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ABSTRACT

Gaussian isoperimetric results have recently played an important role in prov
ing fundamental results in hardness of approximation in computer sciedce an
in the study of voting schemes in social choice theory. In this thesis we prove
a generalization of a Gaussian isoperimetric result by Borell and shovit that
implies that the majority function is optimal in Condorcet voting in the sense
that it maximizes the probability that there is a single candidate which the so-
ciety prefers over all other candidates. We also show that a differans-G
sian isoperimetric conjecture which can be viewed as a generalization of the
“Double Bubble” theorem implies the Plurality is Stablest conjecture and also
that the Frieze-Jerrum semidefinite programming based algorithm for MAX-q
CUT achieves the optimal approximation factor assuming the Uniqgue Games
Conjecture. Both applications crucially depend on the invariance principle o
Mossel, O’'Donnell and Oleszkiewicz which lets us rephrase questicns ab
noise stability of low-influential discrete functions in terms of noise stability
of functions onR™ under Gaussian measure. We prove a generalization of this
invariance principle needed for our applications.

Keywords: Gaussian noise stability, inapproximability theory, ingace principle,
max-q-cut, condorcet voting.
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Introduction

1.1 Gaussian Noise Stability

Gaussian noise stability measures the stability of partitions of Gaussian space
under noise. In the simplest form we have two jointly standard Gaussisorsec
X andY in R", with a covariance matriCov(X,Y) = E[XYT] = pI,,, i.e.

the coordinate pairéX;,Y;) are i.i.d. N (O, [ ; /1)

subsetA of R” is defined to be the probability that both andY fall into A.
Borell [3] proved that for sets of fixed Gaussian measure, halfespaaximize

this stability (it follows from his result that in an Ornstein-Uhlenbeck preces
the hitting time of sets of fixed measure is maximized by half-spaces). For
simplicity, we will restrict attention to balanced partitions, i.e. sets of Gaussian
measure.

. The stability of a

THEOREM1. [3]Fix p € [0,1]. SupposeX,Y ~ N(0, I,,) are jointly normal
andCov(X,Y) = pI,,. LetA C R" with P(X € A) = 5. Then

PXeAYecA)<PXeHYecH)

whereH = {z € R"|z; > 0}.
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In this thesis, several generalizations of this theorem are consideield wh
are also motivated by applications.

e We may consider the situation with> 2 correlated vectors.
e We may consider vectors that are negatively correlatedy i@.[—ﬁ, 0} :

¢ Instead of selecting one set (and implicitly its complement) we may con-
sider a partition oR™ into ¢ > 2 subsets and ask for the probability that
all k£ vectors fall into the same subset.
We will still restrict attention to balanced patrtitions, i.e. into disjoint sets
Aq, ... Ay C R™ with equal Gaussian measuéfe

It is conjectured that

e For fixedq, increasingk will not change the optimal partition. For in-
stance, foy = 2 butk > 3 half-spaces would still be optimal.

e The most stable partition for positiyeis the least stable partition for
negativep. 1

e If partitions with¢ > 2 subsets are considered then the stability, now

defined as
q

P((XY)el )43 (1)
j=1

(whereA? denotes the Cartesian produtf x A;) is maximized by a
standard simplex patrtitioffor n > ¢ — 1).

A standard simplex partition dividé®™ into ¢ partitions depending on which of
g maximally separated unit vectors are closest (ties may be broken arbitrarily)

DEFINITION 1. Forn+1 > ¢ > 2, Ay, ..., A, is a standard simplex partition
of R™ if for all 4

Ai={z eR"x-a; >z a;,Vj#i}

1 ifi =

whereay, . ..aq € R" are g vectors satisfying; - a; = { 1 it i £
-2

This is known fork = g = 2
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Whenn > ¢ a standard simplex partition can be formed by pickinoy-
thonormal vectors,, . . ., e,, subtracting their mean and scaling appropriately,

i.e.
[ q 1 Zq
a; = 7(] 1 <6i — *q £ €i>

and forn = g—1 itis enough to project these vectors onto4hel -dimensional
space which they span.

Wheng = 3 the standard simplex partition, also known as stendard
Y partition or the peace sign partitionis described ifR? by three half-lines
meeting at anl20 degree angle at the origin (Figure 1.1) andRif, where
n > 2, it can be exemplified by taking the Cartesian product of the peace sign
partition andR™ 2.

Figure 1.1: The peace sign partition
Paper | considers applications of two specific generalizations of Theore
1. The first generalization was proved in Papef Il

THEOREM 2. Fix p € [0,1]. SupposeXj,..., X, ~ N(0,1I,) are jointly
normal andCov (X;, X;) = pI,, fori # j. LetA C R" with P(X; € A) = 3.
Then

P(Vi: X; € A) <P(Vi: X; € H)

whereH = {z € R"|z; > 0}.
The second generalization is still open:

CONJECTUREL. Fix p € [0,1] and3 < ¢ < n+1. SupposeX,Y ~ N(0, I,,)
are jointly normal andCov(X,Y) = pl,. LetA;,..., A, € R" be a bal-
anced partition ofR™. Then,

P((X,Y)€ AlU-- UAD) <P ((X,Y)€e (Siu---US2)) (2

2This result has also been obtained independently by Guy Kindler andrizlaciossel.
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where Sy,...,S, is a standard simplex partition dR™. Further, forp €
[—1,0], (2) holds in reverse:

P(X,Y)€AjU---UA) >P ((X,Y) € (STU---US}))

Since it is not known whether the second conjecture holds and the stan-
dard simplex partition is optimal, it should be pointed out that one of the main
contribution of paper | is to show that the optimality of certain discrete prob-
lems can be reduced to the question of finding optimal partitions with respect
to Gaussian noise stability.

1.2 The Invariance Principle

By the Fourier-Walsh transform, any Boolean functfon{—1,1}" — {-1,1}
can be written uniquely as a multilinear polynomial in the input variables

fl)y=">" FS) ] 3)

SCln] €S

The degree of is
deg f = max [
SIf(S)#0
We will usually think of the input as being uniformly distributed o{er1, 1}"
and denote it byX. For any coordinate € [n] we may define its influence on
f(X) as the probability that changing the value of that coordinate will change
the value off(X), i.e.

Inf;(f) = P(f(X) # f(X©))

where X () is obtained fromX by flipping thei:th coordinate. Note that for
a dictator function DICT,, ;(z) := z; exactly one coordinate has influence
1 while the others have influende For the majority function MAJ, :=

Iy 4,50 ONe can show that each coordinate has influ@«(%). Think-
ing of the functions as social choice functions, that givevoters preferences
between two candidates determines the winning candidate it is natural to ask
which function minimizes the most influential voter. This was answered by the

KKL theorem [4],
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THEOREM3 (KKL). Foranyf : {—1,1}" — {—1,1} there exists an € [n]
such that

Inf;(f) > Q <Var(f)10g(n)>

n

In its simplest form, the invariance principle of [7], states thgtii§ of low
degree and each coordinate has small influencé¢,dhen the distribution of
f(X) will not change by much if we replace th§;’s in (3) by i.i.d. standard
GaussiansZ; ~ N(0,1). The change of the distribution is measured by an
arbitraryC? function & having bounded third order derivatives.

THEOREMA4. ([7], special case of Theorem 3.18)

SupposeXy, ..., X, are i.i.d. uniform on{—1,1}, f : {-1,1}" — {-1,1}
hasdeg f < d andInf; f < 7,Vi. Let¥ : R — R be aC? function with
|@(™)| < Bfor [r| = 3. Then,

EU(f(X (Zf Hzi) < B10%r

SC[n] i€S

whereZy, ... Z, are i.i.dN(0,1).
The theorems in [7] and [6] are much more general. For example

e The underlying probability space is generalized to an arbitrary finite
product space, i) = ([T, @i, [T;, 1) where|Q;| < oo, Vi. Func-
tions f : Q@ — R can still be written as a multilinear polynomial by
constructing an orthonormal bast$ = (X;o = 1, X 1,..., &} j0,-1)
for the space of functionQ; — R and expressing as

n

Zf ) [ i ()

=1
where the sum is over all tuples= (o1, ...,0,) such tha) < o; <
€]

e Multidimensional functionsf :  — R* can be handled similarly using
a test function : R¥ — R.

Paper | introduces a few more generalizations that are useful in apphsatio
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e The(? restriction on¥ is removed and replaced with a Lipschitz conti-
nuity requirement.

e Non-orthonormal bases for the functions spafgs— R are handled
(this was also discussed in [6]).

1.3 Plurality is Stablest

Consider an election with voters choosing betweencandidates. We call a
function f : [¢]" — [q], which given then votes determines the winning can-
didate, a social choice function. Lettitly, = {z € Rz > 0,7 | z; = 1}
denote the standard g-simplex, we can generalize this notion a bit and call a
function f : [¢]" — A,, which given then votes assigns a probability distribu-
tion to the set of candidates, a “fuzzy” social choice function.

The noise stability of such functions measures the stability of the output
when the votes are chosen independently and uniformly at random, amd the
re-randomized with probability.

DEFINITION 2. For p € [0, 1], the noise stability of : [¢]" — A, is

Sp(f) =E>_ fi(w)fi()
j=1

wherew is uniformly selected frorfy]™ and each); is independently selected
using the conditional distribution

1
p(Ailwi) = pliy w3 + (1= p);

We say that a social choice functighis balanced ifE f;(w) = % when
w € [¢]™ is chosen uniformly at random.

It is natural to require that a social choice function has low influence in
each coordinate, so that a single voter has a very small chance ofirogaing
outcome of the election. Another natural requirement is for the functionas be
noise stable as possible, so that even if naction of the votes are miscounted
the result is unlikely to change. One application considered in Paper | is to
show that for balanced functiorfshaving low influence in each coordinate, the
most stable function is essentially determined by the most stable partition of
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Gaussian space intpsubsets as in (1). It is conjectured that the noise stability
is maximized by the plurality functioRLUR,, 4, which assigns a mass 1 to the
most popular candidate (ties broken arbitrarily).

CONJECTUREZ (Plurality is Stablest).
Foranyq > 2, p € [0, 1] ande > 0 there exists a > 0 such that iff : [¢]" —
A, is a balanced function withaf;(f;) < 7, Vi, j, then

S,(f) < lim S,(PLUR,,) +e€ ifp>0

This is already known [7] under the nar&jority is stablestin the case = 2.
In paper | we show that the general Plurality is Stablest conjecture foftonws
Conjecture 1.

THEOREMS. Conjecture 1= Conjecture 2

1.4 Inapproximability Theory

1.4.1 Introduction to computational complexity theory

In computational complexity theory, one is interested in the asymptotics of the
amount of time (or space) required to compute discrete functions. For simplic-
ity we will assume that all combinatorial objects used (numbers, sets, graphs
formal mathematical proofs etc.) are represented as binary strings, i-e. ele
ments in¥* = (J,cn{0,1}". The exact encoding used for different objects
does not matter for our purposes (as long as it is a reasonable omelength
of a stringzx € ¥* is denoted byz|.

In general a&zomputational problens defined by a functiorf : ¥* — X*.
A decision problems a problem which can be answered ysor no. For
instance,

e 3-COLOR: given a graph, can the vertices be colored using 3 colors su
that no neighboring vertices have the same color?

e TRUEr: given a propositior” in a formal mathematical theofyand an
empty proof consisting of zeroes® , does there exist a formal proof of

3The reason that we include an empty proof of lengtin the instance and not just the
numbern is that the number is encoded by a string of lengt(log(n)) but we later want a
polynomial in the length of the instance to be polynomiahin
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T of length at mosi:?
DEFINITION 3. Adecision problend. is a subset oE*.

The complexity clas® consists of all decision problems that can be com-
puted in polynomial time (on any (and thus all) universal Turing machines,
which the reader may think of as a regular computer equipped with unlimited
amount of memory). If an algorithm’s running time is bounded above by a
polynomial in the length of the input (for some fixed universal Turing maghin
we say that it is a polynomial time algorithm.

DEFINITION 4. The complexity clasB consists of all decision problendsfor
which there exists a polynomial time algorithinsuch that

x € L= A(x) = yes
{xgéL:A(:r):no

The complexity clas®NP consists of all decision problems for whigles
instances have proofs that can be verified in polynomial time.

DEFINITION 5. The complexity classlP consists of all decision problens
for which there exists a polynomiaband a polynomial time algorithm (verifier)
V such that

x € L = 3II € ¥* such thatIl| < ¢(|z|) andV (II) = yes
x¢ L=VIIe¥*: V() =no

Note that both 3-COLOR and TRYEare in NP. For instance, for 3-
COLOR the verifie can be taken to be an algorithm that simply checks that
IT is a string that describes a coloring of all vertices in the graph in a way such
that no neighboring vertices have the same color. Clearly, su¢tessts iff
x € 3-COLOR.

Further,P C NP, since forL. € P we can simply ighore the prodi and
use the algorithmd as verifier. It remains an open problem whetRer NP,
although equality would be very surprising (implying e.g. that mathematical
theorems can be proved in time polynomial in the statement and the length of
the proof).

In inapproximability theory one is interested in showing non-existence of
polynomial time algorithms for approximating combinatorial optimization prob-
lems (assumin® # NP). Let us first define combinatorial optimizations prob-
lems.
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DEFINITION 6. A combinatorial maximization problem is defined by a function
f ¥ x¥* - RU{—o0} assigning a valug(z, ) to any solutior/ of an
instancex such that for each, there are only a finite number of solutiohs
(calledfeasiblefor x) for which f(z,1) # —occ.

An instancer is said to be valid if it has a feasible solutién

The value of an instance e X is

VAL(z) = max f(z, 1)

A minimization problem is defined similarly by replacing thex by min and
—o00 by 400.

We can now define the corresponding complexity claBs@sandNPO.

DEFINITION 7. The complexity classPO consists of all combinatorial opti-
mization problemg for which there exist

i) a polynomial time algorithm that determines whether an instands
valid.

i) a polynomialg such that for any instance, all feasible solutiong satisfy
] < q(]=)).

iii) a polynomial time algorithm that computgs

PO is the subset dflPO for whichVAL(z) is computable by a polynomial time
algorithm.

There is a natural pre-ordering of computational problems given by poly
nomial time reducibility.

DEFINITION 8. Given two computational problends andY’, we say thatX is
polynomial time reducible t&, denotedX <p Y, if there exists a polynomial
time algorithm A which computes the value of instances= X in polyno-
mial time, given access to an oracle fbr(i.e. a hypothetical algorithm that
computeg” in constant time).

From this we may define the complexity clasd#z-completeconsisting
of the hardest problems NP andNP-hard consisting of all problems that are
at least as hard @¢P. More generally,
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DEFINITION 9. LetC be a complexity class. Thén-hard consists of all com-
putational problemd” such thatX <p Y,VX € C. Further,C —complete =
C—hardNC

1.4.2 Approximation algorithms

Many NP-hard optimization problems (for which no polynomial time algorithm
exists unles® = NP) are possible to approximate within a constant factor in
polynomial time. For instance, for the Euclidean Traveling Salesman Problem
where one is given a set of points in Euclidean space, computing the shorte
round-trip route visiting all points is NP-hard. However, for any- 0 there
exist a polynomial time approximation algorithm that computes a route no more
than1 + e times longer than the optimal route.

DEFINITION 10. If f : ¥* x ¥* — R U {—o0} is @ maximization problem in
NPO, A is an algorithm and- € [0, 1), we say thatd is anr-approximation
algorithm for f if for all valid instancesr,

f(z, A(z)) > r VAL(x)

Similarly, if f is a minimization problem and > 1 we say that4 is anr-
approximation algorithm forf if for all valid instancesr,

f(z, A(z)) < rVAL(x)

Thus the Euclidean Traveling Salesman Problem has a polynomiall tinae
approximation algorithm for any > 0.

Other problems can only be efficiently approximated up to a certain ap-
proximation constant. For instance, consider MAX-3-SAT defined as

DEFINITION 11. Aninstance of the MAX-3-SAT problem consista@fauses,
each being a disjunction (logical or) of at most three literals, where ditetal

is either a variable or the negation of a variable from a sehdoolean vari-
ablesb, ..., b,. A feasible solution is an assignmént[n] — {0, 1} to these
variables. The valug(z, ) of an assignment is the fraction of clauses that are
satisfied by the assignment.
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For MAX-3-SAT there exist % approximation algorithm based on semidefinite
programming [10]. For the restricted problem MAX-E3-SAT, where wgiie

that each clause contains exactly three (different) variables, then thibeca
achieved by picking a random assignment which will satis@' fraction of

the clauses in expectation (this algorithm can be derandomized by repeatedly
setting each variable to the value which maximizes the conditional expectation
over the remaining variables). On the other hand it is known [9] th%{ ROe
polynomial time approximation can be achieved (unlEss- NP), for any

e > 0.

(bl V =by V b4) A (—|b1 V b3 V bg) A (—\bQ V bg V b5)

Figure 1.2: A MAX-E3-SAT instance. All 3 clauses can be satisfied simedtasly so
the value is 1.

MAX-3-SAT is an example of class of optimization problems called Con-
straint Satisfaction Problems (CSP’s).

DEFINITION 12. A Constraint Satisfaction Problem (CSR)= (P, q) is spec-
ified by a set of predicateB over the finite domairy]. The arity ofA is the
maximal arity of the predicates iR.

An instance of\ consists of a set of variables, . . ., x,, and a set of predicates
from P, each applied to a subset of the variables and their negations.

Thus, MAX-3-SAT is a ternary CSP over a Boolean domain.

1.4.3 The PCP Theorem and the Unique Games Conjecture

The% + € inapproximability result for MAX-3-SAT (and similar results for
other CSP’s) is obtained by a reduction from a standard problem called the
Label Cover problem for which arbitrarily good inapproximability resultsex

DEFINITION 13.

An instance of the.abel Coverproblem, L(V, W, E, M, N, {0y} (vw)eE);
consists of a bipartite grapliV’ U W, E) with a functiono, ., : [M] — [N]
associated with every eddge,w) €¢ E C V x W. A labelingl = (ly,lw),
wherely : V — [M] andly : W — [N], is said to satisfy an edge, w) if

(v, (Iw (w)) = Ly (v)
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The value of a labeling, VAL,;(£), is the fraction of edges satisfied bgnd
the value of. is the maximal fraction of edges satisfied by any labeling,

VAL(L) = max VAL;(L)

The PCP (Probabilistically Checkable Proofs) theorem [1, 2] asseltts tha
the Label Cover problem is NP-hard to approximate within any constant,
for suitable choices of/ and N .

THEOREM 6 (Label Cover version of the PCP Theorerir anye > 0 there
exists aM and N such that it is NP-hard to distinguish between instanfes
of the Label Cover problem with label set siZedsand N havingVAL(L) = 1
from those havinyAL(L) <.

This implies that any problem iNP (for instance TRUE) has a proba-
bilistically checkable proof, which can be verified by looking only at a tamis
(depending om, but not on the length of the instanjag) number of bits in such
a way that a false proof is accepted with probabitityhile a correct proof is
always accepted. The proof structure is given by the polynomial timetiedu
from theNP problem to a Label Cover problem for which a correct proof (as-
signment) satisfies all edges while any other (incorrect) proof satisfrasstt
ane fraction of the edges.

However, the PCP theorem is not strong enough to give sharp inapyaox
bility results for binary CSP’s (2-CSP’s). To this end Khot [5] introdditee
Unigue Games Conjecture.

DEFINITION 14. A Label CovemproblemZ(V, W, E, M, N,{0yw} (v,w)cE) iS
calleduniqueif M = N and eachy,,,, : M — M is a permutation.

CoNJECTURE3 (Unique Games Conjecturelfor anyn, v > 0 there exists a
M = M(n,~) such that it is NP-hard to distinguish instancé®f the Unique
Label Cover problem with label set sizé havingVAL(L) > 1—n from those
havingVAL(L) < .

It was recently shown [8] how to obtain optimal approximation algorithms
for any CSP including 2-CSP’s assuming the Unique Games Conjecture. How
ever, the optimal approximation constants in [8] are generally not vemjcéxp
but given as the optimum of certain optimization problems. It should be noted
that it is still not known whether the Unique Games Conjecture holds.
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1.4.4 MAX-g-CUT

In Paper I, we consider the MAX-g-CUT problem or Approximate g-Calgyr
where given a (possible edge weighted) graph one seeks a colorting woér-

tices using g colors that minimizes the number of edges between nodes of the
same color (i.e. maximizes the number of edges between different colors).

DEFINITION 15.
An instance of the weighted MAX-q-CUT problet, (V, E, w), consists of a
graph (V, E) with a weight functionw : £ — [0, 1] assigning a weight to each
edge. A g-cut : V — [q] is a partition of the vertices into g parts. The value
of a g-cutl is
VAL;(My) = Z W(y,v)
(u,v)EE:1(u)#l(v)

The value ofM, is

VAL(M,) = max VAL;(M,)

Figure 1.3: In MAX-3-CUT we want to find a partition of the vertices intoe3ssso as
to maximize the weight of edges between different sets.

Note that MAX-g-CUT is a (weighted) binary CSP over the alphadget
In Paper | we find the optimal inapproximability constant for MAX-g-CUT
assuming the unigue games conjecture and Conjecture 1.

THEOREM 7. Assume Conjecture 1 and the UGC. Then, for any 0 there
exist a polynomial time algorithm that approximates MAX-q-CUT withjn- €
while no algorithm exists the approximates MAX-g-CUT withjnt e.
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Here,

1—ql
0= mf 1 q1(p)
~L<p<1g—1 1—p

whereqI(p) is the noise stability the standard simplex partition, i.e.
qI(p) =P((X,Y) € SfU---USY)
whereX,Y ~ N(0,1,-;) are jointly normal withCov(X,Y’) = pI,_; and
Sy, ...S, is a standard simplex partition @71
For instance, foy = 3 this value is given by

1-— 8%(arccos(—p)2 — arccos(p/2)?)

a3 = inf ~ 0.83601
—3<p<1 L—=p
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ABSTRACT

Gaussian isoperimetric results have recently played an important role in prov
ing fundamental results in hardness of approximation in computer sciedce an
in the study of voting schemes in social choice. We propose two Gaussian
isoperimetric conjectures and derive consequences of the conjerturas-

ness of approximation and social choice. Both conjectures generaljzriiso
metric results by Borell on the heat kernel. One of the conjectures mayde als
be viewed as a generalization of the "Double Bubble" theorem. The applica-
tions of the conjecture include an optimality result for majority in the context
of Condorcet voting and a proof that the Frieze-Jerrum SDP for MAGUT
achieves the optimal approximation factor assuming the Unique Games Con-
jecture.

2.1 Introduction

Recent results in hardness of approximation in computer science and in the
study of voting schemes in social choice crucially rely on Gaussian isoperi-
metric results. The first result in hardness of approximation establishedta tigh
inapproximability result for MAX-CUT assuming unique games [11] while the
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latest results achieve optimal inapproximation factors for very genaraliés
of constraint satisfaction problems [16]. Results in social choice inclptie o
mality of the majority function among low influence functions in the context
of Condorcet voting o8 candidates [8] and near optimality for any number of
candidates [13]. A common feature of these results is the use of "Inearian
Principles" [13, 15] together with optimal Gaussian isoperimetric results [1].
In the current paper we propose two conjectures generalizing thiésresu
Borell [1] and develop an extension of the invariance principle so tisaiasg
the conjectures new results in hardness of approximation and in sociaécho
are obtained. In the introduction we state the conjectures and their applica-
tions.

2.1.1 The Conjectures

We will be concerned with finding partitions &" that maximizes the prob-
ability that correlated Gaussian vectors remain within the same part. More
specifically we would like to partitiolR™ into ¢ > 2 disjoint sets of equal
Gaussian measure.

Borell [1] proved that whery = 2 and we have two standard Gaussian
vectors with covariance > 0 in corresponding coordinates then half-spaces
(e.g. H := {x € R"|x; > 0}) are optimal. Letl,, be then x n identity
matrix. For twon-dimensional random variable$ = (X7, ..., X,,) andY =
(Y1,...,Y,) write Cov(X,Y) for then x n matrix whose(i, j)'th entry is
given by Cov[X;,Y;] = E[X;Y;] — E[X;]E[Y;]. Borell's result states the
following:

THEOREM1. [1] Fix p € [0,1]. SupposeX,Y ~ N(0, I,,) are jointly normal
andCov(X,Y) = pI,,. LetA C R" with P(X € A) = %. Then

P(XeAYecA)<PXeHYecH)

We conjecture that Theorem 1 can be generalized in two different dinsctio
. The first conjecture claims that half-spaces are still optimal if we have2
correlated vectors and seek to maximize the probability that they all fall into
the same part.
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CONJECTUREL. Fix p € [0,1]. SupposeXy, ..., X, ~ N(0, I,) are jointly
normal andCov (X;, X;) = pI,, fori # j. LetA C R withP(X; € A) = 3.
Then

P(Vi:X; € A) <P(Vi: X; € H) (1)

We call the conjecture above tBgchangeable Gaussians Conject(E&C).
Recall that a collection of random variables is exchangeable if its distribution
is invariant under any permutation.

The second conjecture generalizes Theorem 1 by asking for the optimal
partition of R™ into ¢ > 2 sets of equal measure. We conjecture that the optimal
partition can be formed by splitting the standdgd- 1)-simplex intog parts
determined by the closesgtdimensional basis vector and further that this is
theleast stablgpartition forp < 0.

Let Sy = {z € R 3°7_, 2; = 1} be the affine hyperplane containing the
standard ¢ —1)-simplex and také// : R? — RY~! to be a mapping from this
hyperplane tdR?~! by letting M = M,M;, whereM; = I, — lala' jg the
projection along the vectarg and M, is any orthogonal linear mapping with
nullspace{alqla € R}. Forl < j <g,lets, ; = {z € Slz; > z;,Vi # j}
with mapping$, ; = M(S; ;) C R

We call A4, ..., A, a balanced partition dR™ if A,,..., A, are disjoint
with P(X € 4;) = ¢, Vj.

CONJECTUREZ2. Fix p € [0,1] and3 < ¢ < n+1. SupposeX,Y ~ N(0, I,,)
are jointly normal andCov(X,Y) = pI,,. LetA;,...,A; C R" be a bal-
anced partition ofR™. Then,

P((X,Y) € AfU- U] <P ((X,Y) € (87,0 US],) R”“_q()z)

Further, forp € [—1, 0], (2) holds in reverse:
P((X,Y) e AjU---UA) >P ((X,Y) € (57, U---US2,) x R*179)
The particular case of = 3 is easier to visualize and we call this the

“Peace Sign Partition”. For this reason we call the conjecture abovejebe P
Sign Conjecture (PSC).
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Figure 2.1: The peace sign partition

2.1.2 Applications

We show that the two conjectures have natural applications in Social Choice
Theory. The conjectures imply

e The Plurality is Stablest conjecturas well as showing that the Frieze-
Jerrum [4] SDP relaxation obtains the optimal approximation ratio for
MAX-g-CUT assuming the Unique Games Conjecture.

e Certain optimality of majority in Condorcet Voting. More specifically,
it asymptotically maximizes the probability of a unique winner in Con-
dorcet voting with any number of candidates.

The main tool for proving these applications is the invariance principle
of [13, 15] which we extend to handle general Lipschitz continuoustioins.
We note that previous work proved the invariance principledéfunctions
and some specific Lipschitz continuous functions. The generalization of the
invariance principle may be of independent interest.

We proceed with formal statements of the applications.

2.1.2.1 Plurality is Stablest

Consider an election with voters choosing betweencandidates. We call a
function f : [¢]" — [q¢], which given then votes determines the winning can-
didate,a social choice functionLetting A, = {z € Rz > 0,7 | z; =

1} denote the standard g-simplex, we generalize this notion a bit and call a
function f : [¢|* — A, assigning a probability distribution to the set of
candidates &fuzzy” social choice function. To be able to treat non-fuzzy
social choice functions at the same time, we will usually embed their out-
put into A, and think of them as functiong : [¢|" — E,, whereE, =
{(1,0,...,0),...,(0,...,0,1)} are theg extreme points of\, corresponding

to assigning a probability maggo one of the candidates.
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The noise stability of such functions measures the stability of the output
when the votes are chosen independently and uniformly at random, amd the
rerandomized with probability — p.

DEFINITION 1. For — 25 < p < 1, the noise stability of : [¢]* — R" is

k
Sp(f) =D _E[f;(w)f;(V)]
j=1

wherew is uniformly selected frorfy|™ and each); is independently selected
using the conditional distribution

1
p(Ailwi) = pliy—wy + (1 = p)a 3)

Note that whery : [¢]" — E, is a non-fuzzy social choice functid),(f) =
P(f(w) = f(\).

We say thatf : [¢]” — A, is balancedif E[f(w)] = %1 wherew is
uniformly selected fronfg]™ and say that the influence of tth coordinate on
f:lgd"—Ris

Inf; f(w) = E)[Varwi f(Ww)]

Let PLUR,, : [¢]" — A, denote the plurality function which assigns a
probability masd to the candidate with the most votes (ties can be broken ar-
bitrarily, e.g. by splitting the mass equally among the tied candidates). The
Plurality is Stablestonjecture claims that plurality is essentially the most sta-
ble of all low-influence functions under uniform measure:

CONJECTURES (Plurality is Stablest)For anyq > 2, p € [-.1;,1] and
e > 0 there exists a > 0 such that iff : [¢|" — A, is a balanced function
with Inf;(f;) < 7, Vi, j, then

Sp(f) < lim S,(PLUR, ) +¢ ifp>0 4)

n—oo

and
Sp(f) > lim S,(PLUR,4) —€¢ ifp<0

n—oo

The case where = 2, theMajority is stablest theorepwas proved in [15].
We show that the general case follows from PSC.
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THEOREM 2. PSC (Conj. 2)= Plurality is Stablest (Conj. 3)

It should be pointed out that our results imply a slightly stronger result
where the low influence requirement is replaced by altomdegree influence
requirement. This strengthening turns out to be crucial to applicationsdh har
ness of approximation.

It is known [11] that the bound (4) in Conjecture 3 holds asymptotically as
g — oo up to a small multiplicative constant, i.e.

S,(f) < Oy(1) - lim S,(PLUR, ) +€ if p>0

It may be helpful to think of the theorem in terms of a pure social choice
function f : [¢]" — [q]. In this case, there arevoters and each voter chooses
one out ofg possible candidates. Given individual choiesgs. . ., x,, the win-
ning candidate is defined to b&z1,...,z,). In social choice theory it is
natural to restrict attention to the class of low influence functions, wheaite ea
individual voter has small effect on the outcome. We now consider the sce
nario where voters have independent and uniform preferenceseovier, we
assume that there is a problem with the voting machines so that each vote cast
is rerandomized with probability — p. Denoting byXy, ..., X, the intended
votes andry, ..., Y, the registered votes, it is natural to wonder how correlated
are f(Xy,...,X,) and f(Y3,...,Y,). The theorem above states that under
PSC, the maximal amount of correlation is obtained for the plurality function if
p > 0. The case where < 0 corresponds to the situation where the voting ma-
chine’s rerandomization mechanism favors votes that differ from thénatig
vote. In this case the theorem states that plurality will have the least correla-
tion between the intended outcorfieX,, . .., X,,) and the registered outcome
f(Y1,...,Y,). In the next subsection we discuss applications of the result for
hardness of approximation.

2.1.2.2 Hardness of approximating MAX-g-CUT

For NP-hard optimization problems it is natural to search for polynomial time
approximation algorithms that are guaranteed to find a solution with value
within a certain constant of the optimal value. Hardness of approximation re-
sults on the other hand bound the achievable approximation constants away
from 1. For some problems, tight hardness results have been show where the
bound matches the best known polynomial time approximation algorithm. For
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instance, Hastad [6] showed that for MAX-E3-SAT one cannot impiaygon
the simple randomized algorithm picking assignments at random thus achiev-
ing an approximation ratio 0§

In general, for constraint satisfaction problems (CSP’s) where thetibje
to maximize the number of satisfied predicates selected from a set of allowed
predicates and applied to a given set of variables, algorithms basedban re
ations to semi-definite programming (SDP), first introduced by Goemans and
Williamson [5] has proved very successful.

Still optimal hardness results are not known for many CSP’s. To make
progress on this Khot [10] introduced the Unique Games Conjecture {UGC
a strengthened form of the PCP Theorem. Recently Raghavendrehfh@éd
tight hardness results for any CSP assuming the UGC, albeit without giving
explicit optimal approximation constants.

We consider the MAX-g-CUT or the Approximate g-Coloring problem
where given a weighted graph on seekgs@loring of the vertices that maxi-
mizes the total weight of edges between differently colored vertices.

DEFINITION 2.
An instance of the weighted MAX-g-CUT problem, (V, E, w), consists of a
graph(V, E) with a weight functionv : £ — [0, 1] assigning a weight to each
edge. A g-cut : V — [q] is a partition of the vertices into g parts. The value
of a g-cutl is
VALl(Mq) = Z W(y,v)
(u,v)EE:(u)#l(v)

The value ofM, is

VAL(M,) = max VAL(M,)

Frieze-Jerrum gave an explicit SDP relaxation of MAX-g-CUT (sediSec
2.6.3) which was rounded using the standard simplex partition of Conjecture 2
We show that Conjecture 2 implies that this is optimal.

THEOREM 3. Assume Conjecture 2 and the UGC. Then, for any 0 there
exist a polynomial time algorithm that approximates MAX-q-CUT withjn- €
while no algorithm exists the approximates MAX-g-CUT withjnt e.
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Here,

1—ql
0= mf 1 q1(p)
~L<p<1g—1 1—p

whereq!(p) is the noise stability of the standard simplex partitiorRsf !, i.e.

ql(p) =P((X,Y) € 5, U~ USE,)
whereX,Y ~ N(0, I,—1) are jointly normal withCov (X,Y") = pI,_;.

2.1.2.3 Condorcet voting

Suppose voters ranki candidates. It is assumed that each voteas a linear
ordero; € S(k) on the candidates. I@ondorcet votingthe rankings are
aggregated by deciding for each pair of candidates which one is sugaTong
then voters.

More formally, the aggregation results in a tournam@pton the setk].
Recall thatG), is atournamenbn [£] if it is a directed graph on the vertex set
[k] such that for allz, b € [k] either(a > b) € G or (b > a) € Gi. Given
individual rankinggo;)}- ; the tournament}, is defined as follows. Let

a>b _ { 1 if ai(a) > Uz(b)

x ,fori € [n] anda, b € [k].

¢ -1 else
Note thatz?>* = —z%>b, The binary decision between each pair of candidates
is performed via a anti-symmetric functiofi: {—1,1}" — {0,1} so that
f(=z) =1— f(x) forall z € {—1,1}". The tournamentz;, = Gi(o; f) is
then defined by lettinga > b) € G, if and only if f(x%>%) = 1. A natural
decision function is the majority functiadAJ,, : {—1,1}" — {0,1} defined
by MAJ,(z) = 11 4.>0-

Note that there are(3) tournaments while there are only = 20(log#)
linear rankings. For the purposes of social choice, some tournaments mak
more sense than others.

Following [8, 9, 13], we consider the probability distribution overot-
ers, where the voters have independent preferences and eacharses a
ranking uniformly at random among &l orderings. Note that the marginal
distributions on vectors®>? is the uniform distribution ovef—1, 1}" and that
if f:{-1,1}" — {0,1} is anti-symmetric thefE[f] = 3. The previous
discussion and the following definition are essentially taken from [13].
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DEFINITION 3. For any anti-symmetric functioff : {—1,1}" — {0,1} let
UniqueBest, (f) denote the event that the Condorcet voting system described
above results in a unique best candidate &hdqueBest,(f, ) the event that

the i:th candidate is unique best.

The case that is now understoodkis= 3. Note that in this casé/s is
unigue max if and only if it is linear. Kalai [8] studied thobability of a
rational outcome given that thevoters vote independently and at random from
the 6 possible rational rankings. He showed that the probability of a rational
outcome in this case may be expressed &g;(f)-

It is natural to ask which functiogi with small influences is most likely to
produce a rational outcome. Instead of considering small influencés,d6a-
sidered the essentially stronger assumption fhiatmonotone and “transitive-
symmetric”; i.e., that for alll < i < j < n there exists a permutation
on [n] with o(i) = j such thatf(z1,...,7.) = f(Toq),---, %)) for all
(z1,...,7,). Kalai conjectured that as — oo the maximum of3S; /3(f)
among all transitive-symmetric functions approachas, ... 3S; 3(MAJ,).
This is a direct consequence of the Majority is Stablest Theorem proyéd,in
15]. In [13] similar, but sub-optimal results were obtained for any value o
k. More specifically it was shown that if one considers Condorcet voting o
k candidates, then for al > 0 there existsr = 7(k,e) > 0 such that if
f:{-1,1}" — {0, 1} is anti-symmetric andinf;(f) < 7 for all 7, then

P[UniqueBesty (f)] < k70 4 c.

Moreover for the majority function we havef;(MAJ,) = O(n~/?) and it
holds that
P[UniqueBest;, (MAJ,)] > k=171 — ¢, (1).

Here we provide tight results for every valuetossuming EGC by show-
ing that:

THEOREM 4. Assume Conjecture 1. Then, for ahy> 1 ande > 0 there
exists ar (e, k) > 0 such that for any anti-symmetri¢ : {—1,1}" — {0,1}
satisfyingmax; Inf; f < 7,

P[UniqueBest,(f)] < lim P[UniqueBest,(MAJ,)] + €
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2.1.3 The PSC and the Double Bubble Theorem

The famous Double Bubble Theorem [7] determines the minimal area that en-
closes and separates two fixed volumeRin The optimal partition is given by

two spheres which intersect at 20 deg angle having a separating membrane

in the plane of the intersection. The proof of this theorem is the culmination
of a long line of work answering a conjecture which was open for moredhan

century.

Figure 2.2: A double bubble ifR?

An analogous question can be asked in Gaussian sp&cequipped with
a standard Gaussian density and the techniques and results used iroftaf pro
the Double Bubble Theorem allow to find the partitiorf5f(n > 2) into three
volumes each having Gaussian voluéwminimizing the Gaussian surface area
between the three volumes. Indeed, the results of [2] show that the optimal
partition is the Peace Sign partitidn which can be seen as the limit of the
double bubble partition scaled up around one point on the intersection.

This indicates that the partition in Conjecture 2 is optimal (at least fer3
whenp — 1). Indeed Conjecture 2 is stronger than the results of [2]. It is easy
to see that Conjecture 2 with = 3 imply that the "standard Y" or "Peace
Sign" are optimal by taking the limjg — 1 (this is done similarly to the way
in which Borell’'s result [1] implies the classical Gaussian isoperimetric result,
see Ledoux’s Saint-Flour lecture notes [3]).

2.2 Preliminaries

2.2.1 Multilinear polynomials

Consider a product probability spat@, 1) = ([T;; s, [Ty ). We will
be interested in functiong : [[:", ©; — R on such spaces. For simplicity,
we will assume that each; as full support, i.eu;(w;) > 0,Vw; € Q;. Then

Called the standard Y in that paper
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clearly, for each coordinatewe can create a (possibly orthonormal) basis of
the form
Xi=(Xio=1,Xi1,--, Xj0,-1)

whereE[X; ;] = 0for j > 1, for the space of functiorQ; — R.

DEFINITION 4. We call a finite sequence of (orthonormal) real-valued random
variables where the first variable is the constarand the other variables have
zero mean an (orthonormal) ensemble.

Thus, X = (A1,...,4&,) is an independent sequence of (possibly or-
thonormal) ensembles. We will only be concerned with independent seegien
of ensembles, however we will not always require the ensembles to be or-
thonormal. Another type of ensembles are the Gaussian ensembles, of which

an independent sequence is typically denotedzby= (Z,..., Z,) where
Zi=(Zin=1,Z;2,...,Zim,;) and eacly, ; is a standard Gaussian variable.
DEFINITION 5. A multi-indexo is a sequence of numbefs;, ..., o,) such

thato; > 0,Vi. The degreéo| of o is |{i € [n] : 0; > 0}|. Given a set of inde-
terminates{z; ; }icm).0<j<m, 1€t zs = [[i=; Zi0,- A multilinear polynomial
over such a set of indeterminates is an expresg}dn) = ) c,z, where

¢s € R are constants.

Continuing from (2.2.1) and letting, = [[\; Xi,, it should be clear
that { X, } forms a basis for functionf["_; ©; — R, hence any functiorf :
[Ti~, © — R can be expressed as a multilinear polynorgjaiver X:

Flwr, o wn) =Q(X1,... X)) =) Xy (5)

DEFINITION 6. The degree of a multilinear polynomi@l is

d =
egQ = max [of
We will also use the notatio<¢ to denote the truncated multilinear polyno-

mial
di(l‘): Z Colo

o:lo|<d

and the analogous fo)=¢ andQ~¢.

2Hence, we will deviate from the notation of [13, 15] whesequences of ensembleas
used as an abbreviation feequences of orthonormal ensembles
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DEFINITION 7. Given a multilinear polynomial) over an independent se-
quence of ensemblas = (X1, ..., &,,), the influence of théth coordinate on

Q(X)is
Infi Q(X) =E [Var[Q(X)\Xl, ey Xi—h Xi+17 e Xn“

We also define thé-degree influence of theth coordinate as

Inf=? Q(X) = Inf; Q=4(X)

Note that neither the degree nor influencesX¢ft’) depends on the ac-
tual basis selected in (2.2.1), hence we can wiig f = deg @, Inf; f =
Inf; Q(X) andInf=" f = Inf; Q=4(X).

2.2.2 Bonami-Beckner noise

Let us first define the Bonami-Beckner noise operator.

DEFINITION 8. Let (Q, 1) = (T, @, [[;~, ). be a finite product prob-
ability space anda the minimum probability of any atom in ary;. For
— 12 < p < 1the Bonami-Beckner operator on functiofis [[;; ; — Rk
is defined by

Tpf(wi,. o swn) =E[f(A1, ..., An)|wi, ... wy]
where each\; is independently selected from the conditional distribution

p(Nilwi) = plix=w,y + (1= p)u(Ni)

Forp € [0, 1] this is equivalent td, f being the expected value gfwhen
each coordinate independently is rerandomized with probabilityp.

2.2.3 Orthonormal ensembles

Most of the time we will work withorthonormalensembles. Using indepen-
dence and linearity of expectation it is easy to see th@(i¥) = > c, X is

a multilinear polynomial over an independent sequenaatbionormalensem-
bles, then
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BQW)] =i VarlQW]= 3 i Q) = X o7 X

o:lo|>0
an; Inf; Q(X Z 2 f<d QX)) = Z 2
o:0;>0 ;>0

Ueol<d

Combining these expressions it is also easy to sedﬂi}ﬁ%{‘ fisconvexin
f and satisfy the following bound on the sum of low-degree influences:

zn:mf;d f<dVarf ()

i=1

2.2.4 \ector-valued functions

Since we will work extensively with vector-valued functions we make the fol-
lowing definitions:

DEFINITION 9. For a vector-valued functiorf = (fi,. .., fx), let

k k
Varfzzvarfj, Inflf:ZIanf]

j=1 J=1
and similarly forInf=*.

Thus (7) holds even for vector-valugd Also, all expressions in (6) hold
for vector-valued multilinear polynomiat3(X) = > ¢, X,, wherec, € R
andX is an independent sequenceoothonormalensembles, if we replaeg
with ||cq||3.

Finally, by expressing functiong : [¢]” — R* under the uniform measure
on the input spacky|” as a multilinear polynomial

n
— Z Co H Xz',ai (wz)
o =1

this lets us express the noise stability of Definition 1 as

Sy(f) = E[{f. T,f)] Zp'”'nc 13 (8)
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2.2.5 Correlated probability spaces

It will be important for us to bound the effect of the Bonami-Beckner noise
operator on functions on correlated probability spaces.

DEFINITION 10. Let(Q2; x Q9, 1) be a correlated probability space. The cor-
relation betweerf); and(2, with respect tqu is then

p(Q, Qo3 ) = sup Cov(fi(w1), f2(w2))
fi:Qi—>R,Var flil
FOF(Ql X oo X Qk,,u,)We let

P, Qs ) = max p Hﬂ X ILQJ,QZ,
] A

The following theorem shows that the expected value of products of func
tions where corresponding coordinates form correlated probabilitespioes
not change by much when some small noise is applied to each coordinate:

LEMMA 1. [13,Lemma 6.2] Let[ [, ., [ [~ w:) be afinite product prob-
ability space wheré); = (Q},...,QF) are correlated probability spaces with
p(Q,...,QF ;) < p < 1. Further, letx? = (X7, ..., &]) be independent
sequences of orthonormal ensembles such/tr;?albrms a basis for functions
Q{ — RandQy,...,Q multiinear polynomials such th&¥ar Q;(X7) < 1.
Then, for alle > 0 there exists a = (e, p) > 0 such that

k k
E[[Q;) —E]][T1-,Q;(x7)| < ek
j=1

j=1

2.2.6 Gaussian noise

DEFINITION 11. Let X ~ N(0,I,). The Ornstein-Uhlenbeck operatof, is
defined on functiong : R — R such thatf(X) € L? by

Upf(X) =B | F(pX + V1= %)X |

where¢ ~ N(0, I,,) is independent ok .
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It is easy to see that if = (Z4,..., Z,) is a Gaussian sequence of inde-
pendent ensembles afll Z) = > _ ¢, Z5, then

Z) = Zplalcgzg

ThusU, and T}, acts identically on multi-linear polynomials over Gaussian
sequences of independent ensembles.

Analogous to the discrete setting we say tfiatR" — A, is balanced if
E[f(X)] = 1 for X ~ N(0,1).

The following lemma shows for any fuzzy partition a non-fuzzy partition
with almost the same expectation and noise stability (as measured in 1 and 2)
can be created.

LEMMA 2. Fix p € {—ﬁ,l] andqp < ¢. SupposeXy, ..., Xy ~ N(0,1,)
and Cov(X;, X;) = pl, fori # j. Then, forany > 0and f : R" — A,
there exists @ : R” — FE, such that

q
Z |E g:(X1) — E fi(X1)| < ke 9)
and
qQ k q k
EY [[a(x)-ED J[H(X)|<e (10)
i=1 j=1 i=1 j=1

The proof can be found in Appendix 2.A.
We also need a simple result that states that almost balanced functions can-
not be much more stable than balanced functions:

LEMMA 3. Fix p € [—1= 1] andqo < gq. SupposeXy, ..., X, ~ N(0,I,)
are jointly normal W|thCov( X;) = pl, fori # j. Letf : R" — E, with
E f(X1) = p, where
d 1
Z Hi — ‘ =9
q

1=1
Then, there exists laalanced; : R" — E, such that

qQ k qQ k
BY LX) B [[(x))| <k

i=1 j=1 i=1j=1
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Proof. Since the density function is continuous we can easily find a balanced
g such thatP(f(X;) = g(X;)) = 3, hence the result follows by the union
bound. O]

2.3 Invariance Principle

Let f : T[;-, @ — R be a function on a finite product probability space and
express it as a multilinear polynomi@|(X') over an independent sequence of
orthonormal ensembles as in (5). The invariance principle of [15] shioats
if @ has low degree and each coordinate has small influence then the distribu-
tion of Q(X') does not change by much if we replace the variales with
independent standard Gaussiafg.

In [13] the invariance principle was extended to the case of vector-dalue
functionsf = (fi,..., fx) wheref; : [\, ; — R for each].

THEOREMS. ([13], Theorem 4.1 and 3.16) L€f[;", %, [[;- wi) be afinite
product probability spacey > 0 the minimum probability of any atom in any
w; and X = (X1, ..., A,) an independent sequence of orthonormal ensembles
such that¥; is a basis for function®; — R. LetQ be a k-dimensional multilin-

ear polynomial such thaVar Q;(X) < 1, deg@; < d andInf; Q;(X) < .
Finally, let U : R¥ — R be aC? function with| ¥ ()| < B for |r| = 3. Then,

[E¥(Q(Y)) ~ EW(Q(2))| < 24BK’ (8/Va)" V7 = O(V7)
whereZ is an independent sequence of standard Gaussian ensembles.

As suggested in [13, Corollary 4.3], since neithéir Q;(X'), deg Q; or
Inf; @; depend on whether the ensembles are orthonormal, we can simply re-
place the orthonormal requirement by a matching covariance structurieeeq
ment.

DEFINITION 12. We say that two independent sequences of enserftbles
(X1,..., &) andY = (Q1,...,Y,) have a matching covariance structure if
for all 4, |X;| = |Vi| andE[X] X;] = E[VI V).

THEOREMG6. LetX = (X1,...,A,) be an independent sequence of ensem-
bles, such thaP(X; = z) > o > 0. Let@ be a k-dimensional multilinear
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polynomial such thaVar Q;(X) < 1, degQ; < d andInf; Q;(X) < 7.
Finally, let ¥ : R¥ — R be aC? function with|¥(")| < B for |r| = 3. Then,

[EW(Q(X)) ~ EV(Q(Z))| < 2dBk* (8/va)’ v = O(v/7)

where Z is an independent sequence of Gaussian ensembles with the same
covariance structure ag’.

Proof. For eachi, let Q2; be theco-algebra generated by the variablesih
Sincea > 0, ©; is finite, hence we can find an orthonormal ensemtjlevhich

is a basis fof2; — R and a linear transformatiad; such thatt; = X/ A;. Let

Z' be any standard Gaussian ensemble Zne- Z/ A,. ThenZ has the same
covariance structure a¥. Let Q' be the multilinear polynomial defined by
Q'(X') = Q(X[{A,..., X Ay). The result then follows by applying Theorem
5to@Q'(X’) while noting that it has the same variances, degrees and influences

asQ(X). O

For our applications we will need a version of Theorem 6 for functions
¥ which are notC? functions. Instead we will assume thétis Lipschitz
continuous with Lipschitz constant, i.e. |V (x) — ¥(y)| < Al|lz — y|2.

THEOREM7. LetX = (&),...,X,) be an independent sequence of ensem-
bles, such thaP(X; = ) > a > 0. Let@ be a k-dimensional multilinear
polynomial such thaVar Q;(X) < 1, deg@; < d andInf; Q;(X) < 7.
Finally, let & : R¥ — R be Lipschitz continuous with Lipschitz constant
Then,

1/3

EW(QX)) — EW(Q(2)) < 44k (dByy (3/va)"v7) = 0(%)

where Z is an independent sequence of Gaussian ensembles with the same
covariance structure ag” and B3 ;, are universal constants.

To prove Theorem 7 we need the following lemma which assures that Lip-
schitz continuous functions can be approximated welCByunctions.

LEMMA 4. Supposé : R* — R s Lipschitz continuous, i.6¥ (z) — ¥ (y)| <
Al|lx — yl|2 for some constanfl > 0. Then, for allA > 0 there exists &>
function¥, : R* — R such thatvz € R¥ andvr : |r| = r > 1,

1 |¥(z) — Uy(z)] < AN
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AB,

2. [0 ()] < 52

whereB,. ;, are universal constants.

Proof. Let ;» denote the Lebesgue measureRhand let¢ : R* — R be the
k-dimensional bump function defined by

1
o(x) =4 Ce "I [zl <1
0 else

where the constant is chosen so thaf .. ¢(z)u(dr) = 1. Itis well-known
thato(z) is C* with bounded derivatives, hence there exist const&nts. oo
such that¢™ (z)| < B,.

ForA > 0, let gx(z) = $=6(5). Then [, <y ¢x(2)u(dz) = 1 and
5 (2)] < 5. Let Wy = U x 6y, ie.

B = [ - 0uu)
[lz—t|[2<X

By the mean value theoren¥,, (x) = ¥(t), for somet : ||z — t||o < A. But
|W(t) — W(x)| < Allz — t|[2 < AN, which proves 1.

Without loss of generality we may assume tirat= e; + ro, Wheree; =
(1,0,...,0)" is the first unit vector. Sinc#& is bounded ofjz — t||a < \, ¥,
is C* and for anys,

W= [ e ououd
[[z—t|l2<A
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Thus we may write

r 6 r
W@ = |5 [ - g
021 Jlo—t||2<
o r
= i [ AP 0ue -
21 J|jt]l2<
_ r U(x+ hey —t) — ¥(x —1t))
= |lim (r2) ( dt
=0 Jijgp<n h #at)
_ lim / ¢(r2)(t) (U(x+ hey —t) — \I/(x—t))'u(dt)
h=0 | J)jtfl2<A h
. v —t) — W(x —
h=0 Jjtlla<x h
Br—l k Br—l k
S AN = A2

O]

Proof of Theorem 7Let ¥, be the approximation given by Lemma 4. Then,

[EV(Q(X)) —E¥(Q(Z2))] < [EVA(Q(X)) —EW)\(Q(Z)) + 24X <

2A
< TQE + 24\, wheree = dBs . k* (8/\/&)‘[ VT
where we have used Theorem 6. Picking: ¢!/3 gives the result. O

Our final version of the invariance principle replaces the boundededegr
requirement with a smoothness requirement which can be achieved bynapply
the Bonami-Beckner operat@i_, on Q(X) for some smally > 0. Later we
will use Lemma 1 to show that this smoothing is essentially harmless for our
applications.

THEOREMS8. LetX = (&),...,X,) be an independent sequence of ensem-
bles, such thaP(&; = z) > a > 0. Fixv,7 € (0,1) and let@ be a
k-dimensional multilinear polynomial such thsiar Q;(X) < 1, Var Qj>d <

(1 — )% and Inf; Q7%(X) < 7, whered = klogl/logl. Finally, let

¥ : R¥ — R be Lipschitz continuous with Lipschitz constantThen,

EU(Q(X)) - BU(Q(Z))] < CrAri/=n
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where Z is an independent sequence of Gaussian ensembles with the same
covariance structure ag” and Cj, is a constant depending only @n

To prove Theorem 8 we need following easy lemma which bounds the ef-
fect of small deviations on Lipschitz continuous functions.

LEMMA 5. Supposea : R* — R is Lipschitz continuous, i.6¥ (z) — ¥ (y)| <
Al|z — y||2 for some constantl > 0. Then,

1/2

k
EU(X+6)-EUX)|<4(|Y EE
j=1

Proof.

[EV(X +&) -EV(X)| <E[¥(X +¢) - V(X)| <EA|¢]|2 =
1/2 1/2

k k
=AB|> ) <4|> Bg
j=1 =1

O]

Proof of Theorem 8The proofis by truncation af at degreel = 11—8 log %/ log é
Without loss of generality we may assume thak % (else, all random vari-
ables are constants and the result is trivial). By noting that Lemma 5 and The-
orem 7 hold for all positive real values @hwe have

EV(QX)) -E¥(Q(2))] <

< [Bw(Q(x)) - EW(Q(2))| + AVE(1 - 1) <

< 44kBy (16/v/a) " 7/ 4 AvEe
The result now follows by noting that

e—’yd _ T%/log%
and
(16/\/&)d/3 7_1/6 _ eglog%ijl/fi _ T—ﬁlog %/logéTl/G <

< 7_—%27_1/6 = T% < TllS/IOgé

where both inequalities uses that % and the last also that < 1. O
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2.4 Application I: Plurality is Stablest

Here we show that Conjecture 2 implies the Plurality is Stablest conjecture
(Theorem 2).

We start by showing an unconditional result that asserts that the madst stab
low low-degree influence functions are essentially determined by most stable
partition of Gaussian space inggarts of equal measure.

DEFINITION 13. For p € [-1,1] andg > 1, let

A, (p) = lim 1mf qP((X,Y) €AiU...UAY (11)
and
Af(p)=lim sup P((X,Y)€AjU...UA)) (12)

N0 Ay A,

whereX,Y € N(0,1,), Cov(X,Y) = pI, and the inf and sup is over all
balanced partitionsd, ..., A, of R™.

Note that the limits in (11) and (12) exist since they are limits of bounded
functions which are monotone im (we can always ignore any number of di-
mensions while specifying the partitions).

THEOREM. Foranyq > 2,p € [*q%p 1] ande > 0 there existd and7 > 0
such that iff : [¢]" — A, is a balanced function Witﬂinf?d(fj) <, Vi j,
then

Ay (p) = e SSp(f) SAJ(p) +e

DEFINITION 14. For ¢ > 2, let Iethq : R? — A, denote the function which
mapsz to the point inA, which is closest ta.

Proof of Theorem 9The result is trivial forp = 1 so assume < [—q%l, 1).
Let (2 x A, ), with the p-correlated measurg(w, \) = pli—,;) % +(1-p)%
be our base space and (et \) € [¢]" x [¢]" be drawn fronmy™.

Fix an orthonormal basi¥(z) = {Vo(z) = 1,Vi(x),...,V,—1(x)} for
functions[g] — R and construct two sequences of orthonormal ensembles
{Xy,..., X} andy = {)1,...,V,} for functionsQ — R andA — R by

letting X; j(w;) = Vj(w;) andY; j(A\;) = V;()\;). Note that this means that

P ifilzigandj1:j2>0
COV(Xil,ijiz,h) - { 0 else
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Expressingf(x) = f(x1,...,x,) as a g-dimensional multi-linear polynomial
QWV(x1),...,V(x,)) we get

Sp(f) =D _Elfiw)f;(N)] =) E[Q;(X)Q;(V)] (13)

i=1 =1

LetQ = T1—,Q be a slightly smoothed version ¢f. By Lemma 1 we can
find avy(e, p,q) > 0 s.t.

[E[Q; (1)Q,(V)] - EIQ;(x)Q; (V)] < (14)

€
2q
SinceQ(X') has range\,, the same holds fo(X). Hence,

/2,Q(X) = Q(X) (15)

(and similarly for)’). We are now ready to apply the invariance principle (The-
orem 8) using¥(z,y) = (fa,(), fa,(y)). To see that(zx,y) is Lipschitz
continuous, first note that the convexity &f, implies

fa, (@) = fa,(@)ll2 < [l — 2'[]2 (16)
Also, foru,v € RY,
[(u, 0) = (', o) < [(u,v) = (W 0)| + (' 0) = (W00 (17)
< Ju = o/llaf[v]l2 + [Jo = V[]2]|u/]|2
Combining (17) and (16) we get
W(z,y) — U,y ) < llz—2"ll2l|fa, D2 + 1y = ¥'ll2]lfa, (@)]]2
<l —=a'llz +ly = ¢'ll2 < V2l|(,) — (', 9)]]2

Hence Theorem 8 implies that for some> 0 small enough,

E[(fa,Q(X), fa, Q)] — E[(f2,Q(G). fa,Q(H))] (18)

€
< —

whereG and’H are two Gaussian sequences of orthonormal ensembles with

p ifiy=i2,51=72>0
COV(Gth’Hiz,jQ) - { 0 else
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fa,Q applied tog or 1 can be thought of as a functid™(@-1) — A,
creating a fuzzy partition of the(¢ — 1)-dimensional Gaussian space. This
partition is not balanced, but letting = Equ@(g) and applying Theorem
8 again, usingl(z) = fa, ;(z) which by (16) is Lipschitz continuous with
A =1 < +/2, we can bound the total variation distance by

q

i 1 = S B £3,0000) < B f Q) <

j=1

€ €

q

J

By Lemma 2 and 3 there exists a balanced funcgonR™(¢-1) — E, such
that

El(2,Q(9). 1,Q00) ~Ellg(@.9m))| < (9

But any suchy partitionsR™?~1) into ¢ parts of equal Gaussian meas%r,e
hence

Aq (p) <E[{9(9), g(H))] < Ay (p) (20)
Combining equations (13), (14), (15), (18), (19) and (20) givegitwred
result. O

In order to prove Theorem 2 we first show that the limit of the noise stability
of PLUR n, ¢ corresponds to the right hand side of (2).

LEMMA 6. Fix p € [—q%l,l] andg > 3. LetX,Y ~ N(0,I,-1) and

Cov(X,Y) = pl,—1. Then

lim S,(PLUR,,) =P((X,Y)€e S5, U---US2,)

n—oo

Proof. By definition 1,

Sp(PLURy,q) = E(PLUR,, 4(w), PLURy, 4()))

wherew, A are uniform on[g|™ and satisfy (3). Represent eachand \; by
ag-dimensional unit vectot/; = e,,, andV; = e,, and letU = % Yo Ui
andV = % > i, Vi. Then, conditioning on having no ties which will happen
with probability1 asn — oo, we have

Sp(PLURng) = P((U,V) € (8q1)* U+~ U (S;,0)*)

=P((MU,MV) € (Sg1)?U---U (Sz4)?)
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The expectations and covariances\ét/ and MV are,

q
EMV(MV)T| = ElMUMU)") = MI,M" =1, 4

E[MV] = E[MU] = M\lfl —0

1
BIMUV)] =1 (I, — (1= p)2 1,37 ) 017 = I,

Hence, by the central limit theorer)/U, M V') converges to a normal distri-
bution with the same parameters(&§,Y'). Thus,

lim P((MU,MV) € (Sg1)°U---U(Sg4)%) =P((X,Y) € S5,U---US} )

n—oo

O]

Proof of Theorem 2By Theorem 9 and Lemma 6 we only need to observe that
Conjecture 2 is equivalent to

Af(p) =P((X,Y)e S5, U---US; ) forp e [0,1]

and

Aj(p)=P((X,Y)e Sz U---US;,)forpe[-1,0]

whereX,Y ~ N(0, I,,) are jointly normal withCov(X,Y) = pI,. That we
may replace the low low-degree influence requirement with the simpler low
influence requirement follows by noting that

Ifs="(f;) < Infi(f;)

2.5 Application Il: Condorcet Voting

Here we show that Conjecture 1 implies that majority maximizes the probabil-
ity of having a unique best candidate in Condorcet voting assuming (&imeor
4).
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Remember that we have voters selecting a linear ordet € S(k) uni-
formly at random and let

X0 = { 1_1 ZI;(G) > i(b) ,fori € [n] anda, b € [k].

By considering the 6 possible linear orders of three candidates its easg to s
that for any distinct, b, ¢ € [k] we have

1
B[X{~"] =0, Var X{*" = 1 and Cov[ X", X{**] = ¢

First we will show that the limit of the probability of having a unique best
candidate using the majority function corresponds to the right hand sidé.of (

LEMMA 7. Let X, ..., X} ~ N(0, I,,) be jointly normal withCov (X}, X;) =
11, fori # j. Then

lim P[UniqueBest,(MAJ,)] =P (Vi: X; € H)

n—oo

Proof. LetY; = - 3°i, X,;~7. By definition 3,
P[UniqueBest, (MAJ,,)] =P(Y2 > 0,...,Y; > 0)

But, E[Y;] = 0, E[Y?] = 1 andCov[Y;,Y;j] = 3 fori # j. Thus, by the

central limit theorem(Ys, ..., Y%) A (Xo,..., X)) and the result follows.
O

Proof of Theorem 4 Clearly, any candidate has the same probability of being
the unique best candidate. So it's enough to show that the probability that the
first candidate is the unique best is maximized by majority,

P[UniqueBest,(f,1)] < lim P[UniqueBest,(MAJ,,1)] + 2 (21)
n—oo
Form orthonormal ensembles

x'77 = (1,Xx}77) forie[n)and2 < j < k

(2
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and independent sequences of orthonormal ensembles
X = (X7 x)

ThusX” is a basis for real-valued functions on all voters’ preferences betwee
candidated andj and we can compute the (unique) multilinear polynorgjal
such that

FGT L X7T) = Q)

Hence we may write,

k

P[UniqueBest,(f,1)] = E ][ Q(x7) (22)
j=2

LetQ = T1—,Q be a slightly smoothed version &f, and let
p(k) = p(= (X>2),...,% (Xibk) . P)

whereX(X) denotes the-algebra generated hy. Clearly,p(k) < 1, so by
Lemma 1 we can find (e, k,n) > 0 such that

k
€

k
EJ][ex) -E]J] Q) < - (23)

, . 2k
7j=2 7j=2

Let fjo,1)(z) = max(0,min(1,z)). Since@ has rangdo, 1], the same holds
for @ Hence, for allj,

Q(X7) = fio1Q(X7) (24)

We now apply the invariance principle (Theorem 8) usih@es, ..., z) =
H§:2 fio,1(z;) which by convexity of|0, 1]*=1 is Lipschitz continuous with
Lipschitz constantd = 1. Thus, by Theorem 8, there exist some> 0 such
that,
k ~ . k ~ . €
E[] fonQ) —E]] fo.nQ@)| < — (25)

— 2
- - 4k

whereG’ = (G;77,...,G2>7) ,andg,”’ = (1,G}”7) are Gaussian sequences
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of orthonormal ensembles with

if i1 =1d2,51 = J2
if i1 =1d2,71 # J2
else

i1 ) g i1 Y g

O Wi =

Cov[(}bj1 GDJ’Q] = COV[X-1>j1 X1>j2] = {

Now (fi0.11@. 1~ fi01)Q) applied tog’ can be thought of as a function
R™ — A, creating a fuzzy partition of the-dimensional Gaussian space
which is almost balanced. Let = Ef[oyl]Q(gj). Then a second application
of Theorem 8 withl(z) = f|o 1)(z) gives
e
7o) = 2
By Lemma 2 and 3, there exists a balanced funciioiR™ — E,.
E[[ fonQ@) <E][0:1(¢)+ (26)
j=2 J=2
But any suchg partitionsR™ into 2 parts of equal Gaussian measu.%r,eso

Conjecture 1 and Lemma 7 implies

k

E ][] 9:(¢’) < lim P[UniqueBest;(MAJ,)] (27)

j=2
Combining equations (22), (23), (24), (25), (26) and (27) gively &5
needed. O

2.6 Approximability of MAX-g-CUT

In this section we will show that if we assume the Unique Games Conjecture,
then the optimal approximability of MAX-g-CUT is directly related to the most
stable partition of Gaussian space iptparts of equal measure as described in
Conjecture 2.

2.6.1 The Unique Games Conjecture

The Unique Games Conjecture (UGC) was introduced by Khot in [10] asa p
sible way of proving inapproximability results for 2-CSPs and has since bee
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used to prove optimal inapproximability results for many important problems,
suchas....

The conjecture asserts the hardness of approximatindgJthgue Label
Coverproblem within any constant.

DEFINITION 15.

An instance of th&Jnique Label Coveproblem,L(V, W, E, M, {0y u } (vw)cE)
consists of a bipartite graptl’ U W, E) with a permutatior,, ,, : [M] — [M]
associated with every edge, w) € E C V xW. Alabelingl : VUW — [M]
is said to satisfy an edge, w) if

7 (w,) (H(w)) = 1(v)
The value of a labeling, VAL,;(£), is the fraction of edges satisfied bgnd
the value of. is the maximal fraction of edges satisfied by any labeling,

VAL(L) = max VAL, (L)

CONJECTURE4. The Unique Games Conjecture. For anyn,vy > 0 there
exists aM = M (n,~) such that it is NP-hard to distinguish instancéof the
Unique Label Cover problem with label set si¥ehavingVAL(L) > 1 —n
from those havinAL(L) < 7.

Next, we will show that for any > 0, MAX-q-CUT can be approximated
within a,, — € in polynomial time while it is UG-hard to approximate it within

By + €.
2.6.2 Optimal approximability constants

DEFINITION 16. Forg > 1, let
¢ 1-P((X,Y)eAluU---UA2)

g = lim sup inf (28)
T n—oo Aty Ag =27 <p<1 G — 1 1—p
and
1-P((X,Y)e A2U---U A2
Bq == hm lnf sup q (( ) 1 q) (29)
n=00 — L <p<t Ay, Ay 4 1 1—p

where X, Y € N(0,1,), Cov(X,Y) = pI, and the supremum is over all
disjointAy,..., A, CR"WithP(X € A;) = % V3.
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Note that the limit in (28) and (29) exist since they are limits of bounded func-
tions increasing with: (we can always ignore any number of dimensions while
specifying the partition).

We now show thaty, = [, assuming Conjecture 2. To do this, we first
show that we can restrict attention to non-positive values afid for all such
values the standard simplex partition is optimal.

LEMMA 8. Assume Conjecture 2. Then, with the notation of Definition 16, we
have for allp € [0, 1],

g 1-P((X,Y)eAlu---UA2)

>1
q—1 L—p

with equality forp = 0.
Proof. By Conjecture 2 and Lemma 6,

P((X,Y) € AU---UA?) < lim S,(PLURy,,)

n—oo

On the other hand, by (8) and (6)

Sp(PLURyq) = > pl%l[[co|3 < || E[PLUR,, |3 + p Var[PLUR,,,] =

_1, a1
q q
Hence,
2 2 1 qg—1
P((X,Y)e AU ---UAY) §§+Tp
which holds with equality fop = 0. O

THEOREM10. Assume Conjecture 2. Thep = 3.

Proof. By Lemma 8 the infimums in the definition of, and 3, are obtained

for _qT11 < p < 0. The result now follows from the fact that forin this

range, the least stable partition in Conjecture 2 does not depepd on [

We now proceed to present the approximation algorithm and the inapprox-
imability argument which together implies Theorem 3.
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2.6.3 An approximation algorithm

The approximation algorithm presented here is a generalization of the algo-
rithm presented in [4] allowing for an arbitrary partition to be used whendeu
ing the relaxed solution. The algorithm in [4] corresponds exactly to usmg th
simplex partition of Conjecture 2, which (as we will see) is optimal if Conjec-
ture 2 is true.

Let B, = T ME, = aMz|x € Eq} be the extreme points of
the projected simplex scaled so that each point has unit norm:

LEMMA 9. For 7,7 € E,,

o 1 ifz=9
Y = SOS 30
-y { _qil |fl‘ #y ( )
Proof. Let  andy be the preimages of andy, i.e. 7 = /-4 Mz and

similarly fory. Then,

- q < 1> ( 1) q < 1> 1 ifz=y
zy=——\\oe——|"\y——|=——\|\z-y—— ) = e~ o~
YT )\ ") 1\ Ty — fT#7y

Labeling the vertices with vectors froﬁiq instead of numbers frorg], we
can write the value of a MAX-g-CUT instancet,(V, E,w) as the following
discrete optimization problem:

VAL(M,) = max T2 Y e Weug) (1= L - 1)

subjectto I, € B, ,Yu eV

To obtain the SDP relaxation we allow the vectors to be arbitrary points on
the unit sphere while adding the constraipt z, > —qfll which by (30) holds
for vectors inE,,

SDP-VAL(M,) := max Q;ql > () Wuw) (1 — zu - 20)

subjectto z, e R"Vu eV
Zy Zy=1VYu eV
Zu 2y > —q%l,Vu,v ev
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wheren = |V| denotes the number of vertices.
The rounding applied to the solution of SDP-VAL is parametrized by an
integerm, a partitionA = {4;,..., A,} of R™ and an error constait> 0,

Approximation algorithm R(m, A, 9).

1. Compute an almost optimal solutigs,),cy to SDP-VAILM,) using
semidefinite programming. This will achieve a value of SDP{W(|,) —
0.

2. Pick a projection matrig’ : R™*", by lettingT;; be i.i.d.N(0, 1).
3. Foreachu € V, leti(u) = i iff Tz, € A;.

Let R-VAL(M,) = VAL;(M,) be the value of the rounded labeling.
Then, the expected approximation ratio is:

E[R-VAL (./\/lq)] > E[R-VAL (,/\/lq)] B
VAL(Mq) - SDP-VAL(MQ) +5
2 (ww)er W) P (1(u) # 1(v))
% Z(u,v)eE w(u,v)(l - Zu Zu) +6
q : 1—P((Tzy,Tzy) € AJU--- U A2)
— inf
q—1 2y zpesn—t 1—2y -2, +90

1
Zu'zvz_ﬁ

v

But, T'z,, Tz, € N(0, I,,,) andCov (T zy, Tz,) = (24 - 2v)Im, SO by picking

m large enough and, . .., A, so that the limit in (28) is almost achieved (bar,
say?), and then picking = () small enough, we get an approximation ratio
of a; — ¢, for anye > 0. We have proved the following result

THEOREM 11. For anye > 0 there exists a polynomial time algorithm that
approximates MAX-q-CUT withia, —e.

2.6.4 Inapproximability results

We will now prove that MAX-g-CUT is UG-hard to approximate within any
factor greater thap,. To do so, we present a reduction from the Unique Label
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Cover problem to MAX-g-CUT following the same outline as the correspond-
ing reduction for MAX-CUT given in [11]. The reduction is based oRrab-
abilistically Checkable ProofPCP) whose proofl consists of the function
tables of{ f,, }wew, Wheref,, : [¢]™ — [q] is expected to be thieng codeof

w's labell(w), i.e. fu(x) = ;- In order to be able to reduce the PCP to
MAX-g-CUT, the PCP verified), is designed to use an acceptance predicate
which reads two random function values from the proof and accept®iffdH-

fer. Thus, a MAX-g-CUT instancé1, can be created from the PCP by letting
the vertices be the function values that can be realf hthe edges the pairs
of function values that are compared, and the weights the probability of that
comparison being made BY,. The verifier is parametrized hyc [*q%p 1].

PCP Verifier V,.
1. Pickv € V at random and two of its neighbots, w’ at random.
2. Pickz € [¢]™ at random.

3. Picky < [¢]™ to be ap-correlated copy of, i.e. eachy; is independently
selected using the conditional distribution

1
pyilei) = pliy,=a;y + (1 = p);

4. Acceptiff, Py, , (z) # fuwPs, ., (y), whereP, : [¢]™ — [¢]M denotes
the function

Py(z1,. . 20m) = (To(1)s - - -5 To(ar))

Using a result from [12] we can assume that the graph is regular on the
V side so that(v,w), and similarly (v,w’), picked byV, corresponds to a
an edge selected uniformly at random. By folding, we may also assume that
the functionsf,, are balanced, i.e. by using the functiofj(x1, ...,z ) :=
fw(0,29 — x1,..., 237 — 1) + x1 (Where addition and subtraction jq| is
performed modulg) instead of the original functiong,. Note that folding
does not change any function which is a long code, but still forceswarstibn
to become balanced.
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LEMMA 10. (Completeness).Fix p € [~ 17, 1). Then, for any Unique Label

Cover problemC with VAL(L) > 1 — n there exists a prodfl such that
[V, acceptdl] > (1~ 20) (1 p)
Proof. Let ! be the optimal assignment farand f,, be the long code df(w),
ie.
fuw() = L(w)

With probability at least — 27, both edgegv, w) and (v, w’) are satisfied
by . In this case,

fwPU'u,w (CL‘) = Loy w(l(w)) = Li(v) andfw’PUU,w/ (y) = Yi(v)

andV, accepts with probability

1-— qg—1
P[ﬂﬁl(v)#yZ(v)}—l—(PJr q'O)— . (1-p)

L]
LEMMA 11. (Soundness). Fix p € [—q%l, 1] ande > 0. Then, there exists

a~y = 7v(q,p,e) > 0 such that for any Unique Label Cover problefnwith
VAL(L) < v and any proofl,

P[V, acceptdI] <1—A_ (p) +¢ (31)

Proof. Forw € W, let f,, : [¢]* — E, defined by

fuw(@) = ey, ()

map the value of,, onto one ofy unit vectors, and for € V, letg, : [¢]M —
A, be defined by

g'l)(x) = :IEU)[fwPO'v,w (.1‘)]
where the expectation is over a random neighbaf v. Then,
P[V, acceptdl] = E [1—(fuPs,, (), fuPs, ()] =

/
v, w,w,T,y

= 1= E [9.(@),0®)] =1 -ES,(g,)
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Now supposdl is a proof such that (31) is not satisfied, i.e,
ES,(g,) < A, (p) — € (32)

We need to show that this impli@8AL(L) > ~. To do so it is enough to
create a random labelirigsuch that

B[VAL/(£)] > ¥

Let Vgood = {v € VISy(g0) < Ay (p) — 5} SinceSy(g,) > 0, (32)

— q
implies that|Vgood > 5|V|. Further, forv € Vgoos, Theorem 9 implies that

max; Inf?d gy > 7, for somed andr > 0 depending only om,p ande.
The assignmeritis created as follows:

1. Forv € V, leti(v) = i, where: maximizesInffd gy (ties broken arbi-
trarily)

2. Forw € W, letl(w) = i with probability proportional tdnffd fu-
Since (7) holds for vector-valued functions, this means that

S Inf?d fu

FOF NS Vbood,

T < Inf( )g’U _Inf (d) [fwPO'vw( )] E f<d fw UUUJ(J;) =

=~ Bt o Fale) < 0d Pli(w) = oy (1) =

= qd P [l satisfies(v, w)]

where the second inequality follows from convexitylnffd. Hence,

E[VAL(£)] = P (i satisfiesv, w)) >

;U W

T
qd

l\D\m

Pickingy = £ - 5 > 0 finishes the proof. O

Together, the soundness and completeness lemmas implies the following
inapproximability result for MAX-g-CUT:
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THEOREM12. For anye > 0 itis UG-hard to approximate MAX-g-CUT within
By + €.

Proof. By Lemma 10 and 11 it is UG-hard to distinguish instances of MAX-
g-CUT with value at leasfl — 277)%(1 — p) from instances with value at
mostl — A, (p) + € for any~y,e > 0. Thus, it is UG-hard to approximate
MAX-g-CUT within

1-A;(p)+e ¢ 1-A(p) ,
=1 = + €
1-2pi=-(1-p) a-1 1-p

wheree¢’ > 0 can be made arbitrarily small by pickingande small enough.
Since this holds for any € [~ 17, 1] the result follows. O
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Appendices

2.A Proof of Lemma 2

Proof. Assume first thap (—ﬁ, 1) so that the normal distribution is non-

degenerate. DiscretiZ@™ with cubes|0, )", i.e. writeR"™ = §Z™ x [0,0)".
wheredZ" denotes the n-dimensional integer lattice scaled by a factor
LetZ;; =9 V%JJ so thatZ; denotes the cubd; is in, and letU; ; be
i.i.d. uniform on|0, ¢], independent oy, . . . Xj.
Further letn be the density of X1, ..., X%) and7 the density of(Z; +
Ui, ..., Zr + Uyg). Itis easy to see that

N 1
n(z) = ik /[05) . n(z1 +ui,. .. 2+ ug)d(ui, ... uq) — n(x)asé — 0
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sincen is Lipschitz continuous. By dominated convergence, this implies that
we can chooseé so that

[, nte) = i)l do <
Rnk

N ™

Similar to Scheffés Lemma we have for aly R"* — [0, 1],
~ ~ €
[ wam@yds = [ h@ids| < [ b)) - i)l do < §
Rk Rnk Rnk
(33)
The non-fuzzy functiory is constructed frony by transferring masses in-
ternally in each cube. More specifically,is defined arbitrarily on each cube
with the only restriction that

Elg(Z1 + U1)|Z1] = E[f(Z1 + Uh1)|Z4]

(For instance, ifE[g(Z1 + U1)|Z1 = z1] = p, then we may divide the cube
z1 +[0,0)™ into ¢ parts of conditional measuye, . . . 1, and assign the value
e1,...,eq respectively to each part.) Thus,

q k

q k
EY [[5(2Z+U)=EY T[Eli(Z+Uj)lZ) =
i=1j=1 =1 j5=1
g k

q k
=E> [[E(Z +U)IZ]=E)_ [](2 +U;)

i=1j=1 i=1 j=1
Applying (33) twice gives (10). Similarly
E fi(Z1+U1) = E[E[fi(Z1+U1)|21]] = E[E[g:(Z1+U1)| Z1]] = E gi(Z1+U1)

and two more applications of (33) givéE f;(X1) — Eg:(X1)| < e and (9)
follows.

The two degenerate cases can be handled in a similar way by using a density
with respect to a lower dimensional Lebesgue measure. O
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K-wise Gaussian Noise Stability
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ABSTRACT

We introduce k-wise Gaussian noise stability and show that among subsets of
R™ of fixed measure, half-spaces maximizes this stability. This extends a Gaus-
sian isoperimetric inequality by Borell which proved the resultfos 2.

3.1 Introduction

DEFINITION 1. Fork > 1, p € [-725, 1], and A € B(R"), thek-wise Gaus-
sian noise stability ofd at p is

S (A) =P(X1 € A,..., X} € A)
where X, ..., X ~ N(0,I,) are jointly normal withCov(X;, X;) = pI,
fori # j.
We also lefu = SE}) denote the standard Gaussian measurérén
We prove that among sets of fixed measure, half spaces are most stable

under k-wise Gaussian noise for> 0.

63
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THEOREM1. Foranyk > 1, p € [0,1] and A € B(R"),

k k
st)(A) <SP (H)

whereH = {z € R"|z; < a} for a chosen so that(H) = u(A).

Note that the cask = 1 is of course trivial. Further, the cage= 2 was
proved by Borell [1].

3.2 Spherical Case

We start by defining the corresponding problem S8 (,/m), the m — 1-
dimensional sphere iR™ with radius./m.

DEFINITION 2. Fork > 1,p € [—ﬁ, 1], and A € B(R™), the k-wise spher-
ical noise stability ofd at p is

S (A) =P(X1 € A,..., X € A)

where Xy, ..., X ~ N(0, I,,) are jointly normal withCov(X;, X;) = pl,
fori # jandX; = ﬁXZ

We also lefi = §£1) denote the uniform measure on the sptgte! (,/m).
THEOREM2. Foranyk > 1, p € [0,1] and A € B(R™),

<(k <(k
Sth(4) <SP (H)

whereH = {z € R™|z; < a} for a chosen so thai(H) = ji(A).

Our reduction from the spherical result to the Gaussian result is based o
Poincarés observation that Gaussian measuiR™ois obtained by projection
of the uniform measure o™ (/m) ontoR", asm — oo. The convergence
is strong enough for the measure of any Borel set to converge:

LEMMA 1. For any A € B(R"),

(A X R™™) — u(A) asm — oo

Proof. This is mentioned with references in [4]. See also [2] O
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LEMMA 2. Foranyk > 1, p € [0,1] and A € B(R"),

SH (A x ™) — S (4) asm — oo

Proof. To do.

SupposeXy, ..., X, ~ N(0, I,,) andCov (X;, X;) = pl,, for i # j. Let
Xi= e X

LetY; = (X;1,...,X;,) denote the restriction QX to the firstn coordi-
nates (think ofn > n) and S|m|IarIyY (XZ 1,---,Xin). Thenit's easy to
see that

(Viyeo s Yi) 2 (V.0 Vi) @5 — 00
But to show that
P(ffieA,...ffkeA)aP(Yl EA,...YkEA)

for all A, we need a stronger convergence (convergence of densities igtgnou
O

LEMMA 3. Theorem 2= Theorem 1.

Proof. Fix A € B(R") and letH = {z € R"|z; < a} whereu(H) = u(A).
We need to show that

k k
Sg )(A) < sg )(H)

For eachm > n, let H,, = {x € R™|x; < a,,} wherea,, is chosen so that
a(Hp,) = (A x R™=™). Note that, by Lemma 1, as — oo,

fi(Hy) = (A x R™") — p(A) = p(H) — a(H x R™™")
Since bothH and H,,, are half-spaces defined by the first coordinate, this im-
plies

G(Hp \ HXxR™™) =0

which by the union bound implies

SO (Hyn) — 8P (H x R™™) < kfi(H \ H x R™™) =0 (1)
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Now, by Theorem 2,
Q(k m—n <k
S (A x R™™™) <SP (H,,)
Taking limits (asm — oo) and using Lemma 2 and (1) we have

k k
S(A) < s{P(H)

as needed. O

3.3 Symmetrization

The main tool in the proof is the following symmetrization operation which
given a hyperplane tries to push every pointifirom one pre-determined side
of the hyperplane to it's reflection point on the other side of the hyper@ane
long as that point is not already . Defining the symmetrization process in
terms of set operations we have,

DEFINITION 3. ForanyA € B(R") andh € R™\ {0}, we define théwo-point
symmetrizatiorof A with respect tch by

Ry(A) = ([ANa(A)INHY) U ([Aua(A)]NHy) @)

whereH, = {z € R"|z - h > 0} ando(A) denotes the reflection of with
respect to the hyperplangy, = {z € R"|xz - h = 0}.

As we will show, both Gaussian and spherical k-wise noise stability ineseas
under this symmetrization fgr > 0.

LEMMA 4. Foranyk > 1,p € [0,1), A € B(R") andh € R™ \ {0},

SSY (Ru(4)) = 5P (4)

Proof. By spherical symmetry it is enough to prove the result/fce eq, the
first unit vector.

Let X4,..., X be as in Definition 1 and leK be the matrix of ran-
dom variables with row vectorX; := X;. Then the column vectorX ; =
(X1;,..., X}, ) areindependent (0, X) vectors wherél; ; = p+ (1 —p)di;.
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It is easy to verify that the inverse &f is given by(E_l)ij = —a + bdyj,

_ 1 _ P
whereb = T anda = DTS > 0 for p > 0. Hence,

SSJ /]Rnxkl_[l{:v1 EA}Hf

wheref : R¥ — R is the density of &(0, ) variable, i.e.

1 1 k.2
= sy eyl vivs)
= e 2 i 5J

f(y) oD

Splitting the integral depending on the signs. . ., si of x 1, we may write

Stk (A —/
r ( ) (Rt xR7—1) H

Jj=2

where

k
fA(x) = Z H 1{(81'%1'71,:Ei,g,...,xiyn)eA}f(Slxl,].) cet Sk)xk),l)

se{—1,1}k i=1

Clearly, it is enough to show thaty (x) does not decrease under symmetriza-
tion of A, for anyx € (R* x R"~1)*, Fix such anc. By reordering the vectors
x1,...,TE, We may assume without loss of generality that for the fivstctors
both z; ando(z;) are in A, while for the rest exactly one is (we can ignore
cases where for someneitherz; nor o(x;) are in A since such cases do not
contribute tof 4 (x) nor fr, (A)). Thus we can assume that

{zi,o(z;))} CA1<i<]

while
x; € Aanda(:nl-) ¢ Aift; =1
x; ¢ Aando(z;) € Aift; = —1
for somel € [k] andt;yy,...,t, € {—1,1}. Note that symmetrization oft
corresponds to setting dlf's to 1. Now,

fal@) = D flswwinssim, @i, k) =
se{— 11}l

1
— e 5 C.s+ds)
V (27) |E e{zl:l}l

<1<k
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where
k
2
cs=Db E Ti—a E 5i8;Ti1Tj,1 — @ E titj3,175,1
i1 1<ij<l 1<ij<k

and

ds = —2a E sitj:ci,lxj,l = —2a E SiTq,1 E tjxj,l

1<i<l<j<k 1<i<l I<j<k

Pairing eacls with —s in (3) and noting that; is even ins while d, is odd, we
may write

1
fa@W @RS =5 37 ettt st

se{-1,1}

1
= Z e‘%cscosh(—ﬁds)

se{—1,1}

The result now follows by noting that sinag; > 0, setting all¢;’s to 1 will
decrease each and increase the absolute value of edghhencef 4 (x) will
increase (unless al)'s already ard). O

This symmetrization works just as well in the spherical case,
COROLLARY 1. Foranyk > 1,p € [0,1), A € B(R™) andh € R™ \ {0},

I (Ba(A)) = SP(4)

Proof. DefineT : R™ — R™ by T'(A) = {:U € Rm‘ﬁx € A} . Then,

using Lemma 4 and noting th&and R;, commute, we have
S (Bi(A)) = SP(T(Ri(A))) = 8 (Ri(T(A))) = SP(T(4)) = S (4)

O]
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3.4 Proof of Theorem 2

The proof of Theorem 2 given Lemma 4 is inspired by [3].

DEFINITION 4. For z,y € R™ and A, B C R™, let d(z,y) denote the Eu-
clidean distance betweenandy, d(z, A) = infyca d(z,y) denote the dis-
tance fromr to A and

dH(A7 B) = max{sup d(LU, B)7 sup d(y7 A)}
€A yeB

denote the Hausdorff distance betwetand B.
Also, fore > 0, let
Ac = {x € R"|d(z, A) < ¢}

DEFINITION 5. Let(C™, dy) denote the metric space

C™ = {C € B(S™(y/m))| Cis closed}

equipped with the Hausdorff measutg.
Note that sincéS™ ! (/m), d) is compact so i$C™, dy).
LEMMA 5. For B € ¢™, S%¥)(B.) — S (B) ase — 0.

Proof. Fork = 1, we only need to note that sinégis closed( ., (B: \ B) =
0, henceu(B. \ B) — 0 ase — 0. By the union bound,

S0 (B.) > 8(B) > 8 (B.) - ku(B. \ B)

0 >
hence the result follows by letting— 0. O
LEMMA 6. §§,k) is upper semi-continuous d@™, dy).

Proof. SupposeB,, is a sequence i@ such thatiy (B,,, B) — 0. We need to
show thaS” (B) > limsup SV (B,,). But, for anye > 0, B, D limsup By,
hence
k (k) (1; . S(k
SE, )(Be) > SE, )(hm sup B;,) > limsup SE) )(Bn)
where the second inequality follows from the reverse Fatou Lemma. Thlk res
now follows from Lemma 5 by letting — 0. O
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Proof of Theorem 2Sincejf: is supported oi$™ (/m), we may assumd €
B(S™(y/m)) and letH = {z € S™(/m)|x1 < a} wherea is chosen so

thatii(H) = i(A). We need to show that

S®(A) < S (H)
Without loss of generality we may also assume tAds closed (else, by
regularity of the uniform measurg, Ve > 0 : JclosedA’ C A such that
ji(A") > ji(A) — ¢, and henc€ (A’) > ST (A) — ke, and the result follows
from the result for closed sets by lettiag— 0).
Let B C C™ be the set of alB € C™ such that

i) A(B) = i(A) (= i(H))
i) Ve>0:(B.) < (A
iii) S%(B) =S (4)

Claim 1: B is closed in(C™, dg ).
Proof: Suppose3,, is a sequence i such thatdy (B, B) — 0. We

need to show thaB € B. From Lemma 6, it follows tha@f,k)(B) >
S (A) andji(B) > i(A). Now fix e > 0. For all§ > 0 we can pick
n = n(d) such that B,,)c+s 2 B.. Hence,

BreB
< i(Acys) O fi(A) @ss — 0

ﬂ(Be) < ﬂ((Bn)e—HS)
Thus, i(B) < ji(Ac). Lettinge — 0 and using Lemma 5 we also get

A(B) < i(4).

Claim 2: B is closed undery,.
Proof: Condition iii) was shown in Corollary 1. Condition i) follows

from (2) by noting that

_ _ T .
A(By(B)) = A(Bo(B))5+i(BUo(B))3 = ;
For condition ii) it is enough to see th@k,(A)]. C Rn(A.) for all
e > 0. This can be seen by a simple case analysis.
Now, upper semi-continuity gi implies upper semi-continuity @8 — (BN
H) on (C™,dy). Hence, sincdC™,dy) is compact and3 is a non-empty

(sinceA € B) closed subsetup (B N H) is achieved by som8* € B.
BeB

L_iB) +ilo(B)
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Suppose first thafy(B* N H) < i(H). Then, by i), we must have
A(B*\ H) = i(H\ B*) >0

Lebesgue’s density theorem asserts that there are poit®* \ H andy €
H \ B* and ac > 0 such that say,

{ i({z}e N B*\ H) > 0.95({})
A{yte N H\ B*) > 0.90({y})
Let h = y — x. Then, applying the symmetrization operai®y to B* will
transfer a subset of measure at leasfi({z}.) of B* from H® to H, while
no point of B* in H will be transferred to a point outsidé (sinceH is a half-

space and points will be transferred in the directios- y — = wherey € H
andz ¢ H). Thus,

p(RR(B*) N H) > p(B* N H) + 0.84({z}c) > ((B" N H)

contradicting the optimality oB*. Hence, we must have&(B* N H) = (H).
But thenB* = H (a.s.j1) and

<(k _ Qk * k
S (H) =S (B*) > S (4)

as needed. O
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