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EXISTENCE AND UNIQUENESS OF THE SOLUTION OF AN
INTEGRO-DIFFERENTIAL EQUATION WITH WEAKLY

SINGULAR KERNEL

FARDIN SAEDPANAH

Abstract. A hyperbolic type integro-differential equation with weakly sin-

gular kernel is considered together with mixed homogeneous Dirichlet and
non-homogeneous Neumann bounadry conditions. Existence and uniqueness

of the solution is proved by means of Galerkin method. Regularity estimates
are proved and the limitations of the regularity is discussed.

1. Introduction

We study a model problem, which is a hyperbolic type integro-differential equa-
tion with weakly singular kernel. This problem arises as a model for fractional
order viscoelasticity. The fractional order viscoelastic model, that is, the linear
viscoelastic model with fractional order operators in the constitutive equations, is
capable of describing the behavior of many viscoelastic materials by using only a
few parameters.

There is an extensive literature regarding well-posedness and numerical treat-
ment for integro-differential equations, see, e.g., [1], [3], [9], [10], [11], [12], [13],
[14], [15], [16], and [17]. Existence, uniqueness and regularity of a reformed model
has been studied in [12] by means of Fourier series. One may also see [6], where the
theory of analytic semigroups is used in terms of interpolation spaces. An abstract
Volterra equation, as an abstract model for equations of linear viscoelasticity, has
been studied in [4]. In a previous work [9], well-posedness and regularity of the
model problem was studied in the framework of the semigroup of linear operators.
The drawback of the framework is that this does not admit non-homogeneous Neu-
mann boundary condition. While in practice mixed homogeneous Dirichlet and
non-homogeneous Neumann boundary conditions are of special interest. Here we
investigate existence, uniqueness and regularity of the solution of the problem (2.5)
by means of the Galerkin approximation method.

In the sequel, in §2 we describe the construction of the model and we define a
weak (generalized) solution. Then in §3 we study well-posedness, regularity and
limitations for higher regularity.
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2 F. SAEDPANAH

2. The model problem and weak formulation

Let σij , εij and ui denote, respectively, the usual stress tensor, strain tensor and
displacement vector. We recall that the linear strain tensor is defined by

εij =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
.

With the decompositions

sij = σij − 1
3σkkδij , eij = εij − 1

3εkkδij ,

the constitutive equations are formulated in [2] as

sij(t) + τα1
1 Dα1

t sij(t) = 2G∞eij(t) + 2Gτα1
1 Dα1

t eij(t),

σkk(t) + τα2
2 Dα2

t σkk(t) = 3K∞εkk(t) + 3Kτα2
2 Dα2

t εkk(t),
(2.1)

with initial conditions

sij(0+) = 2Geij(0+), σkk(0+) = 3Kεkk(0+),

meaning that the initial response follows Hooke’s elastic law. Here G, K are the
instantaneous (unrelaxed) moduli, and G∞, K∞ are the long-time (relaxed) mod-
uli. Note that we have two relaxation times, τ1, τ2 > 0, and fractional orders of
differentiation, α1, α2 ∈ (0, 1), where the fractional order derivative is defined by

Dα
t f(t) = DtD

−(1−α)
t f(t) = Dt

1
Γ(1− α)

∫ t

0

(t− s)−αf(s) ds.

The contitutive equations (2.1) can be solved for σ by means of Laplace transfor-
mation, [7]:

sij(t) = 2G
(
eij(t)−

G−G∞
G

∫ t

0

θ1(t− s)eij(s) ds
)
,

σkk(t) = 3K
(
εkk(t)− K −K∞

K

∫ t

0

θ2(t− s)εkk(s) ds
)
,

where

θi(t) = − d

dt
Eαi

(
−

( t

τi

)αi
)
, Eαi

(t) =
∞∑

n=0

tn

Γ(1 + nαi)
,

and Eαi
is the Mittag-Leffler function of order αi. We make the simplifying as-

sumption (synchronous viscoelasticity):

α = α1 = α2, τ = τ1 = τ2, f = f1 = f2.

Then we may define a parameter γ, a kernel β, and the Lamé constants µ, λ,

γ =
G−G∞

G
=

K −K∞

K
, β(t) = γθ(t), µ = G, λ = K − 2

3G,

and the constitutive equations become

σij(t) =
(
2µεij(t) + λεkk(t)δij

)
−

∫ t

0

β(t− s)
(
2µεij(s) + λεkk(s)δij

)
ds,

= (σ0)ij(t)−
∫ t

0

β(t− s)(σ0)ij(s) ds.
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Note that the viscoelastic part of the model contains only three parameters:

0 < γ < 1, 0 < α < 1, τ > 0.

The kernel is weakly singular:

β(t) = −γ
d

dt
Eα

(
−

( t

τ

)α)
= γ

α

τ

( t

τ

)−1+α

E′α

(
−

( t

τ

)α)
≈ Ct−1+α, t → 0,

(2.2)

and we note the properties
β(t) ≥ 0,

‖β‖L1(R+) =
∫ ∞

0

β(t) dt = γ
(
Eα(0)− Eα(∞)

)
= γ < 1.

(2.3)

The equations of motion now become, (we denote time derivatives with ’·’):
ρüi − σij,j = fi in Ω,

ui = 0 on ΓD,

σijnj = gi on ΓN,

(2.4)

where ρ is the (constant) mass density, and f and g represent, respectively, the
volume and the surface loads. We let Ω ⊂ Rd, d = 2, 3, be a bounded polygonal
domain with boundary ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅ and meas(ΓD) 6= 0. We set

(Au)i = −
(
2µεij(u) + λεkk(u)δij

)
,j

,

that is, Au = −∇ · σ0(u), and we write the equations of motion (2.4) in the form

ρü(x, t) + Au(x, t)

−
∫ t

0

β(t− s)Au(x, s) ds = f(x, t) in Ω× (0, T ),

u(x, t) = 0 on ΓD × (0, T ),

σ(u;x, t) · n = g(x, t) on ΓN × (0, T ),

u(x, 0) = u0(x) in Ω,

u̇(x, 0) = v0(x) in Ω.

(2.5)

We introduce the function spaces H = L2(Ω)d, HΓN = L2(ΓN)d, and V =
{v ∈ H1(Ω)d : v|ΓD= 0}. We define the bilinear form (with the usual summation
convention)

a(u, v) =
∫

Ω

(
2µεij(u)εij(v) + λεii(u)εjj(v)

)
dx, ∀u, v ∈ V,

which is coercive on V . We denote the norms in H and HΓN by ‖ · ‖ and ‖ · ‖ΓN ,
respectively, and we equip V with the inner product a(·, ·) and norm ‖v‖2

V = a(v, v).
Now we define a weak solution to be a function u = u(x, t) that satisfies

u ∈ L2((0, T );V ), u̇ ∈ L2((0, T );H), ü ∈ L2((0, T );V ∗),(2.6)

ρ〈ü(t), v〉+ a(u(t), v)−
∫ t

0

β(t− s)a(u(s), v) ds(2.7)

= (f(t), v) + (g(t), v)ΓN , ∀v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0, u̇(0) = v0.(2.8)



4 F. SAEDPANAH

Here (g(t), v)ΓN =
∫
ΓN

g(t)·v dS, and 〈·, ·〉 denotes the pairing of V ∗ and V . We note
that (2.6) implies, by a classical result for Sobolev spaces, that u ∈ C([0, T ];H), u̇ ∈
C([0, T ];V ∗) so that the initial conditions (2.8) make sense for u0 ∈ H, v0 ∈ V ∗.

3. Existence, uniqueness and regularity

In this section we prove existence and uniqueness as well as regularity of a weak
solution of (2.5) using Galerkin method, in a similar way as for hyperbolic PDE’s
in [8], [5]. To this end, we first introduce the Galerkin approximation of a weak
solution of (2.5) in a classical way, and we obtain a priori estimates for approximate
solutions. These will be used to construct a weak solution and then we will verify
uniqueness as well as regularity.

We recall (2.2), (2.3) and we define the function

ξ(t) = γ −
∫ t

0

β(s) ds =
∫ ∞

t

β(s) ds = γEα(t),(3.1)

and it is easy to see that

Dtξ(t) = −β(t) < 0, ξ(0) = γ, lim
t→∞

ξ(t) = 0, 0 < ξ(t) ≤ γ.(3.2)

Besides, ξ is a completely monotone function, that is,

(−1)jDj
t ξ(t) ≥ 0, t ∈ (0,∞), j ∈ N,

since the Mittag-Leffler function Eα, α ∈ [0, 1] is completely monotone. Conse-
quently, an important property of ξ, is that it is a positive type kernel, that is, it
is continuous and, for any T ≥ 0, satisfies∫ T

0

∫ t

0

ξ(t− s)φ(t)φ(s) ds dt ≥ 0, ∀φ ∈ C([0, T ]).(3.3)

3.1. Galerkin approximations. Let {(λj , ϕj)}∞j=1 be the eigenpairs of the weak
eigenvalue problem

(3.4) a(ϕ, v) = λ(ϕ, v), ∀v ∈ V.

It is known that {ϕj}∞j=1 can be chosen to be an ON-basis in H and an orthogonal
basis for V .

Now, for a fixed positive integer m ∈ N, we seek a function of the form

(3.5) um(t) =
m∑

j=1

dj(t)ϕj

to satisfy

ρ(üm(t), ϕk) + a(um(t), ϕk)−
∫ t

0

β(t− s)a(um(s), ϕk) ds

= (f(t), ϕk) + (g(t), ϕk)ΓN , k = 1, . . . , m, t ∈ (0, T ),
(3.6)

with initial conditions

(3.7) um(0) =
m∑

j=1

(u0, ϕj)ϕj , u̇m(0) =
m∑

j=1

(v0, ϕj)ϕj .
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Theorem 1. For each m ∈ N, there exists a unique function um of the form
(3.5) satisfying (3.6)–(3.7). Moreover, if u0 ∈ V, v0 ∈ H, f ∈ L2((0, T );H), g ∈
W 1

1 ((0, T );HΓN), there is a constant C = C(Ω, γ, ρ, T ) such that,

‖um‖L∞((0,T );V ) + ‖u̇m‖L∞((0,T );H) + ‖üm‖L2((0,T );V ∗)

≤ C
{
‖u0‖V + ‖v0‖+ ‖g‖W 1

1 ((0,T );HΓN ) + ‖f‖L2((0,T );H)

}
.

(3.8)

Proof. Using (3.5) and the fact that {ϕj}∞j=1 is an ON-basis for H and a solution
of the eigenvalue problem (3.4), we obtain from (3.6) that,

ρd̈k(t) + λkdk(t)− λk(β ∗ dk)(t) = fk(t) + gk(t), k = 1, . . . , m, t ∈ (0, T ),(3.9)

where ∗ denotes the convolution, and fk(t) = (f(t), ϕk), gk(t) = (g(t), ϕk)ΓN . This
is a system of second order ODE’s with the initial conditions

(3.10) dk(0) = (u0, ϕk), ḋk(0) = (v0, ϕk), k = 1, . . . ,m.

The Laplace transform can be used, for example, to find the unique solution of the
system. Indeed, the Laplace transform of the Mittag-Leffler function is,

L(Eα(axα)) =
sα−1

sα − a
, s > |a|1/α.

Hence for the kernel β defined in (2.2) we have,

L(β(t)) = −γsL(Eα(−τ−αtα)) + γEα(0)

= −γs
sα−1

sα + τ−α
+ γ = γ − γ

sα

sα + τ−α
=

γ

(τs)α + 1
.

(3.11)

Then, taking the Laplace transform of (3.9) we get,(
ρs2 + λk − λkL(β)(s)

)
L(dk)(s)

= L(fk)(s) + L(gk)(s) + ρdk(0)s + ρḋk(0),
(3.12)

where the inverse Laplace transform is computable. Therefore, there is a unique
solution for the system (3.9) with the initial conditions (3.10).

Now we prove the a priori estimate (3.8). Since β(t− s) = Dsξ(t− s), by (3.2),
we can write (3.6), after partial integration, as

ρ(üm(t), ϕk) + γ̃a(um(t), ϕk) +
∫ t

0

ξ(t− s)a(u̇m(s), ϕk) ds

= (f(t), ϕk) + (g(t), ϕk)ΓN

− ξ(t)a(um(0), ϕk), k = 1, . . . , m, t ∈ (0, T ),

where γ̃ = 1− γ. Then multiplying by ḋk(t) and summing k = 1, . . . ,m, we have,

ρ(üm(t), u̇m(t)) + γ̃a(um(t), u̇m(t)) +
∫ t

0

ξ(t− s)a(u̇m(s), u̇m(t)) ds

= (f(t), u̇m(t)) + (g(t), u̇m(t))ΓN

− ξ(t)a(um(0), u̇m(t)), t ∈ (0, T ).
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Then integrating with respect to t, we have,

ρ‖u̇m(t)‖2+γ̃‖um(t)‖2
V + 2

∫ t

0

∫ r

0

ξ(r − s)a(u̇m(s), u̇m(r)) ds dr

= ρ‖u̇m(0)‖2 + γ̃‖um(0)‖2
V

+ 2
∫ t

0

(f(r), u̇m(r)) dr + 2
∫ t

0

(g(r), u̇m(r))ΓN dr

− 2
∫ t

0

ξ(r)a(um(0), u̇m(r)) dr.

Since ξ is a positive type kernel, by (3.3), the third term of the left hand side is
non-negative. Then integration by parts in the last two terms at the right side
yields

ρ‖u̇m(t)‖2 + γ̃‖um(t)‖2
V

≤ ρ‖u̇m(0)‖2 + γ̃‖um(0)‖2
V + 2

∫ t

0

(f(r), u̇m(r)) dr

− 2
∫ t

0

(ġ(r), um(r))ΓN dr + 2(g(t), um(t))ΓN − 2(g(0), um(0))ΓN

− 2
∫ t

0

β(r)a(um(0), um(r)) dr

− 2ξ(t)a(um(0), um(t)) + 2ξ(0)a(um(0), um(0)),

that using the Cauchy-Schwarz inequality, the trace theorem, ‖β‖L1(R+) = γ, and
ξ(0) = γ, we obtain

ρ‖u̇m(t)‖2 + γ̃‖um(t)‖2
V

≤ ρ‖u̇m(0)‖2 + γ̃‖um(0)‖2
V

+ 2/C1 max
0≤r≤t

‖u̇m(r)‖2 + C1

( ∫ t

0

‖f(r)‖ dr
)2

+ 2CTrace/C2 max
0≤r≤t

‖um(r)‖2
V + 2CTraceC2

( ∫ t

0

‖ġ(r)‖ΓN dr
)2

+ 2CTrace/C3‖um(t)‖2
V + 2CTraceC3‖g(t)‖2

ΓN

+ 2CTrace/C4‖um(0)‖2
V + 2CTraceC4‖g(0)‖2

ΓN

+ 2/C5‖um(0)‖2
V + 2γ2C5 max

0≤r≤t
‖um(r)‖2

V

+ 2/C6‖um(0)‖2
V + 2C6ξ

2(t)‖um(t)‖2
V + 2γ‖um(0)‖2

V .

Hence, considering the facts that CTrace = C(Ω), ‖u̇m(0)‖ ≤ ‖v0‖, and ‖um(0)‖V ≤
‖u0‖V , in a standard way we get,

‖u̇m‖2
L∞((0,T );H) + ‖um‖2

L∞((0,T );V )

≤ C
{
‖v0‖2 + ‖u0‖2

V + ‖g‖2
L∞((0,T );HΓN )

+ ‖f‖2
L1((0,T );H) + ‖ġ‖2

L1((0,T );HΓN )

}
,
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for some constant C = C(Ω, γ, ρ, T ). This, and the facts that ‖f‖L1((0,T );H) ≤
C‖f‖L2((0,T );H), and by Sobolev’s inequality

‖g‖L∞((0,T );HΓN ) ≤ C‖g‖W 1
1 ((0,T );HΓN ),

implies

‖u̇m‖2
L∞((0,T );H) + ‖um‖2

L∞((0,T );V )

≤ C
{
‖v0‖2 + ‖u0‖2

V + ‖g‖2
W 1

1 ((0,T );HΓN ) + ‖f‖2
L2((0,T );H)

}
.

(3.13)

Now we need to find a bound for üm. For any fixed v ∈ V with ‖v‖V ≤ 1, we write
v = v1 + v2, where v1 ∈ span{ϕj}m

j=1, v2 ∈ span({ϕj}m
j=1)

⊥. Then from (3.6) we
obtain,

ρ〈üm(t), v〉 = ρ(üm(t), v1) = (f(t), v1) + (g(t), v1)ΓN − a(um(t), v1)

+
∫ t

0

β(t− s)a(um(s), v1) ds,

that, using the Cuachy-Schwarz inequality and the trace theorem, implies

ρ

∫ T

0

‖üm(t)‖2
V ∗ dt ≤

∫ T

0

{
‖f(t)‖‖v1‖+ CTrace‖g(t)‖ΓN‖v1‖V

+ ‖um(t)‖V ‖v1‖V +
∫ t

0

β(t− s)‖um(s)‖V ‖v1‖V ds
}

dt.

This, using ‖v1‖V ≤ 1 and (3.13), concludes

ρ‖üm‖2
L2((0,T );V ∗) ≤ CΩ

{
‖f‖2

L2((0,T );H) + ‖g‖2
L2((0,T );HΓN )

}
+ Cγ,T ‖um‖2

L∞((0,T );V )

≤ C
{
‖f‖2

L2((0,T );H) + ‖g‖2
L2((0,T );HΓN )

+ ‖v0‖2 + ‖u0‖2
V + ‖g‖2

W 1
1 ((0,T );HΓN )

}
.

Therefore, for some constant C = C(Ω, γ, ρ, T ),

‖üm‖2
L2((0,T );V ∗)

≤ C
{
‖v0‖2 + ‖u0‖2

V + ‖g‖2
W 1

1 ((0,T );HΓN ) + ‖f‖2
L2((0,T );H)

}
.

This and (3.13) imply the estimate (3.8), and the proof is complete. �

3.2. Existence and uniqueness of the weak solution. Now, we use Theorem
1 to prove existence and uniqueness of the weak solution of (2.5), that is, a solution
of (2.6)–(2.8).

Theorem 2. If u0 ∈ V, v0 ∈ H, g ∈ W 1
1 ((0, T );HΓN), f ∈ L2((0, T );H), there

exists a unique weak solution of (2.5).

Proof. 1. We note that the estimate (3.8) does not depend on m, so we have
‖um‖L∞((0,T );V ) + ‖u̇m‖L∞((0,T );H) + ‖üm‖L2((0,T );V ∗)

≤ K = K(Ω, γ, T, u, v, f, g).

That is,
{um}∞m=1 is bounded in L∞((0, T );V ) ⊂ L2((0, T );V ),

{u̇m}∞m=1 is bounded in L∞((0, T );H) ⊂ L2((0, T );H),

{üm}∞m=1 is bounded in L2((0, T );V ∗).
(3.14)
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2. First we prove existence. From (3.14) and a classical result in functional analysis,
we conclude that the sequences {um}∞m=1, {u̇m}∞m=1, {üm}∞m=1 are weakly precom-
pact. That is there are subsequences of {um}∞m=1, {u̇m}∞m=1, {üm}∞m=1, such that,

ul ⇀ u in L2((0, T );V ),

u̇l ⇀ u̇ in L2((0, T );H),

ül ⇀ ü in L2((0, T );V ∗),
(3.15)

where the index l is a replacement of the label of the subsequences and ’⇀’ denotes
weak convergence. Consequently, (2.6) holds true and we need to verify (2.7) and
(2.8). To show (2.7) we fix a positive integer N and we choose v ∈ C([0, T ];V ) of
the form

(3.16) v(t) =
N∑

j=1

hj(t)ϕj .

Then we take l ≥ N and from (3.6) we have∫ T

0

(
ρ〈ül, v〉+ a(ul, v)−

∫ t

0

β(t− s)a(ul(s), v) ds
)

dt

=
∫ T

0

(
(f, v) + (g, v)ΓN

)
dt.

(3.17)

This, by (3.15), implies in the limit,∫ T

0

(
ρ〈ü, v〉+ a(u, v)−

∫ t

0

β(t− s)a(u(s), v) ds
)

dt

=
∫ T

0

(
(f, v) + (g, v)ΓN

)
dt.

(3.18)

Since functions of the form (3.16) are dense in L2((0, T );V ), this equality then
holds for all functions v ∈ L2((0, T );V ), and further it implies (2.7).

Now, we need to show that u satisfies the initial conditions (2.8). Let v ∈
C2([0, T ];V ) be any function which is zero in a neighborhood of T (or simply v(T ) =
v̇(T ) = 0). Then by partial integration in (3.17) we have∫ T

0

(
ρ〈ul, v̈〉+ a(ul, v)−

∫ t

0

β(t− s)a(ul(s), v) ds
)

dt

=
∫ T

0

(
(f, v) + (g, v)ΓN

)
dt− ρ(ul(0), v̇(0)) + ρ(u̇l(0), v(0)),

so that, recalling (3.15) and (3.7), in the limit we conclude,∫ T

0

(
ρ〈u, v̈〉+ a(u, v)−

∫ t

0

β(t− s)a(u(s), v) ds
)

dt

=
∫ T

0

(
(f, v) + (g, v)ΓN

)
dt− ρ(u0, v̇(0)) + ρ(v0, v(0)).
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On the other hand integration by parts in (3.18) gives,∫ T

0

(
ρ〈u, v̈〉+ a(u, v)−

∫ t

0

β(t− s)a(u(s), v) ds
)

dt

=
∫ T

0

(
(f, v) + (g, v)ΓN

)
dt− ρ(u(0), v̇(0)) + ρ(v(0), v(0)).

Compairing the last two identities we conclude (2.8), since v(0), v̇(0) are arbitrary.
Hence u is a weak solution of (2.5).

3. It remains to prove uniqueness. To this end, we show that u = 0 is the only
solution of (2.6)–(2.8) for u0 = v0 = f = g = 0. Let us fix r ∈ [0, T ] and define

v(t) =


∫ r

t

u(ω) dω 0 ≤ t ≤ r,

0 r ≤ t ≤ T.

We note that

(3.19) v(t) ∈ V, v(r) = 0, v̇(t) = −u(t).

Then inserting v in (2.7) and integrating with respect to t, we have

(3.20)
∫ r

0

ρ〈ü, v〉 dt +
∫ r

0

a(u, v) dt−
∫ r

0

∫ t

0

β(t− s)a(u(s), v(t)) ds dt = 0.

For the last term we obtain

−
∫ r

0

∫ t

0

β(t− s)a(u(s), v(t)) ds dt =
∫ r

0

∫ r

s

Dtξ(t− s)a(u(s), v(t)) dt ds

=
∫ r

0

ξ(r − s)a(u(s), v(r)) ds

−
∫ r

0

ξ(0)a(u(s), v(s)) ds

−
∫ r

0

∫ r

s

ξ(t− s)a(u(s), v̇(t)) dt ds

= −γ

∫ r

0

a(u(s), v(s)) ds

+
∫ r

0

∫ t

0

ξ(t− s)a(u(s), u(t)) ds dt,

where we changed the order of integrals and we used integration by parts, ξ(0) = γ
from (3.2) and v(r) = 0 from (3.19). Therefore integration by parts in the first
term of (3.20), recalling γ̃ = 1− γ, yields

−ρ

∫ r

0

(u̇, v̇) dt + γ̃

∫ r

0

a(u, v) dt +
∫ r

0

∫ t

0

ξ(t− s)a(u(s), u(t)) ds dt = 0.

This, using v̇ = −u from (3.19), implies

ρ‖u(r)‖2 − ρ‖u(0)‖2 − γ̃‖v(r)‖2
V + γ̃‖v(0)‖2

V

+ 2
∫ r

0

∫ t

0

ξ(t− s)a(u(s), u(t)) ds dt = 0.

Consequently, recalling (3.3), v(r) = 0, and u(0) = 0, we have u = 0 a.e., and this
completes the proof. �
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3.3. Regularity. Here we study the regularity of the unique weak solution of (2.5),
that is, a solution of (2.6)–(2.8).

Corollary 1. If u0 ∈ V, v0 ∈ H, g ∈ W 1
1 ((0, T );HΓN), and f ∈ L2((0, T );H), then

for the unique solution u of (2.6)–(2.8) we have

(3.21) u ∈ L∞((0, T );V ), u̇ ∈ L∞((0, T );H), ü ∈ L2((0, T );V ∗).

Moreover we have the estimate

‖u‖L∞((0,T );V ) + ‖u̇‖L∞((0,T );H) + ‖ü‖L2((0,T );V ∗)

≤ C
{
‖u0‖V + ‖v0‖+ ‖g‖W 1

1 ((0,T );HΓN ) + ‖f‖L2((0,T );H)

}
.

(3.22)

Proof. It is known that if um ⇀ u, then

(3.23) ‖u‖ ≤ lim
m→∞

inf ‖um‖.

Then, recalling (3.15) and the a priori estimates (3.8), we conclude (3.21) and
(3.22). �

It is known from the theory of the elliptic operators, that global higher spatial
regularity can not be obtained with mixed boundary conditions. Therefore we
specialize to the homogeneous Dirichlet boundary condition, that is ΓN = ∅, and
assume that the polygonal domain Ω is convex. We recall the usual Sobolev space
H2 = H2(Ω) and we note that here V = H1

0 (Ω). We then use the extension of
the operator Au = −∇ · σ0(u) to an abstract operator A with D(A) = H2(Ω)d ∩ V
such that a(u, v) = (Au, v) for sufficiently smooth u, v. We note that, the elliptic
regularity holds, that is,

(3.24) ‖u‖H2 ≤ C‖Au‖, u ∈ H2(Ω)d ∩ V.

Theorem 3. We assume that ΓN = ∅. If u0 ∈ H2, v0 ∈ V , and ḟ ∈ L2((0, T );H),
then for the unique solution u of (2.6)–(2.8) we have

u ∈ L∞((0, T );H2), u̇ ∈ L∞((0, T );V ),

ü ∈ L∞((0, T );H),
...
u ∈ L2((0, T );V ∗).

(3.25)

Moreover we have the estimate

‖u‖L∞((0,T );H2) + ‖u̇‖L∞((0,T );V ) + ‖ü‖L∞((0,T );H) + ‖...u‖L2((0,T );V ∗)

≤ C
{
‖u0‖H2 + ‖v0‖V + ‖f‖H1((0,T );H)

}
.

(3.26)

Proof. Writing∫ t

0

β(t− s)a(um(s), ϕk) ds =
∫ t

0

β(s)a(um(t− s), ϕk) ds,

differentiating (3.6) with respect to time, and writing v = v̇, we have

ρ(üm(t), ϕk) + a(um(t), ϕk)−
∫ t

0

β(t− s)a(um(s), ϕk) ds

= (ḟ(t), ϕk) + β(t)a(um(0), ϕk), k = 1, . . . , m, t ∈ (0, T ),
(3.27)
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with the initial conditions

um(0) = u̇m(0) =
m∑

j=1

(v0, ϕj)ϕj ,

u̇m(0) = üm(0) =
m∑

j=1

(
f(0)−Aum(0), ϕj

)
ϕj .

(3.28)

Then, using β(t− s) = Dsξ(t− s) from (3.2) and partial integration, we have

ρ(üm(t), ϕk) + γ̃a(um(t), ϕk) +
∫ t

0

ξ(t− s)a(u̇m(s), ϕk) ds

= (ḟ(t), ϕk) + β(t)a(um(0), ϕk)

− ξ(t)a(um(0), ϕk), k = 1, . . . , m, t ∈ (0, T ).

Now, multiplying by d̈k(t) and summing k = 1, . . . , m, we have

ρ(üm(t), u̇m(t)) + γ̃a(um(t), u̇m(t)) +
∫ t

0

ξ(t− s)a(u̇m(s), u̇m(t)) ds

= (ḟ(t), u̇m(t)) + β(t)a(um(0), u̇m(t))

− ξ(t)a(um(0), u̇m(t)), t ∈ (0, T ).

Integrating over [0, t] and partial integration in the last term, we have

ρ‖u̇m(t)‖2 + γ̃‖um(t)‖2
V

≤ ρ‖u̇m(0)‖2 + γ̃‖um(0)‖2
V

+ 2
∫ t

0

(ḟ(r), u̇m(r)) dr + 2
∫ t

0

β(r)a(um(0), u̇m(r)) dr

− 2
∫ t

0

β(r)a(um(0), um(r)) dr

− 2ξ(t)a(um(0), um(t)) + 2ξ(0)a(um(0), um(0)),

that using the Cauchy-Schwarz inequality, the trace theorem, ‖β‖L1(R+) = γ, and
ξ(0) = γ, we obtain

ρ‖u̇m(t)‖2 + γ̃‖um(t)‖2
V

≤ ρ‖u̇m(0)‖2 + (1 + γ)‖um(0)‖2
V

+ 2/C1 max
0≤r≤t

‖u̇m(r)‖2 + C1

( ∫ t

0

‖ḟ(r)‖ dr
)2

+ 2/C2‖um(0)‖2
H2 + 2γ2C2 max

0≤r≤t
‖u̇m(r)‖2

+ 2/C3‖um(0)‖2
V + 2γ2C3 max

0≤r≤t
‖um(r)‖2

V

+ 2/C4‖um(0)‖2
V + 2γ2C4‖um(t)‖2

V .

This implies, for some constant C,

‖u̇m‖2
L∞((0,T );H) + ‖um‖2

L∞((0,T );V )

≤ C
{
‖u̇m(0)‖2 + ‖um(0)‖2

V + ‖um(0)‖2
H2 + ‖ḟ‖2

L1((0,T );H)

}
.



12 F. SAEDPANAH

Then recalling u = u̇, the initial data from (3.28), and using

‖um(0)‖H2 ≤ ‖u0‖H2 , ‖u̇m(0)‖V ≤ ‖v0‖V ,

we have

‖üm‖2
L∞((0,T );H) + ‖u̇m‖2

L∞((0,T );V )

≤ C
{
‖u0‖2

H2 + ‖v0‖2
V + ‖f(0)‖2 + ‖ḟ‖2

L1((0,T );H)

}
.

(3.29)

We now find a bound for ‖um(t)‖H2 . We recall the eigenvalue problem (3.4)
with eigenpairs {(λj , ϕj)}∞j=1, a(u, v) = (Au, v). Then we multiply (3.6) by λkdk(t)
and add for k = 1, . . . , m to obtain

a(um, Aum) = (f − ρüm, Aum) +
∫ t

0

β(t− s)a(um(s), Aum(t)) ds.

This implies

‖Aum(t)‖2 ≤ C

ε

(
‖f(t)‖2 + ρ‖üm(t)‖2

)
+ ε‖Aum(t)‖2

+ γ max
0≤r≤t

‖Aum(s)‖2,

that gives us, by elliptic regularity (3.24),

‖um‖2
L∞((0,T );H2) ≤ C

(
‖f‖2

L∞((0,T );H) + ‖üm‖2
L∞((0,T );H)

)
.

From this and (3.29) we conclude

‖üm‖2
L∞((0,T );H) + ‖u̇m‖2

L∞((0,T );V ) + ‖um‖2
L∞((0,T );H2)

≤ C
{
‖u0‖2

H2 + ‖v0‖2
V + ‖f‖2

L∞((0,T );H) + ‖ḟ‖2
L1((0,T );H)

}
,

that using ‖f‖L∞((0,T );H) ≤ C‖f‖W 1
1 ((0,T );H), by Sobolev inequality, we have

‖üm‖2
L∞((0,T );H) + ‖u̇m‖2

L∞((0,T );V ) + ‖um‖2
L∞((0,T );H2)

≤ C
{
‖u0‖2

H2 + ‖v0‖2
V + ‖f‖2

W 1
1 ((0,T );H)

}
≤ C

{
‖u0‖2

H2 + ‖v0‖2
V + ‖f‖2

H1((0,T );H)

}
.

Finally from (3.27) , similar to the proof of Theorem 1, we obtain

‖...um‖2
L2((0,T );V ∗) ≤ C

{
‖u0‖2

H2 + ‖v0‖2
V + ‖f‖2

H1((0,T );H)

}
.

The last two estimates then, in the limit, imply the desired estimate (3.26), and
the proof is now complete. �

Remark 1. If we continue differentiation in time to investigate more regularity,
we obtain from (3.27)

ρ(...um(t), ϕk) + a(u̇m(t), ϕk)−
∫ t

0

β(t− s)a(u̇m(s), ϕk) ds

= (f̈(t), ϕk) + β̇(t)a(um(0), ϕk)

+ β(t)a(um(0), ϕk), k = 1, . . . , m, t ∈ (0, T ),

Further the term β̇(t)a(um(0), ϕk) leads to

β̇(t)a(um(0), üm(t)).
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But β̇ is not integrable. Besides, after integration in time, we can not use partial
integration to transfer one time derivative from β̇ to üm(t), since there is not enough
regularity to handle ...

um. This means that we can not get more regularity with
weakly singular kernel β. This also indicates that with smoother kernel we can get
higher regularity in case of homogeneous Dirichlet boundary condition under the
appropriate assumption on the data, that is, more regularity and compatibility.
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