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ION TRANSPORT IN INHOMOGENEOUS MEDIA
II. GALERKIN METHODS FOR PRIMARY IONS

M. ASADZADEH!, A. BRAHMEZ2, AND J. XIN3

ABSTRACT. This is Part II of our investigation of ion transport problem. The
study concerns the energy deposition of high-energy (e.g., & 50 — 1000 MeV)
proton and carbon ions and light ions (high-energy electrons of &~ 50 MeV),
in inhomogeneous media. The original effort was to develop a flexible model
incorporated with the analytic theory for electrons: the bipartition model. In
this model the transport equation is split into a, coupled, system of convection
diffusion equations controlled by a bipartition condition. This paper concerns
convergence analysis for both semi-discrete and fully discrete Galerkin approx-
imations of a such obtained equation for a broad beam model. In this setting
we also study the characteristic Galerkin and streamline diffusion methods.
The analytic broad beam model of the light ion absorbed dose were compared
with the results of the modified Monte Carlo (MC) code SHIELD-HIT+ and
those of Galerkin streamline diffusion approach.

1. INTRODUCTION

In the present paper we, primarily, assume a broad beam of forward-directed ions
normally incident at the boundary of a semi infinite medium entering the domain
in a direction labeled as the positive direction of the z-axis. As a result of collisions
(because of the forward-directness assumption), only, very small portion of the ions
is scattered to large angles. These are, except at very low energies, very few ions
with a directional change beyond a certain minimal angle 6,,, determined by the
bipartition condition below, which have a diffusion-like transport behavior and an,
almost, isotropic angular distribution. The remaining significant portion of the ion
particles, deflecting slightly (< 6,,) from the original direction, are convective ions
and refereed to as forward-directed ions. To separate the large-angle scattered and
forward-directed ions properly, the partition condition is introduced. The current
model is based on a split, of the scattering integral (kernel), through adding and
subtracting the diffusion ion source to the diffusion and straightforward equations,
respectively. A similar approach is given through the split of the scattering cross-
section into the hard and soft parts, see [16].

The first part of this investigation was devoted to the study of an ion transport
model describing the actual process of energetic ions in absorbing media under
continuously slowing down assumption, see [19], and retain of the energy straggling
(a term with a second order derivative in the energy variable). In Part I, the
bipartition model was applied to solving three type of problems for ion transport in

LCorresponding author

1991 Mathematics Subject Classification. 56N15, 65N30, 35K57, 7T6Rxx.

Key words and phrases. charged particle equations, ion transport, inhomogeneous media, bi-
partition model, broad beam equation, Galerkin methods, convergence analysis.

! Partially supported by the Swedish Foundation of Strategic Research (SSF) in Gothenburg
Mathematical Modeling Center (GMMC).



2 M. ASADZADEH, A. BRAHME, AND J. XIN

inhomogeneous media: (i) normally incident ion transport in a slab; (ii) obliquely
incident ion transport in a semi-infinite medium; (iii) energy deposition of ions in
a multilayer medium.

In the present paper we consider the case of, forward directed, ions injected into
a medium with large atomic weight. The underlying partial differential equation is
therefore the Boltzmann equation within the Fokker-Planck realm. More specifi-
cally, we shall study the finite element approximation for a broad beam model. For
the asymptotic expansion procedure and some relevant studies of resulting Fermi
and Fokker-Planck pencil beam equations, see, e.g. [24], [15]-[16] and [3]-[7].

Neutral (photon, i.e. x-ray) and charged (electron and ion) particle beams are
extensively used in radiation therapy both for early cancer detection and dose
computation algorithms see, e.g. [8], [9], [18]-[20] and [23].

An outline of this paper is as follows: In Section 2 we give a brief description of
the ion transport model under continuously slowing down assumption. In Section
3 we introduce the standard Galerkin procedure. In Section 4 we consider semi-
discrete problem: Galerkin finite element approximation applied for a convection-
diffusion problem of a broad beam model, where the penetration variable is treated
like time variable, in the multilayer setting. We study stability and convergence of
the semi-discrete problem. Section 5 is devoted to the fully discrete problem. In
Section 6 we formulate the characteristic Galerkin and streamline diffusion methods
for the broad beam model and give the corresponding error estimates. In our
concluding Section 7 we discuss some simulation results for the bipartition and
Galerkin approaches and compare them with results from Monte Carlo simulations.

2. ION TRANSPORT MODELS UNDER CSDA

The ion transport describing the actual process of energetic ions in absorbing
media is formulated as follows: Let f(x,v,E) denote the ion distribution function,
(also called the ion fluence differential in angle and energy), then f(x,v,E)dvdE
represents the ion fluence at point x € R?, with direction between v and v +dv and
energy between E and E + dE (v € R®, E € RT). Due to the statistical balance
principle we may write the following ion transport equation derived from the linear
transport equation by Lewis and Miller in [17]

9(pf) _ 10%(Qf) ) /
(21) V'VXf - SE - § OE2 + KN 47|—dv {[f(X,V 7E) —f(X,V,E)]

xo,(E',E(l1 —v-v)} + S(x,v, E),

where p denotes the stopping power and (2 is the energy loss straggling factor, kx is
a constant depending on N the number of atoms and ¢, is the elastic cross section.
We consider an ion beam of energy Ey normally incident on the hypersurface of
a semi-infinite medium. We let the outward normal to the semi-infinite region on
the left to be along the positive z-axis inside the medium ( we use the standard
vector notation x = (z,y,2)). In the bipartition strategy, the scattering integral
is divided into two parts, of which one is the comparatively isotropic diffusion ion
source Sy, including almost all of the “large-angle” scattered ions, the other is the
remaining part that spreads mainly in the forward, small-angle, direction. The
latter, convective part, is normally of negative value, indicating that the number of
ions that leave the forward small-angle direction due to elastic scattering is larger
than that of ions that enter the small-angle directions caused by elastic scattering.
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For our physical model we have considered a scattering kernel with strong algebraic
fall-off behavior from its peaks at zero angle and zero energy. To this end we have
assumed an inverse power function approximation for the elastic cross-section, viz

(2.2) on(E,v-v)~ CE (1 —v-v) 1

where C'is a constant, k is a positive integer, which corresponds to the Jacobian of
the algebraic fall-offs. See [2], [20] and [24] for details. We also use the notation

Q = 5-0(a)3(E ~ E)o(1 - ),

where p is the cosine of the angle between the direction of the ions and the z-
axis,and denote the scattering integral by

(2.3) Cy:=CE™* [ dv'[fs(x,1', E) = fs(z, 1, B)] x (1 —v -v') 7K.

4
C'y represents the net increase in the number of particles per unit solid angle v,
passing through a unit distance, caused by elastic scattering. Now we split f as:

(24) f($7uaE) :fs(x,/l,E)—Ffd(.’L',/l,E),

where f, is the forward-directed ion distribution satisfying
Apfs) | Ofs 10*(Qfs)

2.5 ERAUCA. s 22 AIsh

(2.5) OF +H6:L‘ 2 BE? Sq+Q+Cy,

and f; is the distribution of the diffusion ion particles satisfying

dpfa)  Ofa 10*(Qfa)
2. _ Ay e 2 nad)
(2:6) oE Mor 2 om?
From the equation (2.1) and the property that the small-angle elastic scattering of
ions is dominating, the main characteristics of C'y and Sy can be featured as shown

in Fig 1., below.

=Sd+Cf.
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Figure 1: The extract of diffusion source Sy from the collision term Cy.

Physically, the collision term represents a scattering source. Thus, using the
bipartition model we deduct the large-angle scattering source from the collision
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term in the straight-forward ion transport equation (2.1) by means of subtracting
Sq(z, u, E). Consequently, in (2.5) the scattering process generating large-angle ions
is removed from the forward-directed ion transport equation (2.1). The partition
condition is given by

(27) Sd(waﬂiaE) :Cfs(x,ﬂi;E); i=0,1,...,m,

indicating that all the large-angle scattered ions in the straight-forward ion group
are regarded as the secondary diffusion ion source Sy. Then, to define the bipartition
condition, we require that the intensity of this diffusion ion source, at the m + 1
large angle directions, to be exactly equal to the values of collision integral at the
same directions.

3. STANDARD GALERKIN FOR ION TRANSPORT IN ISOTROPIC MEDIA

We focus on broad beam model for ion transport and relay on Fokker-Planck
development of the beam model (as an alternative to the bipartition model by Luo
et al [18]-[20]). We use Pomraning’s approach based on asymptotic expansions
in isotropic media [24] (extended to anisotropic media by Asadzadeh in [6]), and
split the equation into a pencil beam model and a broad beam model. As for
the pencil beam model there is an extensive amount of literature for the Fermi
equation [12] see, e.g. [3]-[7], [15], [24]. Here, we consider a broad beam model,
which is compatible with the bipartition model studied in Part I, and study its
Galerkin finite element approximations. To this end we start with the final form of
the steady state Fokker-Planck equation

0 0 o2

v-Vaf +0.(E)f(x,E,v) =T(E) [%(1 _ 'u2)@_'u, i #3—(’02
82

+ 557 | RE) (. B,v)]

62 +¢ed+¢°

—3 )

where §, € and A (mean free path) are certain smallness parameters (see [24]) and

]f(x,E,v)

(3.1) + a% [S(E) f(x, E, v)]

+Q(x, E,v) + O

S(E) =27r/000dE’/11 Au(E ~ B0, (B, ') = O 5,

(3.2) T(E) = W/OOO B’ /_11 du(l — p)os(E, B, p) = 0(%),

R(E) =2 /Ooo dE' /_11 du(E — E"204(E, E', p) = 0(%),

where o, and o, are absorption and scattering cross-sections, respectively. For
comparison purpose we choose a coordinates system as is customary in the med-
ical physics literature, where the orientation corresponds to a counter clock-wise
rotation of the standard mathematical coordinates by 7/2, and write

v = (,n,&) = (cosh,sinf cos p, sin O sin ).

In this setting, for a pencil beam model we may assume that the penetration direc-
tion of the beam is along the y-axis and the problem is independent of the energy
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E, the spatial variable z and p = cosf = 0. Thus, the Fokker-Planck equation is
reduced to the pencil beam problem

(3.3) Cos 2f( z,¢) + sin 2f( z )—T(E)6—2f( Z,9)
. (paypy3 580 goazpy5 580 - 6(/?2 py7 7SO‘

As for the case of broad beam model we have chosen the z-axis as the penetration
direction and, due to symmetry, the beam is independent of y, z and ¢ variables,
however it depends on z, p and the energy variable E. Hence, the corresponding
equation is

» b o5 B) + 00 () oo B) = TE) 30 = ) - ol )]
. 0 0?

+ 55 [SEV (1, B)| + 55 [ RE) o, 1, B) | + Q,
where, because of the energy dependence we retain both absorption and source
terms only in the broad beam model.

To proceed we consider the equation (3.4) for forward-directed broad beams (u >
0) in a bounded domain D := {(z,u,E) :0<z < L, 0< p <1, 0 < E < Ep},
associated with some physically relevant boundary conditions. Recall that by (3.2)
we have S(E) = o(g), T(E) = o(g) and R(E) = O(K) with & ~ § ~ A.
Suppressing, the subscript b the broad beam equation is now
65 B gk -5k = [0t epE e
The equation (3.5) is degenerate convection-diffusion equation with convection in
z and E and diffusion in p and E variables. If we disregard the forward directed
property, then p € [—1,1] yields a so called Forward-backward problem which is
studied in connection with the Kolmogorov equations, see [26].

Since the collisions often appear as sudden changes in the energy and direction of
the particles on each collision site. Therefore the discontinuous Galerkin method,
in all three variables z, y and E, is the more adequate finite approach for the
numerical study of this problem. However, in the original bipartition model, the
discontinuities caused by small changes are not considered to be severe. In such
cases the jumps in energy and direction of the beam can be approximated by
continuous functions resulting to approximate beam configurations with the same
in- and outward profiles as the original ones. We reformulate the problem (3.5) by
interpreting the source term () as an inflow boundary condition on

(3.6) T, = {1 €T:=8I. :n(z1) B <0(>0)},

where z, = (4, E), I, =1, x Ig, I, = [0,1], Ig = [0, Ey], 8 = (0,—1) and n(z,)
is the outward unit normal to the boundary I'" at z; € I'. Hence the final form of
our broad beam problem will be a boundary value problem where for z = 0 (3.5)
is associated with an inflow boundary condition viz

2
ou(B)f +p3t — 55 = %[(1 — )& f| +epgh, (@pmE) el x 1y,

(37) § £(0,p, Bo) = 6(1 — p)é(E — Eo), on Tj,
f(.CL',/J,,E):O, on FEUF%



6 M. ASADZADEH, A. BRAHME, AND J. XIN

Remark 3.1. Here §(E—Ey) is a smooth approximation for the §(E— Eq) function.
In what follows, due to the nature of Dirac § function we will be forced to such
smooth replacements, otherwise the energy estimates (involving L, norms) will
deteriorate.

4. THE SEMI-DISCRETE PROBLEM

We introduce a finite dimensional function space Va5 C Hj(I1) with,
(4.1) HA(I.) = {f €H'(IL): f=0 onT° wv=3(1-pusE—Ey) on 1‘;},
such that, Vf € Hy(I.) N H"(IL),

(4.2) inf [|f = xll; <Ch*||flla; §=0,1 and 1<a<r,
XEVh,p

where for positive integer s, ||-||, denotes the Ly-based Sobolev norm of functions
with all their partial derivatives of order < s in Ly. An example of such V}, g is the
set of sufficiently smooth piecewise polynomials P(z ) of degree < r, satisfying the
boundary condition given in (3.6).

To proceed we introduce a bilinear form, A : H5(I1) x Hj(I1), defined by

(43)  A(f,x)1 = (0a(B) £,X) 1 + (ufer X)L — (fEs X)L, Vf,x € Hy(IL).

Then the continuous variational problem is: find a solution f to (3.7) such that

(4.4) { A(f,x)+ (1= Mz)quaXu)L + (efe,xE)L =0, VxE€ Hgi(IL)a
f(O,.’EJ_) = g(xJ-) = é(mJ_)a

where §(z1) = 6(zL) ~ 6(1 — p)é(E — Ey) is a smooth approximation for the

product of the above two Dirac § functions. Let now f € Vj g be an auxiliary

interpolant of the solution u of (3.5) defined by

(4.5) A(f=Fx) =0, Vx€Vip.

Our objective is to solve the following discrete variational problem: find f € V}, g,
such that

(4.6) { A(fn, ) +((1 - B2 frops Xu) L + EfnmxE) L =0, VX E Vig,
' fr(0,21) = dp(zL).

where 4, is assumed to be a finite element approximation of § which coincides
with the interpolant f(0,2z1) of f(0,z.). Here, (f,g). = fh flx)g(z,) doy
and ||fllzyy = (f, f)ll/z. To distinguish, we use the following inner products
notations: (-,-)1 and (-,-)q, where Q =[0,L] x I, := I, x I, for integrations over
I, and I, x I, , respectively. Finally, we assume that the mesh size h is related to
€ according to:

h?<e<h.
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4.1. Stability. In this part we prove a stability lemma in both inner products,
(,-)1 and (-, -)q, to guarantee the control of both continuous and discrete solutions
by the data. For simplicity we introduce the triple norm,

1 ~
llly = 5 [ w*a-B) dU+ /oYl 0y +IVT= Pl )+ IVEwE I o,

5
where 8 = (u, 8) and Fg =T\T; =[0,L] x I'5 U{{L} x I.}. Or, alternatively,

1 _
llwll = 3 /F+ w?(n - B) dU + [wl|7, (0, 0. (m)) + 1WallTs@, 1-p2) + lwElZ 0,0

s
1/2
where || - [|1,(D,w) = (fD wl - |2) , is the w-weighted La-norm over D.

Lemma 4.1. For f satisfying (3.7) we have that,

(4.7) sup [IVAf @ ). / f*n- | dr,
z€EIl, FB

%/r; f2 |n,§‘ dr.

Proof. We let x = f, in the first equation, in the first equation in (4.4). Using (4.3)
and partial integration, in the fg term we, compute

Vol + 3 Wiy~ [ £ o)
/f (, 1,0 du+H\/1——fu| H 1/2f|

Integrating over z € (0,%), T < L we get

1 1
||f||L2(Q oa(B) T 5 / pf? (@, p, B)de, — 5/ pf?(0, u, B) de 1
I

(4.10) __/ / f?(z,p, Eo) dpdz + = //f z, 1, 0) dp da

s o+ 18I0 =0,
where Q := (0,Z) x I,. Consequently VZ < L, we have that

z pl
2(zZ,u, E)dr, < 2(0,u,E) d 2(z, p, Eo) dp dz,
/uf(:vu):u</uf(0u):u+/0/0f(l"u o) dudzx

IJ_ IJ_

IN

(4.8) 113

(4.9)

LQ(IJ_) Lz(IJ_)

which gives the first assertion of the lemma. Note that the two integrals with
positive sign in (4.10) add up to % fr+ f%(n - B) dT', whereas those with negative

sign add up to —1 [ f*n- f| dr. Transferrlng the negative integrals to the right

hand side we obtain the second assertion of the lemma and the proof is complete. [

From the proof of above lemma we can deduce a control of a quantity involving
a norm of the form

N0y = 1+ s+ 0,0+ 502 VS @2 ) s
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Corollary 4.2. There, is constant C' such that

@l [ aPEnE L <C [ g
I. r;
The interesting feature in the relation (4.11) is that, roughly speaking, it controls
a quantity corresponding to the contribution of the ||| - |||-norm at each collision site
z € (0,L).

By the same argument as in the above Lemma we obtain the semidiscrete version
of the stability estimate for SG problem:

Corollary 4.3. The solution fy, of problem (4.6) satisfies the stability relations,

(4.12) sup [V7fu(o ) < / fn-] dr,
TCle 8
1 -
(413) Wiz = 5 [ sifn-p ar.
r;

For convenience, in the sequel we shall use the following boundary integral notation:

(4.14) (P, Dot :/+(_)pq(n-a)dF, |P|(21+(—) =/+(_)P2|n'0‘|dra
T rs

where @ = 8 or a = § (then n := 1), will be obvious from the content.

4.2. Convergence. In this part we state and prove convergence rates, both in the
Lso-norm and in the triple norm, for the SG-method for the semidiscrete problem
with weakly imposed boundary conditions. Our main results are Lemma 4.4 and
Theorem 4.6 below. For the hyperbolic problems with an absorption term of O(1),
and f € H"(2), the optimal convergence rate for the standard Galerkin in the Lo
norm is @(h""!). Our equation, although degenerate, is not purely hyperbolic:
the diffusive terms in (u, E) on the right hand side corresponds to add of artificial
viscosity, of order O(g), € ~ (1—p), in the (u, E) variables. This improves the triple
norm estimate by O(yv/€) ~ O(v/h). However, turning to the L, norm estimate
because of the lack of full convection (no first order derivatives in u) we shall need
some further corrections, that may cause for a somewhat weaker convergence rate.

Lemma 4.4 (error estimate in the triple norm). Assume that f and fp, satisfy
(4.4) and (4.6), respectively. Let f € H"(Q), r > 2 (motivated by the estimates in
the next theorem), then there is a constant C such that,

(4.15) Il — fllg < CR™2 |1,

Proof. Subtracting first equations in (4.4) and (4.6) we get, using (4.3), and

G(f: X)J- = ((1 - /‘Z)fuaXu)J_ + (QfE;XE‘)J.
that

A(fh_f~7X)J-+G(fh_.f5X)J-:A(f_.f7X)J-+G(f_.faX)J_:G(f_f5X)J_7
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or equivalently, we get

(0a(E)(fn = )21 + (= DesX) 1 = (F1 = HEx) 1
(L= (Fn = Pusxu) 1 + E(fa = HrsxE) L
=(0a(B)(f,x)) L(fa, X)L — (fE, X)L
(0= ) (Fus Xu) L + (efms xE) L
(A=) = P xu) s + € = e, xe)L
=0 — (L= p*)(f = N> xw) L + (e(f = Ne, xE) L-
Let now x = f — f, then using the same argument as in the stability estimate we
may write,
2 1d 2
La(lvou(B) | 2dz

_ %/FE |n - B|(fr _f)Q(:p,p,EO)dF—I- %/ (n-B)(fn —f)2(m,u,0)d1“

Hfh—f

Hfh—f

Lo(I1,p)

+
Ts

2 2

+ |t = P

Lo(I1,1-p2) * H(fh B f)E
2 1

Lz(IJ_,l—uz) + 5

3= e

Lo(IL,e)
2

<3 =P
1
2

|- 5

2

La(IL,1-p?)

LQ(IJ_ ,E LQ(IJ_ 7f;‘)

or equivalently,

2 2

2
+
Fﬁ

Hfh—f +%Hfh_f

—‘fh—f‘iﬂ_-l-‘fh—f

2

Lao(I1,20,(FE))
2

Lo(IL,p)

+ H(fh _f)u

+ H(fh - Ne

Lo(I1,1—p?) Lo(Iy,¢)

2

<[,

La(IL,1-p2)

+ H(f—f)E

La(IL,e) )
Now integrating over = € [0, L], implies that

2 2 2

Hfh—f

- D

2

~ |5 - Hro.

2

Lo(9,204 (E)

i +‘fh_.f

Lo(IL,p) Lao(IL,up)

_‘fh_f‘

+ H(fh ~ D

2

+ H(fh - Ne

F5 \Lo

< H(f—f)u

F;.%’\FL L2(92,1—-p2) L2(9,¢)

2

(f=Ne

+
L2(Q,1-p2)

La(Qe)

where T, = {{p} x I.}, p = 0 or p = L. Thus recalling f(0,-) = £(0,-) = gn("),
and the definition of the || - [ ; norm we have

2 2

(416) W= FI3 < |VI=w2 =P+ [0 - P

La(Q) L2(Q2) '

Now the desired result follows from the following interpolation estimate: d
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Proposition 4.5. Let h? < 0,(E) ~ e(z,pu) ~ (1 — p?) < h, then there is a
constant C' such that,

(4.17) I1F = Fllg < Chm =21 £1l,.-

Proof. The proof is based on classical interpolation error estimates, see [10]: Let
f € H"(), then there exists an interpolant f € Vj g, of f and interpolation
constants C7 and Cs such that

(4.18) If=Flls < G =*lIflly, s=0,1
(4.19) If = flz < Cohm 2| £l
where
1/2

(4.20) Jul; = ( / w2(@ - ) df) .

r

8

Now recalling the definition of || - || 5 we have,

2

IF ~ 7 = 517 — 715+ | Voul@i(s - )

L2(Q2)
+ VI = Pl Ve = De]
< 5l = T3+ o) 1wy |1 - ],

2 2

1= 1) 21 ||(F = P

R ey (G

La(Q2 Lo ()

1 - ~
<slF-flE+ (S}lpaa +2 sup 6) I1f = i@

o x1T,,

IA

1
SCah? Hlull? + CRER* 2 lully < Ch*[lul,

where in the last step we used & := sup;, 0,+2supe < 3hand C = max(3C3,C3/2).
Letting now C' = C'/2 the proof is complete. O

From this result we now obtain the desired estimate in the Ls norm:

Theorem 4.6. For f € H"(), satisfying (4.4) and with fy, being the solution of
(4.6), there is a constant C = C(Q,g) such that

(4.21) I1f = fallzag@) < CAT 32| £,

Proof. Recalling the definition of the triple norm we have that
(4:22) |Vou® s = ||, <lIf = Fllz < Ch= ).

Thus, since 0,(E) > h?, we obtain (4.21). O

L2(Q)

Observe that in C = C(12,g), the Q dependence is because of the E depending
04 (E) and the fact that € = e(x, u), while the g dependence comes from the assumed
identity up(0) := @(0) = g.
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5. THE FuLLy DISCRETE PROBLEM

In this section, we derive the algorithms corresponding to the SG for I, combined
with discontinuous Galerkin (DG), backward-Euler (BE) and Crank-Nicholson (CN)
methods for the penetration interval I,. So far our approximation techniques were
designed for discretizations in the transversal variable z, = (u, E). We could in-
clude the penetration variable z, in this procedure as an additional space variable, as
it is, see the analysis in [7], where full discretizations are made in all three variables
using both the usual streamline diffusion and the discontinuous Galerkin methods.
This however, due to the lack of a diffusion term in x, would yield a degenerate
type PDE requiring more involved technicalities. Such studies are inevitable for
the pencil beam problems where, in spite of interpreting = as a time variable, the
degeneracy nature remains in the differential operators over z; domain. See, e.g.
[5]-[7]- Therefore, here in order to efficiently determine the beam intensity at differ-
ent transversal cross sections, discretization procedures for the penetration variable
x is treated separately and as a time variable, as in the similar time dependent
convection-diffusion problems. Thus, in extending our semidiscrete algorithms to a
higher dimensional case containing also discretizations in z, we consider the time
discretization schemes for I, such as DG, BE and CN.

To continue, we introduce the bilinear forms:

(:1) alfx) = (@0l B) 1201+ (=) furxi) L+ xe) 1+ [ (B fxa,

and

(52) Hf0 = 8t +5 [ n- BT,

and rewrite the problem (4.4) as finding a solution f € H é (I1) such that,

(5.3) b(fzsx) +a(f,x) =0, Vx € Hy(IL).

We subsequently use the finite dimensional subspace V.3 C H é (1) and represent
the discrete solution f; by a separation of variables viz:

(5'4) 1' Y,z ZSJ (b] u, B

where M ~ 1/h. Now we let v = ¢; for i = 1,..., M, and insert (5.4) into the
semidiscrete counterpart of (5.3) to obtain,

(5.5) 25 ¢,,¢g+25, a(gi, ¢;) = i=1,...,M.

7j=1

Tn the matrix form (5.5) may be represented by B¢ (z)+.A&(x) = 0, where B = (b;;)
with b;; = b(¢;, ¢;) and A = (a;;) with a;; = a(¢;, ¢;). More specifically the matrix
A is given by

(5.6) A= M, )+ St . +SE,

where M, (g is the o,(E)-weighted mass matrix, S}’ 42 is the (1 — u?)-weighted
stiffness matrix in p and SZ is the e-weighted stiffness matrix in E. One can
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show that the matrix B is positive definite and therefore invertible. Hence we can
reformulate (5.5) as,

(5.7) €' (z) + Ag(z) = 0,

where A = B~ A. However inverting B is among other things expensive. Therefore
we instead consider a Choleski decomposition of B = AT A, which leads to

(58) 7'(z) + An(z) =0, 0(0) =10,
where now A = (A"1)TAA~" and = A£. The (stiff) solution of (5.8) is:
(5.9) n(x) = 1o exp(—Ax).

The matrix equations presented in this section can now be easily implemented for
usual finite element test functions. Now a fully discrete scheme is obtained by also
discretizing (5.7) in the z variable. Below we combine both SG and semi-streamline
diffusion (SSD) schemes [4], for discretization in z, , with the most common time
discretization techniques applied to our x variable. To achieve the most general
schemes for the x discretization we extract them from Pade approximations of the
form, F™+! = B, F™ for n > 0, where E,, = r,,(G). Here, r,, (z) = %) with,

T duv(z)
L w— (ptv—jHw N
(5.10) v (%) = g(uw)!j!(v—jﬂ( g
(5.11) d(a) = S (ptv =) .

= (p+ )1l p = j)!

For instance 791 (z) = 1 — z corresponds to forward Euler, rio(z) = 1/(1 + z) to
backward Euler and r1; to Crank-Nicholson scheme:

Fpr—Fp '\ |
(5.12) (hkih) + AFy = 0, backward Euler,
n _ n—1 _ n n—1
(5.13) (%) +A (%) = 0, Crank Nicholson.

Other such choices will easily provide comparisons for alternative methods.

6. STREAMLINE DIFFUSION METHOD

Due to the fact that £/|3| = max(1 — p?,¢) is very small; both broad beam as
well as Fermi and Fokker-Planck equations are convection dominated convection-
diffusion equations. To obtain approximate solutions for these types of equations,
we may use a certain type of the Galerkin method: the streamline diffusion finite
element method. Because of a lack of stability of the standard Galerkin finite ele-
ment method (SGM) , the Galerkin approximation contain oscillations not present
in the true solution in convection dominated problems. So we need to improve
the stability properties of the SGM without sacrificing accuracy. We consider two
ways of enhancing the stability of SGM. (a) introduction of weighted least squares
terms; (b) introduction of artificial viscosity based on the residual. We refer to the
Galerkin finite element method with these modifications as the streamline diffusion
method (Sd). Both modifications enhance stability without a strong effect on the
accuracy. We begin by describing the Sd-method for an abstract linear problem

(6.1) Lf=g,



GALERKIN METHODS FOR PRIMARY IONS 13

for which SGM reads: find F' € V}, such that
(62) (‘CFa 90) = (Q:So)a VLP € Vha

where £ is a linear operator on a vector space V and V}, is a finite dimensional
subspace of V. In our problem, £ is a convection-diffusion absorption operator:
(6.3) Lw:=0c,w+ 0w+ -Viw.

The least squares method for (6.1) is to find F' € V}, that minimizes the residual
over V}, in an appropriate norm, that is

(6.4) ILF — glI* = mingev, Lo — glI*.
where || - || denotes, e.g. the usual Lo norm.

This is a convex minimization problem and the solution F' is characterized by
(6.5) (LF,Lp) = (9,Lp), Y € V.

We now formulate a Galerkin/least squares finite element method for (6.2) by
taking a weighted combination of (6.4) and (6.5): compute F' € V}, such that

(6.6) (LF,¢) + (6LF, Lo) = (9,9) + (89, Lp), Vo € Vi,
where § is a parameter to be chosen. We may rewrite the relation (6.6) as
(6.7) (LF,p+06Lp) = (f,p+0Lyp), Vo€ V.

Adding the artificial viscosity modification yields the Sd-method in abstract form:
find F € V}, such that

(6.8) (LE,p+6Lp) + (eVE, V) = (f,p+Lyp), Vo €V,

where € is the artificial viscosity defined in terms of the residual R(F) = LF — g.
Now we return to our broad beam equation (3.7) and perform the differentiation
with respect to p to obtain

(6.9) oo(E)f +pfe+2pfu—fo =01~ ,uz)fuu +efee+Q, (v,uE) €l x1,
which is of degenerate form, where the convection is on the direction of £, :=
(4,2, —1) while the diffusion is in z, . Now, since the beam is forward directed
hence p # 0 (4 = cos @ ~ 1), therefore we may divide by u to obtain

(6.10) fotGf+B-Vif—EAf=Q,

where 6 = 6(u, E) := 04(E)/p, B := (2,—1/p) and, assuming e ~ 1 — p2, & = ¢/p.
The equation (6.10) has a user friendly form in the sense that: interpreting x > 0
as a time variable both convection and diffusion are then in 2, = (i, E) and hence
we have a, non-degenerate, “time dependent”, convection dominated (€ << |4]),
convection-diffusion equation. A study of this type of time dependent convection-
diffusion problems is outlined in [11]. A desirable closing for equation (6.10) would
be stating the problem in unbounded domain associated with a compact support
as a boundary data, viz

fe+8f+B-VIf—EALF=Q, in R? x (0,00),
(6.11) flz,z1) — 0, for x >0as |z.]| = oo,
f(O, ) :fo, in R2.

As a matter of fact, this is the most natural initial-boundary value problem for a
forward directed charged particle beam, simply because there are no particles with
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infinite energy range as |z, |°> = p? + B2 — oo. However, in the radio therapy
applications, the physical medium is bounded and therefore we state an initial-
boundary value problem in a bounded domain:

fot6f+B-Vif-EALF=Q, in Ix1I,
(6 12) f(.’E,.Z'J_) =9 on (I X 6IJ_)*7
) flz,z1) =gy, or E0nf = gy on (I xdI,),,
7@0,°) = fo, in IxI,,

where we recall that I x I, := (0,L) x (—1,1) x (0, Ep) and
(6.13) (I x8I)_(4y:={(z,z1) €I x 8 :B(z,x1) n(zL) <0(>0)}

On each collision site the particle changes (decrease) its “speed”(|u|) and energy.
We assume z;,7 = 1,...N to be the collision sites and let a partitioning of I
into subintervals I, = (£p—1,%,), n =1,2,..., N. We use the space “time” slabs
Sp = I, x I,. We divide each slab into prisms I, x K, where 7, = {K} is a
triangulation of I; with mesh function h,,. Now streamline diffusion method is
a finite element method based on using approximations consisting of continuous
piecewise linear functions in z, and discontinuous polynomials of degree r in z:
This is denoted, in short, by ¢G(1)dG(r) method. We define the trial space W] to
be the set of functions w(z,z ) defined on I, x I, such that the restriction w|s,
is continuous and piecewise linear in z, and a polynomial of degree r in . Thus,
on each slab S,,, we seek the approximate solution for the equation (6.12), in the
streamline diffusion space w|s, € W},,:

T
(6.14) Wi, ={w:w(z,z,) = ijwj(m_), w; € Vo, (z,21) € Sp},
=0
where V,, =V}, is the space of continuous piecewise linear functions vanishing on
0I,. We denote by A and h the mesh parameters in I, and I, , respectively and
use the usual notation

wi™) = lim  w(z, + ).
s—0+(=)

In this setting, the method reads as: Compute F' € W such that forn =1,2,...,N
and for w € W

kn>

(6.15) [wy] = w} —w;,

n ~ Yno

/In (B(F), w+6B(w)) do + /1 (EVLF,Viw)dz + ([Fo 10 y)

(6.16)
= / (Q,w + 613(111)) dz,
I,

where
(6.17) B(g) =69+9.+8- V1w,

1/, -~ —1/2
(6.18) 6=5(m2+n2187)
(6.19) ¢ = max{€, a1 h*R(F), axh*/*},
(6.20) R(F) = |B(F) = Q| + |[Fa-1]l /hn, ~ on Sy,

for positive constants a;, i = 1, 2.
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The error estimate procedure is simplified using the transformation between
Euler and Lagrange coordinates (see [11]) by letting (2,2,) = (%,%, + Z(). Then
we have for f(Z,Z,) = f(z,2.), by the chain rule, that
S (LT P .

Below we summarize a priori and a posteriori error estimates for the ¢G(1)dG(0)
scheme, described in (6.16), derived for the local Lagrangian coordinates (Z, % ).

Theorem 6.1. If vh,é > h2, for sufficiently small v and é = &, then for each
M,1< M <N,

(6.21)

_ _ af 9_
Vo) - ol < o o, (o372 )
and
_ _ _ R2 * _
|F(znr,-) = Fu|| < LuCi | Jax ( ||hR0h(F)||In + i[Fn—l] + ”hiR(F)”In )’
where
(6.22) Ly = (max((log(mM/hM))l/Q,log(;cM/hM)) + 2,
(6.23) Ron(F) = |Q| + |[F]| /R,
_ 1 5
(6.24) R(F) = 21Q| + 5 max hi [0sF]|,  on K €7,

where [Osw] denotes the jump across the side S C 0K in the normal derivative
of the function w € V} (see Fig.2. below). Finally, the star indicates that the
corresponding term is present only if V,_1 is not a subset of V,,.

oK™+

0K~

Figure 2: Two neighboring elements K+ and K, their boundaries K™ and
0K ™, and their interior side S.

The convergence rates in this theorem hold in the Euler coordinates (z,z, ),
provided that there exists an affine bijection G, : S, — S, defined by

(6.25) (x,21) = Gn(Z,Z21) = (21 ,n(Z,%1),%), for (Z,Z.)€ Sy,

ie., G, : S, = S, takes a non-oriented grid in (Z,Z, ) to an oriented grid in (z,z ),
as illustrated in Fig. 3. below. Let now

(6.26) (@1,n(Z,21),2) =21 + (T — 201)Blh(zL), ZTEIL,
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with 3" € V,, denoting the nodal interpolant of 8, = B(xn_1,-). By the inverse
mapping theorem, G, : S,, = S, is invertible, if there is a sufficiently small constant
¢o such that

(6.27) max (hn vk

) S €o,

where V denotes the Jacobian with respect to Z :

(6.28) Va1 n(@31) =T+ (% —2qe1)VBE(ZL),

where 7 is the identity operator. The proof of the above theorem is a lengthy

T T _
Z'J_,n(wn;mJ_)
P
Ve AN
_ v N
Tn Tn
Tn-1 Tp—1 /
I I
T x|

Figure 3: The map G,, between local Lagrangian and Euler coordinates

modification of the a priori and a posteriori error estimates for heat equation based
on a dual problem approach derived in [11]. The reader can get an idea about
how much involved are the actual error estimates in the Euler coordinates. We
skip theses seemingly involved details and instead focus on some numerical results
comparing the Sd, bipartition and Monte-Carlo methods.

So far, to keep the computational costs in a realistic level, our simulation re-
sults concern the energy ranges < 30MeV (adequate for light ions and high-energy
electron particles). These results are for broad beam configurations derived us-
ing bipartition model, see [28]. The final equation is identical to the broad beam
equation, in here, resulting from a Fokker-Planck development based on asymptotic
expansions. There are simulation results available for both bipartition model and
MC method for high-energy ions (see Part I; [2] for energy ranges < 200M eV, and
[13] for < 600MeV). We plan to perform Sd simulations in high energy cases and
compare them with the bipartition and MC results. For the purpose of clinical
applications, the accuracy of the simulations in a moderate energy range of, say,
~ 50 — 100M eV are more desirable than the simulations for very high energies.
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7. NUMERICAL SIMULATIONS

We shall use the following Boundary conditions for the broad beam model: Given
a function g := g(u, E), we define the boundary conditions for the broad beam
model as the following:

(0 H, ) - ga (NaE) € [_171] X [OaEO] (BC]-)

('7307”5 ) a (NaE) € [_17 1] X [OaEO] (BCQ)

(7 1) (.CE,].,E) 7 (.CE,E) € (07:1:0) X (O7E0] (BC3)
‘ (.’L‘,—]. E) a (.’L',E) € (O,SL'()) X (OaEO] (BC4)
(-)Ef(w 122 EO) 07 ('Z';/J') € (071'0) X (_171] (Bcs)

('Z' H, ) 0, ('Z';/J') € (071'0) X [_171] (BC6)

The function g is an smooth approximation of the original source function ) =
>=06(x)0(1 — p)d(Eo — E). We have considered the broad beam problem (6.10) as-
sociated with the boundary condition (7.1) and derived numerical algorithms for a
Standard Galerkin the streamline diffusion finite element method (Sd), which coin-
cides with a Characteristic Galerkin (CG)- and a Characteristic Streamline Diffu-
sion (CSD)-method, studied for the Fermi equation in[4]. Here, we present only the
results of the Sd method. For the sake of completeness we also comment the results
of our observations testing other methods than the Sd: we have carried out im-
plementations to illustrate the applicability of the algorithms using different types
of initial data approximating the Dirac § function. To begin with, semi-streamline
diffusion (SSD) and characteristic streamline diffusion (CSD) methods are more
stable and accurate than the standard Galerkin (SG) and characteristic Galerkin
(CG) methods for all the canonical forms of the initial data (approximating a Dirac
¢ function beam source by a Maxwellian, cone, cylinder and a hyperbolic beam).
As for the convergence: solutions with modified Dirac initial condition are suited in
both CS and SSD. However, Maxwellian initial conditions produce accurate results
in the CSD scheme, whereas the hyperbolic initial conditions produce more accurate
results in the SSD scheme. The oscillatory behavior, while considering non smooth
initial data, can be eliminated by modifying the Lo-projection. The formation of
layers can be avoided taking small steps in the penetration variable. However, a
better approach to deal with this phenomenon is through adaptive refinement.

7.1. Results. We use Sd-method to solve (6.10) with the boundary condition (7.1)
and integrate f(z,u, E) over u and E to get the energy and angular distributions
for different depths. We compare the results of dose delivery with the intensity of
10, 20, 30 MeV electron transport in water, with those of the bipartition model
and Monte Carlo (MC) method . Here, we have neglected the contributions from
the secondary particles. In Fig. 5, 8 and 11 we can see that our results are very
close to MC, only the positions of the maximum values are different. The reason is
that the stopping power that we have used is somewhat different from that of MC.
We use the same stopping power with the bipartition model, so we could find that
the positions of the maximum values are very close as seen in Fig. 4, 7 and 10. The
bipartition model use CSDA and neglect the particles which have larger variations
in energy and angle. In this way the energy distributions are very narrow and
the maxima drop exponentially fast. Similar phenomena appears for the angular
distributions in Fig. 6 and 9.
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7.2. Conclusion. In this paper we start from a broad beam equation derived using
a bipartition model for the linear (ion) transport equation for both low- and high-
energy ions as well as high energy electrons in inhomogeneous media Our derivation
is based on an split of the source term to diffusion and forward-directed particles
combined with a Legendre series expansion approach.

This split may be used, as an alternative for asymptotic expansions, to derive
Py, Fokker-Planck and Fermi approximations of a pencil beam model associated
with the bipartition model problem.

In this paper we have descritized the, Fokker-Planck type, broad beam equa-
tion by a variety of finite element approximations. We have derived stability and
convergence estimates for a semi-discrete standard Galerkin method. We have also
formulated both fully discrete and streamline diffusion Galerkin methods and give
the sharp error bounds in local Lagrangian coordinates. Under certain assumption
on the characteristics and by the inverse mapping theorem, these bounds are valid
in a more concrete Euler coordinates as well.

In the implementation part, we use the streamline diffusion method to calculate
the energy and angular distributions for the electron, and light ion, transport equa-
tion and compare the results with those obtained by bipartition model and Monte
Carlo simulation. In our knowledge, this approach is not considered elsewhere. Our
ambition is to solve 3D pencil beam and broad models and show the advantages of
FEM in comparison with bipartition model and MC method, in particular in the
cases of inhomogeneous data and media as well as irregular geometry. In a forth-
coming paper we shall study the error analysis for FEM applied to these cases,
extend our implementations to high energy ions and include secondary particles.
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