result from [12] we can assume that the graph is regular on the
V side so that(v, w), and similarly(v, w′), picked byVρ corresponds to a
an edge selected uniformly at random. By folding, we may also assume that
the functionsfw are balanced, i.e. by using the functionsf ′

w(x1, . . . , xM ) :=

fw(0, x2 − x1, . . . , xM − x1) + x1 (where addition and subtraction in[q] is
performed moduloq) instead of the original functionsfw. Note that folding
does not change any function which is a long code, but still forces any function
to become balanced.
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LEMMA 10. (Completeness).Fix ρ ∈ [− 1
q−1 , 1). Then, for any Unique Label

Cover problemL with VAL(L) ≥ 1− η there exists a proofΠ such that

P[Vρ acceptsΠ] ≥ (1− 2η)
q − 1

q
(1− ρ)

Proof. Let l be the optimal assignment forL andfw be the long code ofl(w),
i.e.

fw(x) = xl(w)

With probability at least1− 2η, both edges(v, w) and(v, w′) are satisfied
by l. In this case,

fwPσv,w(x) = xσv,w(l(w)) = xl(v) andfw′Pσv,w′ (y) = yl(v)

andVρ accepts with probability

P[xl(v) 6= yl(v)] = 1−
(

ρ +
1− ρ

q

)
=

q − 1

q
(1− ρ)

LEMMA 11. (Soundness). Fix ρ ∈ [− 1
q−1 , 1] and ǫ > 0. Then, there exists

a γ = γ(q, ρ, ǫ) > 0 such that for any Unique Label Cover problemL with
VAL(L) ≤ γ and any proofΠ,

P[Vρ acceptsΠ] ≤ 1− Λ−
q (ρ) + ǫ (31)

Proof. Forw ∈W , let f̃w : [q]M → Eq defined by

f̃w(x) = efw(x)

map the value offw onto one ofq unit vectors, and forv ∈ V , let gv : [q]M →
∆q be defined by

gv(x) = E
w

[f̃wPσv,w(x)]

where the expectation is over a random neighborw of v. Then,

P[Vρ acceptsΠ] = E
v,w,w′,x,y

[1− 〈f̃wPσv,w(x), f̃w′Pσv,w′ (y)〉] =

= 1− E
v,x,y

[〈gv(x), gv(y)〉] = 1−E
v

Sρ(gv)
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Now supposeΠ is a proof such that (31) is not satisfied, i.e,

E
v

Sρ(gv) < Λ−
q (ρ)− ǫ (32)

We need to show that this impliesVAL(L) > γ. To do so it is enough to
create a random labelingl such that

E
l
[VALl(L)] > γ

Let Vgood = {v ∈ V |Sρ(gv) ≤ Λ−
q (ρ) − ǫ

2}. SinceSρ(gv) ≥ 0, (32)
implies that|Vgood| ≥ ǫ

2 |V |. Further, forv ∈ Vgood, Theorem 9 implies that

maxi Inf≤d
i gv ≥ τ , for somed andτ > 0 depending only onq,ρ andǫ.

The assignmentl is created as follows:

1. Forv ∈ V , let l(v) = i, wherei maximizesInf≤d
i gv (ties broken arbi-

trarily)

2. Forw ∈W , let l(w) = i with probability proportional toInf≤d
i f̃w.

Since (7) holds for vector-valued functions, this means that

P
l
(l(w) = i) ≥ Inf≤d

i f̃w

qd

Forv ∈ Vgood,

τ ≤ Inf≤d
l(v) gv = Inf≤d

l(v) Ew
[f̃wPσv,w(x)] ≤ E

w
Inf≤d

l(v) f̃wPσv,w(x) =

= E
w

Inf≤d

σ−1
v,w(l(v))

f̃w(x) ≤ qd P
w,l

[l(w) = σ−1
v,w(l(v))] =

= qd P
w,l

[l satisfies(v, w)]

where the second inequality follows from convexity ofInf≤d
i . Hence,

E
l
[VALl(L)] = P

l,v,w
(l satisfies(v, w)) ≥ ǫ

2
· τ

qd

Pickingγ = ǫ
4 · τ

qd > 0 finishes the proof.

Together, the soundness and completeness lemmas implies the following
inapproximability result for MAX-q-CUT:
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THEOREM12. For anyǫ > 0 it is UG-hard to approximate MAX-q-CUT within
βq + ǫ.

Proof. By Lemma 10 and 11 it is UG-hard to distinguish instances of MAX-
q-CUT with value at least(1 − 2η) q−1

q (1 − ρ) from instances with value at
most1 − Λ−

q (ρ) + ǫ for any γ, ǫ > 0. Thus, it is UG-hard to approximate
MAX-q-CUT within

1− Λ−
q (ρ) + ǫ

(1− 2η) q−1
q (1− ρ)

=
q

q − 1

1− Λ−
q (ρ)

1− ρ
+ ǫ′

whereǫ′ > 0 can be made arbitrarily small by pickingγ andǫ small enough.
Since this holds for anyρ ∈ [− 1

q−1 , 1] the result follows.
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Appendices

2.A Proof of Lemma 2

Proof. Assume first thatρ ∈
(
− 1

k−1 , 1
)

so that the normal distribution is non-

degenerate. DiscretizeRn with cubes[0, δ)n, i.e. writeR
n = δZ

n × [0, δ)n.
whereδZ

n denotes the n-dimensional integer lattice scaled by a factorδ.

Let Zi,j = δ
⌊

Xi,j

δ

⌋
so thatZi denotes the cubeXi is in, and letUi,j be

i.i.d. uniform on[0, δ], independent ofX1, . . . Xk.
Further letη be the density of(X1, . . . , Xk) and η̃ the density of(Z1 +

U1, . . . , Zk + Uk). It is easy to see that

η̃(x) =
1

δnk

∫

[0,δ)nk

η(z1 + u1, . . . zq + uq)d(u1, . . . uq)→ η(x) asδ → 0
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sinceη is Lipschitz continuous. By dominated convergence, this implies that
we can chooseδ so that

∫

Rnk

|η(x)− η̃(x)| dx ≤ ǫ

2

Similar to Scheffés Lemma we have for anyh : R
nk → [0, 1],

∣∣∣∣
∫

Rnk

h(x)η(x)dx−
∫

Rnk

h(x)η̃(x)dx

∣∣∣∣ ≤
∫

Rnk

h(x) |η(x)− η̃(x)| dx ≤ ǫ

2
(33)

The non-fuzzy functiong is constructed fromf by transferring masses in-
ternally in each cube. More specifically,g is defined arbitrarily on each cube
with the only restriction that

E[g(Z1 + U1)|Z1] = E[f(Z1 + U1)|Z1]

(For instance, ifE[g(Z1 + U1)|Z1 = z1] = µ, then we may divide the cube
z1 + [0, δ)n into q parts of conditional measureµ1, . . . µq and assign the value
e1, . . . , eq respectively to each part.) Thus,

E

q0∑

i=1

k∏

j=1

fi(Zj + Uj) = E

q0∑

i=1

k∏

j=1

E[fi(Zj + Uj)|Zj ] =

= E

q0∑

i=1

k∏

j=1

E[gi(Zj + Uj)|Zj ] = E

q0∑

i=1

k∏

j=1

gi(Zj + Uj)

Applying (33) twice gives (10). Similarly

E fi(Z1+U1) = E[E[fi(Z1+U1)|Z1]] = E[E[gi(Z1+U1)|Z1]] = E gi(Z1+U1)

and two more applications of (33) gives|E fi(X1) − E gi(X1)| ≤ ǫ and (9)
follows.

The two degenerate cases can be handled in a similar way by using a density
with respect to a lower dimensional Lebesgue measure.
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ABSTRACT
We introduce k-wise Gaussian noise stability and show that among subsets of
R

n of fixed measure, half-spaces maximizes this stability. This extends a Gaus-
sian isoperimetric inequality by Borell which proved the result fork = 2.

3.1 Introduction

DEFINITION 1. For k ≥ 1, ρ ∈ [− 1
k−1 , 1], andA ∈ B(Rn), thek-wise Gaus-

sian noise stability ofA at ρ is

S
(k)
ρ (A) = P(X1 ∈ A, . . . , Xk ∈ A)

whereX1, . . . , Xk ∼ N(0, In) are jointly normal withCov(Xi, Xj) = ρIn

for i 6= j.
We also letµ = S

(1)
ρ denote the standard Gaussian measure onR

n.

We prove that among sets of fixed measure, half spaces are most stable
under k-wise Gaussian noise forρ ≥ 0.
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THEOREM 1. For anyk ≥ 1, ρ ∈ [0, 1] andA ∈ B(Rn),

S
(k)
ρ (A) ≤ S

(k)
ρ (H)

whereH = {x ∈ R
n|x1 ≤ a} for a chosen so thatµ(H) = µ(A).

Note that the casek = 1 is of course trivial. Further, the casek = 2 was
proved by Borell [1].

3.2 Spherical Case

We start by defining the corresponding problem onSm−1(
√

m), the m− 1-
dimensional sphere inRm with radius

√
m.

DEFINITION 2. For k ≥ 1, ρ ∈ [− 1
k−1 , 1], andA ∈ B(Rm), the k-wise spher-

ical noise stability ofA at ρ is

S̃
(k)
ρ (A) = P(X̃1 ∈ A, . . . , X̃k ∈ A)

whereX1, . . . , Xk ∼ N(0, Im) are jointly normal withCov(Xi, Xj) = ρIm

for i 6= j andX̃i =
√

m
||Xi||2 Xi.

We also let̃µ = S̃
(1)
ρ denote the uniform measure on the sphereSm−1(

√
m).

THEOREM 2. For anyk ≥ 1, ρ ∈ [0, 1] andA ∈ B(Rm),

S̃
(k)
ρ (A) ≤ S̃

(k)
ρ (H)

whereH = {x ∈ R
m|x1 ≤ a} for a chosen so that̃µ(H) = µ̃(A).

Our reduction from the spherical result to the Gaussian result is based on
Poincarés observation that Gaussian measure onR

n is obtained by projection
of the uniform measure onSm−1(

√
m) ontoR

n, asm→∞. The convergence
is strong enough for the measure of any Borel set to converge:

LEMMA 1. For anyA ∈ B(Rn),

µ̃(A× R
m−n)→ µ(A) asm→∞

Proof. This is mentioned with references in [4]. See also [2]
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LEMMA 2. For anyk ≥ 1, ρ ∈ [0, 1] andA ∈ B(Rn),

S̃
(k)
ρ (A× R

m−n)→ S
(k)
ρ (A) asm→∞

Proof. To do.
SupposeX1, . . . , Xk ∼ N(0, Im) andCov(Xi, Xj) = ρIm for i 6= j. Let

X̃i =
√

m
||Xi||2 Xi.

Let Yi = (Xi,1, . . . , Xi,n) denote the restriction ofXi to the firstn coordi-
nates (think ofm ≥ n), and similarlyỸi = (X̃i,1, . . . , X̃i,n). Then it’s easy to
see that

(Ỹ1, . . . , Ỹk)
D→ (Y1, . . . , Yk) asm→∞

But to show that

P(Ỹ1 ∈ A, . . . Ỹk ∈ A)→ P(Y1 ∈ A, . . . Yk ∈ A)

for all A, we need a stronger convergence (convergence of densities is enough).

LEMMA 3. Theorem 2⇒ Theorem 1.

Proof. Fix A ∈ B(Rn) and letH = {x ∈ R
n|x1 ≤ a} whereµ(H) = µ(A).

We need to show that
S

(k)
ρ (A) ≤ S

(k)
ρ (H)

For eachm ≥ n, let Hm = {x ∈ R
m|x1 ≤ am} wheream is chosen so that

µ̃(Hm) = µ̃(A× R
m−n). Note that, by Lemma 1, asm→∞,

µ̃(Hm) = µ̃(A× R
m−n)→ µ(A) = µ(H)← µ̃(H × R

m−n)

Since bothH andHm are half-spaces defined by the first coordinate, this im-
plies

µ̃(Hm \H × R
m−n)→ 0

which by the union bound implies

S̃
(k)
ρ (Hm)− S̃

(k)
ρ (H × R

m−n) ≤ kµ̃(Hm \H × R
m−n)→ 0 (1)
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Now, by Theorem 2,

S̃
(k)
ρ (A× R

m−n) ≤ S̃
(k)
ρ (Hm)

Taking limits (asm→∞) and using Lemma 2 and (1) we have

S
(k)
ρ (A) ≤ S

(k)
ρ (H)

as needed.

3.3 Symmetrization

The main tool in the proof is the following symmetrization operation which
given a hyperplane tries to push every point inA from one pre-determined side
of the hyperplane to it’s reflection point on the other side of the hyperplaneas
long as that point is not already inA. Defining the symmetrization process in
terms of set operations we have,

DEFINITION 3. For anyA ∈ B(Rn) andh ∈ R
n \{0}, we define thetwo-point

symmetrizationof A with respect toh by

Rh(A) =
(
[A ∩ σ(A)] ∩HC

+

)
∪ ([A ∪ σ(A)] ∩H+) (2)

whereH+ = {x ∈ R
n|x · h > 0} andσ(A) denotes the reflection ofA with

respect to the hyperplaneH0 = {x ∈ R
n|x · h = 0}.

As we will show, both Gaussian and spherical k-wise noise stability increases
under this symmetrization forρ ≥ 0.

LEMMA 4. For anyk ≥ 1, ρ ∈ [0, 1), A ∈ B(Rn) andh ∈ R
n \ {0},

S
(k)
ρ (Rh(A)) ≥ S

(k)
ρ (A)

Proof. By spherical symmetry it is enough to prove the result forh = e1, the
first unit vector.

Let X1, . . . , Xk be as in Definition 1 and letX be the matrix of ran-
dom variables with row vectorsXi. := Xi. Then the column vectorsX.j =

(X1,j , . . . , Xk,j) are independentN(0, Σ) vectors whereΣi,j = ρ+(1−ρ)δij .
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It is easy to verify that the inverse ofΣ is given by
(
Σ−1

)
i,j

= −a + bδij ,

whereb = 1
1−ρ anda = ρ

(1−ρ)(1+ρ(k−1)) ≥ 0 for ρ ≥ 0. Hence,

S
(k)
ρ (A) =

∫

Rn×k

k∏

i=1

1{xi.∈A}

n∏

j=1

f(x.j)dx

wheref : R
k → R is the density of aN(0, Σ) variable, i.e.

f(y) =
1√

(2π)k|Σ|
e−

1

2
(b

Pk
i=1

y2
i −a

P

i,j yiyj)

Splitting the integral depending on the signss1, . . . , sk of x.1, we may write

S
(k)
ρ (A) =

∫

(R+×Rn−1)k

fA(x)
n∏

j=2

f(x.j)dx

where

fA(x) =
∑

s∈{−1,1}k

k∏

i=1

1{(sixi,1,xi,2,...,xi,n)∈A}f(s1x1,1, . . . , skxk,1)

Clearly, it is enough to show thatfA(x) does not decrease under symmetriza-
tion of A, for anyx ∈ (R+×R

n−1)k. Fix such anx. By reordering the vectors
x1, . . . , xk, we may assume without loss of generality that for the firstl vectors
both xi andσ(xi) are inA, while for the rest exactly one is (we can ignore
cases where for somei neitherxi nor σ(xi) are inA since such cases do not
contribute tofA(x) norfRh

(A)). Thus we can assume that

{xi, σ(xi)} ⊆ A, 1 ≤ i ≤ l

while {
xi ∈ A andσ(xi) /∈ A if ti = 1

xi /∈ A andσ(xi) ∈ A if ti = −1
, l < i ≤ k

for somel ∈ [k] andtl+1, . . . , tk ∈ {−1, 1}. Note that symmetrization ofA
corresponds to setting allti’s to 1. Now,

fA(x) =
∑

s∈{−1,1}l

f(s1x1,1, . . . , slxl,1, tl+1xl+1,1, . . . , tkxk,1) =

=
1√

(2π)k|Σ|
∑

s∈{−1,1}l

e−
1

2
(cs+ds)
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where

cs = b
k∑

i=1

x2
i,1 − a

∑

1≤i,j≤l

sisjxi,1xj,1 − a
∑

l<i,j≤k

titjxi,1xj,1

and

ds = −2a
∑

1≤i≤l<j≤k

sitjxi,1xj,1 = −2a
∑

1≤i≤l

sixi,1

∑

l<j≤k

tjxj,1

Pairing eachs with −s in (3) and noting thatcs is even ins while ds is odd, we
may write

fA(x)
√

(2π)k|Σ| = 1

2

∑

s∈{−1,1}l

e−
1

2
(cs+ds) + e−

1

2
(c−s+d−s)

=
∑

s∈{−1,1}l

e−
1

2
cs cosh(−1

2
ds)

The result now follows by noting that sincex.1 ≥ 0, setting allti’s to 1 will
decrease eachcs and increase the absolute value of eachds, hencefA(x) will
increase (unless allti’s already are1).

This symmetrization works just as well in the spherical case,

COROLLARY 1. For anyk ≥ 1, ρ ∈ [0, 1), A ∈ B(Rm) andh ∈ R
m \ {0},

S̃
(k)
ρ (Rh(A)) ≥ S̃

(k)
ρ (A)

Proof. DefineT : R
m → R

m by T (A) =

{
x ∈ R

m

∣∣∣∣
√

m
||x||2 x ∈ A

}
. Then,

using Lemma 4 and noting thatT andRh commute, we have

S̃
(k)
ρ (Rh(A)) = S

(k)
ρ (T (Rh(A))) = S

(k)
ρ (Rh(T (A))) ≥ S

(k)
ρ (T (A)) = S̃

(k)
ρ (A)
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3.4 Proof of Theorem 2

The proof of Theorem 2 given Lemma 4 is inspired by [3].

DEFINITION 4. For x, y ∈ R
m and A, B ⊆ R

m, let d(x, y) denote the Eu-
clidean distance betweenx and y, d(x, A) = infy∈A d(x, y) denote the dis-
tance fromx to A and

dH(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}

denote the Hausdorff distance betweenA andB.
Also, forǫ > 0, let

Aǫ = {x ∈ R
m|d(x, A) ≤ ǫ}

DEFINITION 5. Let (Cm, dH) denote the metric space

Cm = {C ∈ B(Sm−1(
√

m))|C is closed}

equipped with the Hausdorff measuredH .

Note that since(Sm−1(
√

m), d) is compact so is(Cm, dH).

LEMMA 5. For B ∈ Cm, S̃
(k)
ρ (Bǫ)→ S̃

(k)
ρ (B) asǫ→ 0.

Proof. Fork = 1, we only need to note that sinceB is closed,
⋂

ǫ>0 (Bǫ \B) =

∅, henceµ(Bǫ \B)→ 0 asǫ→ 0. By the union bound,

S̃
(k)
ρ (Bǫ) ≥ S̃

(k)
ρ (B) ≥ S̃

(k)
ρ (Bǫ)− kµ(Bǫ \B)

hence the result follows by lettingǫ→ 0.

LEMMA 6. S̃
(k)
ρ is upper semi-continuous on(Cm, dH).

Proof. SupposeBn is a sequence inCm such thatdH(Bn, B)→ 0. We need to

show that̃S(k)
ρ (B) ≥ lim sup S̃

(k)
ρ (Bn). But, for anyǫ > 0, Bǫ ⊇ lim supBn,

hence
S̃

(k)
ρ (Bǫ) ≥ S̃

(k)
ρ (lim supBn) ≥ lim sup S̃

(k)
ρ (Bn)

where the second inequality follows from the reverse Fatou Lemma. The result
now follows from Lemma 5 by lettingǫ→ 0.
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Proof of Theorem 2.Sinceµ̃ is supported onSm−1(
√

m), we may assumeA ∈
B(Sm−1(

√
m)) and letH = {x ∈ Sm−1(

√
m)|x1 ≤ a} wherea is chosen so

thatµ̃(H) = µ̃(A). We need to show that

S̃
(k)
ρ (A) ≤ S̃

(k)
ρ (H)

Without loss of generality we may also assume thatA is closed (else, by
regularity of the uniform measurẽµ, ∀ǫ > 0 : ∃ closedA′ ⊆ A such that
µ̃(A′) ≥ µ̃(A)− ǫ, and hencẽS(k)

ρ (A′) ≥ S̃
(k)
ρ (A)− kǫ, and the result follows

from the result for closed sets by lettingǫ→ 0).
LetB ⊆ Cm be the set of allB ∈ Cm such that

i) µ̃(B) = µ̃(A) (= µ̃(H))

ii) ∀ǫ > 0 : µ̃(Bǫ) ≤ µ̃(Aǫ)

iii) S̃
(k)
ρ (B) ≥ S̃

(k)
ρ (A)

Claim 1:B is closed in(Cm, dH).
Proof: SupposeBn is a sequence inB such thatdH(Bn, B) → 0. We

need to show thatB ∈ B. From Lemma 6, it follows that̃S(k)
ρ (B) ≥

S̃
(k)
ρ (A) andµ̃(B) ≥ µ̃(A). Now fix ǫ > 0. For all δ > 0 we can pick

n = n(δ) such that(Bn)ǫ+δ ⊇ Bǫ. Hence,

µ̃(Bǫ) ≤ µ̃((Bn)ǫ+δ)
Bn∈B≤ µ̃(Aǫ+δ)

Lem. 5−→ µ̃(Aǫ) asδ → 0

Thus,µ̃(Bǫ) ≤ µ̃(Aǫ). Letting ǫ → 0 and using Lemma 5 we also get
µ̃(B) ≤ µ̃(A).

Claim 2:B is closed underRh.
Proof: Condition iii) was shown in Corollary 1. Condition i) follows
from (2) by noting that

µ̃(Rh(B)) = µ̃(B∩σ(B))
1

2
+µ̃(B∪σ(B))

1

2
=

µ̃(B) + µ̃(σ(B))

2
= µ̃(B)

For condition ii) it is enough to see that[Rh(A)]ǫ ⊆ Rh(Aǫ) for all
ǫ > 0. This can be seen by a simple case analysis.

Now, upper semi-continuity of̃µ implies upper semi-continuity ofB → µ̃(B∩
H) on (Cm, dH). Hence, since(Cm, dH) is compact andB is a non-empty
(sinceA ∈ B) closed subset,sup

B∈B
µ̃(B ∩H) is achieved by someB∗ ∈ B.
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Suppose first that,̃µ(B∗ ∩H) < µ̃(H). Then, by i), we must have

µ̃(B∗ \H) = µ̃(H \B∗) > 0

Lebesgue’s density theorem asserts that there are pointsx ∈ B∗ \ H andy ∈
H \B∗ and aǫ > 0 such that say,

{
µ̃({x}ǫ ∩B∗ \H) > 0.9µ̃({x}ǫ)
µ̃({y}ǫ ∩H \B∗) > 0.9µ̃({y}ǫ)

Let h = y − x. Then, applying the symmetrization operatorRh to B∗ will
transfer a subset of measure at least0.8µ̃({x}ǫ) of B∗ from HC to H, while
no point ofB∗ in H will be transferred to a point outsideH (sinceH is a half-
space and points will be transferred in the directionh = y − x wherey ∈ H

andx /∈ H). Thus,

µ̃(Rh(B∗) ∩H) ≥ µ̃(B∗ ∩H) + 0.8µ̃({x}ǫ) > µ̃(B∗ ∩H)

contradicting the optimality ofB∗. Hence, we must havẽµ(B∗ ∩H) = µ̃(H).
But thenB∗ = H (a.s.µ̃) and

S̃
(k)
ρ (H) = S̃

(k)
ρ (B∗) ≥ S̃

(k)
ρ (A)

as needed.
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