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ION TRANSPORT IN INHOMOGENEOUS MEDIA
I. BIPARTITION MODEL FOR PRIMARY IONS

M. ASADZADEH!, A. BRAHMEZ?, AND J. KEMPE?

Dedicated to the memory of Luo Zheng-Ming

ABSTRACT. The present paper concerns a mathematical modeling procedure
for the charged particle transport and is part I of an investigation organized
in two parts. We study the energy deposition of high-energy (~ 50 — 500
MeV) protons (high-energy electrons in energy range up to 50 MeV) in in-
homogeneous media. This work is an extension of the bipartition model for
high-energy electrons studied by Luo and Brahme in [27], and light ions stud-
ied by Luo and Wang in [29], to high-energy ions in inhomogeneous media
with retained energy-loss straggling term. In the bipartition model, the trans-
port equation is split into a coupled system of convection diffusion equations
controlled by a partition condition. Similar split is obtained in an asymptotic
expansion approach applied to the linear transport equation yielding pencil
beam and broad beam models which are again convection-diffusion type equa-
tions. We shall focus on the bipartition model applied for solving three type of
problems: (i) normally incident ion transport in a slab; (ii) obliquely incident
ion transport in a semi-infinite medium; (iii) energy deposition of ions in a
multilayer medium. The analytic broad beam model of the light- and high-
energy ion absorbed dose were compared with the results of a modified Monte
Carlo code: SHIELD-HIT. Part II concerns stability and convergence analy-
sis for the semi-discrete, fully discrete, and the streamline diffusion, Galerkin
approximations of a such obtained convection-diffusion equation for the broad
beam model and is the subject of a forthcoming paper.

1. INTRODUCTION

Charged particles entering into a medium undergo multiple elastic and inelastic
collisions. The elastic collisions that result are alternating mainly the direction and
to a much lesser extent the energy of the particles, whereas the inelastic collisions
reduce the energy of the particles but do not generally cause significant change
in their directions. In the present paper we, primarily, assume a broad beam of
forward-directed ions normally incident at the boundary of a semi infinite medium
entering the domain in a direction labeled as the positive direction of the z-axis.
As a result of collisions, because of the forward-directness assumption, only a very
small portion of the ions is scattered to large angles. These are, except at very
low energies, very few ions with a directional change beyond a certain minimal
angle 6,,, determined by the bipartition condition below, which have a diffusion-
like transport behavior and an, almost, isotropic angular distribution. Hence, their
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transport behavior is, preferably, described using P, -approximations of spherical
harmonics. The remaining significant portion of the ion particles, deflecting slightly
(< 0;,) from the original direction, are convective ions and refereed to as forward-
directed ions. Their transport behavior is described in terms of the small-angle
approximations. To separate the large-angle scattered and forward-directed ions
properly, the partition condition is introduced. The current model is based on
a split, of the scattering integral (kernel), through adding and subtracting the
diffusion ion source to the diffusion and straightforward equations, respectively. A
similar approach is given through the split of the scattering cross-section into the
hard and soft parts, see [20]. This kind of splitting strategy is more common in
medical physics studies related to the application of radiation particle beams (see
Section 6) in cancer therapy.

We perform this study in a mathematical modeling and a numerical approxima-
tion part: In the modeling procedure the underlying physics is for the case of ions
injected into a background medium with large atomic weight. Here, we have con-
sidered transport phenomena assuming a strong algebraic fall-off of the scattering
kernel from its peaks at “zero” angle and energy. The underlying partial differential
equation is therefore the Boltzmann equation within the Fokker-Planck realm, see
[36]. The second part is the subject of a forthcoming paper, where we deal with
the finite element approximations for the convection diffusion equation in part I,
corresponding to asymptotically derived broad beam equation. For the asymptotic
expansion procedure and some studies of resulting pencil beam equations see, e.g.
[36]-[37], [17]-[20] and [2]-[5].

In the present paper, we study an ion transport model describing the actual
process of energetic ions in absorbing media. To this end we let f(x,v, E) denote
the ion distribution function which is also called the ion fluence differential in angle
and energy. Then f(x,v, E)dvdE represents the ion fluence at point x € R, with
direction between v and v+dv and energy between E and E+dFE (v € R?, E € R*).
Due to the statistical balance principle we may write the following ion transport
equation derived from the transport equation by Lewis and Miller in [21]

d(pf) _ 10*(Qf) , ,
an VT om =aem N[ e YLE) T v B)lx

X on(E',2E(1 =v-Vv')M1/Ms)} + S(x,v, E),

where p = p. + p, is the total stopping power, with p, being the electronic stopping
power and p, the nuclear stopping power. Q = Q. + €, is the total energy loss
straggling factor where . is the collision energy loss straggling factor and (2, is
the radiation energy loss straggling factor. N is the number of solid atoms in
unit volume of the medium, M; and M, are the atomic weights of the incident
ions and the medium, respectively (for slightly heavy ions M; < M, whereas for
light ions M7 << M) and S is the ion source term. Although we do not assume
light ion particles where in each collision an ion can transfer only a small fraction
of its energy to the medium, nevertheless we assume a continuous slowing down
approximation (CSDA) to justify for the collision integral formulated as above in

(1.1) as well as the presence of the energy-loss straggling term —%%. In the
study for light ion transport, see [29], this energy-loss straggling term is neglected.
Hence in this setting the terms in the ion transport equation (1.1) are related to
three, physically justified, quantities:
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(i) the energy-loss straggling term: —%%,

(ii) the elastic scattering cross-section o,

(iii) the total stopping power of ions p.

The most specific assumption for the present study is that, following [29] and the
references therein, for proton, helium and carbon ions, we have assigned an inverse
polynomial approximation for the cross-section term in form of separated inverse
power functions in E and 1—v-v'. Different forms of power approximation are con-
sidered in the particle transport. For some relevant forms in radiation interactions
see, e.g. [9].

Neutral ( photon, i.e. x-ray) and charged (electron and ion) particle beams
are extensively used in radiation therapy both for early cancer detection and dose
computations/algorithms see, e.g. [7]- [8], [13]- [16], [22]-[30] and [35].

The outline of this paper is as follows: In section 2 we start with the ion transport
equation under the Continuous Slowing Down Assumption (CSDA) and derive a
computable form of the partition condition and bipartition coefficients. We skip
discussions on the relevant range of elastic, inelastic and bremsstrahlung cross-
sections for this derivation. Such physical discussions can be found in [22]-[30]
and the references therein. Section 3 is devoted to the bipartition model for the
transport of normally incident ions in a semi-infinite medium. Here we derive the
key parameters: Legendre coefficients fy; for the distribution function of the straight
forward particles, as well as the Legendre coefficients S; for the diffusion source.
Due to the algebraic fall-off assumption for the kernel, both parameters are derived
by approximation in an inverse Fourier transform procedure. We also derive the
equation for diffusion ion group and the associated boundary conditions. In Section
4 we extend the bipartition model of Section 3 to obliquely incident ions. In section
5 we study the energy deposition of ions in a multilayer medium and derive a
closed form relation for the dose (deposited ion energy) on each layer. Finally, our
concluding Section 6 is devoted to some simulation results for the bipartition model
using a modified Monte Carlo method.

2. BIPARTITION MODEL FOR ION TRANSPORT UNDER CSDA

To describe the transport of ions of, e.g., 50 MeV to ~ 600 MeV energy, the
energy-loss straggling is a significant term that, retained in the study of the bi-
partition contributes to the accuracy of the model. We consider an ion beam of
energy Ey normally incident on the hypersurface of a semi-infinite medium, where
both left and right side of the hyper-surface are assumed to be composed of the
same medium. (In Section 5 we shall include the case when the left half-space is
vacuum). We let the outward normal to the semi-infinite region on the left to be
along the positive x-axis inside the solid, then using the standard vector notation:
x = (z,y, 2), the ion transport equation under the CSDA is given by

apf) Of 10%Qf)

oE Moz T 2 02

+CE [ dv'[f(z,4', B) = f(a,1, E)] x (L= v-v')"* 1,
4T

=540y = zia(a:)a(E — Eo)d(1 — )
(2.1) T

where p is the cosine of the angle between the direction of the ions and the z-axis.
CYy is called the scattering integral and represents the net increase in the number of
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particles per unit solid angle v, passing through a unit distance, caused by elastic
scattering.

From the equation (2.2) and the property that the small-angle elastic scattering
of ions is dominating, the main characteristics of Cy can be featured as shown in
Fig 1. below.

Cy

Sa

-
5~

Om T

Cy — Sa

Figure 1: The extract of diffusion source Sy from the collision term Cy.

In the bipartition strategy for particle transport, the scattering integral is divided
into two parts, of which one is the comparatively isotropic diffusion ion source Sy,
including almost all of the “large-angle” scattered ions, the other is the remaining
part that spreads mainly in the forward small-angle direction. The latter, convective
part, is normally of negative value, indicating that the number of ions that leave
the forward small-angle direction due to elastic scattering is larger than that of ions
that enter the small-angle directions caused by elastic scattering. For our physical
model we have considered a scattering kernel with strong algebraic fall-off behavior
from its peaks at zero angle and zero energy. To this end we have assumed an
inverse power function approximation for the elastic cross-section for ion transport,
(see also [9]), viz

(2.2) on(E,v-v') = CE72*(1 —v .v/)717k,

where C' is a constant depending on Ey, atomic numbers and also Bohr radius (a
factor of the classical electron radius, see [29] for details), k is a positive integer
which corresponds to the magnitude of the algebraic fall-offs.

To solve for spherical harmonic coefficients by using Fourier transformation, (2.2)
would enforce yet another approximation in computing Fourier integrals. Singular
terms of the form (2.2) are not treated/appeared in a general (non-approximative)
splitting strategy. The bipartition model splits f into two parts:

(23) f(x7N>E) :fs(xﬁ/':E)_"fd(m:/}'aE)a
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where f, is the forward-directed ion distribution satisfying

0(pfy) | 8fs 10%(Qf)

1
55 tHas ~3 g = Sat 5 0@)d(E - Eo)d(l - p)

+ CE?Qk dVI[fs(X, ulaE) - fs(ma,u/a E)] X (1 -V Vl)ikila
4
and fg is the distribution of the diffusion ion particles satisfying

9(pfa) + dfs  18*(Qfa)
o8 Moz T2 om?
+ CE_2k dvl[fd(xﬂJfla E) - fd(xaﬂa E)] X (1 -V vl)_k_l'
47

Physically, the collision term represents a scattering source. Thus, using the biparti-
tion model we deduct the large-angle scattering source from the collision term in the
straight-forward ion transport equation (2.1) by means of subtracting Sq(z, u, E).
Consequently in (2.4) the scattering process generating large-angle ions is removed
from the forward-directed ion transport equation (2.1). The partition condition is
given by

(26) Sd(xauiﬂE) :Cfs(a;’uiaE): i=0,1,...,m

The condition (2.6) shows that all the large-angle scattered ions in the straight-
forward ion group are regarded as the secondary diffusion ion source Sy. To define
the bipartition condition, we require that the intensity of this diffusion ion source
at the m + 1 large angle directions to be exactly equal to the values of collision
integral at the same directions. We expand the distribution functions f; and fy4
and the diffusion source Sy into Legendre polynomials,

(2.4)

= Sq+
(2.5)

(2.7) s(z, 1, E 2l+ ' w) fa(z, E),
=0

(2.8) fawom B) =3 2L B fate, B),
=0

(29) Sule,n B) = Y0 2L B0 Sae, B).
=0

The collision integral for Cy,, forward-directed particles, can then be computed as

o= 2041
(2.10) Ct.(z,p, B) = —CE™* 3" o ) fa(e, B),
=0 4
where
1
(2.11) m=2n [ =PI - d
—1

Obviously 7o = 0 and for I > 1, 1 can be obtained by the following recursive
formula:

Lemma 2.1. ([29]) The collision coefficient n; satisfies the recurrent relation

(2.12) (I4+1 =Ky = 1+ 1+ E)n + 4m/2F, no = 0.



6 M. ASADZADEH, A. BRAHME, AND J. KEMPE

Proof. Recall the following recurrent formulas for the Legendre polynomials:

(2.13) (I + 1) Prya(p) = pBy (1) — Pl (1),

(2.14) (I +VP() = Plyy (1) — 1P ().
Subtraction (2.13) from (2.14) we obtain

(2.15) 4+ DIP(s) = Prpa(w)] = (1 = w) [Py (1) + P (w)].

Thus, we can use partial integration resulting in:
1 1
(+1) / [P(p) = Prpa ()](1 = ) * dp = [Py () + Pi()] (1 — )"
-1

—1

-k [ [Prsa () + Puo)(1 = 197~ .

Since, VYn, P,(—z) = (—1)"P,(z) and P,(1) = 1, the contribution from the bound-
ary term vanishes and we end up with

! 1
@16) (+1+8) [ PG00 du= (1= [ Paalu) - di

which, to extract n; and n;41, can be rewritten as
1

(I+1-k) /,1[1 P ()L =) R dp— (41 —k)[1<1 R dy

=(+148) [ D=RE@IA-p rdi- 1R [ a0 ran

-1
ie.,

1
(217) ([ +1—=k)myr/2n — (I + 1+ k)n/2m = —Zk/ (1 —p)y 1 Fay =21F
-1

and we have the desired recurrent formula as stated in the lemma. O

Note that inserting (2.10) into (2.6) and using (2.9) we get a more specific par-
tition condition viz,

2l+1 21+1
2k .
(218)  —CE- Z mPi (i) for(, E) = lz; 1 Piw)Sa(, B).
Therefore
219 Su(e,B) = ~CE ™ (nfule, )+ S 1iDufur(s, B)).
I'=k+1

The bipartition coefficient Dy is given by
200'+1 Ay

2.2 Doy — .
(2.20) W= ry1 A

where we used Cramer’s rule with
A= det[PO(ll’)a Pl(ll’)a s 7Pl(ll’)7 s 7PM(I"‘)]7

Ay = det[PO(/J’)a P (/J/)a o Pr (/J’)a s aPM(/J/)]:
where
P,](:u’) = [PJ(P’O)a‘PJ(Il‘l)J .- 7Pj(/‘m)]T7 .7 = 07 ]-7 cee, M
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Further discussions on the small-angle condition and other quantities can be found

n [22]-[30].

3. THE PRIMARY ION TRANSPORT INCLUDING ENERGY-LOSS STRAGGLING

3.1. The straightforward ion group. To compute the distribution function f;
for convective ions group we shall assume that the following properties hold:

(p1) The bipartition condition: C¢(xz,u;, E) = Sq(x, us, E), i =0,1,...,m,

(p2) The narrow-energy spectrum approximation (NESA),

(p3) The small angle approximation (SAA).
The idea of NESA is that: if the width of energy spectrum for a charged particle
beam is much narrower than the average energy of the beam, then the interac-
tion cross-section between the particles in the beam and the atoms in medium in
an integral, weighted with the charged particle spectrum, can be replaced by its
truncated Taylor series around the average energy.
The so called small-angle approximation is to substitute g in the term p(9f;/0x)
by p.(x) an average direction cosine given by

o L phi@p BYdpdE. [ (2, E) dE
St (@, BYdudE [P foo(a, )E

(3.1) fha ()

Remark 3.1. In the presence of the energy-loss straggling term: —2 (gf ), the
SAA is given as above and consequently, to transfer the equation for f, to an
ordinary differential equation (ODE), the suitable Fourier transform variable is
E. Neglecting the energy-loss straggling term, the SAA may be characterized by
defining u,(E) through replacing the integrations over E in (3.1) by integrations

over z and then perform Fourier transformation in z.

To proceed, for convective ion-particles arriving at point z, we introduce the average
path-length L,(z) and the corresponding average energy E,(z), by

(3.2) L,(z) = /0z ﬁdm',

L,
(3.3) Eq(z) = By — /0 L(E,E'")dE',

where L(E, E') is an approximation of the conventional stopping power p. In this
way we end up with the equation for the Legendre coefficients fg as

(3.4) The= 6(35 |L(2, 2 fae, B)) + pa(a) 650; - %('352 [0 fute, B)
- =—-CE* Z nw Dy fsvr (2, E) + 0(2)0(E — Eo); I <m,
I'=m+1
(3.5) T fo := —CE 2!y fou(z, E) + §(z)6(E — Ep); I>m,

where T is a degenerate type (no second derivative in x) convection-diffusion op-
erator

9 , o 1 6
T0=(—8—EL(EE) (m)%_§@9).
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Following [27], one can show that

oo
(3.6) fa(@,E)=— > Duyfuw(,E), 1<m.
U'=m+1

Therefore, as soon as, we obtain a solution of (3.5), we automatically have a solution
for (3.4) as well. To obtain a solution for (3.5) it is natural to transfer the equation to
an ODE in z by imposing Fourier transformation in E. This however, is prohibited,
due to singularity of E~2*, (k > 0). Therefore a remedy would be through using the
notion of average energy E,(x) (> 0) introduced in (3.3) and NESA approximation
for weighted Fourier transform viz;

60 Fu@aE]© = [ e FuB aE)dE ~ w(E)fa(©),
where
(338) fulw, = [ e pulo B e

is the Fourier transform of fg(z, E) with respect to E and w(E) := w(z, E) is any
sufficiently smooth interaction function between ions and the background atoms.

Remark 3.2. Generally, to justify for an approximation of the form (3.7), in a
Fourier transform, F, should be chosen so that

(3.9) w(z, By) ~ 1(z,0) = / ~ w(z, E) dE.

— 00

Since for @ (z,€) = [*°_ e "Sw(z, E) dE, the Fourier transform of w(z, E), we have

(3.10) Flw@, B)fa(@, B)] (€) = 0(@,€) %¢ ful2,),
we may write

w(z, E)
w(z, By)

where, due to (3.9), ffooo g(z,E)dE =~ 1, i.e. g € L;. Taking Fourier transform of
(3.11) we get

(3.11) w(z, E) = w(z, Ey) := g(z, B)w(z, E,),

(3.12) w(z,€) = w(z, Ba)§(z, £).
Hence
(3.13) W (@, €) *¢ fa(z, ) = w(z, Bo)j(@,€) *¢ fu(x,),

and under certain assumption: if g(z, F) ~ §,(E), see Folland [10], chapter 7, we
may chose an approximation of the form:

9(x,6) *¢ fa(z, ) ~ fa(z,€).

The goal, in this procedure, is to give a closed form solution for fsl, then by the
inverse Fourier transform we can get the [-th Legendre components fy. To this
approach it suffices to invoke, in the forward peakedness assumption, the following
approximation of the weight function:

w(z, E)

(3.14) w(z, E) = w(z, )

w(z, Ba) = §(E)w(Eq, ),
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i.e., recalling (3.11), we approximate g := w/w, by the Dirac § function in energy
variable. Hence

(315) F|w(B,2)fal@, B)|(©) ~ wiw, Ea) (5(6) % fu(2,8)) = w(z, Ba) fu(a,€).

This however is too general: in reality our energy variable ranges in an interval
I =1[0_, Ep] (0_, to avoid integrating 6(E) over I) and a more suitable approach
would be just using the integral form of the generalized mean value theorem :

Lemma 3.3 ( generalized mean value theorem for integrals). If f and g are con-
tinuous on the interval [a,b] and f does not change sign on that interval, then there
exists a point p € [a,b] such that

b b
(3.16) / f(@)g(@) dz = g(p) / f(z) da.

Hence the indefinite integral in (3.7) can be replaced by a definite integral over
I = [0_, Ey], and assuming that f is positive for all [, the mean-value theorem
above would provide us with an equality (instead of approximation (3.15)) in (3.7).
Thus, with these simple and somewhat physically motivated manipulations, the
Fourier transform of (3.5), with respect to E yields the approximate equation

~ f ) 2 ~
~G8) [ (B0 8)fr(2,0)] + o) PUEE, g () fo )

(3.17)
= _CE;2knlfsl (ma 5) + 6(m)eii6E07
ie.,
2 ~ f .
(OB~ GOL(Ew ) + § (5] Fu(2,) + ol LU — gy

To simplify we write this relation as
3.18) N0 fu,€) + o) TADE — (gt
or equivalently

Ofa(@,8) MEa® ;o _ 1 —i¢Bo
(319) o + /.,La(l') fsl('r?g) - /Ja,(x) 6(m)e .
Let now A(z) = [ %%2 dz = \(E,,¢) [ m dz,or A(z) = N(E,,€) [y m dz' :=

ME,, &)Ly (x), then, to solve (3.19), we multiply by the integrating factor eA®) to
get

8fs(x,€) NEq,€) ; 1 »
A(z) I sl\ L&) A(z) MN\Ha>§) _ A=)~ i€EEy
(320) e o +e Lo .Z') fsl((ll'af) =e€ Na(m) 6(117)6 )
ie.,

d [ A f __ 1 A@g—i€Fo
(32]‘) dr [6 fsl(mJé-) - lfza(m)e 6('2:)6 ¢ -

We introduce the substitution z — y and integrate over (0, ) to obtain

(3.22) M) f(,€) — MO £(0,6) = %(o) He .
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Recall that u(z) is the cosine of the angle between the direction of the ions and the
z-axis. Thus starting with the straight-forward ions u,(0) ~ 1, and consequently
we may write

(3.23) falng) e (1070) (Fu0,8) + e756%2).
Note that
_ TEZR L [TLEL(a"),A] 1, [T Q[EL()]
M) = On [ e ant —ie [ O S s ger PR RE as

= Cmig(e) + iEAE(z) + £2w(z).

Obviously, this identification yields ¢(0) = AE(0) = w(0) = 0, and consequently
A(0) = 0. Further, assuming vacuum condition to the left of z = 0 we get

fa(e,B) = fa(w,6) =0, for z<0.

Hence
(324)  fu(z,6) = {

Thus we have

Fulz,€) = = / T L ien (B ABE)-Cnale)-€%u(s) g

e~ i€(Bo—AB(2))~Cma(e)-£*w(2) z >0,
0 z < 0.

T 21 ) o 1a(0
(3.25) 17r o0 Ma( )Oo
_ L onaw / (B . o—iE(Bo—AB()) . g~6%(0) g,
2m o
We define
1 R . 2
(3.26) Gz, B) = / CIEF . o—iE(Fo—AF(2) . o—€%0(e) ge.
™ —00
Comparing with the inverse Fourier transform
1 s
(3.27) 0w, B) = o [ 56,00,
we have that
; [ e it(Fo-AE()—§%u(s) 23>0,
(3:28)  [0@,9)|(Bo - AB()) = { ; i

Now recall the symmetry relation for the Fourier transform for the Gaussian:

1 B2

(3.29) Wz, &) = e €90 = h(2,E) = — —¢ T,
2¢/mw(z)
Then, with E, = Eg — AE we may write
1 T E2
3.30 E)=h(z,E—E,) = —,|——e =@,
( ) g(.’lf, ) (my ) 27_‘_ w(x) e
so that finally we get
fula, E) = L [T e 1P~ (Fo-aBF/tu(e) . ~Cmale)
’ 21\ w(z)

(3.31)

1 7T e—(E—Ea)2/4w(z) i e—Cmq(m).

o w(x)
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Thus, recalling (3.4) and (3.5)the Legendre coefficients of the distribution function
f can be written as

1 ™ —(E— 2/4w(x
(332) fsl(xyE) = % me (E—Eq.)*/4w( )’Yl(w)
where
_ [ =30 Duwre O, 1< m,

At this point, as in the case of equations (3.5) and (3.4), once we compute ~; for
I > m, then we get automatically the sum in (3.33). Thus ~; is easily computable,

recall that
T Ea n—2k e Ea N A
q(m)z/ (xi),dx', AE(x):/ LiEa(), AL 40
0 /J'a('z' ) 0

(@)
(3.34) ol
ad o) = [ 2=

Having computed fs, then we can give a more, numerically, computable formula
for Sj(z, E) than the formal derivation of the form (2.20) and prepare for the study
of the diffusion ion group.

Proposition 3.4. For the bipartition model the Legendre coefficients Si(x, E) for
the diffusion source term in (2.20) are given by

(3.35) i, B) = [~ OB n + L in (@) fu(a, B).
Proof. Differentiating (3.32) we have
Ofst _ [_ E-E,
OF

(3.36) ] fsi-

2w
Using (3.36) we get

Pfa 1 E—-E,0fq 1 E—-E, E—-E,

(3.37) OF?2 = ol T o OF __Ef“_( 2w )[_ 2w ]fsl
_ [(E—Ea)2 —2w]f
4w2 Sl'

Further
Ofa _ 1 1 -3/2) . o~ (E—Eo)?/(4(a))
5n = an V(-9 ) e (@)

1 [T e 20E—E,) dE, (E-E,)? -ldw

LT —(B-Eu)?/(aw(a)) (_ A La) dBa (B~ Ra)” —ldw

* 27\ w® ( 4w(x) dx 4 w? da:)%(m)

1 /I« 2 d
— L —(E-EJ)*/(4w(z)) &
2w we dx’yl(x)

[ ldve E-E,dE, (E-E))?dw d

: L s (o)1
2w dx 2w dr + 4w?  dzx + dw( n(@))] fo
where, to get the logarithmic term, we have used the identity v;(z) = :—f%. Insert-

ing these derivatives in (3.4) and invoking the average quantities defined for the
coefficients and using the auxiliary relations
dv Q. dE, 1

(3.38) & d
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we immediately get

(3.39) —CE % " mDy fur(2, E) + 6(2)5(E — Eo) = fsl(m,E)%(lnfy(m)).
I'=m+1

Hence, the Legendre coefficients S; for the diffusion source term ca be written as

(3.40) i, B) = [~ OB % n + L in (@) fu(a, B),

which is the desired result and the proof is complete. O

3.2. The diffusion ion group. With the diffusion coefficients S; for the ion source
given by (3.40), we can now calculate the Legendre coefficients fg for the distri-
bution function f; of the diffusion ions. Due to a nearly isotropic behavior of the
angular distribution of diffusion ions, the spherical harmonic moments cannot be de-
coupled. To circumvent such obstacle a cut-off method, based on P,-approximation,
is commonly used assuming

(3.41) fa(z, E) =0, for 1>n,
and hence, a weighted central differencing, see [29] and [23] for details, yields
Opafag-1)1  10*(far)

O(pfar) 1 Oprafais1)
(342)  O0E 241 e e 2 OB
:_CE_anlfdl+’§l($aE)7 lZO,].,...,TL,
where
(3.43) Sz, B) = fuls, E)% (@), 1=01,...n.

Under certain assumptions on the coefficients, this set of equations may have closed
form analytic solutions. But, in the real application problems, the coefficients are
often rather involved expressions and therefore numerical methods are the most
realistic and desirable approaches. For a reliable numerical method the stability
of the discrete scheme is essential. A direct approach is based on a Lax-Wendroff
scheme applied to a symmetrical form of (3.42) for the auxiliary function fg, below

- 1
3.44 2, F) = ——fu(z, E).
( ) fdl ( ) \/m fdl ( )
The function fz would satisfy the following, second order accurate, scheme:
_Opfa) _ 1 [ 1+1 O(pafasn) Lt 5(Mafd,z—1)]
OFE V2l+ 1120+ 3 Oz V20 -1 Oz

(3.45)

10%(Qfa) x 1 5
- % _CE% + ——=9, 1=0,1,...,n.

2 9R? nifar TR
Another interesting scheme is obtained using a finite element approximation applied
directly to the diffusion equation

_O(pfa) 4y Oa _ 19*(Qfa)
o8 M or T2 om?
The equation (3.45) is a degenerate type convection-diffusion equation which is
studied extensively in [2]-[5] using, e.g. the Streamline diffusion finite element
method. In our standard Galerkin study in Section 6 we consider a general form of

(3.46) = Sa.



IONS TRANSPORT IN INHOMOGENEOUS MEDIA 13

(3.46) with somewhat more specified coefficients. In a forthcoming paper we shall
study a discontinuous Galerkin method for approximating the solution for (3.46).

3.3. Boundary conditions. For the semi infinite media we account for the condi-
tion for the bipartition theory being applied to semi-infinite surface of solid. As the
left half-space is vacuum, expecting the incident ions, only the ions reflected from
the solid surface to the left-hand side vacuum may exist at the boundary =z = 0.
Therefore it is reasonable to assume, a boundary condition of the form,

This is the vacuum boundary condition. To determine the approximate distribution
function for diffusion ions, based on P,-approximation, we need certain variants of
(3.47) formulated for finite number of angular cosines u: In this regard there are
two classical type of discrete boundary conditions proposed by Mark [31], Marshak
[32] and Marshak. Both conditions are assuming an odd number of discrete cosine
directions; n. The Mark condition is based on treating the left-hand-side vacuum
as a scape black-box in the sense that: the ions leaving the solid surface no longer
return to the solid. This condition reads as follows:

(348) fd(O,/.Li,E):O, Pn-l—l(/in):O, ui >0, 121,2’,”’;—1

The Marshak condition is formulated for the current; ensuring that no diffusion
ion current is incident upon the solid surface from the vacuum, and thus reads as
follows:

n+1

1
(349) / fd(OaIU/iaE)/J/Zj_l d/J/: 0, t=12,..., 9
0

Mark condition is used for higher degree approximations for n > 5. As the (n+1)/2
boundary conditions (3.48) or (3.49) are insufficient to determine (n + 1) spherical
harmonic moments fg involved in the equation (3.46) additional conditions are
supplied for p < 0. These are of the form
o} 19%( 0 C . op
Wla) | 10O _, 0U8) | C ook S™o1 4 1)y () £ 0, B,

2 _/J’z
350y OF 2 OF dx | 4r —

. n+3
Pn+1(/l’i) = 0) pi < 07 = 2
and are described more closely in [29] and the references therein. Now with the
complete number of boundary conditions the model is ready to expand to the study
of the multilayer case of ion transport.

yo-,n+ 1.

4. OBLIQUELY INCIDENT ION TRANSPORT IN SEMI-INFINITE MEDIA

Assume that a conical ion beam of initial energy Eq is incident upon a semi-
infinite homogeneous medium at an incident angle 6y, as shown in the Fig.1 below:
The forward peakedness condition for ions is then

(4.1) g — 06> Oum,
and therefore there is no influence from the boundary to the distribution function
of forward-peaked ions. Even for 7 — 6y < 8pi,, the amount of forward-peaked

ions that leave the surface directly is negligible. Thus we neglect the influence of
the boundary on the distribution function of convective ion particles. To proceed
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vacuum
L N
T
> medium
ion beam z!

Figure 2: Obliquely incident ions.

we make a coordinate transformation: (E,u,z) — (E',v,2'), where  and 2’ are
directions of inward normal to the surface and obliquely incident ions, respectively,
v = 6 — 0 is the deflection angle and E’ is the energy of oblique ions. Thus
E' = E and ¢’ = z/cosf. In this way we can derive the distribution function
for the forward-peaked ions of oblique incidence from the distribution function for
forward-peaked ions of normal incidence. One may address this as the fact that in
the coordinate system (E', v, 2') the distribution function of the forward-peaked ions
would remain unchanged. We denote the forward-peaked distribution function and
the diffusion ion source in the new coordinate system by fs and Sy, respectively.
Then by the above motivation and our result for the normally incident ions we
conclude that

2 1 ml/2 g e =20+ 1
! (AN —(E'—E.)? /4w(z) !
(42 LGB =[] e * 3 g Pileosy)ula')

and

~ 1 rwq1/2 . 2 2041
! A o —(E'—E.)" /4w(x) !
(4.3)  Si(z',v, E") o [w] e X E yym Pi(cosv)S;(z").

Now we may return to the original coordinate system, recalling
(44) {2’ =z/cosb, E' = E, cosv = cos by cosf + sin by sin b cos(¢ — ¢o)} -
Since the cone is geometrically symmetric in the azimuthal angel ¢, the distribution
function of forward-peaked ions, in the original coordinates, should be averaged over
P, ie.,

27 2l

_ i 3 ! ! _ = +1
(45 fulopB) =g | fs(w,cosv,E)dcp—g 7 i(cost) fa (@, E).

Note that the average projection distance of the forward-peaked ions along the
x'-axis is:

(4.6 o= [ watrhar = [ 2 ar
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Thus
1 rwql/2 2
(e B) = L[] (BB (o)
) fo(@, 1, E) %Lu] €
' =2l +1 1o
P, "= P, .
x ;:0 o y(cosv)y (') 27 ), ) (cosv) dp

Using the addition theorem of Legendre polynomials, we have

(48) fsl(m7E) = #ei(EiEa)z/élw(z)H(cosHO)VI(:LJ)a
drw(x)

and

(4.9) Si(z, E) = P/(cosB)Si(z', E).

5. ENERGY DEPOSITION FOR ION TRANSPORT IN MULTILAYER MEDIA

We consider a medium consisting of two layers 1 and {2y with thicknesses dy
and d, respectively, where d; << dy. The ions in second layer {25 have no influence
on the transport of the forward-directed ions in the first layer. The ions that scatter
back from the second layer to the first, are no longer forward-directed and they,
if any, would appear in the diffuse ion group. Likewise the forward-directed ions
having entered into the second layer (2» would no longer be under the influence of
the particles in the first layer. Dealing with the transport of the forward peaked
particles in a certain layer, the layer is virtually extended to a hypersurface with a
condition that the fluence of the forward-peaked particles at the boundary is equal
to that of the forward-peaked particles in the preceding layer at the same boundary.
Considering a multilayer medium is adequate only if there is a difference in the
background material in both sides of a layer surface. Such an anisotropy would
induce discontinuities in the energy variable. In this study, for the simplicity, this
discontinuity is assumed to be small and therefore has been neglected. In a medium
with a few layers, this assumption introduces a small but negligible approximation
error in the model. However, for a medium consisting of a large number of layers,
ignoring discontinuities on the inter-layer boundaries would cause accumulative
approximation errors that can be an extensive source of inconsistency in the model.
In a forthcoming study, using a discontinuous Galerkin finite element method, we
tackle problems with a pronounced discontinuity in the energy variable. For the sake
of comparison we also study the convergence of the standard Galerkin finite element
method for the convection diffusion problem corresponding to the present model
(with neglected discontinuities). To distinguish between the physical quantities of
the first layer from those of the second layer, the quantities in the second layer will
be denoted by an Astrix (*) on the corresponding quantities from the first layer.
Recall that in the first layer ; we have 0 < z < d; and

oo

(5.1) fol@,m B) =

=0

(5.2) fsl(m,E) — % /ﬁe—(E—anﬂw(z),ﬂ(x)

2l +1

Pl(/")fsl(ma E)a
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where
Eq
1 (" QJ|E, (' 1 (2, E)dE
(53) w(g;) = —/ [7(;7:)] d.’L", with Na,(x) — OE f 1(33 ) ’
2 0 ll/a(-'L') J"O Ofs(](.'L',E) dE
La T
54 Eo(z) = E —/ L(E,E')dL, LaZ/ dz,
. o "o ( : 0 Ha(z'")
and
_ - E?’o:m-H Dll,e—Cqu(w)’ 1<m,
3 ) = { 0, I >m.
with

1 x .CL'I —2k
60 m=2r [ 1R e ad g = [P0 a

Further the diffusion ion source is expressed as

m

61 S =Y RSB, Si= fule, B) 5 ().
=0

In the second layer the distribution of ions satisfies the following equation and
boundary conditions

o f) | LOf 18N
ToE Mar T2 oam =OFTX
(5.8) | v B - £ B x (1= vev)

4
f*(dla,u/am) = f(dlap/ax);
on
O ={(z,E):di<z<1 & 0<E<E}

where E = min E; is the minimum amount of the energy deposited on the first
layer for € [0,d1]. In Qs the distribution function for the forward-directed ions
fy and the diffusion ions f; satisfy the following equations:

(WS | LOfr 19%Q )

_9PJs) _ -2k
oE TH oy "3 am CYETX

\ /4 dv'[f3(x, 1, E) = fi(z,p, B)] x (1 —v -v')F1 — G5 (2, 4, E),
\ f:(dlal“:E):fs(db//’aE)
( * Lk * 2 * fk

_a(gE-fd)+u*8(9i;_%3 (as-zEzfd) ZCEisz
‘ | it B) = file i )] (=% ) 4 Sl ),
\ f;(dla,u/:E) :fd(dla,u/aE)'

Performing similar calculations as in previous section, the integral quantities ~;(z)
of ion transport can be written as

sy _ | =0y Dwe Omla@r @1 <y,
69 w@={, (> m.



IONS TRANSPORT IN INHOMOGENEOUS MEDIA 17

fOE fil /"Lf:(‘z.:p’; )deE fO 81 E) dE
fOEf—ll f:(waua )deE fO 30 dE

The equation for f7; is then

(5.10) p(z) =

0 o Ff* 52
(5.11) =52 [L(B. A file, B)]| + i) 52 - ;(W (02130, )] = a2,
where
612 Tu)m—d 2 CEFwDufi@B), ifi<m,
' i T U'=m+1

CE !y fa(x, E), if 1> m.

The very same approximative Fourier transformation procedure as before (bearing
in mind that some of the equalities below are derived with negligible approximation
errors) yields

f5(x, B) = C*e~Mlel, x_ F A*[di]
(513) { :l(dlaE) = fsl(dlaE)7 © fSl(dl’E)e ’
Hence
A R —(A*[z]-A*[d

(5.14) oo B) =ty ().
Now since
(515) fsl(dlaE) — eA[O]—A[Lh]—iEEo — e—A[d1]—i§E0’
thus

. —(A*[z]—-A* A )
(5.16) Fi(@,E) =e (RERSRI) p—
Consequently

o0 . — | A*[z]-A* A
(617)  fi@.B) = — / it o (Va1 Al e

T J-o
Here
(5.18) A'[z] = Cnig® () — 6AE; (x) + €0 (a),
implies that
(5.19) A*[d1] = Cmq*(dy) — iEAE? (dy) + £2w*(dy).
Analogously
(5.20) Aldi] = Cmq(dy) — i€AE,(dy) + Ew(dy).
Thus

A*fa] = A*[da] + Alda] = Cmi (4" () = *(d) + g(dh) )
(5.21) —i6(AE}(2) - AE;(d) + AE,(dy))
+ & (w(2) - () + wld)).
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Finally the energy deposition by ions in a two-layer medium is given by the energy
integral of zeroth moments of the Legendre coefficients of the straight-forward and
diffusion fluence functions, (see [23] for the details) viz:

/EO [fso(m,E) + fdo(HJ,E)] dE, 0<z<ds
(522) D) =4 P,

E
/0 [f:o(.r,E) + f;o(l',E)] dE, di <z <1.

6. MONTE CARLO SIMULATIONS

The strategy in using Monte Carlo (MC) method, for the bipartition model
is governed by taking account the facts characterizing the behavior of the actual
problem:

During the slowing down of high energy projectiles, fragments are continuously
generated, with the origin either from the incoming primary projectile, the target
nuclei or by fragments interactions such as by high energy secondary neutrons,
protons, and a-particles. Some of these fragments may therefore be scattered al-
most isotropically [11]-[12]. In the case of a high energy proton beam, the dose from
secondary protons is dominating in comparison to other secondaries, cf [13]. The bi-
partition model for ion transport, under continuously slowing down approximation,
was therefore applied in a case of a therapeutic 70 MeV/u and 202 MeV /u proton
beam. In this approach the protons below a specific cut off angle were treated with
the straight forward ion group and thus separated from those protons of more dif-
fusive character. The bipartition model here, illustrated with the SHIELD-HIT+
MC simulations. The results are discussed in the aspect of the primary particles
flunce, planar fluence and absorbed dose of primary H'! ions and their associated
H! fragments in tissue-like media with ranges of clinical interest.

The Monte Carlo SHIELD-HIT+ code has advantageous features for implement-
ing radiation for charged particles, see [14]-[15]. Following the therapeutic ranges
above, we calculate the depth absorbed dose distribution of 70MeV/u and 202
MeV/u 1H ion beams. In the present version of, SHIELD-HIT+ code, the fluence
differential in both energy and angle was determined both for primary particles and
their fragments. The computations are performed for a point mono-directional and
mono- energetic ion beam perpendicularly incidence at the center of a cylindrical
water phantom (R = 10 cm, L = 50 ¢cm). The fluence or track length per unit
volume differential in energy and angle was scored separately in cylindrical rings
of a thickness of 1 mm and diameters up to 20 cm. The energies of the projectiles
were chosen to correspond to ranges of approximately 40 and 260 mm in water. In
the plots below the dose represented by D(z) corresponds to D(z) in (5.22) and
®(2) to the dept fluence f(z). The plots show helium, proton radiation particles
of forward directed ion groups and their secondaries for both 70MeV/u H' and
202MeV/u H' ion beam in water. For Detailed studies and further results of the
this type we refer to [13]- [15].

6.1. Summary. We give a mathematical derivation of the bipartition model for
low- and high-energy ion transport in inhomogeneous media with retained energy
straggling term: an approach based on an split of the source term to diffusion and
forward-directed particles combined with a Legendre series expansion. We study
single- and multi-layer domains as well as obliquely incident case and compute the
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dose. We employ a modified and new version of simulation code: SHIELD—-HIT,
based on the MC method suitable for computations in therapeutic applications.

The results are in Fig. 1 and 2 that we concisely describe below: in Fig 1.
The curves have been normalized to the respective values of the different transport
parameters at the phantom surface, z = 0. The dominated forward directed pro-
tons are given by the sum of the primary and secondary protons associated planar
components. The diffusion related ion group is closely related to the transport of
secondaries Cf. Fig. 2. In Fig. 2. the transport of secondary protons is charac-
terized with the wider angular distribution in contrast to the primary protons as
seen by the difference from the planar to the total components. The transport of
secondary protons in a high energy proton beam can therefore be associated with
the different part in the discussed bipartition model.

To conclude it is clear that in the therapeutic, the fluence of high energy proton
beam, in the forward directed particles, is both related to the transport of primary
as well as the produced secondary protons. Contributions from the more diffusion
scattered protons, are almost solely correlated with the transport of secondary
protons and the associated depth dependence of the fluence weighted cosine value,
cf. [15]. The bi-partition model, with retained energy straggling term, could then be
a compliment to other particle transport models to identify the, more isotropically
scattered generated, secondary protons in therapeutic high energy proton beams.

D@/D'(0.2(2/®(0) |

T 70,202 MeV/u H )
L —_ Shield- HIT, il

0 5 10 15 20 25 z/gem™2

Fig. 1 SHIELD-HIT+ MC simulation of the total absorbed dose DT, fulence @,
planer fulence ®F of the primary and secondary protons generated in a therapeutic
202MeV/u H' ion beam in water. The curves are normalized to the respective
values of the different transport parameters at the phantom surface, z = 0.
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D(Z)IDT(p),m (z)/‘cDT(O)
70 MeV/u H D'
— Shield- HIT,

0 10 20 30 40 z/gecm™

Fig. 2 A close up of the total absorbed dose DT, fluence ®, planar fluence ®F of the
primary and secondary protons generated in a therapeutic 70MeV/u H! ion beam
in water using SHIELD-HIT+ MC simulations. The curves have been normalized to
the respective values of the different transport parameters at the phantom surface,
z = 0.
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