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Continuous-discrete optimal control problems
Kjell Holmåker

Abstract
A continuous-discrete control system is studied where the state variable x may have a jump

discontinuity at certain times τk. The size of the jump is determined by the actual value of
x and the choice of a control parameter zk. Between the jump times, x satisfies an equation
ẋ = f(t, x, u(t)) for some choice of the control function u. There may also be constraints
on the values x(τk) and the jumps. A cost functional depending on these quantities is to
be minimized. Necessary conditions for optimality are derived. This is done by formulating
the problem as a special case of a general mathematical programming problem in an infinite-
dimensional space and applying a general multiplier rule. The times τk may be fixed or allowed
to vary. As an application necessary conditions are obtained for a multiprocess problem, i.e.,
a problem where at τk there is a transition to a different state space.

1 Introduction
Differential equations with impulse effects can be used to model situations where some quantities
can change instantly. In a typical case a state variable x evolves in time according to an equation
ẋ = f(t, x) except at times τk, where it makes a jump of size Jk(x(τk)). A solution that exists on
an interval [T0, T1] with jumps at interior points τk, k = 1, . . . , r, with

T0 = τ0 < τ1 < · · · < τr < τr+1 = T1,

is assumed to be continuous from the left at τk for k = 1, . . . , r + 1 and continuous from the right
at T0. On (τk, τk+1] (0 ≤ k ≤ r) it is absolutely continuous and satisfies ẋ(t) = f(t, x(t)) a.e. with
x(τ+

k ) = x(τk +0) = x(τk)+Jk(x(τk)) for 1 ≤ k ≤ r. We write ∆x|τk = x(τ+
k )−x(τk) = Jk(x(τk))

and say that x satisfies

ẋ = f(t, x), t 6= τk,

∆x|τk = Jk(x(τk)).

Equations of this type are treated for example in [1].
In this paper we will consider continuous-discrete control systems

ẋ = f(t, x, u(t)), t 6= τk,

∆x|τk = Jk(x(τk), zk),

with control functions u(t) ∈ Ω(t) and control parameters zk ∈ Zk. The set Jk(x(τk), Zk) of
allowed jumps is assumed to be convex. We have a number of constraints for the values x(τk) and
the jumps Jk(x(τk), zk), and we want to minimize a functional depending on these quantities. In
Section 5 we derive necessary conditions for optimality, first when the switching times τk are fixed,
and then when they are allowed to vary. The first result we obtain by formulating the problem
as a special case of a general optimization problem and applying the necessary conditions for this
problem. This general problem is discussed in Section 3. To be able to apply this we need to know
how the solution x(t) is affected by certain variations of u(t) and zk. In Section 4 a known result
is extended to systems with impulse effects. We also need a solution formula for the linear case
which is given in Section 2. In the case where τk may vary, a certain transformation of the time
variable will reduce the problem to one with fixed switching times, and the previously obtained
results can be applied.
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Our results contain as special cases the Pontryagin maximum principle for problems with in-
terior constraints (Jk = 0) and the discrete maximum principle as it appears in [13] (f = 0).
In a related type of problems there are different descriptions (including different state spaces) on
different time intervals. Then we cannot talk about jumps, but there can be equations relating
the values at the endpoints of the time intervals. Such problems – sometimes called multiprocess
problems – are discussed in Section 6, where it is shown how the results from Section 5 can be
used to derive necessary conditions.

It seems that this particular combination of an ordinary control and discrete controls has not
been studied much. Some authors (e.g. [2], [12] and [14]) have considered problems with only
discrete controls. In [14] there is the same convexity assumption as in this paper, and their result
is included in our Theorem 4.

2 Linear systems with impulse effects
Consider the following linear system in Rn with impulse effects:

ẋ = A(t)x+ b(t), t 6= τk, (2.1)
∆x|τk = x(τ+

k )− x(τk) = Ckx(τk) + dk, (2.2)
x(T0) = x0. (2.3)

Here the elements of the n × n-matrix A(t) and the n-vector b(t) belong to L1(T0, T1), and Ck is
an n× n-matrix.

We will derive an expression for the solution (equation (2.7) below). Let Φ(t) be the funda-
mental matrix at T0 of the system ẋ = A(t)x (i.e., Φ̇(t) = A(t)Φ(t) a.e., Φ(T0) = E, E is the n×n
identity matrix). Define

Ψk = Φ−1(τk)(E + Ck)Φ(τk), k = 1, . . . , r, (2.4)

Ψkj =

{
Ψk · · ·Ψj+1 if 0 ≤ j < k ≤ r,
E if 0 ≤ j = k ≤ r.

For T0 ≤ s ≤ t ≤ T1 we define a piecewise constant function Ψ(t, s):

Ψ(t, s) = Ψ00 = E, if T0 ≤ s ≤ t ≤ τ1;

if τk < t ≤ τk+1 (k = 1, . . . , r), then

Ψ(t, s) =



Ψk0 if T0 ≤ s ≤ τ1,
Ψk1 if τ1 < s ≤ τ2,

...
Ψk,k−1 = Ψk if τk−1 < s ≤ τk,
Ψkk = E if τk < s ≤ t.

Note that

Ψ(t, s) =

{
Ψkj = ΨkΨ(τk, s) if τj < s ≤ τj+1, τk < t ≤ τk+1, 0 ≤ j < k ≤ r,
Ψkk = E if τk < s ≤ t ≤ τk+1, 0 ≤ k ≤ r,

(2.5)

Ψ(t, T0) =

{
Ψk0 = ΨkΨ(τk, T0) if τk < t ≤ τk+1, 1 ≤ k ≤ r,
Ψ00 = E if T0 ≤ t ≤ τ1.

(2.6)

Then the solution of (2.1)–(2.3) can be written

x(t) = Φ(t)Ψ(t, T0)x0 +
∫ t

T0

Φ(t)Ψ(t, s)Φ−1(s)b(s) ds+
∑

T0<τj<t

Φ(t)Ψ(t, τ+
j )Φ−1(τj)dj (2.7)
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for all t ∈ [T0, T1]. To see this, let y(t) = Φ−1(t)x(t). On (τk, τk+1) (0 ≤ k ≤ r) we have
ẏ(t) = Φ−1(t)b(t) a.e. Further, y(T0) = x0 and (using (2.4))

y(τ+
k ) = Φ−1(τk)x(τ+

k ) = Φ−1(τk)[(E + Ck)xk(τk) + dk]
= Φ−1(τk)(E + Ck)Φ(τk)y(τk) + Φ−1(τk)dk
= Ψky(τk) + Φ−1(τk)dk for k ≥ 1.

(2.8)

For T0 ≤ t ≤ τ1 we have (see (2.6))

y(t) = x0 +
∫ t

T0

Φ−1(s)b(s) ds = Ψ(t, T0)x0 +
∫ t

T0

Ψ(t, s)Φ−1(s)b(s) ds.

For τ1 < t ≤ τ2 we then obtain from (2.8) using (2.5)–(2.6)

y(t) = y(τ+
1 ) +

∫ t

τ1

Φ−1(s)b(s) ds = Ψ1y(τ1) + Φ−1(τ1)d1 +
∫ t

τ1

Φ−1(s)b(s) ds

= Ψ(t, T0)x0 + Ψ1

∫ τ1

T0

Ψ(τ1, s)Φ−1(s)b(s) ds+ Φ−1(τ1)d1 +
∫ t

τ1

Φ−1(s)b(s) ds

= Ψ(t, T0)x0 +
∫ t

T0

Ψ(t, s)Φ−1(s)b(s) ds+ Ψ(t, τ+
1 )Φ−1(τ1)d1.

By induction we get in a similar way

y(t) = Ψ(t, T0)x0 +
∫ t

T0

Ψ(t, s)Φ−1(s)b(s) ds+
k∑
j=1

Ψ(t, τ+
j )Φ−1(τj)dj

for τk < t ≤ τk+1, 1 ≤ k ≤ r. This proves (2.7).
See [1] for further properties of systems of the form (2.1)–(2.3).

3 A general extremal problem
Necessary conditions for many optimization problems, including optimal control problems, can be
derived by applying the necessary conditions for a generally formulated extremal problem. A simple
version is the following mathematical programming problem in an infinite-dimensional space.
Problem (P). Let X be a real linear space, and let there be given real-valued functions
ϕ−q, . . . , ϕ0, . . . , ϕp (p and q are non-negative integers) defined on X, and a subset A of X. Mini-
mize ϕ0(x) subject to the constraints

ϕi(x) = 0, i = 1, . . . , p, (3.1a)
ϕi(x) ≤ 0, i = −q, . . . ,−1, (3.1b)

x ∈ A. (3.1c)

Assume that x0 is a solution of Problem (P), that is, x0 satisfies (3.1) and ϕ0(x0) ≤ ϕ0(x) for all
x such that (3.1) is satisfied. Under suitable conditions it is possible to derive a necessary condition
for optimality in the form of a generalized multiplier rule. What we need is some differentiability
properties of ϕi at x0 and some way of approximating A near x0. When the multiplier rule is
applied to an optimal control problem this approximation of A comes from a certain perturbation
result in the theory of differential equations. We make the following assumption:
Assumption 1. There exist a set M ⊆ X and functions hi : X → R, −q ≤ i ≤ p, with the
following properties: For every finite collection y1, . . . , yN of points in M there is an ε0 > 0 such
that for each ε ∈ (0, ε0] and each β ∈ SN , where

SN = {β = (β1, . . . , βN ) ∈ RN : βj ≥ 0 for j = 1, . . . , N,
N∑
j=1

βj = 1}, (3.2)

there exists a point ρβ,ε ∈ A such that, with yβ =
∑N
j=1 βjyj ∈ coM ,
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(i) ϕi(ρβ,ε) is continuous with respect to β ∈ SN for 1 ≤ i ≤ p;

(ii) for 1 ≤ i ≤ p, hi is linear, and

lim
ε→0+

ϕi(ρβ,ε)− ϕi(x0)
ε

= hi(yβ);

(iii) for −q ≤ i ≤ 0, hi is convex, and

lim sup
ε→0+

ϕi(ρβ,ε)− ϕi(x0)
ε

≤ hi(yβ);

and the convergence in (ii) and (iii) is uniform with respect to β ∈ SN .

Remark. If X is normed, then the function hi in (ii) might be the Hadamard derivative, i.e.,

lim
ε→0+

z→y

ϕi(x0 + εz)− ϕi(x0)
ε

= hi(y),

and similarly in (iii). In this case ρβ,ε should be a point in A such that ρβ,ε = x0 + εyβ +o(ε). The
set M may be considered as a set of directions in which it is possible to approximate A near x0.
However, we only need the properties of the composite functions ϕi(ρβ,ε). It may also be easier to
verify (i), (ii) and (iii) directly than treating ϕi(x) and ρβ,ε separately.

Theorem 1. Let x0 be a solution of Problem (P) and let Assumption 1 be satisfied. Then there
exist real numbers λ−q, . . . , λp, not all zero, such that

p∑
i=−q

λihi(y) ≤ 0 for all y ∈ coM, (3.3)
λi ≤ 0, −q ≤ i ≤ 0, (3.4)

λiϕi(x0) = 0, −q ≤ i ≤ −1. (3.5)

Proof of this theorem can be found in [10]; see also [7] and [9].

4 A perturbation result for differential equations
We are going to study control systems ẋ = f(t, x, u(t)) on a fixed time interval I = [T0, T1]. For
the admissible controls u(·) there is a constraint of the form u(t) ∈ Ω(t) for all t ∈ I. We say
that a function (t, x) 7→ F (t, x) with values in Rr for some r, defined for t ∈ I and x ∈ Rn is of
Carathéodory-type (on I) if it is measurable in t and continuous in x, and if for each compact set
K ⊂ Rn there exists a function ρ ∈ L1(I) such that |F (t, x)| ≤ ρ(t) for all t ∈ I, x ∈ K. We
say that F belongs to the class F if F is differentiable with respect to x, and F and ∂F

∂x are of
Carathéodory-type. [∂F∂x is the r × n-matrix with elements ∂Fi

∂xj
.] For f(t, x, u) and Ω(t) we make

the following assumption.

Assumption 2.

(i) f is a mapping from I ×Rn ×Rm to Rn. For each t ∈ I, Ω(t) is a non-empty subset of Rm.

(ii) f is differentiable with respect to x, and f and ∂f
∂x are measurable in t (for fixed x and u)

and continuous in x and u separately (for fixed t).

(iii) The set of admissible controls u(·) is

U = {u(·) : u(·) is measurable on I, u(t) ∈ Ω(t) for all t ∈ I, the function
(t, x) 7→ f(t, x, u(t)) belongs to the class F}.
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(iv) There exists a countable family {uj}∞j=1 of functions uj ∈ U such that the set {uj(t)}∞j=1
is dense in Ω(t) for every t ∈ I. [It can be shown that this is the case, for example, if the
set-valued mapping t 7→ Ω(t) is measurable in the sense that the set {(t, u) ∈ Rm+1 : t ∈ I,
u ∈ Ω(t)} belongs to the σ-algebra in Rm+1 that is generated by the Lebesgue sets in I and
the Borel sets in Rm (assuming that U 6= ∅ and that (t, x) 7→ f(t, x, v(t)) belongs to F for
bounded measurable functions v); see [11].]

For applications to optimal control the following result about certain perturbations of a given
control u0 is of central importance.

Theorem 2. Assume that u0 ∈ U and that x0 is a piecewise continuous function on [T0, T1] that
is a solution of ẋ = f(t, x, u0(t)) on a subinterval I ′ = [τ, τ ′] ⊆ I. Let for ξ ∈ Rn and u ∈ U ,
v(t; ξ, u) be the solution of v̇ = ∂f

∂x
(t, x0(t), u0(t))v + f(t, x0(t), u(t))− f(t, x0(t), u0(t)),

v(τ) = ξ.
(4.1)

Let ξj ∈ Rn and uj ∈ U , j = 1, . . . , N, be given. For each β ∈ SN (see (3.2)) and each ε ∈ (0, 1)
there exist pairwise disjoint sets Aj = Aj(β, ε) ⊆ I, j = 0, 1, . . . , N , each a finite union of intervals,
such that ∪Nj=0Aj = I and such that the following is true. Define the control uβ,ε ∈ U by

uβ,ε(t) = uj(t) for t ∈ Aj(β, ε), j = 0, 1, . . . , N,

and let xβ,ε be the solution of

ẋ = f(t, x, uβ,ε(t)), x(τ) = x0(τ) + ε

N∑
j=1

βjξj .

Then there exists an ε0 ∈ (0, 1) such that for all β ∈ SN and all ε ∈ (0, ε0], xβ,ε(·) exists on all I ′
and satisfies

xβ,ε(t) = x0(t) + ε

N∑
j=1

βjv(t; ξj , uj) + r(t;β, ε), (4.2)

where r(t;β, ε)/ε → 0 as ε → 0+, uniformly with respect to t and β. Furthermore, for fixed ε,
xβ,ε(t) is continuous in β, uniformly with respect to t.

Proof of this theorem can be found in [7] and [8] (in slightly different notation) or [10]. An
important part of the proof is a lemma by Halkin (see [7]; a proof is also given in [10]) which states
that the sets Aj(β, ε) can be chosen so that

m(A0) = (1− ε)(T1 − T0), m(Aj) = εβj(T1 − T0), j = 1, . . . , N,
m(Aj(β, ε) M Aj(β′, ε))→ 0 as β → β′, β, β′ ∈ SN , j = 0, . . . , N,

and

∣∣∣(1− ε)∫ t

T0

f(τ, x0(τ), u0(τ)) dτ + ε

N∑
j=1

βj

∫ t

T0

f(τ, x0(τ), uj(τ)) dτ

−
∫ t

T0

f(τ, x0(τ), uβ,ε(τ)) dτ
∣∣∣ < ε2 for all t ∈ I. (4.3)

From (4.3) and a general result about the effect of perturbations of the initial value and the
right-hand side of a differential equation Theorem 2 follows (see [10]).

5



Now we want to extend Theorem 2 to problems with impulse effects. We have T0 = τ0 < τ1 <
· · · < τr < τr+1 = T1, τk fixed, u ∈ U , and consider the equation

ẋ = f(t, x, u(t)), t 6= τk,

∆x|τk = Jk(x(τk), zk), k = 1, . . . , r.

The parameters zk are chosen from some sets Zk. We assume that Jk(·, zk) ∈ C1(Rn) for each k
and zk ∈ Zk, and that the set Jk(x, Zk) is convex for each k and x. Denote

z̄ = (z1, . . . , zr) ∈ Z1 × · · · × Zr = Z̄.

Let u0 ∈ U , z̄0 = (z0,1, . . . , z0,r) ∈ Z̄ and a corresponding solution x0 be given, i.e.,

ẋ0 = f(t, x0, u0(t)), t 6= τk,

∆x0|τk = Jk(x0(τk), z0,k).

Let ξj ∈ Rn, uj ∈ U , and z̄j ∈ Z̄, j = 1, . . . , N , be given. For ε ∈ (0, 1), β ∈ SN , find sets
Aj(β, ε) and define uβ,ε ∈ U as described above. Let xβ,ε be the solution of

ẋ = f(t, x, uβ,ε(t)),

x(T0) = x0(T0) + ε

N∑
j=1

βjξj .

If ε is sufficiently small, xβ,ε(t) exists on [T0, τ1] and satisfies (according to Theorem 2)

xβ,ε(t) = x0(t) + ε

N∑
j=1

βjv(t; ξj , uj) + r1(t;β, ε), t ∈ [T0, τ1],

where v(·; ξ, u) satisfies (4.1) with τ = T0, and r1(t;β, ε)/ε→ 0 as ε→ 0+ uniformly with respect
to t ∈ [T0, τ1] and β ∈ SN ; we say that r1(t;β, ε) = o(ε) uniformly w.r.t. t and β. Furthermore,
xβ,ε(τ1) is continuous in β. Since J1(xβ,ε(τ1), Z1) is convex, there exists zβ,ε,1 ∈ Z1 such that

J1(xβ,ε(τ1), z0,1) + ε

N∑
j=1

βj [J1(xβ,ε(τ1), zj,1)− J1(xβ,ε(τ1), z0,1)] = J1(xβ,ε(τ1), zβ,ε,1).

We continue the definition of xβ,ε by letting the jump at τ1 be J1(xβ,ε(τ1), zβ,ε,1). The new
initial value at τ1 is xβ,ε(τ+

1 ) = xβ,ε(τ1) + J1(xβ,ε(τ1), zβ,ε,1). We have

J1(xβ,ε(τ1), z0,1) = J1(x0(τ1), z0,1) + ε
∂J1

∂x
(x0(τ1), z0,1)

N∑
j=1

βjv(τ1; ξj , uj) + o(ε)

uniformly w.r.t. β. For j = 1, . . . , N it is enough to note that J1(xβ,ε(τ1), zj,1) = J1(x0(τ1), zj,1)+
O(ε) uniformly w.r.t. β. Thus

xβ,ε(τ+
1 ) = x0(τ1) + ε

N∑
j=1

βjv(τ1; ξj , uj) + J1(x0(τ1), z0,1)

+ ε
∂J1

∂x
(x0(τ1), z0,1)

N∑
j=1

βjv(τ1; ξj , uj)

+ ε

N∑
j=1

βj [J1(x0(τ1), zj,1)− J1(x0(τ1), z0,1)] + o(ε)

= x0(τ+
1 ) + ε

(
E + ∂J1

∂x
(x0(τ1), z0,1)

) N∑
j=1

βjv(τ1; ξj , uj)

+ ε

N∑
j=1

βj [J1(x0(τ1), zj,1)− J1(x0(τ1), z0,1)] + o(ε)

(4.4)
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uniformly w.r.t. β. From the definition of J1(xβ,ε(τ1), zβ,ε,1) we see that it is continuous in β; thus
xβ,ε(τ+

1 ) is continuous in β.
Now let v(t; ξ, u, z̄) for ξ ∈ Rn, u ∈ U , and z̄ ∈ Z̄ be the solution of the linear system

v̇ = ∂f

∂x
(t, x0(t), u0(t))v + f(t, x0(t), u(t))− f(t, x0(t), u0(t)), t 6= τk,

∆v|τk = ∂Jk
∂x

(x0(τk), z0,k)v(τk) + Jk(x0(τk), zk)− Jk(x0(τk), z0,k), k = 1, . . . , r,

v(T0) = ξ.

Let vj(t) = v(t; ξj , uj , z̄j). Note that vj(t) coincides with v(t; ξj , uj) above for T0 ≤ t ≤ τ1. Since

vj(τ+
1 ) = vj(τ1) + ∂J1

∂x
(x0(τ1), z0,1)vj(τ1) + J1(x0(τ1), zj,1)− J1(x0(τ1), z0,1),

we have from (4.4)

xβ,ε(τ+
1 ) = x0(τ+

1 ) + ε

N∑
j=1

βjvj(τ+
1 ) + o(ε).

Next, define xβ,ε(t) for τ1 < t ≤ τ2 as the solution of
ẋ = f(t, x, uβ,ε(t)),

x(τ+
1 ) = xβ,ε(τ1) + J1(xβ,ε(τ1), zβ,ε,1) = x0(τ+

1 ) + ε

N∑
j=1

βjvj(τ+
1 ) + o(ε).

It exists on (τ1, τ2] if ε is sufficiently small and satisfies (according to Theorem 2)

xβ,ε(t) = x0(t) + ε

N∑
j=1

βjvj(t) + o(ε)

as ε→ 0+ uniformly w.r.t. t and β. This follows since vj satisfies

v̇j(t) = ∂f

∂x
(t, x0(t), u0(t))vj(t) + f(t, x0(t), uj(t))− f(t, x0(t), u0(t))

on (τ1, τ2] (a.e.). The extra term o(ε) in the initial value only contributes an extra o(ε) in the
solution (an application of the Gronwall inequality). Also, xβ,ε(t) is continuous in β. We now
define zβ,ε,2 ∈ Z2 such that

J2(xβ,ε(τ2), z0,2) + ε

N∑
j=1

βj [J2(xβ,ε(τ2), zj,2)− J2(xβ,ε(τ2), z0,2)] = J2(xβ,ε(τ2), zβ,ε,2).

The jump at τ2 is J2(xβ,ε(τ2), zβ,ε,2). Then we can proceed as above and define xβ,ε(t) on (τ2, τ3],
(τ3, τ4],. . . , (τr, T1]. We have then defined z̄β,ε = (zβ,ε,1, . . . , zβ,ε,r) ∈ Z̄, and xβ,ε(·) is the solution
of 

ẋ = f(t, x, uβ,ε(t)), t 6= τk,

∆x|τk = Jk(x(τk), zβ,ε,k), k = 1, . . . , r,

x(T0) = x0(T0) + ε

N∑
j=1

βjξj .

As end result we obtain

xβ,ε(t) = x0(t) + ε

N∑
j=1

βjvj(t) + r(t;β, ε), (4.5)

where r(t;β, ε)/ε→ 0 as ε→ 0+, uniformly w.r.t. t and β, and xβ,ε(t) is continuous in β uniformly
w.r.t. t (for fixed ε).
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5 A continuous-discrete optimal control problem
5.1 Fixed switching times
Consider the control system

ẋ = f(t, x, u(t)), t 6= τk, u(·) ∈ U , (5.1)
∆x|τk = Jk(x(τk), zk), k = 1, . . . , r, z̄ ∈ Z̄. (5.2)

The notation and general assumptions are as in Section 4. We have a number of constraints for
x(τk) (0 ≤ k ≤ r + 1) and x(τ+

k ) or equivalently ∆x|τk = Jk(x(τk), zk) (1 ≤ k ≤ r):

gi(x(τ0), x(τ1),∆x|τ1 , . . . , x(τr),∆x|τr , x(τr+1)) = 0, i = 1, . . . , p, (5.3)
gi(x(τ0), x(τ1),∆x|τ1 , . . . , x(τr),∆x|τr , x(τr+1)) ≤ 0, i = −q, . . . ,−1. (5.4)

We want to minimize a functional

g0(x(τ0), x(τ1),∆x|τ1 , . . . , x(τr),∆x|τr , x(τr+1)). (5.5)

We assume that the functions gi, defined for (x0, x1, y1, . . . , xr, yr, xr+1) ∈ (Rn)2r+2, are continu-
ously differentiable.

Assume that (u0(·), z̄0, x0(·)) is an optimal triple for the problem of minimizing (5.5) subject
to (5.1)–(5.4). Let us work in the linear space X = PCn(I) × (Rn)r, where PCn(I) is the linear
space of piecewise continuous n-vector functions on I = [T0, T1] that are continuous except perhaps
at τk, k = 1, . . . , r, where they are continuous from the left. Elements of (Rn)r are denoted by
ȳ = (y1, . . . , yr). Let

A = {(x, ȳ) ∈ X : x(·) is a solution of (5.1)–(5.2), yk = Jk(x(τk), zk), k = 1, . . . , r,
for some u ∈ U , z̄ ∈ Z̄},
ϕi(x, ȳ) = gi(x(τ0), x(τ1), y1, . . . , x(τr), yr, x(τr+1)), −q ≤ i ≤ p,

ȳ0 = (y0,1, . . . , y0,r), where y0,k = Jk(x0(τk), z0,k).

Then (x0, ȳ0) ∈ A is a solution of the problem of minimizing ϕ0(x, ȳ) subject to (x, ȳ) ∈ A,
ϕi(x, ȳ) = 0 for i = 1, . . . , p, ϕi(x, ȳ) ≤ 0 for i = −q, . . . ,−1. Thus our control problem is
formulated as a special case of Problem (P) in Section 3. We must verify Assumption 1 in this
case.

Let v(t; ξ, u, z̄) be as in Section 4, and define

wk(ξ, u, z̄) = ∂Jk
∂x

(x0(τk), z0,k)v(τk; ξ, u, z̄) + Jk(x0(τk), zk)− Jk(x0(τk), z0,k), k = 1, . . . , r.

Let

M = {(x, ȳ) ∈ X : x(·) = v(·; ξ, u, z̄), yk = wk(ξ, u, z̄) for some ξ ∈ Rn, u ∈ U , z̄ ∈ Z̄},

and let elements (vj , ȳj), j = 1, . . . , N , in M be given. Then

vj(·) = v(·; ξj , uj , z̄j) and yj,k = wk(ξj , uj , z̄j) for some ξj ∈ Rn, uj ∈ U , z̄j ∈ Z̄.

For β ∈ SN and ε > 0 sufficiently small we define uβ,ε, xβ,ε, and z̄β,ε as is described in Section
4. We showed there (see (4.5)) that

xβ,ε(t) = x0(t) + ε

N∑
j=1

βjvj(t) + o(ε), (5.6)

as ε→ 0+, uniformly w.r.t. t and β. Further, xβ,ε(t) is continuous in β. Also, z̄β,ε satisfies

Jk(xβ,ε(τk), z0,k) + ε

N∑
j=1

βj [Jk(xβ,ε(τk), zj,k)− Jk(xβ,ε(τk), z0,k)] = Jk(xβ,ε(τk), zβ,ε,k). (5.7)
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Define an element ȳβ,ε ∈ (Rn)r with components

yβ,ε,k = Jk(xβ,ε(τk), zβ,ε,k).

It follows from (5.7) that yβ,ε,k is continuous in β. We also have from (5.6) and (5.7)

yβ,ε,k = Jk(x0(τk), z0,k) + ε
∂Jk
∂x

(x0(τk), z0,k)
N∑
j=1

βjvj(τk)

+ ε

N∑
j=1

βj [Jk(x0(τk), zj,k)− Jk(x0(τk), z0,k)] + o(ε)

= y0,k + ε

N∑
j=1

βjwk(ξj , uj , z̄j) + o(ε) = y0,k + ε

N∑
j=1

βjyj,k + o(ε),

so that

ȳβ,ε = ȳ0 + ε

N∑
j=1

βj ȳj + o(ε) (5.8)

uniformly w.r.t. β.
Now we can verify Assumption 1 (i)–(iii). We have

ρ(β, ε) = (xβ,ε(·), ȳβ,ε) ∈ A,

and
ϕi(ρ(β, ε)) = gi(xβ,ε(τ0), xβ,ε(τ1), yβ,ε,1, . . . , xβ,ε(τr), yβ,ε,r, xβ,ε(τr+1)) (5.9)

is continuous in β. For (ii) and (iii) we have from (5.6), (5.8)–(5.9) with

e0 = (x0(τ0), x0(τ1), y0,1, . . . , x0(τr), y0,r, x0(τr+1)),

lim
ε→0+

ϕi(ρ(β, ε))− ϕi(x0, ȳ0)
ε

=
r+1∑
k=0

∂gi
∂xk

(e0)
N∑
j=1

βjvj(τk) +
r∑

k=1

∂gi
∂yk

(e0)
N∑
j=1

βjyj,k

= hi

( N∑
j=1

βj(vj , ȳj)
)
,

where the convergence is uniform w.r.t. β, and where hi is the linear functional on X defined by

hi(x, ȳ) =
r+1∑
k=0

∂gi
∂xk

(e0)x(τk) +
r∑

k=1

∂gi
∂yk

(e0)yk.

According to Theorem 1 there exist numbers λi, not all zero, such that
p∑

i=−q
λihi(x, ȳ) ≤ 0 for all (x, ȳ) ∈ coM,

λi ≤ 0 for i ≤ 0,
λig(e0) = 0 for i < 0.

Take a typical element (x, ȳ) of M . Then

p∑
i=−q

λi

{ r+1∑
k=0

∂gi
∂xk

(e0)v(τk; ξ, u, z̄) +
r∑

k=1

∂gi
∂yk

(e0)wk(ξ, u, z̄)
}
≤ 0

for all ξ ∈ Rn, u ∈ U , z̄ ∈ Z̄.
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Write G =
∑p
i=−q λigi, Gk = ∂G

∂xk
(e0) (0 ≤ k ≤ r + 1), and G+

k = ∂G
∂yk

(e0) (1 ≤ k ≤ r), so that

r+1∑
k=0

Gkv(τk; ξ, u, z̄) +
r∑

k=1
G+
k wk(ξ, u, z̄) ≤ 0. (5.10)

With

A(t) = ∂f

∂x
(t, x0(t), u0(t)), b(t) = f(t, x0(t), u(t))− f(t, x0(t), u0(t)),

Ck = ∂Jk
∂x

(x0(τk), z0,k), dk = Jk(x0(τk), zk)− Jk(x0(τk), z0,k), k = 1, . . . , r,

we have that v(·; ξ, u, z̄) is the solution of
v̇ = A(t)v + b(t), t 6= τk,

∆v|τk = Ckv(τk) + dk = wk(ξ, u, z̄),
v(T0) = ξ.

With the notation from Section 2 we have from (2.7)

v(τk; ξ, u, z̄) = Φ(τk)Ψk−1,0ξ +
∫ τk

T0

Φ(τk)Ψ(τk, t)Φ−1(t)b(t) dt+
k−1∑
j=1

Φ(τk)Ψk−1,jΦ−1(τj)dj

for k = 1, . . . , r + 1.
Take u = u0, z̄ = z̄0 in (5.10). Then b(t) = 0, dk = 0, and(

G0 +
r+1∑
k=1

GkΦ(τk)Ψk−1,0 +
r∑

k=1
G+
k CkΦ(τk)Ψk−1,0

)
ξ ≤ 0 for all ξ ∈ Rn.

Thus

G0 +
r∑

k=1
(Gk +G+

k Ck)Φ(τk)Ψk−1,0 +Gr+1Φ(T1)Ψr,0 = 0. (5.11)

Next, take ξ = 0, z̄ = z̄0 in (5.10). Then
r∑

k=1
(Gk +G+

k Ck)
∫ τk

T0

Φ(τk)Ψ(τk, t)Φ−1(t)b(t) dt+Gr+1

∫ T1

T0

Φ(T1)Ψ(T1, t)Φ−1(t)b(t) dt ≤ 0

for all u ∈ U . Define (χA(·) is the characteristic function of the set A)

η(t) =
r∑

k=1
(Gk +G+

k Ck)χ[T0,τk](t)Φ(τk)Ψ(τk, t)Φ−1(t) +Gr+1Φ(T1)Ψ(T1, t)Φ−1(t).

Then ∫ T1

T0

η(t)[f(t, x0(t), u(t))− f(t, x0(t), u0(t))] dt ≤ 0 for all u ∈ U . (5.12)

For τj < t ≤ τj+1 (j = 0, . . . , r) we have

η(t) =
r∑

k=j+1
(Gk +G+

k Ck)Φ(τk)Ψk−1,jΦ−1(t) +Gr+1Φ(T1)ΨrjΦ−1(t).

In the case j = r the sum is empty, i.e. zero. Thus η(·) satisfies η̇(t) = −η(t)A(t) a.e. on (τj , τj+1].
The jump at τj (j = 1, . . . , r) is

η(τ+
j )− η(τj) =

r∑
k=j+1

(Gk +G+
k Ck)Φ(τk)(Ψk−1,j −Ψk−1,j−1)Φ−1(τj)

− (Gj +G+
j Cj) +Gr+1Φ(T1)(Ψrj −Ψr,j−1)Φ−1(τj).
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If k > j + 1, then (by (2.4))

Ψk−1,j −Ψk−1,j−1 = Ψk−1 · · ·Ψj+1 −Ψk−1 · · ·Ψj = Ψk−1,j(E −Ψj)
= −Ψk−1,jΦ−1(τj)CjΦ(τj).

This is true also if k = j + 1, since Ψjj −Ψj,j−1 = E −Ψj . Thus

η(τ+
j )− η(τj) = −

r∑
k=j+1

(Gk +G+
k Ck)Φ(τk)Ψk−1,jΦ−1(τj)Cj

− (Gj +G+
j Cj)−Gr+1Φ(T1)ΨrjΦ−1(τj)Cj

= −η(τ+
j )Cj −Gj −G+

j Cj .

At T0 and T1 we have according to (5.11)

η(T0) = η(T+
0 ) =

r∑
k=1

(Gk +G+
k Ck)Φ(τk)Ψk−1,0 +Gr+1Φ(T1)Ψr0 = −G0,

η(T1) = Gr+1.

It is convenient to introduce H(t, x, u) = η(t)f(t, x, u). Then η(·) satisfies

η̇(t) = −∂H
∂x

(t, x0(t), u0(t)) a.e.

With H0(t, u) = H(t, x0(t), u) (5.12) can be written∫ T1

T0

H0(t, u(t)) dt ≤
∫ T1

T0

H0(t, u0(t)) dt for all u ∈ U . (5.13)

From part (iv) of Assumption 2 we can obtain a pointwise inequality. Let uj ∈ U , j = 1, 2, . . . ,
be such that {uj(t)}∞j=1 is dense in Ω(t) for every t ∈ I. Let t′ ∈ (T0, T1] be a Lebesgue point of
t 7→ f(t, x0(t), uj(t)) for every j = 0, 1, 2, . . . . Define for 0 < ε < t′ − T0, j = 1, 2, . . . ,

uj,ε(t) =

{
uj(t), if t′ − ε < t ≤ t′,
u0(t), otherwise on I.

Then uj,ε ∈ U , and if we apply (5.13) to uj,ε, divide by ε and let ε→ 0+, we obtain

H0(t′, uj(t′)) ≤ H0(t′, u0(t′)) for all j.

Since {uj(t′)}∞j=1 is dense in Ω(t′), and H0 is continuous in u, it follows that

H0(t′, u) ≤ H0(t′, u0(t′)) for all u ∈ Ω(t′).

The point t′ can be almost any point in I.
Finally, take ξ = 0, u = u0 in (5.10). Then

r+1∑
k=2

Gk

k−1∑
j=1

Φ(τk)Ψk−1,jΦ−1(τj)dj +G+
1 d1 +

r∑
k=2

G+
k

(
Ck

k−1∑
j=1

Φ(τk)Ψk−1,jΦ−1(τj)dj + dk

)
≤ 0

After changing the order of summation and exchanging j and k we obtain

r∑
k=1

r+1∑
j=k+1

GjΦ(τj)Ψj−1,kΦ−1(τk)dk +
r−1∑
k=1

r∑
j=k+1

G+
j CjΦ(τj)Ψj−1,kΦ−1(τk)dk +

r∑
k=1

G+
k dk ≤ 0.
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From the definition of η we see that the coefficient of dk is η(τ+
k ) +G+

k . Therefore

r∑
k=1

(η(τ+
k ) +G+

k )[Jk(x0(τk), zk)− Jk(x0(τk), z0,k)] ≤ 0 for all z̄ ∈ Z̄.

Since the zk:s can be varied independently of each other, we have

(η(τ+
k ) +G+

k )[Jk(x0(τk), zk)− Jk(x0(τk), z0,k)] ≤ 0 for all zk ∈ Zk, k = 1, . . . , r.

We have obtained the following theorem.

Theorem 3. Assume that (u0(·), z̄0, x0(·)) is a solution of the problem of minimizing (5.5) subject
to (5.1)–(5.4). Then there exist numbers λ−q, . . . , λ0, . . . , λp, not all zero, and a piecewise absolutely
continuous row vector function η(·) such that, with G =

∑p
i=−q λigi and H(t, x, u) = η(t)f(t, x, u),

η̇(t) = −∂H
∂x

(t, x0(t), u0(t)) a.e.,

∆η|τk = −
(
η(τ+

k ) + ∂G

∂yk
(e0)

)∂Jk
∂x

(x0(τk), z0,k)−
∂G

∂xk
(e0), k = 1, . . . , r,

η(T0) = − ∂G
∂x0

(e0),

η(T1) = ∂G

∂xr+1
(e0),

λi ≤ 0 for − q ≤ i ≤ 0,
λigi(e0) = 0 for − q ≤ i ≤ −1,

H(t, x0(t), u0(t)) = max
u∈Ω(t)

H(t, x0(t), u) a.e. on I,

(
η(τ+

k ) + ∂G

∂yk
(e0)

)
Jk(x0(τk), z0,k) = max

zk∈Zk

(
η(τ+

k ) + ∂G

∂yk
(e0)

)
Jk(x0(τk), zk), k = 1, . . . , r.

Remark 1. In (5.1) it is possible to have different right-hand sides on different intervals Ik =
(τk−1, τk], so that x satisfies ẋ = fk(t, x, u(t)) on Ik. Just write f(t, x, u) =

∑r+1
k=1 χIk(t)fk(t, x, u)

and apply Theorem 3. It is also possible to have control vectors uk of different dimensions on differ-
ent Ik, so that the admisible controls on Ik satisfy uk(t) ∈ Ωk(t) ⊆ Rmk . If m = max1≤k≤r+1mk,
we may extend uk and Ωk(t) with m−mk components that are set to 0. Then Theorem 3 can be
applied.

Remark 2. Consider the same problem as above but with an integral term
∫ T1
T0
f0(t, x(t), u(t)) dt

added to the cost fuctional (5.5), where the real-valued function f0 has the same properties as f .
Then the necessary conditions for optimality are exactly as in Theorem 3, except that H now is
defined as

H(t, x, u) = λ0f
0(t, x, u) + η(t)f(t, x, u).

This is proved by introducing a new state variable x0 satisfying

ẋ0(t) = f0(t, x(t), u(t)) a.e. in I

with no jumps. The integral term is then written as x0(τr+1) − x0(τ0), and Theorem 3 can be
applied to the extended system.

5.2 Variable switching times
Let us now allow the times τk (including the initial time T0 and the final time T1) to vary, i.e.,
they become control parameters. We will transform the problem to a problem with fixed switching
times, so that the previous result (Theorem 3) can be applied. In this transformation t will be
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treated as a state variable, so we need the same regularity in t as in x. Also Ω(t) must be constant.
The functions gi can now depend explicitly on τ̄ = (τ0, . . . , τr+1), and the jump Jk may depend
on τk. The assumptions from 5.1 have to be modified in the following way:

We may have different differential equations on different intervals Ik = (τk−1, τk], so we assume
that we are given r+1 functions (t, x, uk) 7→ fk(t, x, uk) from R×Rn×Rmk to Rn. We assume that
fk is continuously differentiable w.r.t. (t, x), and that fk, ∂fk∂t and ∂fk

∂x are continuous in uk. We will
also denote the first argument of fk by τ , write x̂ = (τ, x), and consider fk as a function of x̂ and uk.
By UIk we denote the set of all controls uk(·) that are defined and measurable on Ik and such that
uk(t) ∈ Ωk for all t ∈ Ik (Ωk is a given set in Rmk), and the function (t, x̂) 7→ fk(x̂, uk(t)) belongs
to the class F on Ik. The jump functions Jk(x̂, zk) = Jk(τ, x, zk) are continuously differentiable
w.r.t. x̂ (for fixed zk ∈ Zk), and such that the sets Jk(x̂, Zk) are convex for each x̂. The functions
gi have arguments

(τ̄ , x0, x1, y1, . . . , xr, yr, yr+1) ∈ Rr+2 × (Rn)2r+2,

and are supposed to be continuously differentiable in all arguments.
Consider the control system

ẋ = fk(t, x, uk(t)) on Ik, uk(·) ∈ UIk , k = 1, . . . , r + 1, (5.14)
∆x|τk = x(τ+

k )− x(τk) = Jk(τk, x(τk), zk), k = 1, . . . , r, z̄ ∈ Z̄, (5.15)

with
T0 = τ0 ≤ τ1 ≤ . . . ≤ τr ≤ τr+1 = T1.

We want to minimize the functional

g0(τ̄ , x(τ0), x(τ1),∆x|τ1 , . . . , x(τr),∆x|τr , x(τr+1))

subject to the constraints gi = 0 for i = 1, . . . , p, and gi ≤ 0 for i = −q, . . . ,−1, where the gi:s have
the same arguments as g0. Note that we allow some of the times τk to coincide. If τk = τk+1, there
is of course no differential equation on Ik+1, but we treat x(τk) and x(τk+1) as separate quantities
and have the condition x(τk+1) = x(τ+

k ) = x(τk) + Jk(τk, x(τk), zk).
Assume that τ̄0 = (τ0,0, τ0,1, . . . , τ0,r+1), u0,k(·) ∈ UI0,k (where I0,k = (τ0,k−1, τ0,k]), k =

1, . . . , r + 1, z̄0 = (z0,0, . . . , z0,r) ∈ Z̄, and x0(·) are optimal, i.e., x0 satisfies

ẋ0 = fk(t, x0, u0,k(t)), t ∈ I0,k,
∆x0|τ0,k = Jk(τ0,k, x0(τ0,k), z0,k), k = 1, . . . , r;

the constraints gi = 0 (i > 0) and gi ≤ 0 (i < 0) are satisfied at

e0 = (τ̄0, x0(τ0,0), x0(τ0,1), y0,1, . . . , x0(τ0,r), y0,r, x0(τ0,r+1)),

where
y0,k = Jk(τ0,k, x0(τ0,k), z0,k);

and g0 is minimized. Let

K = {k ∈ {1, . . . , r + 1} : m(I0,k) > 0}, K0 = {k ∈ {1, . . . , r + 1} : m(I0,k) = 0}.

Define
Hk(τ, x, uk, η) = ηfk(τ, x, uk),

where η is a row vector in Rn.

Theorem 4. Under the assumptions above there exist numbers λ−q, . . . , λp, not all zero, and
functions η0(·) and η(·) such that, with G =

∑p
i=−q λigi and

Mk(t) = sup
uk∈Ωk

Hk(t, x0(t), uk, η(t)),
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the following holds:

λi ≤ 0 for i = −q, . . . , 0,
λigi(e0) = 0 for i = −q, . . . ,−1.

If k ∈ K, then η0 and η are absolutely continuous on I0,k and satisfy

η̇0(t) = −∂Hk

∂τ

∣∣∣
0

a.e.,

η̇(t) = −∂Hk

∂x

∣∣∣
0

a.e.,

where ·|0 means evaluation at (t, x0(t), u0,k(t), η(t)),

Hk(t, x0(t), u0,k(t), η(t)) = Mk(t) a.e.,
η0(t) +Mk(t) = 0 a.e., and η0(t) +Mk(t) ≤ 0 for all t ∈ I0,k.

If k ∈ K0, then η0(τ+
0,k−1) = η0(τ0,k) = η0,k, η(τ+

0,k−1) = η(τ0,k) = ηk, and

η0,k +Mk ≤ 0, where Mk = sup
uk∈Ωk

Hk(τ0,k, x0(τ0,k), uk, ηk) = Mk(τ0,k).

For k = 1, . . . , r,

η0(T0) = − ∂G
∂τ0

(e0), η(T0) = − ∂G
∂x0

(e0),

η0(T1) = ∂G

∂τr+1
(e0), η(T1) = ∂G

∂xr+1
(e0),

∆η0|τ0,k = −
(
η(τ+

0,k) + ∂G

∂yk
(e0)

)∂Jk
∂τ

∣∣∣
0,k
− ∂G

∂τk
(e0),

∆η|τ0,k = −
(
η(τ+

0,k) + ∂G

∂yk
(e0)

)∂Jk
∂x

∣∣∣
0,k
− ∂G

∂xk
(e0),(

η(τ+
0,k) + ∂G

∂yk
(e0)

)
Jk|0,k = max

zk∈Zk

(
η(τ+

0,k) + ∂G

∂yk
(e0)

)
Jk(τ0,k, x0(τ0,k), zk),

where ·|0,k means evaluation at (τ0,k, x0(τ0,k), z0,k). If, furthermore, for k ∈ K, there are functions
ρ1 and ρ2 in L1(I0,k) such that∣∣∣∂fk

∂x
(s, x0(s), u0,k(t)) fk(s, x0(s), u0,k(τ))

∣∣∣ ≤ ρ1(t) + ρ2(τ) for all s, t, τ ∈ I0,k, (5.16)

then η0(t) +Mk(t) = 0 for all t ∈ I0,k.

Proof. Let v0 be a function in L1(0, r + 1) such that v0(s) > 0 in (k − 1, k] and∫ k

k−1
v0(s) ds = τ0,k − τ0,k−1, if k ∈ K,

and v0(s) = 0 in (k − 1, k] if k ∈ K0. Define

τ0(s) = τ0,0 +
∫ s

0
v0(σ) dσ, s ∈ [0, r + 1].

Then τ0(·) is absolutely continuous with τ̇0(s) = v0(s) > 0 a.e. in (k − 1, k] if k ∈ K, and

τ0(k) = τ0,k, k = 0, . . . , r + 1.
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Choose an element ūk ∈ Ωk and define for s ∈ (k − 1, k]

x̃0(s) =

{
x0(τ0(s)) if k ∈ K,
x0(τ0,k) if k ∈ K0.

ũ0,k(s) =

{
u0,k(τ0(s)) if k ∈ K,
ūk if k ∈ K0.

From the properties of absolutely continuous functions it follows that ũ0,k is measurable, and x̃0
is absolutely continuous on the intervals (k − 1, k] and satisfies, if k ∈ K,

˙̃x0(s) = ẋ0(τ0(s)) τ̇0(s) = v0(s) fk(τ0(s), x0(τ0(s)), u0,k(τ0(s)))
= v0(s) fk(τ0(s), x̃0(s), ũ0,k(s)) a.e.

The result is obviously true also if k ∈ K0, since then v0 = 0 and x̃0 is constant. For the jumps we
have

∆x̃0|k = x̃0(k+)− x̃0(k) = x0(τ0(k)+)− x0(τ0(k)) = x0(τ+
0,k)− x0(τ0,k)

= ∆x0|τ0,k = Jk(τ0(k), x0(τ0(k)), z0,k) = Jk(τ0(k), x̃0(k), z0,k)

if k + 1 ∈ K, and

x̃0(k+) = x̃0(k + 1) = x0(τ0,k+1) = x0(τ0,k) + Jk(τ0,k, x0(τ0,k), z0,k)

if k + 1 ∈ K0. Define

x̂ = (τ, x) ∈ R× Rn, wk = (v, uk) ∈ R× Rmk ,
x̂0(s) = (τ0(s), x̃0(s)), w0,k(s) = (v0(s), ũ0,k(s)),

f̂k(x̂, wk) = (v, vfk(τ, x, uk)),
Ĵk(x̂, zk) = (0, Jk(τ, x, zk)),

Ω̂k = (0,∞)× Ωk ∪ {(0, ūk)},
Ûk = {wk(·) = (v(·), uk(·)) : wk is measurable on (k − 1, k], wk(s) ∈ Ω̂k,

the function (s, x̂) 7→ f̂k(x̂, wk(s)) belongs to the class F}.

Then

˙̂x0 = f̂k(x̂0(s), w0,k(s)) a.e. in (k − 1, k],
∆x̂0|k = Ĵk(x̂0(k), z0,k).

We also have that w0,k ∈ Ûk. This follows from the fact that ρ ∈ L1(I0,k) implies that the function
s 7→ v0(s)ρ(τ0(s)) belongs to L1(k − 1, k).

For x̂k = (τk, xk) ∈ R× Rn, ŷk = (σk, yk) ∈ R× Rn, −q ≤ i ≤ p, we define

ĝi(x̂0, x̂1, ŷ1, . . . , x̂r, ŷr, x̂r+1) = gi(τ0, τ1, . . . , τr+1, x0, x1, y1, . . . , xr, yr, xr+1).

We have

ĝi(x̂0(0), x̂0(1),∆x̂0|1, . . . , x̂0(r),∆x̂0|r, x̂0(r + 1))
= gi(τ̄0, x0(τ0,0), x0(τ0,1), y0,1, . . . , x0(τ0,r), y0,r, x0(τ0,r+1)) = gi(e0),

or ĝi(ê0) = gi(e0) with the obvious definition of ê0.
Let us now consider the problem of minimizing

ĝ0(x̂(0), x̂(1),∆x̂|1, . . . , x̂(r),∆x̂|r, x̂(r + 1))

when x̂(·) is a solution of

˙̂x = f̂k(x̂, wk(s)), s ∈ (k − 1, k], wk(·) ∈ Ûk, k = 1, . . . , r + 1, (5.17)
∆x̂|k = Ĵk(x̂(k), zk), k = 1, . . . , r, z̄ ∈ Z̄, (5.18)
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subject to the constraints

ĝi(x̂(0), x̂(1),∆x̂|1, . . . , x̂(r),∆x̂|r, x̂(r + 1)) = 0, i = 1, . . . , p, (5.19)
ĝi(x̂(0), x̂(1),∆x̂|1, . . . , x̂(r),∆x̂|r, x̂(r + 1)) ≤ 0, i = −q, . . . ,−1, (5.20)

We have seen that x̂0(·) with w0,k(·) and z̄0 satisfies (5.17)–(5.20). We claim that this is an
optimal solution. To see this, let x̂(·) = (τ(·), x̃(·)) be any function sastisfying (5.17)–(5.20), so
that (5.17) and (5.18) are satisfied for some wk(·) = (v(·), ũk(·)) ∈ Ûk and z̄ ∈ Z̄. Then τ(·) is
absolutely continuous on [0, r + 1], v ∈ L1(0, r + 1), and

τ̇(s) = v(s) ≥ 0,
˙̃x(s) = v(s)fk(τ(s), x̃(s), ũk(s)),

holds a.e. on (k − 1, k]. Let τk = τ(k) and

ψk(t) = max{s ∈ (k − 1, k] : τ(s) = t} for t ∈ Ik = (τk−1, τk].

(When k = 1 we take the corresponding closed intervals [0, 1] and [τ0, τ1].) The function τ is
increasing and may be constant on countably many disjoint intervals [αj , βj ] in [k − 1, k]. We
may assume that v(s) = 0, ũk(s) = ūk on each [αj , βj ] (change wk(·) on a set of measure zero, if
necessary). Define

x(t) = x̃(ψk(t)), uk(t) = ũk(ψk(t)) for t ∈ Ik.

If G ⊆ Rmk is open, then the set E = {s ∈ (k − 1, k] : ũk(s) ∈ G} is measurable, and

{t ∈ Ik : uk(t) ∈ G} = τ(E \ ∪j [αj , βj))

is measurable, since τ (being absolutely continuous) maps measurable sets onto measurable sets.
Thus uk(·) is measurable with values in Ωk. In the same way, x(·) is measurable (it is not difficult
to see that it is in fact continuous). We have that s ≤ ψk(τ(s)) for all s ∈ (k − 1, k], and if
s < ψk(τ(s)), then v(·) = 0, x̃(·) is constant, and ũk(·) = ūk on [s, ψk(τ(s))]. Thus

x̃(s) = x̃(ψk(τ(s))) = x(τ(s)), ũk(s) = ũk(ψk(τ(s))) = uk(τ(s)) for all s.

Assume that τk−1 < τk. For any function F ∈ L1(Ik) we have the formula∫ τ(s)

τ(k−1)
F (τ) dτ =

∫ s

k−1
F (τ(σ))v(σ) dσ, s ∈ (k − 1, k]. (5.21)

A proof of this is found, e.g., in [16, p. 377]. An application of (5.21) gives

x̃(s) = x̃((k − 1)+) +
∫ s

k−1
v(σ)fk(τ(σ), x̃(σ), ũk(σ)) dσ

= x̃((k − 1)+) +
∫ s

k−1
v(σ)fk(τ(σ), x(τ(σ)), uk(τ(σ))) dσ

= x̃((k − 1)+) +
∫ τ(s)

τ(k−1)
fk(τ, x(τ), uk(τ)) dτ.

Thus

x(t) = x̃(ψk(t)) = x̃((k − 1)+) +
∫ t

τk−1

fk(τ, xk(τ), uk(τ)) dτ,

so that x(·) is absolutely continuous and satisfies

ẋ(t) = fk(t, x(t), uk(t)) a.e. in Ik.
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Since wk ∈ Ûk, the norms of f̂k and ∂f̂k
∂x̂ are estimated on (k− 1, k] by a function ρ̂k ∈ L1(k− 1, k).

For almost all t ∈ Ik, v(ψk(t)) > 0, and the norms of fk, ∂fk∂t ,
∂fk
∂x are estimated by

1
v(ψk(t))

ρ̂k(ψk(t)) = ρk(t).

From (5.21), which holds for non-negative measurable functions F , and the fact that ψk(τ(s)) = s
in E = {s ∈ (k − 1, k] : v(s) > 0}, we get

∫ τk
τk−1

ρk(t) dt =
∫
E
ρ̂k(s) ds < ∞. Thus uk(·) ∈ Uk. If

τk < τk+1 then

x(τ+
k ) = x̃(k+) = x̃(k) + Jk(τ(k), x̃(k), zk) = x(τk) + Jk(τk, x(τk), zk),

and if τk = τk+1 then

x(τk+1) = x̃(k + 1) = x̃(k+) = x(τk) + Jk(τk, x(τk), zk) = x(τ+
k ).

Therefore, (5.14)–(5.15) are satisfied. Finally,

gi(τ̄ , x(τ0), x(τ1),∆x|τ1 , . . . , x(τr),∆x|τr , x(τr+1))
= ĝi(x̂(0), x̂(1),∆x̂|1, . . . , x̂(r),∆x̂|r, x̂(r + 1)) for i = −q, . . . , p.

Thus x satisfies the constraints gi = 0 for i > 0, gi ≤ 0 for i < 0, and (since (τ̄0, x0) is optimal)

ĝ0(. . .) = g0(. . .) ≥ g0(e0) = ĝ0(ê0).

Now we can apply Theorem 3 (including the Remark) to the solution (w0,k(·), z̄0, x̂0(·)) of the
problem of minimizing ĝ0 subject to (5.17)–(5.20). It follows that there exist numbers λ−q, . . . , λp,
not all zero, and a piecewise absolutely continuous row vector function η̂(·) such that, with Ĝ =∑p
i=−q λiĝi and Ĥk(s, x̂, wk) = η̂(s)f̂k(x̂, wk), we have

˙̂η(s) = −∂Ĥk

∂x̂
(x̂0(s), w0,k(s)) a.e. on (k − 1, k], k = 1, . . . , r + 1,

λi ≤ 0 for − q ≤ i ≤ 0,
λiĝi(ê0) = 0 for − q ≤ i ≤ −1,

∆η̂|k = −
(
η̂(k+) + ∂Ĝ

∂ŷk
(ê0)

)∂Ĵk
∂x̂

(x̂0(k), z0,k)−
∂Ĝ

∂x̂k
(ê0), k = 1, . . . , r,

η̂(0) = − ∂Ĝ
∂x̂0

(ê0),

η̂(r + 1) = ∂Ĝ

∂x̂r+1
(ê0),

Ĥk(s, x̂0(s), w0,k(s)) = max
wk∈Ω̂k

Ĥk(s, x̂0(s), wk) a.e. on (k − 1, k],

(
η̂(k+) + ∂Ĝ

∂ŷk
(ê0)

)
Ĵk(x̂0(k), z0,k) = max

zk∈Zk

(
η̂(k+) + ∂Ĝ

∂ŷk
(ê0)

)
Ĵk(x̂0(k), zk), k = 1, . . . , r.

If k ∈ K, i.e., m(I0,k) > 0, we write

(η0(t), η(t)) = η̂(τ−1
0 (t)), t ∈ I0,k = (τ0,k−1, τ0,k].

The functions η0 and η are absolutely continuous on I0,k and satisfy

η̇0(t) = −η(t)∂fk
∂t

(t, x0(t), u0,k(t)) = −∂Hk

∂τ

∣∣∣
0
,

η̇(t) = −η(t)∂fk
∂x

(t, x0(t), u0,k(t)) = −∂Hk

∂x

∣∣∣
0
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a.e. on I0,k. With s = τ−1
0 (t) the first maximum condition can be written

v0(τ−1
0 (t))[η0(t) + η(t)fk(t, x0(t), u0,k(t))] = max

(v,uk)∈Ω̂k
v[η0(t) + η(t)fk(t, x0(t), uk)] a.e.

Since v0(τ−1
0 (t)) > 0, this means that almost everywhere on I0,k

η0(t) + η(t)fk(t, x0(t), u0,k(t)) = 0,
η0(t) + η(t)fk(t, x0(t), uk) ≤ 0 for all uk ∈ Ωk, (5.22)

Since the left-hand side of (5.22) (as a function of t for fixed uk) is continuous from the left in
(τ0,k−1, τ0,k] (5.22) is true for all t ∈ I0,k. With H0,k(t, uk) = η(t)fk(t, x0(t), uk) and Mk(t) =
supuk∈Ωk H0,k(t, uk) we have

η0(t) +Mk(t) ≤ 0 for all t, η0(t) +Mk(t) = η0(t) +H0,k(t, u0,k(t)) = 0 a.e.

If k ∈ K0, i.e., m(I0,k) = 0, η̂ is constant on (k − 1, k]; we denote this constant by (η0,k, ηk).
On the t-side we write

η0(τ+
0,k−1) = η0(τ0,k) = η0,k, η(τ+

0,k−1) = η(τ0,k) = ηk.

The maximum condition becomes (since v0 = 0 and x̂0 is constant on (k − 1, k])

max
(v,uk)∈Ω̂k

v[η0,k + ηkfk(τ0,k, x0(τ0,k), uk)] = 0,

so that
η0,k +Mk ≤ 0, where Mk = sup

uk∈Ωk
ηkfk(τ0,k, x0(τ0,k), uk) = Mk(τ0,k).

The conditions at the points τ0,k and the second maximum condition become (with T0 = τ0,0,
T1 = τ0,r+1)

η0(T0) = − ∂G
∂τ0

(e0), η(T0) = − ∂G
∂x0

(e0),

η0(T1) = ∂G

∂τr+1
(e0), η(T1) = ∂G

∂xr+1
(e0),

∆η0|τ0,k = −
(
η(τ+

0,k) + ∂G

∂yk
(e0)

)∂Jk
∂τ

∣∣∣
0,k
− ∂G

∂τk
(e0),

∆η|τ0,k = −
(
η(τ+

0,k) + ∂G

∂yk
(e0)

)∂Jk
∂x

∣∣∣
0,k
− ∂G

∂xk
(e0),(

η(τ+
0,k) + ∂G

∂yk
(e0)

)
Jk|0,k = max

zk∈Zk

(
η(τ+

0,k) + ∂G

∂yk
(e0)

)
Jk(τ0,k, x0(τ0,k), zk),

for k = 1, . . . , r.
Now assume that (5.16) holds and suppose that η0(t′) +Mk(t′) < 0 for some t′ ∈ I0,k, k ∈ K.

We have, since u0,k(t) ∈ Ωk,

η0(t′) +H0,k(t′, u0,k(t)) ≤ η0(t′) +Mk(t′) < 0 for all t ∈ I0,k.

Since η0 is continuous from the left, we have

η0(t) < η0(t′) + a, where a = −1
2
[η0(t′) +Mk(t′)] > 0

for all t in a neighbourhood to the left of t′. For almost all t in this neighbourhoodH0,k(t, u0,k(t)) =
−η0(t), and

H0,k(t, u0,k(t))−H0,k(t′, u0,k(t)) > −η0(t′)− a+ 2a+ η0(t′) = a. (5.23)
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For all t and almost all τ in I0,k we have

∂H0,k

∂t
(τ, u0,k(t)) = η(τ)∂fk

∂t
(τ, x0(τ), u0,k(t)) + η(τ)∂fk

∂x
(τ, x0(τ), u0,k(t))fk(τ, x0(τ), u0,k(τ))

− η(τ)∂fk
∂x

(τ, x0(τ), u0,k(τ))f(τ, x0(τ), u0,k(t)).

Since u0,k ∈ Uk, there is a ρ ∈ L1(I0,k) such that∣∣∣∂fk
∂t

(τ, x0(τ), u0,k(t))
∣∣∣ ≤ ρ(t) for all t, τ ∈ I0,k.

If |η(t)| ≤ C, then it it follows from (5.16) that∣∣∣∂H0,k

∂t
(τ, u0,k(t))

∣∣∣ ≤ C[ρ(t) + ρ1(t) + ρ2(τ) + ρ1(τ) + ρ2(t)] = C[ρ3(t) + ρ4(τ)],

where ρ3 = ρ+ ρ1 + ρ2 ∈ L1(I0,k), ρ4 = ρ1 + ρ2 ∈ L1(I0,k). From this and (5.23) we obtain

a ≤
∣∣∣∣∫ t

t′

∂H0,k

∂t
(τ, u0,k(t)) dτ

∣∣∣∣ ≤ C|t− t′|ρ3(t) + C

∣∣∣∣∫ t

t′
ρ4(τ) dτ

∣∣∣∣
for t in some neighbourhood to the left of t′. If t 6= t′ is so close to t′ that C

∣∣∣∫ tt′ ρ4(τ) dτ
∣∣∣ ≤ a

2 , we
get

a

2|t− t′|
≤ Cρ3(t),

which contradicts the fact that ρ3 ∈ L1(I0,k). Thus η0(t) + Mk(t) = 0 for all t ∈ I0,k, if (5.16)
holds. This also holds at T0 if 1 ∈ K. The theorem is proved.
Remark. If we assume that there is a function ρ̃ ∈ L2(I0,k) such that∣∣fk(s, x0(s), u0,k(t))

∣∣+ ∣∣∂fk
∂x

(s, x0(s), u0,k(t))
∣∣ ≤ ρ̃(t) for all s, t ∈ I0,k,

then (5.16) is satisfied with ρ1 = ρ2 = 1
2 ρ̃

2.

6 A multiprocess problem
Some control systems may require different descriptions on different time intervals, such as a
multistage rocket or a robot arm picking up or dropping a load. We would then have one control
process ẋk(t) = fk(t, xk(t), uk(t)) on each interval t ∈ (τk−1, τk), and together they constitute a
multiprocess (see [3] and [4]). We also have some relations between the endpoint values. The term
hybrid system has been used for a more general situation where the transition from one state space
to another is determined by some discrete mechanism. See [5] and [15] for a general description of
hybrid systems.

In this section we consider a multiprocess with equality and inequality functional constraints
on xk(τk−1) and xk(τk) and the problem of minimizing a functional of the same type. We can
derive necessary conditions for optimality by an application of the theorems in the previous section.
A similar problem is treated in [3], where the proofs use methods from non-smooth analysis. In
the case of variable τk we need higher regularity in the t-dependence than in [3], but as a result
we get more information, in particular that the maximized Hamiltonian is (piecewise) absolutely
continuous. A problem of this type but restricted to piecewise continuous controls is treated in [6].

Let us assume that on each fixed interval Ik = [τk−1, τk], k = 1, . . . , r + 1, we have a control
system

ẋk = fk(t, xk, uk(t)), (6.1)
uk(t) ∈ Ωk(t), (6.2)

19



satisfying Assumption 2 in Section 4 on Ik ×Rnk ×Rmk . The set of admissible controls is denoted
by Uk. We have a number of constraints of the form

gi(x1(τ0), x1(τ1), x2(τ1), . . . , xr+1(τr), xr+1(τr+1)) = 0, i = 1, . . . , p, (6.3)
gi(x1(τ0), x1(τ1), x2(τ1), . . . , xr+1(τr), xr+1(τr+1)) ≤ 0, i = −q, . . . ,−1. (6.4)

We want to minimize a functional

g0(x1(τ0), x1(τ1), x2(τ1), . . . , xr+1(τr), xr+1(τr+1)). (6.5)

The functions gi are defined on Rn1 ×Rn1 ×Rn2 ×Rn2 × · · ·×Rnr+1 ×Rnr+1 and are continuously
differentiable in all variables. The argument of gi is denoted by

(x0
1, x

1
1, x

0
2, . . . , x

0
r+1, x

1
r+1).

A total solution is a sequence (x1, u1, . . . , xr+1, ur+1), where each pair (xk, uk) satisfies (6.1)–(6.2)
on Ik, and the constraints (6.3)–(6.4) are satisfied. Assume that (x0,1, u0,1, x0,2, . . . , x0,r+1, u0,r+1)
is an optimal solution, i.e., a solution that minimizes (6.5). As an application of Theorem 3 we
obtain the following result (where e0 = (x0,1(τ0), x0,1(τ1), . . . , x0,r+1(τr), x0,r+1(τr+1))):

Theorem 5. There exist numbers λ−q, . . . , λ0, . . . , λp, not all zero, and absolutely continuous
functions ηk on Ik, k = 1, . . . , r + 1, such that, with G =

∑p
i=−q λigi and Hk(t, xk, uk) =

ηk(t)fk(t, xk, uk),

η̇k(t) = −∂Hk

∂xk
(t, x0,k(t), u0,k(t)) a.e. on Ik,

ηk(τk−1) = − ∂G
∂x0

k

(e0),

ηk(τk) = ∂G

∂x1
k

(e0),

Hk(t, x0,k(t), u0,k(t)) = max
uk∈Ωk(t)

Hk(t, x0,k(t), uk) a.e. on Ik,

λi ≤ 0 for − q ≤ i ≤ 0,
λigi(e0) = 0 for − q ≤ i ≤ −1.

Proof. Let x̄ = (x1, x2, . . . , xr+1) ∈ Rn1 × Rn2 × · · · × Rnr+1 = RN (N =
∑r+1
k=1 nk), and let

f̄k(t, x̄, uk) = (0, . . . , fk(t, xk, uk), . . . , 0) ∈ RN ,

where only block number k is different from 0. Let us study the system

˙̄x = f̄k(t, x̄, uk(t)) in Ik, k = 1, . . . , r + 1 (6.6)

with no jumps at τk. If

x̄k = (x1,k, x2,k, . . . , xr+1,k) ∈ RN , k = 0, . . . , r + 1,

define, for −q ≤ i ≤ p,

ḡi(x̄0, x̄1, . . . , x̄r+1) = gi(x1,0, x1,1, . . . , xr+1,r, xr+1,r+1).

Then x̄0 = (x0,1, . . . , x0,k+1) with (u0,1, . . . , u0,r+1) is a solution of the problem of minimizing

ḡ0(x̄(τ0), . . . , x̄(τr+1))

subject to (6.1) and

ḡi(x̄(τ0), . . . , x̄(τr+1)) = 0, i = 1, . . . , p,
ḡi(x̄(τ0), . . . , x̄(τr+1)) ≤ 0, i = −q, . . . , 0.
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Let us apply Theorem 3 (with the Remark) to this problem. Thus, there exist numbers λ−q, . . . λp,
not all zero, and a piecewise absolutely continuous function η̄ such that, with Ḡ =

∑p
i=−q λiḡi and

H̄k(t, x̄, uk) = η̄(t)f̄k(t, x̄, uk),

˙̄η = −∂H̄k

∂x̄

∣∣∣
0

on (τk−1, τk], k = 1, . . . , r + 1,

∆η̄|τk = − ∂Ḡ
∂x̄k

∣∣∣
0
, k = 1, . . . , r,

η̄(T0) = − ∂Ḡ
∂x̄0

∣∣∣
0
,

η̄(T1) = ∂Ḡ

∂x̄r+1

∣∣∣
0
,

H̄k(t, x̄0(t), u0,k(t)) = max
uk∈Ωk(t)

H̄k(t, x̄0(t), uk) a.e. in Ik

λi ≤ 0 for − q ≤ i ≤ 0,
λiḡi(ē0) = 0 for − q ≤ i ≤ −1.

Write
η̄ = (η1, η2, . . . , ηr+1),

and redefine ηk at τk (1 ≤ k ≤ r) so that it becomes continuous from the right there. Then
H̄k(t, x̄, uk) = ηk(t)fk(t, xk, uk) = Hk(t, xk, uk) for t ∈ Ik, ηk satisfies η̇k = −∂Hk∂xk

on Ik, and ηk is
constant on the other intervals. We have ∆ηj |τk = − ∂Ḡ

∂xj,k
= 0 except when j = k and j = k + 1,

∆ηk|τk = − ∂Ḡ
∂xk,k

= − ∂G
∂x1
k

, and ∆ηk+1|τk = − ∂Ḡ
∂xk+1,k

= − ∂G
∂x0
k+1

, k = 1, . . . , r. From this the
statements in the theorem follow.

In the case of variable τk we can apply Theorem 4 in the same way. Each function fk is
now continuously differentiable w.r.t. (t, xk), and Ωk is constant. The functions gi may depend
explicitly on τ̄ = (τ0, . . . , τr+1) also. Assume that (τ̄0, x0,1, u0,1, . . . , x0,r+1, u0,r+1), where τ̄0 =
(τ0,0, τ0,1, . . . , τ0,r+1), is a solution. Let I0,k = [τ0,k−1, τ0,k], and

K = {k ∈ {1, . . . , r + 1} : m(I0,k) > 0}, K0 = {k ∈ {1, . . . , r + 1} : m(I0,k) = 0}.

Assume also that there are functions ρ̃k ∈ L2(I0,k), k ∈ K, such that∣∣∣fk(s, x0,k(s), u0,k(t))
∣∣∣+ ∣∣∣ ∂fk

∂xk
(s, x0,k(s), u0,k(t))

∣∣∣ ≤ ρ̃k(t) for all s, t ∈ I0,k.

Define
Hk(τ, xk, uk, ηk) = ηkfk(τ, xk, uk),

where ηk is a row vector in Rnk . Let

e0 = (τ̄0, x0,1(τ0,0), x0,1(τ0,1), . . . , x0,r+1(τ0,r), x0,r+1(τ0,r+1)).

Theorem 6. There exist numbers λ−q, . . . , λp, not all zero, and functions η0,k and ηk on I0,k such
that, with G =

∑p
i=−q λigi, the following holds.

λi ≤ 0 for i = −q, . . . , 0,
λigi(e0) = 0 for i = −q, . . . ,−1.

If k ∈ K, then η0,k and ηk are absolutely continuous on I0,k and satisfy

η̇0,k(t) = −∂Hk

∂τ

∣∣∣
0,k

a.e.,

η̇k(t) = −∂Hk

∂xk

∣∣∣
0,k

a.e.,
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where ·|0,k means evaluation at (t, x0,k(t), u0,k(t), ηk(t)). If

Mk(t) = sup
uk∈Ωk

Hk(t, x0,k(t), uk, ηk(t)),

then

Mk(t) = −η0,k(t) for all t ∈ I0,k,
Mk(t) = Hk(t, x0,k(t), u0,k(t), ηk(t)) a.e. in I0,k.

If k ∈ K0, then η0,k(τ0,k−1) = η0,k(τ0,k) = η0,k, ηk(τ0,k−1) = ηk(τ0,k) = ηk, and

Mk = sup
uk∈Ωk

Hk(τ0,k, x0,k, uk, ηk) ≤ −η0,k.

Furthermore,

ηk(τ0,k−1) = − ∂G
∂x0

k

(e0), ηk(τ0,k) = ∂G

∂x1
k

(e0) for 1 ≤ k ≤ r + 1,

η0,1(τ0,0) = − ∂G
∂τ0

(e0), η0,r+1(τ0,r+1) = ∂G

∂τr+1
(e0),

η0,k+1(τ0,k)− η0,k(τ0,k) = − ∂G
∂τk

(e0) for 1 ≤ k ≤ r.

Remark. Consider the same problem but with integral terms
∑r+1
k=1

∫ τk
τk−1

f0
k (t, xk(t), uk(t)) dt

added to the cost functional, where f0
k has the same properties as fk. Theorems 5 and 6 still hold,

except that Hk is defined as λ0f
0
k (t, xk, uk) + ηkfk(t, xk, uk).
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