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Abstract

The linearized Cahn-Hilliard-Cook equation is discretized in the spatial
variables by a standard finite element method. Strong convergence estimates
are proved under suitable assumptions on the covariance operator of the
Wiener process, which is driving the equation. The backward Euler time
stepping is also studied. The analysis is set in a framework based of analytic
semigroups. The main part of the work consists of detailed error bounds for
the corresponding deterministic equation.
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1 Introduction

In the first part of this work we introduce the Cahn-Hilliard and the Cahn-
Hilliard-Cook equation and we formulate the finite element method for these
equations. Also we have a short review to semigroups and we consider the
Cahn-Hilliard and Cahn-Hilliard-Cook equations in a semigroup approach.
At the end of first part we study the linear Cahn-Hilliard-Cook equation
in fully discrete case. Finally we will mention some strong convergence
estimates.

2 The Cahn-Hilliard equation

In this section we introduce the Cahn-Hilliard equation and an abstract
framework based on semigroups of bounded linear operators. We also derive
the finite element method for the Cahn-Hilliard equation.

2.1 Introduction

The Cahn-Hilliard equation,

ut = ∆(−∆u + f(u)), x ∈ Rn, t > 0, (2.1)

was proposed in [1] as a simple model for the process of phase separation
in a binary alloy at a fixed temperature. The function f : R → R is of
“bistable type” with three simple zeroes as shown in Figure 1. A typical
model nonlinearity is f(u) = u3 − u. The function u represents the concen-
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Figure 1: The form of the bistable nonlinearity

tration of one of the two metallic components of alloy. If we assume that
the total density is constant, then the composition of the mixture can be
expressed by the single function u.
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If the alloy is contained in a vessel D ⊂ Rn, the equation (2.1) should
be supplemented with boundary conditions on the boundary ∂D. These are
usually taken to be

∂u

∂n
= 0,

∂(−∆u + f(u))
∂n

= 0, x ∈ ∂D, t > 0. (2.2)

Since ∂f(u)
∂n = f ′(u)∂u

∂n = 0, the condition (2.2) is equivalent to

∂u

∂n
= 0,

∂∆u

∂n
= 0, x ∈ ∂D, t > 0.

Also we have u(x, 0) = u0(x) as initial condition. So we have the initial
boundary value problem

ut + ∆2u = ∆f(u), x ∈ D, t > 0,

∂u

∂n
= 0,

∂∆u

∂n
= 0, x ∈ ∂D, t > 0,

u(x, 0) = u0(x), x ∈ D.

(2.3)

2.2 Semigroup approach

Definition 2.1 (Semigroup). Let X be a Banach space with norm ‖·‖. A
family {E(t)}t≥0 of bounded linear operators on X is called a semigroup of
bounded linear operators if

1. E(0) = I, (identity operator),

2. E(t + s) = E(t)E(s), ∀s, t ≥ 0. (semigroup property)

The semigroup is called strongly continuous if

lim
t→0+

E(t)x = x ∀x ∈ X.

The infinitesimal generator of semigroup is the linear operator G defined by

Gx = lim
t→0+

E(t)x− x

t
,

its domain of definition D(G) being the space of all x ∈ X for which the
limit exists. The semigroup can be denoted by E(t) = etG.

In this work we consider −∆ with the homogeneous Neumann boundary
condition as an unbounded linear operator on L2 = L2(D) with standard
scalar product (·, ·) and norm ‖·‖. It has eigenvalues {λj}∞j=0 with

0 = λ0 < λ1 ≤ · · · ≤ λj ≤ · · · ≤ λj →∞,
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and corresponding orthonormal eigenfunctions {φj}∞j=0. Also let H be the
subspace of L2 which is orthogonal to the constants, H = {v ∈ L2 : (v, 1) =
0}, and let P be the orthogonal projection of L2 onto H. Clearly Pf = f−f̄ ,
where f̄ = 1

|Ω|
∫
D f dx. Define the linear operator A = −∆ with domain of

definition
D(A) =

{
v ∈ H2 ∩H :

∂v

∂n
= 0 on ∂D

}
.

By spectral theory we define Ḣs = D(As/2) with norms |v|s = ‖As/2v‖ for
real s. Then e−tA2

can be written as

e−tA2
v =

∞∑

j=1

e−tλ2
j (v, φj)φj .

Let E(t) = e−tA2
. The semigroup {E(t)}t≥0 is called semigroup generated

by −A2. This is a strongly continuous semigroup. Moreover, it is analytic,
meaning that e−tA2

can be extended as a holomorphic function of t. This
leads to the important properties in the following lemma.

Lemma 2.2. If {E(t)}t≥0 is the semigroup generated by −A2, then the
following hold

1. ‖AβE(t)v‖ ≤ Ct−β/2‖v‖, β ≥ 0,

2.
∫ t
0 ‖AE(s)v‖2ds ≤ C‖v‖2.

In the sequel we will write the equation (2.3) in operator form. By
definition of D(A) and H, equation (2.3) can be written as

ut + A2u = −APf(u) t > 0,

u(0) = u0.
(2.4)

which is equivalent to the fixed point equation

u(t) = e−tA2
u0 −

∫ t

0
e−(t−s)A2

APf(u(s)) ds.

2.3 The finite element method for the Cahn-Hilliard equa-
tion

In this section we formulate the finite element method (see [8]) for the Cahn-
Hilliard equation. Rewrite (2.3) in the form

ut −∆v = 0, x ∈ D, t > 0,

v = −∆u + f(u), x ∈ D, t > 0,

∂u

∂n
= 0,

∂v

∂n
= 0, x ∈ ∂D, t > 0,

u(x, 0) = u0(x), x ∈ D.

(2.5)
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Multiply the first and the second equation of (2.5) by φ = φ(x) ∈ H1(D) =
H1 and integrate over D. Using Green’s formula gives

(ut, φ) + (∇v,∇φ) = 0, ∀φ ∈ H1,

(v, φ) = (∇u,∇φ) + (f(u), φ), ∀φ ∈ H1.
(2.6)

So the variational formulation is: Find u(t), v(t) ∈ H1 such that (2.6) holds
and such that u(x, 0) = u0(x), for x ∈ D.

Let τh = {K} denote a triangulation of D and let Sh denote the contin-
uous piecewise polynomial functions on τh. So the finite element problem
is: Find uh(t), vh(t) ∈ Sh such that

(uh,t, χ) + (∇vh,∇χ) = 0, ∀χ ∈ Sh, t > 0,

(vh, χ) = (∇uh,∇χ) + (f(uh), χ), ∀χ ∈ Sh, t > 0,

uh(0) = uh,0.

(2.7)

Let Ṡh = {χ ∈ Sh : (χ, 1) = 0} and define Ah : Ṡh → Ṡh (the discrete
Laplacian) by

(Ahχ, η) = (∇χ,∇η) ∀χ, η ∈ Ṡh (2.8)

and Ph : L2 → Ṡh (the orthogonal projection) such that

(Phf, χ) = (f, χ) ∀χ ∈ Ṡh. (2.9)

Then we can write the equation (2.7) as

uh,t + A2
huh + AhPhf(uh) = 0, t > 0,

uh(0) = u0,h,
(2.10)

which is equivalent to the fixed point equation

uh(t) = e−tA2
hu0,h −

∫ t

0
e−(t−s)A2

hAhPhf(uh(s)) ds,

where

e−tA2
hv =

∞∑

j=1

e−tλ2
h,j (v, φh,j)φh,j ,

where (λh,j , φh,j) are the eigenpairs of A2
h.

3 The stochastic Cahn-Hilliard equation

In this section we introduce some definition and properties about stochastic
integrals and stochastic differential equation. For more details you can see
[10] and [9].
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3.1 Introduction

In this part we introduce the stochastic differential equation and in special
case we will drive the stochastic Cahn-Hilliard equation, also called the Cahn-
Hilliard-Cook equation.

Definition 3.1. A U -valued stochastic process, where U = L2(D) is called
a Q-Wiener process if

• W (0) = 0,

• {W (t)}t≥0 has continuous paths almost surely,

• {W (t)}t≥0 has independent increments,

• The increments have Gaussian law, that is

P ◦
(
W (t)−W (s)

)−1 = N
(
0, (t− s)Q

)
, 0 ≤ s ≤ t.

Definition 3.2 (Hilbert-Schmidt operators). An operator T ∈ L(U,H) is
Hilbert-Schmidt if

∑∞
k=1 ‖Tek‖2 < ∞ for an orthonormal basis {ek}k∈N in

U .

The Hilbert-Schmidt operators form a linear space denoted by L2(U,H)
which becomes a Hilbert space with scalar product and norm

〈T, S〉HS =
∞∑

k=1

〈Tek, Sek〉H , ‖T‖HS =
( ∞∑

k=1

‖Tek‖2
H

) 1
2
.

Consider the covariance operator Q : U → U , selfadjoint, positive semidef-
inite, bounded and linear. Also assume that W (t) is Q-Wiener process.
If

E
∫ t

0
‖T (s)Q1/2‖2

HS ds < ∞,

then we can define the stochastic integral
∫ t
0 T (s) dW (s).

One important property the stochastic integral is the isometry property:

E
∥∥∥
∫ t

0
T (s) dW (s)

∥∥∥
2

= E
∫ t

0
‖T (s)Q1/2‖2

HS ds. (3.1)

Definition 3.3. Let {W (t)}t∈[0,T ] be a U -valued Q-Wiener process on the
probability space (Ω,F , P ), adapted to a normal filtration {Ft}t∈[0,T ]. The
stochastic partial differential equation (SPDE) is of the form

dX(t) = (−AX(t) + F (X(t))) dt + B dW (t), 0 < t < T,

X(0) = ξ,
(3.2)

where the following assumptions hold:
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1. A is a linear operator, generating a strongly continuous semigroup of
bounded linear operators,

2. B ∈ L(U,H),

3. {F (X(t))}t∈[0,T ] is a predictable H-valued process with Bochner inte-
grable trajectories,

4. ξ is an F0-measurable H-valued random variable.

Let U = L2(D) and H = {v ∈ U : (v, 1) = 0}. In special case, if we
consider A2 as operator and assume that F (X(t)) = APf(X(t)), B = P
then the stochastic Cahn-Hilliard equation can be written as

dX(t) + A2X(t) dt + APf(X(t)) dt = P dW (t),
X(0) = PX0.

(3.3)

By using {E(t)}t≥0 = {e−tA2}t≥0 as a semigroup generated by −A2, the
mild solution of (3.3) is formally given by the integral equation

X(t) = E(t)PX0 −
∫ t

0
E(t− s)APf(X(s)) ds +

∫ t

0
E(t− s) P dW (s).

For the linear Cahn-Hilliard-Cook equation we have

dX(t) + A2X(t) dt = P dW (t)
X(0) = PX0,

(3.4)

with mild solution

X(t) = E(t)PX0 +
∫ t

0
E(t− s)P dW (s).

In this work we consider the linear Cahn-Hilliard-Cook equation. The reason
why we study the linear equation is that it is a simpled equation serving as
a starting point for the study of the nonlinear Cahn-Hilliard-Cook equation.
However it should be noted that a linearised Cahn-Hilliard-Cook equation
of the form (3.4) but with A2 replaces by A2 + A is used in the physics
literature [6, 4].

3.2 Finite element method

Assume that {τh}0<h<1 be a triangulation with mesh size h and {Sh}0<h<1

is the set of continuous piecewise polynomial functions where Sh ⊂ H1(D).
Also let Ah and Ph be the same in (2.8) and (2.9). The finite element
problem for (3.3) is:
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Find Xh(t) ∈ Ṡh such that

dXh(t) + A2
hXh(t) dt + AhPhf(Xh(s)) dt = Ph dW (t),

Xh(0) = PhX0,
(3.5)

where PhW (t) is Qh-Wiener process with Qh = PhQPh. The mild solution
is given by the equation

Xh(t) = Eh(t)PhX0−
∫ t

0
Eh(t−s)AhPhf(Xh(s)) ds+

∫ t

0
E(t−s)Ph dW (s),

where Eh(t) = e−tA2
h . In the linear case, the finite element problem is

dXh(t) + A2
hXh(t) dt = Ph dW (t),

Xh(0) = PhX0,
(3.6)

with mild solution

Xh(t) = E(t)PhX0 +
∫ t

0
E(t− s)Ph dW (s).

Let k = ∆tn, tn = nk and ∆Wn = W (tn) − W (tn−1). Also consider
∆Xh,n = Xh,n −Xh,n−1 and apply the backward Euler method to (3.6) to
get

Xh,n ∈ Ṡh,

∆Xh,n + A2
hXh,n∆tn = Ph∆Wn, (3.7)

Xh,0 = PhX0.

This implies
Xh,n −Xh,n−1 + kA2

hXh,n = Ph∆Wn.

If we set Ek,h = (I + kA2
h)−1 we get

(I + kA2
h)Xh,n = Ph∆Wn + Xh,n−1.

So
Xh,n = Ek,hPh∆Wn + Ek,hXh,n−1.

We repeat it for Xh,n−1, we get

Xh,n = Ek,hPh∆Wn + Ek,h

(
Ek,hPh∆Wn−1 + Ek,hXh,n−2

)

= E2
k,hXh,n−2 + Ek,hPh∆Wn + E2

k,hPh∆Wn−1

...

= En
k,hXh,0 +

n∑

j=1

En−j+1
k,h Ph∆Wj .
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So

Xh,n = En
k,hPhX0 +

n∑

j=1

En−j+1
k,h Ph∆Wj . (3.8)

3.3 Strong convergence estimates

The main results in this work are the following error estimates.

Theorem 3.4. Let Xh and X be the solutions of (3.6) and (3.4). If X0 ∈
L2(Ω, Ḣβ) and ‖Aβ−2

2 Q
1
2 ‖HS < ∞ for some β ∈ [1, r], then for all t ≥ 0

‖Xh(t)−X(t)‖L2(Ω,H)

≤ Chβ
(
‖X0‖L2(Ω,Ḣβ) + | log h|‖Aβ−2

2 Q
1
2 ‖HS

)
.

If we consider the fully discrete case we have the following theorem.

Theorem 3.5. If X0 ∈ L2(Ω, Ḣβ) and ‖Aβ−2
2 Q

1
2 ‖HS < ∞ for some 1 ≤

β ≤ min(r, 4), then

‖Xh,n(t)−X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Cβ,kk

β
4
)(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
.

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

3.4 Earlier works

In this section we mention to some earlier works about the Cahn-Hilliard-
Cook equation.

Da Prato and Debussche [3] considered (3.3) where f is an odd degree
polynomial with positive leading coefficient. They have proved the existence
and uniqueness of a weak solution to (3.3).

Cardon Weber [2] has done an implicit approximation scheme, based on
the finite difference method. Also she has proved that the approximation
scheme converges in probability, uniformly in space and time. Kossioris and
Zouraris, [7], proved strong convergence for the finite element method for
the linear equation in 1-D.

Elder, Rogers and Rashim [4] and Klein and Batrouni [6] have considered
linearized Cahn-Hilliard-Cook equation of the form (3.4), with A2+A instead
of A2 as the operator.

There are a lot of relevant works about the deterministic Cahn-Hilliard
equation. Larsson and Elliott [5] have analyzed a finite element method for
the Cahn-Hilliard equation in both spatially semidiscrete and completely
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discrete case based on the backward Euler method. Also they have obtained
error bounds of optimal order over a finite time interval. The computations
in our work is based on the techniques of this paper.
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FINITE ELEMENT APPROXIMATION OF THE LINEAR
STOCHASTIC CAHN-HILLIARD EQUATION

STIG LARSSON1 AND ALI MESFORUSH

Abstract. The linearized Cahn-Hilliard-Cook equation is discretized
in the spatial variables by a standard finite element method. Strong
convergence estimates are proved under suitable assumptions on the
covariance operator of the Wiener process, which is driving the equation.
The backward Euler time stepping is also studied. The analysis is set in
a framework based of analytic semigroups. The main part of the work
consists of detailed error bounds for the corresponding deterministic
equation.

1. Introduction

Let D be a bounded domain in Rd for d ≤ 3 with a sufficiently smooth
boundary. The deterministic Cahn-Hilliard equation [2, 3] is

(1.1)

ut −∆v = 0, for x ∈ D, t > 0,

v = −∆u + f(u), for x ∈ D, t > 0,

∂u

∂n
= 0,

∂∆u

∂n
= 0, for x ∈ ∂D, t > 0,

u(·, 0) = u0,

where u = u(x, t), ∆ =
∑d

i=1
∂2

∂x2
i
, and ut = ∂u

∂t . In the boundary condition
∂
∂n denotes the outward normal derivative. A typical f is f(s) = s3 − s.

It is easy to see that a sufficiently smooth solution of (1.1) satisfies con-
servation of mass ∫

D
u(x, t) dx =

∫

D
u0(x) dx, t ≥ 0.

Henceforth we assume that the initial datum satisfies
∫
D u0(x) dx = 0.

1991 Mathematics Subject Classification. 65M60, 60H15, 60H35, 65C30.
Key words and phrases. Cahn-Hilliard-Cook equation, finite element method, backward

Euler method, error estimate, strong convergence.
1Supported by the Swedish Research Council (VR) and by the Swedish Foundation

for Strategic Research (SSF) through GMMC, the Gothenburg Mathematical Modelling
Centre.
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2 S. LARSSON AND A. MESFORUSH

Let ‖·‖ and (·, ·) denote the usual norm and inner product in L2 = L2(D)
and let Hs = Hs(D) be the usual Sobolev space with norm ‖·‖s. We also
let H be the subspace of L2 which is orthogonal to the constants, i.e., H =
{v ∈ L2 : (v, 1) = 0}, and let P be the orthogonal projection of L2 onto H.
We define the linear operator A = −∆ with domain of definition

D(A) =
{
v ∈ H2 ∩H :

∂v

∂n
= 0 on ∂D

}
.

Then A is a selfadjoint, positive definite, densely defined operator on H and
(1.1) may be written as an abstract initial value problem to find u(t) ∈ H
such that

(1.2)
ut + A2u + APf(u) = 0, t > 0,

u(0) = u0.

By spectral theory we also define Ḣs = D(A
s
2 ) with norms |v|s = ‖A s

2 v‖ for
a real s. It is well known that, for integer s ≥ 0, Ḣs is a subspace of Hs∩H
characterized by certain boundary conditions and that the norms | · |s and
‖·‖s are equivalent on Ḣs. In particular, we have Ḣ1 = H1 ∩ H and the
norm |v|1 = ‖A 1

2 v‖ = ‖∇v‖ is equivalent to ‖v‖1 on Ḣ1.
For v ∈ H we define e−tA2

v =
∑∞

j=1 e−tλ2
j (v, ϕj)ϕj , where (λj , ϕj) are the

eigenpairs of A with orthonormal eigenvectors. Let {E(t)}t≥0 = {e−tA2}t≥0

be the semigroup generated by −A2.
The stochastic Cahn-Hilliard equation, also called the Cahn-Hilliard-Cook

equation [1, 5], is

(1.3)
dX(t) + A2X(t) dt + APf(X(t)) dt = dW (t), t > 0,

X(0) = X0.

Let (Ω,F , P, {Ft}t≥0) be a filtered probability space, let Q be a selfadjoint
positive semidefinite bounded linear operator on H, and let {W (t)}t≥0 be an
H-valued Wiener process with covariance operator Q. We use the semigroup
framework of [11] where (1.3) is given a rigorous meaning in terms of the
mild solution which satisfies the integral equation

X(t) = E(t)X0 −
∫ t

0
E(t− s)APf(X(s)) ds +

∫ t

0
E(t− s) dW (s),

where
∫ t
0 dW (s) denotes the H-valued Itô integral. Existence and uniqueness

of solutions is proved in [6]. In this paper we study numerical approximation
of the linear Cahn-Hilliard-Cook equation,

(1.4)
dX + A2X dt = dW, t > 0,

X(0) = X0,
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with the mild solution

(1.5) X(t) = E(t)X0 +
∫ t

0
E(t− s) dW (s).

The reason why we study the linearized equation is that it is a first step
towards the nonlinear equation (1.3). However, we remark that a linearized
equation of the form (1.4), but with A2 replaced by A2 + A is studied by
numerical simulation in the physics literature [7, 9].

For the approximation of the Cahn-Hilliard equation we follow the frame-
work of [8]. We assume that we have a family {Sh}h>0 of finite-dimensional
approximating subspaces of H1. We formulate the semidiscrete problem:
Find uh(t), vh(t) ∈ Sh such that

(1.6)

(uh,t, χ) + (∇vh,∇χ) = 0, ∀χ ∈ Sh, t > 0,

(vh, χ) = (∇uh,∇χ) + (f(uh), χ), ∀χ ∈ Sh, t > 0,

(uh(0), χ) = (u0, χ), ∀χ ∈ Sh.

Let now Ṡh = {χ ∈ Sh : (χ, 1) = 0}. It is immediate from (1.6) that
uh(t) ∈ Ṡh if u0 ∈ H. Therefore uh can equivalently be obtained from the
following equations: Find uh(t), wh(t) ∈ Ṡh such that

(1.7)

(uh,t, χ) + (∇wh,∇χ) = 0, ∀χ ∈ Ṡh, t > 0,

(wh, χ) = (∇uh,∇χ) + (f(uh), χ), ∀χ ∈ Ṡh, t > 0,

(uh(0), χ) = (u0, χ), ∀χ ∈ Ṡh.

The relation between wh and vh is wh = Pvh. Equivalently we may write
this as

(1.8)
uh,t + A2

huh + AhPhf(uh) = 0, t > 0,

uh(0) = u0,h,

where the operator Ah : Ṡh → Ṡh (the “discrete Laplacian”) is defined by

(Ahχ, η) = (∇χ,∇η), ∀χ, η ∈ Ṡh,

and Ph : L2 → Ṡh is the orthogonal projection. Ah is selfadjoint and positive
definite.

The finite element approximation of the linearized Cahn-Hilliard-Cook
equation (1.4) is: Find Xh(t) ∈ Ṡh such that,

(1.9)
dXh + A2

hXhdt = Ph dW, t > 0,

Xh(0) = PhX0.

For v ∈ Ṡh we define Eh(t)v = e−tA2
hv =

∑∞
j=1 e−tλ2

h,j (v, ϕh,j)ϕh,j , where
(λh,j , ϕh,j) are the eigenpairs of Ah. Then {Eh(t)}t≥0 is the semigroup
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generated by −A2
h. The mild solution of (1.9) is

(1.10) Xh(t) = Eh(t)PhX0 +
∫ t

0
Eh(t− s)Ph dW (s).

Let k = ∆t, tn = nk, ∆Xh,n = Xh,n−Xh,n−1, ∆Wn = W (tn)−W (tn−1),
and apply Euler’s method to (1.9) to get

(1.11) ∆Xh,n + A2
hXh,n∆t = Ph∆Wn.

Set Ekh = (I + kA2
h)−1 to obtain a discrete variant of the mild solution

Xh,n = En
khPhX0 +

n∑

j=1

En−j+1
kh Ph∆Wj .

In Section 2 we assume that {Sh}h>0 admits an error estimate of order
O(hr) as the mesh parameter h → 0 for some integer r ≥ 2. Then we show
error estimates for the semigroup Eh(t) with minimal regularity requirement.
More precisely, in Theorem 2.1 we show, for β ∈ [1, r],

‖Fh(t)v‖ ≤ Chβ|v|β, v ∈ Ḣβ,
( ∫ t

0
‖Fh(τ)v‖2 dτ

) 1
2 ≤ C| log h|hβ|v|β−2, v ∈ Ḣβ−2,

where Fh(t) = Eh(t)Ph −E(t).
Analogous estimates are obtained for the implicit Euler approximation in

Theorem 2.2.
In Section 3 we use these estimates to prove the strong convergence es-

timates for approximations of the linear Cahn-Hilliard-Cook equation. Let
L2(Ω,H) define the space of square integrable H-valued random variables
with norm

‖X‖L2(Ω,H) =
(
E

(
‖X‖2

)) 1
2 =

(∫

Ω
‖X(ω)‖2 dP (ω)

) 1
2
.

Let Q denote the covariance operator of the Wiener process W , and let
‖T‖HS denote the Hilbert-Schmidt norm of bounded linear operators on H.
In Theorem 3.1 we study the spatial regularity of the mild solution (1.5)
and show

‖X(t)‖L2(Ω,Ḣβ) ≤ C
(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
, β ≥ 0.

Moreover, in Theorem 3.2 we show strong convergence for the mild solution
Xh in (1.10):

‖Xh(t)−X(t)‖L2(Ω,H)

≤ Chβ
(
‖X0‖L2(Ω,Ḣβ) + | log h|‖Aβ−2

2 Q
1
2 ‖HS

)
, β ∈ [1, r].



APPROXIMATION OF THE LINEAR STOCHASTIC CAHN-HILLIARD EQUATION 5

In Theorem 3.3 for the fully discrete case we obtain similarly, for β ∈
[1, min r, 4],

‖Xh,n(t)−X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Ck,βk

β
4
)(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
,

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

These results require that ‖Aβ−2
2 Q

1
2 ‖HS < ∞. In order to see what this

means we compute two special cases. For Q = I (spatially uncorrelated
noise, or space-time white noise), by using the asymptotics λj ∼ j

2
d , we

have

‖Aβ−2
2 Q

1
2 ‖2

HS = ‖Aβ−2
2 ‖2

HS =
∞∑

j=1

λβ−2
j ∼

∞∑

j=1

j(β−2) 2
d < ∞,

if β < 2 − d
2 . Hence, for example, β < 1

2 if d = 3. On the other hand, if Q

is of trace class, Tr(Q) = ‖Q 1
2 ‖2

HS < ∞, then we may take β = 2.
There are few studies of numerical methods for the Cahn-Hilliard-Cook

equation. We are only aware of [4] in which convergence in probability
was proved for a difference scheme for the nonlinear equation in multiple
dimensions, and [10] where strong convergence was proved for the finite
element method for the linear equation in 1-D.

2. Error estimates for the deterministic Cahn-Hilliard
equation

We start this section with some necessary inequalities. Let {E(t)}t≥0 =
{e−tA2}t≥0 and {Eh(t)}t≥0 = {e−tA2

h}t≥0 be the semigroups generated by
−A2 and −A2

h, respectively. By the smoothing property there exist positive
constants c, C such that

‖A2β
h Eh(t)Phv‖ + ‖A2βE(t)Pv‖ ≤ Ct−βe−ct‖v‖, β ≥ 0,(2.1)

∫ t

0
‖AhEh(s)Phv‖2 ds +

∫ t

0
‖AE(s)Pv‖2 ds ≤ C‖v‖2.(2.2)

Let Rh : Ḣ1 → Ṡh be the Ritz projection be defined by

(∇Rhv,∇χ) = (∇v,∇χ), ∀χ ∈ Ṡh.

It is clear that Rh = A−1
h PhA. We assume that for some integer r ≥ 2, we

have the error bound

(2.3) ‖Rhv − v‖ ≤ Chβ|v|β, v ∈ Ḣβ, 1 ≤ β ≤ r.

This holds with r = 2 for the standard piecewise linear Lagrange finite
element method in a bounded convex polynomial domain D. In the next
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theorem we prove error estimates for the deterministic Cahn-Hilliard equa-
tion in the semidiscrete case.

Theorem 2.1. Set Fh(t) = Eh(t)Ph−E(t). Then, for 1 ≤ β ≤ r and t ≥ 0,
we have

‖Fh(t)v‖ ≤ Chβ|v|β, v ∈ Ḣβ,(2.4)
(∫ t

0
‖Fh(τ)v‖2 dτ

) 1
2 ≤ C| log h|hβ|v|β−2, v ∈ Ḣβ−2.(2.5)

Proof. Let u(t) = E(t)v, uh(t) = Eh(t)Phv, and e(t) = uh(t) − u(t). We
want to prove that

‖e(t)‖ ≤ Chβ|v|β, v ∈ Ḣβ,
(∫ t

0
‖e(τ)‖2 dτ

) 1
2 ≤ C| log h|hβ|v|β−2, v ∈ Ḣβ−2.

Let G = A−1 and Gh = A−1
h Ph. Apply G to (1.2) with f(u) ≡ 0 to get

Gut +Au = 0, and apply G2
h to (1.8) with f(uh) ≡ 0 to get G2

huh,t +uh = 0.
Hence

G2
het + e = −G2

hut − u + Gh(Gut + Au) = (GhA− I)u−Gh(GhA− I)Gut,

that is,

(2.6) G2
het + e = ρ + Ghη,

where ρ = (Rh − I)u, η = −(Rh − I)Gut. Take the inner product of (2.6)
by et to get

‖Ghet‖2 +
1
2

d
dt
‖e‖2 = (ρ, et) + (η, Ghet),

Since (η, Ghet) ≤ ‖η‖‖Ghet‖ ≤ 1
2‖η‖2 + 1

2‖Ghet‖2, we obtain

‖Ghet‖2 +
d
dt
‖e‖2 ≤ 2(ρ, et) + ‖η‖2.

Multiply this inequality by t to get t‖Ghet‖2 + t d
dt‖e‖2 ≤ 2t(ρ, et) + t‖η‖2.

Note that

t
d
dt
‖e‖2 =

d
dt

(
t‖e‖2

)
− ‖e‖2, t(ρ, et) =

d
dt

(
t(ρ, e)

)
− (ρ, e)− t(ρt, e),

so that

t‖Ghet‖2 +
d
dt

(
t‖e‖2

)
≤ 2

d
dt

(
t(ρ, e)

)
+ 2|(ρ, e)|+ 2|t(ρt, e)|+ t‖η‖2 + ‖e‖2.
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But

|(ρ, e)| ≤ ‖ρ‖‖e‖ ≤ 1
2
‖ρ‖2 +

1
2
‖e‖2,

|t(ρt, e)| ≤ t‖ρt‖‖e‖ ≤
1
2
t2‖ρt‖2 +

1
2
‖e‖2.

Hence

t‖Ghet‖2 +
d
dt

(
t‖e‖2

)
≤ 2

d
dt

(
t(ρ, e)

)
+ ‖ρ‖2 + t2‖ρt‖2 + t‖η‖2 + 3‖e‖2.

Integrate over [0, t] and use Young’s inequality to get
∫ t

0
τ‖Ghet‖2 dτ + t‖e‖2 ≤ 2t‖ρ‖2 +

1
2
t‖e‖2 +

∫ t

0
‖ρ‖2 dτ +

∫ t

0
τ2‖ρt‖2 dτ

+
∫ t

0
τ‖η‖2 dτ + 3

∫ t

0
‖e‖2 dτ.

Hence

(2.7) t‖e‖2 ≤ Ct‖ρ‖2 + C

∫ t

0

(
‖ρ‖2 + τ2‖ρt‖2 + τ‖η‖2 + ‖e‖2

)
dτ.

We must bound
∫ t
0 ‖e‖2 dτ . Multiply (2.6) by e to get

1
2

d
dt
‖Ghe‖2+‖e‖2 ≤ ‖ρ‖‖e‖+‖η‖‖Ghe‖ ≤ 1

2
‖ρ‖2+

1
2
‖e‖2+‖η‖ max

0≤τ≤t
‖Ghe‖,

so that

(2.8)
d
dt
‖Ghe‖2 + ‖e‖2 ≤ ‖ρ‖2 + 2‖η‖ max

0≤τ≤t
‖Ghe‖.

Integrate (2.8), note that Ghe(0) = A−1
h Ph(Ph − I)v = 0, to get

‖Ghe‖2 +
∫ t

0
‖e‖2 dτ ≤

∫ t

0
‖ρ‖2 dτ + max

0≤τ≤t
‖Ghe‖2 +

(∫ t

0
‖η‖ dτ

)2
.

Hence, since t is arbitrary,

(2.9)
∫ t

0
‖e‖2 dτ ≤

∫ t

0
‖ρ‖2 dτ +

(∫ t

0
‖η‖ dτ

)2
.

We insert (2.9) in (2.7) and conclude

t‖e‖2 ≤ Ct‖ρ‖2 + C

∫ t

0

(
‖ρ‖2 + τ2‖ρt‖2 + τ‖η‖2

)
dτ

+ C
(∫ t

0
‖η‖ dτ

)2
.

(2.10)
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We compute the terms in the right hand side. With v ∈ Ḣβ, recalling
ρ = (Rh − I)u and using (2.3), we have

(2.11) ‖ρ(t)‖ ≤ Chβ|u(t)|β ≤ Chβ‖E(t)A
β
2 v‖ ≤ Chβ‖Aβ

2 v‖ ≤ Chβ|v|β,

so that,

t‖ρ‖2 ≤ Ch2βt|v|2β,

∫ t

0
‖ρ‖2 dτ ≤ Ch2βt|v|2β.

Similarly, by (2.1),

‖ρt(t)‖ ≤ Chβ|ut(t)|β ≤ Chβ‖A2E(t)A
β
2 v‖ ≤ Chβt−1|v|β,

so that

(2.12)
∫ t

0
τ2‖ρt‖2 dτ ≤ Chβt|v|2β.

Moreover, since η = −(Rh − I)Gut,

‖η(t)‖ ≤ Chβ|Gut(t)|β ≤ Chβ‖AE(t)A
β
2 v‖ ≤ Chβt−

1
2 |v|β,

so that
(∫ t

0
‖η‖ dτ

)2
≤ Ch2βt|v|2β,

∫ t

0
τ‖η‖2 dτ ≤ Ch2βt|v|2β.

By inserting these in (2.10) we conclude

t‖e‖2 ≤ Ch2βt|v|2β,

which proves (2.4).
To prove (2.5) we recall (2.9) and let v ∈ Ḣβ−2. By using (2.3) and (2.2)

we obtain
∫ t

0
‖ρ‖2 dτ ≤ Ch2β

∫ t

0
|u|2β dτ = Ch2β

∫ t

0
‖AE(τ)A

β−2
2 v‖2 dτ

≤ Ch2β|v|2β−2.

(2.13)

Now we compute
∫ t
0 ‖η‖ dτ . To this end we assume first 1 < β ≤ r and let

1 ≤ γ < β. By using (2.1) and (2.3) we get
∫ t

0
‖η‖ dτ ≤ Chγ

∫ t

0
‖Gut‖γ dτ = Chγ

∫ t

0
‖A2−β−γ

2 E(τ)A
β−2

2 v‖ dτ

≤ Chγ

∫ t

0
τ−1+β−γ

4 e−cτ dτ |v|β−2,
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where, since 0 < β − γ ≤ r − 1,
∫ t

0
τ−1+β−γ

4 e−cτ dτ =
4

β − γ

∫ t
β−γ

4

0
e−cs

4
β−γ ds ≤ C

β − γ

∫ ∞

0
e−cs

4
r−1 ds.

Hence, with C independent of β,

(2.14)
∫ t

0
‖η‖ dτ ≤ Chγ

β − γ
|v|β−2.

Now let 1
β−γ = | log h| = − log h, so γ → β as h → 0, and

γ log h = (γ − β + β) log h = 1 + β log h.

Therefore we have
hγ

β − γ
= | log h|eγ log h = | log h|e1+β log h ≤ C| log h|hβ.

Put this in (2.14) to get, for 1 < β ≤ r,

(2.15)
∫ t

0
‖η‖ dτ ≤ Chβ| log h||v|β−2,

and hence also for 1 ≤ β ≤ r, because C is independent of β. Finally, we
put (2.13) and (2.15) in (2.9) to get

(∫ t

0
‖e‖2 dτ

) 1
2 ≤ C| log h|hβ|v|β−2,

which is (2.5). ¤

The reason why we assume β ≥ 1 is that in (2.5) wee need at least v ∈ Ḣ−1

for Eh(t)Phv to be defined.
Now we turn to the fully discrete case. The backward Euler method

applied to

uh,t + A2
huh = 0, t > 0,

uh(0) = Phv,

defines Un ∈ Ṡh by

(2.16)
∂Un + A2

hUn = 0, n ≥ 1
U0 = Phv,

where ∂Un = 1
k (Un − Un−1). Denoting En

kh = (I + kA2
h)−n, we have Un =

En
khv and, similar to (2.1), (2.2),

‖En
khv‖ ≤ ‖v‖, k

n∑

j=1

‖AhEj
khv‖2 ≤ 1

2
‖v‖2.
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To prove this, take the inner product of ∂Uj + A2
hUj = 0 by Uj , to get

‖Uj‖2 + k‖AhUj‖2 = (Uj , Uj−1) ≤ ‖Uj‖‖Uj−1‖ ≤
1
2
‖Uj‖2 +

1
2
‖Uj−1‖2,

which implies that ‖Ui‖2 − ‖Uj−1‖2 + 2k‖AhUj‖2 ≤ 0, and hence

‖Un‖2 + 2k
n∑

j=1

‖AhUj‖2 ≤ ‖v‖2.

The next theorem provides error estimates in the L2 norm for the deter-
ministic Cahn-Hilliard equation in the fully discrete case.

Theorem 2.2. Set Fn = En
khPh − E(tn). Then, for 1 ≤ β ≤ min(r, 4) and

n ≥ 1, we have

‖Fnv‖ ≤ C(hβ + k
β
4 )|v|β, v ∈ Ḣβ,(2.17)

(
k

n∑

j=1

‖Fjv‖2
) 1

2 ≤
(
C| log h|hβ + Cβ,kk

β
4
)
|v|β−2, v ∈ Ḣβ−2,(2.18)

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

Proof. Let G and Gh be as in the proof of Theorem 2.1. With en = Un−un,
we get

(2.19) G2
h∂en + en = ρn + Ghηn + Ghδn,

where un = u(tn), ut,n = ut(tn) and

ρn = (Rh − I)un, ηn = −(Rh − I)G∂un, δn = −G(∂un − ut,n).

Multiply (2.19) by ∂en and note that

(ηn, Gh∂en) ≤ ‖ηn‖2 +
1
4
‖Gh∂en‖2, (δn, Gh∂en) ≤ ‖δn‖2 +

1
4
‖Gh∂en‖2,

to get

(2.20) ‖Gh∂en‖2 + 2(en, ∂en) ≤ 2(ρn, ∂en) + 2‖ηn‖2 + 2‖δn‖2.

We have the following identities

∂(anbn) = (∂an)bn + an−1(∂bn)(2.21)

= (∂an)bn + an(∂bn)− k(∂an)(∂bn).(2.22)

By using (2.22) we have

2(en, ∂en) = ∂‖en‖2 + k‖∂en‖2,

(ρn, ∂en) = ∂(ρn, en)− (∂ρn, en) + k(∂ρn, ∂en).

Put these in (2.20) and cancel k‖∂en‖2 to get

‖Gh∂en‖2 + ∂‖en‖2 ≤ 2∂(ρn, en)− 2(∂ρn, en) + k‖∂ρn‖2 + 2‖ηn‖2 + 2‖δn‖2.
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Multiply this by tn−1 and note that k ≤ tn−1 for n ≥ 2, so that we have for
n ≥ 1

tn−1‖Gh∂en‖2+tn−1∂‖en‖2

≤ 2tn−1∂(ρn, en)− 2tn−1(∂ρn, en) + t2n−1‖∂ρn‖2

+ 2tn−1‖ηn‖2 + 2tn−1‖δn‖2.

(2.23)

By (2.21) we have

tn−1∂‖en‖2 = ∂(tn‖en‖2)− ‖en‖2,

2tn−1∂(ρn, en) = 2∂(tn(ρn, en))− 2(ρn, en).

Put these in (2.23) to get

tn−1‖Gh∂en‖2+∂(tn‖en‖2)

≤ C
(
∂(tn(ρn, en)) + ‖ρn‖2 + t2n−1‖∂ρn‖2 + ‖en‖2

)

+ C
(
tn−1‖ηn‖2 + tn−1‖δn‖2

)
.

(2.24)

Note that

k
n∑

j=1

∂
(
tj‖ej‖2

)
= tn‖en‖2, , k

n∑

j=1

∂
(
tj(ρj , ej)

)
= tn(ρn, en)(2.25)

By summation in (2.24) and using (2.25) we get

k
n∑

j=1

tj−1‖Gh∂ej‖2+tn‖en‖2 ≤ Ctn‖ρn‖2

+ Ck
n∑

j=1

(
‖ρj‖2 + t2j−1‖∂ρj‖2 + ‖ej‖2

)

+ Ck
n∑

j=1

(
tj−1‖ηj‖2 + tj−1‖δj‖2

)
.

(2.26)

Now we estimate k
∑n

j=1 ‖ej‖2. Take the inner product of (2.19) by en to
get

(2.27) 2(G2
h∂en, en) + ‖en‖2 ≤ ‖ρn‖2 + 2

(
‖ηn‖ + ‖δn‖

)
‖Ghen‖.

By (2.22) we have

(2.28) 2(G2
h∂en, en) = 2(∂Ghen, Ghen) = ∂‖Ghen‖2 + k‖∂Ghen‖2.
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By summation in (2.27) and using Ghe0 = 0, we get

‖Ghen‖2 + k
n∑

j=1

‖ej‖2 ≤ k
n∑

j=1

‖ρj‖2 +
1
2

max
j≤n

‖Ghej‖2

+ 2
(
k

n∑

j=1

(
‖ηj‖ + ‖δj‖

))2
.

Hence

(2.29) k
n∑

j=1

‖ej‖2 ≤ k
n∑

j=1

‖ρj‖2 + 2
(
k

n∑

j=1

(
‖ηj‖ + ‖δj‖

))2
.

By putting (2.29) in (2.26) we get

tn‖en‖2 ≤Ctn‖ρn‖2

+ Ck
n∑

j=1

(
‖ρj‖2 + t2j−1‖∂ρj‖2 + tj−1‖ηj‖2 + tj−1‖δj‖2

)

+ C
(
k

n∑

j=1

(
‖ηj‖ + ‖δj‖

))2
.

(2.30)

Now we compute the terms in the right hand side. With v ∈ Ḣβ we have
by (2.11),

(2.31) ‖ρn‖2 ≤ Ch2β|v|2β, k
n∑

j=1

‖ρj‖2 ≤ Ch2βtn|v|2β.

By using the Cauchy-Schwartz inequality we have

k
n∑

j=1

t2j−1‖∂ρj‖2 = k
n∑

j=2

t2j−1

∥∥∥1
k

∫ tj

tj−1

ρt dτ
∥∥∥

2

≤
n∑

j=2

(
t2j−1

1
k

∫ tj

tj−1

τ−2dτ

∫ tj

tj−1

τ2‖ρt(τ)‖2 dτ
)
,

≤
∫ tn

0
τ2‖ρt‖2dτ.

Hence, by (2.12),

(2.32) k

n∑

j=1

t2j−1‖∂ρj‖2 ≤ Ch2βtn|v|2β.
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By using (2.3) and (2.1) we have

‖ηj‖ ≤ Chβ|G∂uj |β ≤
Chβ

k

∥∥∥
∫ tj

tj−1

AE(τ)A
β
2 v dτ

∥∥∥

≤ Chβ

k

∫ tj

tj−1

τ−
1
2 dτ‖Aβ

2 v‖ ≤ Chβ

k
(
√

tj −
√

tj−1)|v|β ≤
Chβ

√
tj
|v|β.

So

(2.33) k
n∑

j=1

tj−1‖ηj‖2 ≤ Ch2βtn|v|2β, k
n∑

j=1

‖ηj‖ ≤ Chβt
1
2
n |v|β.

By using (2.1) we have, for j ≥ 2,

‖δj‖ ≤
∥∥∥1
k

∫ tj

tj−1

(τ − tj−1)Gutt(τ)dτ
∥∥∥ ≤

∫ tj

tj−1

‖A3−β
2 E(τ)A

β
2 v‖ dτ

≤ C

∫ tj

tj−1

τ
−6+β

4 dτ |v|β,

so that, by Hölder’s inequality with p = 4
β and q = 4

4−β , 1 ≤ β < 4,
∫ tj

tj−1

τ
−6+β

4 dτ ≤ Ck
β
4

(∫ tj

tj−1

(
τ
−6+β

4
) 4

4−β dτ
) 4−β

4

≤ Ck
β
4

(β − 4
2

(
t
− 2

4−β

j−1 − t
− 2

4−β

j

)) 4−β
4

≤ Ck
β
4 t
− 1

2
j−1.

The same result is obtained with β = 4. For j = 1 we have

‖δ1‖ ≤
∥∥∥1
k

∫ k

0
τGutt(τ) dτ

∥∥∥ ≤ C
1
k

∫ k

0
τ
−2+β

4 dτ |v|β

≤ C
4

2 + β
k
−2+β

4 |v|β ≤ Ck
β
4 t
− 1

2
1 |v|β

So we have, for j ≥ 1,

‖δj‖ ≤ Ck
β
4 t
− 1

2
j |v|β.

Hence

(2.34) k
n∑

j=1

‖δj‖ ≤ ck
β
4 t

1
2
n |v|β, k

n∑

j=1

tj−1‖δj‖2 ≤ Ck
β
2 tn|v|2β.

Put (2.31), (2.32), (2.33), and (2.34) in (2.30), to get

‖en‖ ≤ C(hβ + k
β
4 )|v|β.

This completes the proof (2.17).
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To prove (2.18) we recall (2.29) and let v ∈ Ḣβ−2. We know that
k

∑n
j=1 ‖ρj‖2 = k‖ρ1‖2 + k

∑n
j=2 ‖ρj‖2, where by (2.1)

k‖ρ1‖2 ≤ kCh2β‖AE(k)A
β−1

2 v‖2 ≤ Ch2β|v|β−2,

and

k
n∑

j=2

‖ρj‖2 =
n∑

j=2

∫ tj

tj−1

∥∥∥ρ(s) +
∫ tj

s
ρt(τ) dτ

∥∥∥
2
ds

≤ 2
n∑

j=2

∫ tj

tj−1

‖ρ(s)‖2 ds + 2
n∑

j=2

∫ tj

tj−1

∥∥∥
∫ tj

s
ρt(τ) dτ

∥∥∥
2
ds

≤ 2
∫ tn

t1

‖ρ(s)‖2 ds + 2
n∑

j=2

∫ tj

tj−1

(tj − s)
∫ tj

tj−1

‖ρt(τ)‖2 dτ ds

≤ 2
∫ tn

0
‖ρ‖2 dτ + 2k

∫ tn

t1

τ‖ρt‖2 dτ,

since tj − s ≤ k ≤ τ and where, by (2.13),
∫ tn

0
‖ρ‖2 dτ ≤ Ch2β|v|2β−2,

and

k

∫ tn

t1

τ‖ρt‖2 dτ ≤ Ch2βk

∫ tn

t1

τ‖A3E(τ)A
β−2

2 v‖2 dτ

≤ Ch2βk

∫ tn

k
τ−2 dτ |v|2β−2

≤ Ch2βk(k−1 − t−1
n ) ≤ Ch2β|v|2β−2.

So

(2.35) k

n∑

j=1

‖ρj‖2 ≤ Ch2β|v|2β−2.

Now we compute k
∑n

j=1 ‖ηj‖. Recall that ηj = −(Rh − I)G∂uj and η =
−(Rh − I)Gut, so

‖ηj‖ =
∥∥∥(Rh − I)G

1
k

∫ tj

tj−1

ut dτ
∥∥∥ ≤ 1

k

∫ tj

tj−1

‖(Rh − I)Gut‖ dτ

≤ 1
k

∫ tj

tj−1

‖η‖ dτ,
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and hence by (2.15) we have

(2.36) k
n∑

j=1

‖ηj‖ ≤
∫ tn

0
‖η‖ dτ ≤ Chβ| log h||v|β−2.

For computing k
∑n

j=1 ‖δj‖ we use (2.1) and obtain for 1 ≤ β < 4,

‖δj‖ =
1
k

∫ tj

tj−1

(τ − tj−1)‖Gutt(τ)‖ dτ ≤
∫ tj

tj−1

‖A4−β
2 E(τ)A

β−2
2 v‖ dτ

≤ C

∫ tj

tj−1

τ−2+β
4 dτ |v|β−2.

Hence

k
n∑

j=2

‖δj‖ = k
n∑

j=2

‖δj‖ ≤ Ck

∫ tn

k
τ−2+β

4 dτ |v|β−2

≤ Ck
4

4− β

(
k−1+β

4 − t
−1+β

4
n

)
|v|β−2

≤ C

4− β
k

β
4 |v|β−2,

and

k‖δ1‖ ≤
∫ k

0
τ‖Gutt(τ)‖ dτ ≤

∫ k

0
τ‖A4−β

2 E(τ)A
β−2

2 v‖ dτ

≤ C

∫ k

0
τ

β
4
−1 dτ |v|β−2 ≤

C

4− β
k

β
4 |v|β−2.

Therefore, for 1 ≤ β < 4,

k
n∑

j=1

‖δj‖ ≤
C

4− β
k

β
4 |v|β−2.

If we put 1
4−β = | log k|, we also have

k

n∑

j=1

‖δj‖ ≤
C

4− β
k1− 4−β

4 |v|β−2 = C| log k|ke−
4−β

4
log k|v|β−2

≤ Ck| log k||v|β−2 = C| log k||v|β−2

Therefore, for 1 ≤ β ≤ 4, we have

(2.37) k

n∑

j=1

‖δj‖ ≤ Cβ,kk
β
4 |v|β−2.
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where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4. Finally we put

(2.35), (2.36) and (2.37) in (2.29), to get
(
k

n∑

j=1

‖ej‖2
) 1

2 ≤
(
Chβ| log h|+ Cβ,kk

β
4

)
|v|β−2.

¤

3. Finite element method for the Cahn-Hilliard-Cook equation

Consider The Cahn-Hilliard-Cook equation (1.4) with mild solution

(3.1) X(t) = E(t)X0 +
∫ t

0
E(t− s) dW (s).

We recall the isometry of the Itô integral

(3.2) E
∥∥∥
∫ t

0
B(s) dW (s)

∥∥∥
2

= E
∫ t

0
‖B(s)Q

1
2 ‖2

HS ds,

where the Hilbert-Schmidt norm is defined by

‖T‖2
HS =

∞∑

l=1

‖Tϕl‖2,

where {ϕl}∞l=1 is an arbitrary O.N-basis for H. In the next theorem we
consider the regularity of the mild solution (3.1).

Theorem 3.1. Let X(t) be the mild solution (3.1). If X0 ∈ L2(Ω, Ḣβ) and
‖Aβ−2

2 Q
1
2 ‖HS < ∞ for some β ≥ 0, then

‖X(t)‖L2(Ω,Ḣβ) ≤ C
(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
, t ≥ 0.

Proof. By using the isometry (3.2), the definition of the Hilbert-Schmidt
norm, and (2.1), (2.2) we get

‖X(t)‖2
L2(Ω,Ḣβ)

= E
∣∣∣E(t)X0 +

∫ t

0
E(t− s) dW (s)

∣∣∣
2

β

≤ C
(
E

∣∣E(t)X0

∣∣2
β

+ E
∥∥∥
∫ t

0
A

β
2 E(t− s) dW (s)

∥∥∥
2)

≤ C
(
‖X0‖2

L2(Ω,Ḣβ)
+

∫ t

0
‖Aβ

2 E(s)Q
1
2 ‖2

HS ds
)

≤ C
(
‖X0‖2

L2(Ω,Ḣβ)
+

∞∑

l=1

‖Aβ−2
2 Q

1
2 ϕl‖2

)

≤ C
(
‖X0‖2

L2(Ω,Ḣβ)
+ ‖Aβ−2

2 Q
1
2 ‖2

HS

)
.
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¤

The finite element problem for Cahn-Hilliard-Cook equation is: Find
Xh(t) ∈ Sh such that

(3.3)
dXh + A2

hXh dt = Ph dW,

Xh(0) = PhX0.

So the mild solution with can be written as

(3.4) Xh(t) = Eh(t)PhX0 +
∫ t

0
Eh(t− s)Ph dW (s).

Theorem 3.2. Let Xh and X be the mild solutions (3.4) and (3.1). If
X0 ∈ L2(Ω, Ḣβ) and ‖Aβ−2

2 Q
1
2 ‖HS < ∞ for some β ∈ [1, r], then for all

t ≥ 0

‖Xh(t)−X(t)‖L2(Ω,H)

≤ Chβ
(
‖X0‖L2(Ω,Ḣβ) + | log h|‖Aβ−2

2 Q
1
2 ‖HS

)
.

Proof. Use (3.1) and (3.4) and set Fh(t) = Eh(t)Ph −E(t) to get

(3.5) ‖Xh(t)−X(t)‖L2(Ω,H) ≤ ‖e1(t)‖L2(Ω,H) + ‖e2(t)‖L2(Ω,H),

where e1(t) = Fh(t)X0 and e2(t) =
∫ t
0 Fh(t − s) dW (s). By using Theorem

2.1 we get

‖e1(t)‖L2(Ω,H) =
(
E‖Fh(t)X0‖2

) 1
2 ≤ Chβ

(
E|X0|2β

) 1
2 = Chβ‖X0‖L2(Ω,Ḣβ).

For the second term we use the isometry (3.2), the definition of Hilbert-
Schmidt norm and Theorem 2.1,

‖e2(t)‖2
L2(Ω,H) = E

(∥∥∥
∫ t

0
Fh(t− s) dW (s)

∥∥∥
2)

=
∫ t

0
‖Fh(t− s)Q

1
2 ‖2

HS ds

=
∞∑

l=1

∫ t

0
‖Fh(s)Q

1
2 ϕl‖2 ds

≤ C| log h|2h2β
∞∑

l=1

|Q 1
2 ϕl|2β−2

= C| log h|2h2β‖A(β−2)/2Q
1
2 ‖2

HS.

¤
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Now we consider the fully discrete Cahn-Hilliard-Cook equation (1.11)
with mild solution

(3.6) Xh,n = En
khPhX0 +

n∑

j=1

En−j+1
kh Ph∆Wj ,

where Ekh = (I + kA2
h)−1.

Theorem 3.3. Let Xh,n and X be given by (3.5) and (3.1) . If X0 ∈
L2(Ω, Ḣβ) and ‖Aβ−2

2 Q
1
2 ‖HS < ∞ for some β ∈ [1, min(r, 4)], then

‖Xh,n(t)−X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Cβ,kk

β
4
)(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
,

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

Proof. By using (3.1) and (3.6) we get, with Fn = En
khPh − E(tn),

en = FnX0 +
n∑

j=1

∫ tj

tj−1

Fn−j+1 dW (s)

+
n∑

j=1

∫ tj

tj−1

(
E(tn − tj−1)− E(tn − s)

)
dW (s)

= en,1 + en,2 + en,3

By using Theorem 2.2 we have

(3.7) ‖en,1‖L2(Ω,H) =
(
E‖FnX0‖2

) 1
2 ≤ C(hβ + k

β
4 )‖X0‖L2(Ω,Ḣβ).

By using the isometry (3.2) and Theorem 2.2 we get

‖en,2‖2
L2(Ω,H) = E

(∥∥∥
n∑

j=1

∫ tj

tj−1

Fn−j+1 dW (s)
∥∥∥

2)

=
n∑

j=1

∫ tj

tj−1

‖Fn−j+1Q
1
2 ‖2

HS ds

= k

∞∑

l=1

n∑

j=1

‖Fn−j+1Q
1
2 ϕl‖2

≤
∞∑

l=1

(
C| log h|hβ + Cβ,kk

β
4
)2|Q 1

2 ϕl|2β−2

=
(
C| log h|hβ + Cβ,kk

β
4
)2‖Aβ−2

2 Q
1
2 ‖2

HS.
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By using isometry property (3.2) again we have

‖en,3‖2
L2(Ω,H)

≤ E
(∥∥∥

n∑

j=1

∫ tj

tj−1

(E(tn − tj−1)−E(tn − s)) dW (s)
∥∥∥

2)

=
n∑

j=1

∫ tj

tj−1

‖(E(tn − tj−1)−E(tn − s))Q
1
2 ‖2

HS ds

=
∞∑

l=1

n∑

j=1

∫ tj

tj−1

‖A−β
2 (E(s− tj−1)− I)AE(tn − s)A

β−2
2 Q

1
2 ϕl‖2 ds.

Using the well-known inequality

‖A−β
2

(
E(t)− I

)
w‖ ≤ Ct

β
4 ‖w‖,

with t = s− tj , w = AE(tn − s)A
β−2

2 Q
1
2 ϕl, together with (2.2), we get

‖en,3‖2
L2(Ω,H) ≤ Ck

β
2

∞∑

l=1

∫ tn

0
‖AE(tn − s)A

β−2
2 Q

1
2 ϕl‖2 ds

≤ Ck
β
2

∞∑

l=1

‖Aβ−2
2 Q

1
2 ϕl‖2 = Ck

β
2 ‖Aβ−2

2 Q
1
2 ‖2

HS.

Putting these together proves the desired result. ¤
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