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The linearized Cahn-Hilliard-Cook equation is discretized in the spatial
variables by a standard finite element method. Strong convergence estimates
are proved under suitable assumptions on the covariance operator of the
Wiener process, which is driving the equation. The backward Euler time
stepping is also studied. The analysis is set in a framework based of analytic
semigroups. The main part of the work consists of detailed error bounds for
the corresponding deterministic equation.
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1 Introduction

In the first part of this work we introduce the Cahn-Hilliard and the Cahn-
Hilliard-Cook equation and we formulate the finite element method for these
equations. Also we have a short review to semigroups and we consider the
Cahn-Hilliard and Cahn-Hilliard-Cook equations in a semigroup approach.
At the end of first part we study the linear Cahn-Hilliard-Cook equation
in fully discrete case. Finally we will mention some strong convergence
estimates.

2 The Cahn-Hilliard equation

In this section we introduce the Cahn-Hilliard equation and an abstract
framework based on semigroups of bounded linear operators. We also derive
the finite element method for the Cahn-Hilliard equation.

2.1 Introduction
The Cahn-Hilliard equation,

up = A(=Au+ f(u)), zeR" t>0, (2.1)

was proposed in [1] as a simple model for the process of phase separation
in a binary alloy at a fixed temperature. The function f : R — R is of
“bistable type” with three simple zeroes as shown in Figure 1. A typical
model nonlinearity is f(u) = u® — u. The function u represents the concen-
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Figure 1: The form of the bistable nonlinearity

tration of one of the two metallic components of alloy. If we assume that
the total density is constant, then the composition of the mixture can be
expressed by the single function wu.



If the alloy is contained in a vessel D C R", the equation (2.1) should
be supplemented with boundary conditions on the boundary 0D. These are
usually taken to be

ou 0 I(—Au+ f(u))

- = = D, t . 2.2
o , o 0, z€9dD, t>0 (2.2)

Since af;—(:) = f"(u)$% = 0, the condition (2.2) is equivalent to
du 0 0Au
on 7 On

Also we have u(z,0) = up(z) as initial condition. So we have the initial

boundary value problem

=0, z€0D, t>0.

u + A%u=Af(u), zeD, t>0,
ou 0Au

— =0, — =0 oD, t >0 2.3
an J 871 ) x E ) > Y ( )
u(z,0) = ug(z), xeD.

2.2 Semigroup approach

Definition 2.1 (Semigroup). Let X be a Banach space with norm |-||. A

family {E(t)}+>0 of bounded linear operators on X is called a semigroup of
bounded linear operators if

1. E(0) =1, (identity operator),
2. E(t+s)=E(t)E(s), Vs, t>0. (semigroup property)
The semigroup is called strongly continuous if

lim E(t)x =2 VzreX.

t—0t

The infinitesimal generator of semigroup is the linear operator G defined by

E _
Gz = lim E)r == :U,
t—0+ t

its domain of definition D(G) being the space of all x € X for which the
limit exists. The semigroup can be denoted by E(t) = €.

In this work we consider —A with the homogeneous Neumann boundary
condition as an unbounded linear operator on Ly = Ly(D) with standard
scalar product (-,-) and norm ||-||. It has eigenvalues {A;}32 with

0=X <A < <)\ <0 <)\ — o0,
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and corresponding orthonormal eigenfunctions {@-};io. Also let H be the
subspace of Lo which is orthogonal to the constants, H = {v € Ly : (v,1) =
0}, and let P be the orthogonal projection of Lo onto H. Clearly Pf = f—f,
where f = ﬁ fD fdz. Define the linear operator A = —A with domain of

definition
@

on
By spectral theory we define H® = D(A*/?) with norms |v|s = ||A%/?v]| for
real s. Then e~*4* can be written as

2 > 2
_ —t\4
et v:Ze 5 (v, 05) ;-

=1

D(A)={ve H*’NH:_— =0on0dD}.

Let E(t) = e *4*. The semigroup {E(t)}+>0 is called semigroup generated
by —A?. This is a strongly continuous semigroup. Moreover, it is analytic,
meaning that e~ can be extended as a holomorphic function of ¢. This
leads to the important properties in the following lemma.

Lemma 2.2. If {E(t)}+>0 is the semigroup generated by —A?, then the
following hold

1. |APE(t)v| < CtP2|v||, B=>0,
2. [VIIAB(s)v|ds < O]

In the sequel we will write the equation (2.3) in operator form. By
definition of D(A) and H, equation (2.3) can be written as

ug + A*u = —APf(u) t>0,

u(0) = wup. (2.4)

which is equivalent to the fixed point equation

u(t) = e Wy — / Ce =947 4 p Flu(s)) ds.
0

2.3 The finite element method for the Cahn-Hilliard equa-
tion

In this section we formulate the finite element method (see [8]) for the Cahn-
Hilliard equation. Rewrite (2.3) in the form

u — Av = 0, xeD, t>0,
v=—-Au+ f(u), x€D, t>0,
ou ov (2.5)

87”:,87”:0, $€8D,t>0,
u(z,0) = ug(z), xe€D.



Multiply the first and the second equation of (2.5) by ¢ = ¢(x) € HY(D) =
H' and integrate over D. Using Green’s formula gives

(ug, ) + (Vv, V) = 0, Vo € HY,
(v,9) = (Vu, Vo) + (f(u),9), Vo€ H".

So the variational formulation is: Find u(t),v(t) € H' such that (2.6) holds
and such that u(x,0) = ug(z), forz € D.

Let 1, = { K} denote a triangulation of D and let S;, denote the contin-
uous piecewise polynomial functions on 75. So the finite element problem
is: Find wup(t), v (t) € Sy, such that

(2.6)

(un, X) + (Vop, Vx) =0, VX € Sp, t >0,
(vn, X) = (Vun, Vx) + (f(un), x), Vx € Sp, t >0, (2.7)
up(0) = up0-

Let S, = {x € ShL : (x,1) = 0} and define Ay: S, — S (the discrete
Laplacian) by

(Anx,m) = (VX, V) Yx,m € Sy (2.8)
and P,: Ly — S, (the orthogonal projection) such that
(Puf,x) = (f,x) VX € Sh. (2.9)

Then we can write the equation (2.7) as
Uny + Apup + Ay Py f(u) =0, ¢ >0,
up(0) = ug,p,

which is equivalent to the fixed point equation

2

t
un(t) = e hug p, — / o~ (=AL AL Py f(un(s)) ds,
0
where

(o]
—tA2 —t)\2 :
e hy = E (§] h.j (U, ¢h,j)¢h7j7
7j=1

where (A j, én,;) are the eigenpairs of A7.

3 The stochastic Cahn-Hilliard equation

In this section we introduce some definition and properties about stochastic
integrals and stochastic differential equation. For more details you can see
[10] and [9].



3.1 Introduction

In this part we introduce the stochastic differential equation and in special
case we will drive the stochastic Cahn-Hilliard equation, also called the Cahn-
Hilliard-Cook equation.

Definition 3.1. A U-valued stochastic process, where U = La(D) is called
a Q-Wiener process if

e W(0)=0,
o {W(t)}i>0 has continuous paths almost surely,
o {W(t)}+>0 has independent increments,
e The increments have Gaussian law, that is
Po (W) —W(s)) ' =N(0,(t—5)Q), 0<s<t.
Definition 3.2 (Hilbert-Schmidt operators). An operator T' € L(U, H) is

Hilbert-Schmidt if > 5o | | Tex||*> < oo for an orthonormal basis {ex}reN in
U.

The Hilbert-Schmidt operators form a linear space denoted by Lo(U, H)
which becomes a Hilbert space with scalar product and norm

oo oo 1
(T, S)us = Y (Tex, Sex)nr, | Tllns = (3 ITerly )’
k=1 k=1

Consider the covariance operator @) : U — U, selfadjoint, positive semidef-
inite, bounded and linear. Also assume that W(t¢) is -Wiener process.

If
t
E/Hﬂ%ﬂﬂ%®<m,
0

then we can define the stochastic integral fot T(s)dW(s).
One important property the stochastic integral is the isometry property:

B [t awe)| =B [ 1760 fsds. (31)

Definition 3.3. Let {W(t)}icio,r) be a U-valued Q-Wiener process on the
probability space (2, F, P), adapted to a normal filtration {Fi}icom- The
stochastic partial differential equation (SPDE) is of the form

AX(t) = (—AX(H) + F(X (1) dt + BAW(t), 0<t<T,
X(0)=¢,

where the following assumptions hold:

(3.2)



1. A is a linear operator, generating a strongly continuous semigroup of
bounded linear operators,

2. Be L(U,H),

3. {F(X (1))}, s a predictable H-valued process with Bochner inte-
grable trajectories,

4. & is an Fo-measurable H-valued random variable.

Let U = Ly(D) and H = {v € U: (v,1) = 0}. In special case, if we
consider A2 as operator and assume that F(X(t)) = APf(X(t)), B =P
then the stochastic Cahn-Hilliard equation can be written as

dX(t) + A2X(t) dt + APF(X (t))dt = PdAW (1),

X(0) = PXo. (8:3)

By using {E(t)}+>0 = {e_tA2}t20 as a semigroup generated by —A2, the
mild solution of (3.3) is formally given by the integral equation

X(t)=E@t)PXy— /Ot E(t—s)APf(X(s))ds + /Ot E(t—s) PdW(s).

For the linear Cahn-Hilliard-Cook equation we have

dX(t) + A2X(t)dt = PAW (¢)

X(0) = PXo, (3.4)

with mild solution
t
X(t)=E(t)PX,+ / E(t —s)PdW (s).
0

In this work we consider the linear Cahn-Hilliard-Cook equation. The reason
why we study the linear equation is that it is a simpled equation serving as
a starting point for the study of the nonlinear Cahn-Hilliard-Cook equation.
However it should be noted that a linearised Cahn-Hilliard-Cook equation
of the form (3.4) but with A? replaces by A? + A is used in the physics
literature [6, 4].

3.2 Finite element method

Assume that {7 }o<n<1 be a triangulation with mesh size h and {Sp}o<n<1
is the set of continuous piecewise polynomial functions where S, C H!(D).
Also let A and Pj, be the same in (2.8) and (2.9). The finite element
problem for (3.3) is:



Find Xp,(t) € Sy, such that

dXh(t) + AiXh(t) dt + Ahth(Xh(S)) dt = P, dW(t), (3 5)
X1n(0) = PrXo, ’

where P, W (t) is Qp-Wiener process with Qn = P,QP,. The mild solution
is given by the equation

X(t) = Bu(OPXo [ Bu(t= ) PLF () dst [ Bt 5)Praw (),

where Ep(t) = e~t4%. In the linear case, the finite element problem is

dXp(t) + A2 Xy (t) dt = P, dW (1), (3.6)
X1 (0) = P Xo, .
with mild solution

X (t) = E(t)PyXo + /0 t E(t — )P, dW ().

Let k = Aty,, t, = nk and AW,, = W (t,) — W(tn—1). Also consider
AXp = Xnn — Xnn—1 and apply the backward Euler method to (3.6) to
get

X € S,
AXp g+ AFXp n Aty = PLAW,, (3.7)
Xh’() = P, Xo.
This implies
Xnn = Xnn-1 + kA Xnp = PRAW,,.
If we set By p = (I + kA7)~ we get
(I + kA X ) = PoAW, + Xp1.
So
X = Exn PhAW, + Ep n X -1
We repeat it for Xj, ,,—1, we get
Xin = EenPhAWy + Ep (B p PoaAWn—1 + Ej 3 Xnn—2)
= Elg,hXh,n—2 + Ek,hPhAWn + EzthhAWn_l

n
= By Xno+ Y ESTT I PAW;.
j=1



So

Xnn = EfyPuXo+ > ELTT PAW;. (3.8)
j=1

3.3 Strong convergence estimates

The main results in this work are the following error estimates.

Theorem 3.4. Let X}, and X be the solutions of (3.6) and (3.4). If Xo €
Lo(Q, HP) and ||A%Q%”HS < oo for some B € [1,r], then for allt >0

1 X0 () =X ()| o (0,1
B=2 1
< CHP (| Xoll .8y + [ og PI A7 Q2 [lus).

If we consider the fully discrete case we have the following theorem.

Theorem 3.5. If Xg € Ly(Q, H®) and ||A%Q%||Hs < oo for some 1 <
G < min(r,4), then

[ Xnn(t) = X ()l Lo (0, m)
s 82 1
< (Clloghlh” + Cp k) (1 Xoll Ly im0y + 1477 Q2 |lus).-

where Cg ), = 15 for 8 < 4 and Cpy, = C|logk| for 3 = 4.

3.4 Earlier works

In this section we mention to some earlier works about the Cahn-Hilliard-
Cook equation.

Da Prato and Debussche [3] considered (3.3) where f is an odd degree
polynomial with positive leading coefficient. They have proved the existence
and uniqueness of a weak solution to (3.3).

Cardon Weber [2] has done an implicit approximation scheme, based on
the finite difference method. Also she has proved that the approximation
scheme converges in probability, uniformly in space and time. Kossioris and
Zouraris, [7], proved strong convergence for the finite element method for
the linear equation in 1-D.

Elder, Rogers and Rashim [4] and Klein and Batrouni [6] have considered
linearized Cahn-Hilliard-Cook equation of the form (3.4), with A2+ A instead
of A? as the operator.

There are a lot of relevant works about the deterministic Cahn-Hilliard
equation. Larsson and Elliott [5] have analyzed a finite element method for
the Cahn-Hilliard equation in both spatially semidiscrete and completely
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discrete case based on the backward Euler method. Also they have obtained
error bounds of optimal order over a finite time interval. The computations
in our work is based on the techniques of this paper.
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FINITE ELEMENT APPROXIMATION OF THE LINEAR
STOCHASTIC CAHN-HILLIARD EQUATION

STIG LARSSON' AND ALI MESFORUSH

ABSTRACT. The linearized Cahn-Hilliard-Cook equation is discretized
in the spatial variables by a standard finite element method. Strong
convergence estimates are proved under suitable assumptions on the
covariance operator of the Wiener process, which is driving the equation.
The backward Euler time stepping is also studied. The analysis is set in
a framework based of analytic semigroups. The main part of the work
consists of detailed error bounds for the corresponding deterministic
equation.

1. INTRODUCTION

Let D be a bounded domain in R? for d < 3 with a sufficiently smooth
boundary. The deterministic Cahn-Hilliard equation [2, 3] is

uy — Av = 0, for x € D,t > 0,
v=—Au+ f(u), for x € D,t > 0,
1.1 A
(1.1) 9u o 92U G e wedaDt >0,
on on
u(-,O):uo,

where u = u(z,t), A = Z?Zl 8872?’ and u; = % In the boundary condition

% denotes the outward normal derivative. A typical f is f(s) = s — s.

It is easy to see that a sufficiently smooth solution of (1.1) satisfies con-

servation of mass
/ u(z, t) dz :/ uo(x)dx, t>0.
D D

Henceforth we assume that the initial datum satisfies [, ug(z)dz = 0.

1991 Mathematics Subject Classification. 65M60, 60H15, 60H35, 65C30.

Key words and phrases. Cahn-Hilliard-Cook equation, finite element method, backward
Euler method, error estimate, strong convergence.

!Supported by the Swedish Research Council (VR) and by the Swedish Foundation
for Strategic Research (SSF) through GMMC, the Gothenburg Mathematical Modelling
Centre.
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2 S. LARSSON AND A. MESFORUSH

Let ||-|| and (-, -) denote the usual norm and inner product in Ly = Lo(D)
and let H® = H*(D) be the usual Sobolev space with norm ||-||s. We also
let H be the subspace of Ly which is orthogonal to the constants, i.e., H =
{v € Ly: (v,1) =0}, and let P be the orthogonal projection of Ly onto H.
We define the linear operator A = —A with domain of definition

D(A):{U€H2HH:2—Z:OOHGD}.

Then A is a selfadjoint, positive definite, densely defined operator on H and
(1.1) may be written as an abstract initial value problem to find u(t) € H
such that

ug + A%u+ APf(u) =0, t>0,

(1-2) u(0) = up.

By spectral theory we also define H® = D(A?2) with norms [v[s = |Azv| for
a real s. It is well known that, for integer s > 0, H? is a subspace of H* N H
characterized by certain boundary conditions and that the norms | - |s and
|-|ls are equivalent on H*®. In particular, we have H' = H' N H and the
norm |v|; = |[A2v|| = || V|| is equivalent to ||v||; on H®.

For v € H we define e 4%y = P et (v,¢;)p;, where (\;, ¢;) are the
eigenpairs of A with orthonormal eigenvectors. Let {E(t) }+>0 = {e_tA2}t20
be the semigroup generated by —AZ2.

The stochastic Cahn-Hilliard equation, also called the Cahn-Hilliard-Cook
equation [1, 5], is
dX(t)+ A’X(t)dt + APf(X(t))dt =dW(t), t >0,

X(0) = Xo.

Let (2, F, P,{F:}+>0) be a filtered probability space, let @ be a selfadjoint
positive semidefinite bounded linear operator on H, and let {W(¢)}:>0 be an
H-valued Wiener process with covariance operator (). We use the semigroup

framework of [11] where (1.3) is given a rigorous meaning in terms of the
mild solution which satisfies the integral equation

(1.3)

X(t):E(t)Xo—/O E(t—s)APf(X(s))ds+/0 E(t — s)dW (s),

where fg dW (s) denotes the H-valued It6 integral. Existence and uniqueness
of solutions is proved in [6]. In this paper we study numerical approximation
of the linear Cahn-Hilliard-Cook equation,

dX + A2X dt =dW, t>0,

(14 X(0) = Xo,
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with the mild solution
t
(1.5) X(t) = E(t)Xo + / E(t — s)dW (s).
0

The reason why we study the linearized equation is that it is a first step
towards the nonlinear equation (1.3). However, we remark that a linearized
equation of the form (1.4), but with A? replaced by A% + A is studied by
numerical simulation in the physics literature [7, 9].

For the approximation of the Cahn-Hilliard equation we follow the frame-
work of [8]. We assume that we have a family {S}},~¢ of finite-dimensional
approximating subspaces of H!. We formulate the semidiscrete problem:
Find up(t), v, (t) € Sk such that

(uh,t>X) =+ (vv}h VX) = 07 VX € Sh7 t> 07
(16) (Uh7X) = (VUh,VX) + (f(uh)7X)? VX € Sh7 t> 07
(uh(0)7X) = (UO7X)7 VX € Sh'

Let now S, = {x € Sy : (x,1) = 0}. It is immediate from (1.6) that
up(t) € Sp if ug € H. Therefore u, can equivalently be obtained from the
following equations: Find up(t), wp(t) € Sy, such that

(un,t, x) + (Vwy, V) =0, Vx € Sh, t >0,
(17> (whaX) = (vuha VX) + (f(uh)ax>7 VX € Sha t> Oa
(Uh(O),X) = (UOaX)7 VX € Sh-

The relation between wy and vy is wp, = Pvy. Equivalently we may write

this as

Uh,t + A%Luh + Ahth(uh) = 0, t > 0,
(1.8)
up(0) = ug,p,

where the operator Ay, : S, — S, (the “discrete Laplacian”) is defined by
(AhX777) = (VX7V7])? va ne Sha

and P, : Ly — S}, is the orthogonal projection. Ay, is selfadjoint and positive
definite.
The finite element approximation of the linearized Cahn-Hilliard-Cook
equation (1.4) is: Find X} (¢t) € Sy, such that,
dX, + A3 Xpdt = P, dW, t >0,

(1.9) X1,(0) = P, Xo.

For v € S), we define Ej(t)v = e iy = Py e s (v, ¢nj)¢n,j, where
(Anj,n;) are the eigenpairs of Aj. Then {Ej(t)}i>0 is the semigroup



4 S. LARSSON AND A. MESFORUSH

generated by —A%. The mild solution of (1.9) is
t
(1.10) Xh(t) = Eh(t)Pth + / Eh(t — S)Ph dW(S)
0

Let k = At, t, = nk, AXh,n = Xh,n — Xh,nfl, AW, = W(tn) - W(tn_l),
and apply Euler’s method to (1.9) to get

(1.11) AXp o + A7 XpnAt = P, AW,
Set Ey, = (I +kA2)~! to obtain a discrete variant of the mild solution

n
Xnn = Efy PuXo+ Y Ep 7 P, AW,
j=1
In Section 2 we assume that {S},},~0 admits an error estimate of order
O(h") as the mesh parameter h — 0 for some integer r > 2. Then we show
error estimates for the semigroup Ej,(t) with minimal regularity requirement.
More precisely, in Theorem 2.1 we show, for g € [1,7],

| E3 (t)v]| < Chﬁ|v|5, ve HP,
t 1 .
([ 1R @0l ar)* < Clloghitflols-a. e i
0

where Fy,(t) = En(t)Pn, — E(t).

Analogous estimates are obtained for the implicit Euler approximation in
Theorem 2.2.

In Section 3 we use these estimates to prove the strong convergence es-
timates for approximations of the linear Cahn-Hilliard-Cook equation. Let
Ly(Q2, H) define the space of square integrable H-valued random variables
with norm

Xl = (B0X19) " = ([ Ix@IPapw)*

Let @ denote the covariance operator of the Wiener process W, and let
|7 |lus denote the Hilbert-Schmidt norm of bounded linear operators on H.
In Theorem 3.1 we study the spatial regularity of the mild solution (1.5)
and show

B=2 1
I Xy 0,08) < C(HXOHLQ(KLHK?) +[A7= Qz2|us), B >0.

Moreover, in Theorem 3.2 we show strong convergence for the mild solution
Xp, in (1.10):

1 X0 (t) = X ()| Lo (2, m)
B=2 1
< CR2 (| Xoll 1,0y + 1og Rl A7 Q2 |lns), B € [1,7].
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In Theorem 3.3 for the fully discrete case we obtain similarly, for 3 €
[1, minr, 4],

| Xnn(t) = Xt Lo, m)
< (Cllog hl? + C sk T) (1X0 ]l 1y 1) + 1472 Q2 |1ss),
where Cg ), = & for § < 4 and Cgy, = C|logk| for 5 = 4.
These results require that ||A% Q% |lus < oo. In order to see what this
means we compute two special cases. For Q = I (spatially uncorrelated

noise, or space-time white noise), by using the asymptotics A\; ~ j %, we
have

o0 oo
B=2 1 9 B=2 9 -2 .(B—2)2
1A Qz s = 1477 s = DN 2~ Y 50D < ox,
=1 =1
if g <2— g. Hence, for example, 0 < % if d = 3. On the other hand, if Q
is of trace class, Tr(Q) = ||Q%||12{S < 00, then we may take 3 = 2.

There are few studies of numerical methods for the Cahn-Hilliard-Cook
equation. We are only aware of [4] in which convergence in probability
was proved for a difference scheme for the nonlinear equation in multiple
dimensions, and [10] where strong convergence was proved for the finite
element method for the linear equation in 1-D.

2. ERROR ESTIMATES FOR THE DETERMINISTIC CAHN-HILLIARD
EQUATION

We start this section with some necessary inequalities. Let {E(¢)}i>0 =
{e_m2 >0 and {En(t) >0 = {e_tA%L}tzo be the semigroups generated by
—A? and —A?, respectively. By the smoothing property there exist positive
constants ¢, C' such that

(2.1) 1A By (1) Pyo|| + | AP E(t) Pol| < Ct~Pe™ o], B >0,
t t

(2.2) / ||AhEh(5)th||2ds+/ |AE(s)Pv||* ds < C|jv|)?.
0 0

Let Ry : H' — Sy be the Ritz projection be defined by

(VRyv,Vx) = (Vu,Vx), Vx € S
It is clear that R;, = A,:lPhA. We assume that for some integer r > 2, we
have the error bound
(2.3) |Rpv — | < CRP|v|, ve HP 1<B<r
This holds with » = 2 for the standard piecewise linear Lagrange finite
element method in a bounded convex polynomial domain D. In the next
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theorem we prove error estimates for the deterministic Cahn-Hilliard equa-
tion in the semidiscrete case.

Theorem 2.1. Set Fy(t) = E(t)P,— E(t). Then, for 1 <3 <r andt >0,
we have

24) B0l < CWlls, ve P,
t 1 .
@5 ([ IR @) < Clloghipdlela. ve i
0
Proof. Let u(t) = E(t)v, up(t) = Ep(t)Pyv, and e(t) = up(t) — u(t). We
want to prove that

le®)|| < ChPlv]g, v e HP,
t 1 .
(/ le()IPdr)* < Cllog W luls, v € HP2
0

Let G = A~ and G}, = A,:lPh. Apply G to (1.2) with f(u) = 0 to get
Gu+ Au = 0, and apply G2 to (1.8) with f(up) = 0 to get Gaup ¢ +up, = 0.
Hence

G,Qlet +e= —G,%ut —u+ Gp(Guy + Au) = (GRLA — Iu — GR(GRA — I)Guy,
that is,
(2.6) Grer+e=p+ G,

where p = (Ry, — I)u,n = —(Rp — I)Guy. Take the inner product of (2.6)
by e; to get
[Gredl + 5 Slell? = (p.e0) + (1, Grer),
2dt ’
Since (1, Grer) < IllIGredll < Lnll2 + L Gaerl%, we obtain

d
IGhed® + L llell* < 2(p, e0) + Inll*

Multiply this inequality by t to get t||Gpres||* + t%HeH2 < 2t(p,er) + t|n>.
Note that

d d d
t$|\6\l2 = a(b‘llell2) —llell®,  tp.er) = 3(75(%’, e)) — (p,e) —t(pi,e),
so that

d d
tlGred® + 2 (tlell®) <22 (t(p: €)) + 21(p; €)| + 2t(pr, €)] + tlnl* + [lell*.
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But
1 2 1, 19
(o)l < lpllllell < Sllpl” + 5 llell,

1
[t(pt: )] < tpelllle]l < tQHﬂtHz + gllell®

Hence
d d
tl|Gred|* + &(tHeHQ) < 2a(t(p, e)) + lloll* + llpell” + tlinl* + 3llell*.

Integrate over [0,t] and use Young’s inequality to get

t t t
1
| Ghen ar+ el < 2ol + 5elel® + [ olPar+ [ 72l ar

t t
+ / Pl dr + 3 / le]? dr.
0 0

t
(27)  tllel* < Ctllp)* + C/O (ol + 72llpell* + 7llnl1* + lle]?) d7

Hence

We must bound fot lle||? d7. Multiply (2.6) by e to get

1d
thHGheH +llell® < [l el +lnll |Grell < *IIPII +*H [& +||n|| Juax, ”Ghe”
so that
d 2 2 2
. — < .
(28) S1Gnell + el < l1pl + 2l mas | Giel

Integrate (2.8), note that Ge(0) = A, Py (Py, — Iv = 0, to get

t t t 9
[Grell? + [ lell?ar < [ lplP dr+ max [Grell* + ( [l ar)
0 0 O=r<t 0

Hence, since t is arbitrary,

(2.9) / lef? dr < / ol ar+ ( / I dr)”

We insert (2.9) in (2.7) and conclude

tlel? < Ctlpll* + C/ (Iol* + 72l oell> + 7lInl?) ar
(2.10) 0

o [ nlar)
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We compute the terms in the right hand side. With v € HP, recalling
p = (Rp — I)u and using (2.3), we have

(2.11) o) < CROlu(t)|s < CHP|| E(t)A%v]| < CRP||AZ o]l < ChPluls,
so that,
ol < onoly, [ ol ar < owt
Similarly, by (2.1),
loe()Il < ChPJug(t)]5 < CRP|AZE(t) A% w]| < CHPE o],
so that
(219 [ 7o ar < o
Moreover, since n = —(Rp — I)Guy,
In()l < CHP|Gus(t)|s < CHP|AE(R)AZ o]l < ChPt 3 o],
so that
t 9 t
([ imar)” < cnauls. [ rniar < cnup
By inserting these in (2.10) we conclude
tle] < Ch2Ptu]?,

which proves (2.4).

To prove (2.5) we recall (2.9) and let v € H#~2. By using (2.3) and (2.2)
we obtain

t t t -
| / Hp\szSC'hw/ \u\%dT:Chzﬁ/ IAE(r) A% |2 dr
0 0 0

< Ch*Pl3_,.

(2.13

Now we compute f(f 7] d7. To this end we assume first 1 < § < r and let
1 <~ < (. By using (2.1) and (2.3) we get

t t t B B
n||dr < Utl|y dr = T E()AT | dr
dr < ChY [ ||Guyllydr = ChY | A2 2 E(r)A”
0 0 0

t
_qQaB=x _
scm/ P e A ol o,
0



APPROXIMATION OF THE LINEAR STOCHASTIC CAHN-HILLIARD EQUATION 9

where, since 0 < 8 — vy <r —1,

B—~
t t 4 4 o0 4
14 B= _ 4 _ — C e
/Tl+4eCTdT:/ e "7 ds / e " ds.
0 B =" Jo -7 Jo

Hence, with C' independent of G,
ChY
8 —

t

2.14 / nlldr <

(2.14) ; 7]l 5

Nowletﬁ:\logh\:—logh, soy — (3 as h — 0, and
vlogh = (y— B+ p)logh =1+ Flogh.

Therefore we have
Y

IN

Vg2

= |log hle"'8h = |log hle!TPleh < C|log h|RP.

=~
Put this in (2.14) to get, for 1 < g <,

t
(2.15) / Il dr < CH?|log hjv]s—a2,
0

and hence also for 1 < § < r, because C is independent of 3. Finally, we
put (2.13) and (2.15) in (2.9) to get

t 1
([ el ar) < Clioghinlels-s,
0
which is (2.5). O

The reason why we assume 3 > 1 is that in (2.5) wee need at least v € H~!
for En(t)Pyv to be defined.

Now we turn to the fully discrete case. The backward Euler method
applied to

Up ¢ + A%Luh =0, t>0,
up(0) = Py,
defines U, € S, by
oU, + A2U, =0, n>1
Uy = Py,

where OU,, = +(U, — Up—1). Denoting EF}, = (I + kA?)™", we have U,, =
E},v and, similar to (2.1), (2.2),

(2.16)

n
IEmll < llvll, &Y I1AnEL0l* <
j=1

o],

| =
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To prove this, take the inner product of U} + A%Uj = 0 by Uj, to get
T3 + RILAWT; 1P = (U3, 051) < N0 < ST + 10541,
which implies that ||U;]|? — ||U;—1||? + 2k[|AxU;||? < 0, and hence
n
1Ul® + 2k D> AU |1* < [lo].
j=1

The next theorem provides error estimates in the Lo norm for the deter-
ministic Cahn-Hilliard equation in the fully discrete case.

Theorem 2.2. Set F,, = E}, P, — E(t,). Then, for 1 < [ < min(r,4) and
n > 1, we have

(217)  ||Ewl] < C(0° + kD)ols, ve HP,
n 1 .
(2.18) (kz ||Fjv||2) 2 < (Clloghlh® + Copk®)[v]p_s, v e HP2,
j=1

where Cgj, = & for B < 4 and Cgy, = C|logk| for f = 4.
Proof. Let G and GG, be as in the proof of Theorem 2.1. With e, = U,, — uy,,

we get
(2.19) G%L(‘)en +en = pn+ G + Gpon,
where uy, = u(ty,), uty = u(ty) and
pn = (Ry — Dup, nn=—(Rp—I1)GOuy, 0p=—G(Ou, — utpy).
Multiply (2.19) by Je,, and note that

1 1
(1, Grlen) < HnnH2 + ZHGhaenuza (0n, Groen) < ||5nH2 + ZHGhaensz

to get

(220) [ Ghdenll? + 2ens Den) < 2pns Den) + 2l + 2013012
We have the following identities

(2.21) d(anby) = (Oan)by, + an—1(0by,)

(2.22) = (Oan)by, + a,(0by,) — k(day)(0by).

By using (2.22) we have
2(en, Oen) = Ol|en|* + kl|Oen|?,
(pns Oen) = 9(pn, en) — (Opn, en) + k(Opn, Oey).
Put these in (2.20) and cancel k| de,||? to get
IGhOenl® + Bllen]|* < 20(pn, en) — 2(0pn, en) + kll0pnll + 2]lmall* + 2(16, 1.
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Multiply this by ¢,—1 and note that k < t,_1 for n > 2, so that we have for
n>1

tn1]|Grden|*+tn—10llen]”
(2.23) < 2t -10(pn, n) = 2tn-1(9pn, en) + t5_1[9pnl|?
+ 2tn1||7al|* + 2tn-1[10, 1%
By (2.21) we have
tu-10]lenl® = O(tnllenl®) — llenl®,
2tn—10(pn; €n) = 20(tn(pn; en)) = 2(pn, en)-
Put these in (2.23) to get

tn1]|Grden||*+0(tnlenl?)
(2.24) < C(Otn(pnsen)) + loall* + 71 10pal? + llenll?)
+ O (tn-1llnall? + tn-1ll6a]).
Note that

n n

(2'25) /‘Cza(th@jHQ) :then”Q” kza(tj(pj>ej)) :tn(pn,en)

J=1 Jj=1

By summation in (2.24) and using (2.25) we get

n
kY tiallGroes|*+tnllenll* < Ctallpnl®

j=1
(2.26) +Ck S (o512 + 119512 + lles 1)
j=1
+CR S (tmallmgl® + -1 1651).
j=1

Now we estimate k7, lej||?. Take the inner product of (2.19) by e, to
get

(2.27) 2(Ghden, en) + llenl® < [lonll® + 2(H77nH + H‘SnH)”GhenH‘
By (2.22) we have

(2.28) Q(Giaen, en) = 2(0Ghen, Gren) = (’3||Ghen||2 + k:||('3Ghen||2.
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By summation in (2.27) and using Greg = 0, we get

|Grenll® + kz lleg||* < kz il + = lmmllGhejH2
Jj=1 Jj=1

£2(kD (Il + 1550 )
7j=1
Hence
(229 K llegl? < kD ol +2(k 3 (sl + 1551))
j=1 j=1 j=1

By putting (2.29) in (2.26) we get

3

thenH2 SCthanQ

n
+Ck Y (llpsll? + E1l19p1 + talimg 12 + £5-1110511)
j=1

Lo (6 (gl +1551))”

Jj=1

(2.30)

Now we compute the terms in the right hand side. With v € H” we have
by (2.11),

n
(2.31) loall® < CR*0f3, kY lIpsll? < Ch*Ptalof3.
j=1

By using the Cauchy-Schwartz inequality we have

n n 1 [ti 2
OSRICAEES ST ATy

i=1 i=2 fim
<Zn:(t2 f/tj TQdT/tj 7| pu(r)|? dr
— J— ]{; tj71 )

ti—1

Hence, by (2.12),

(2.32) kY 5 1 10p51> < ChPtylof3.
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By using (2.3) and (2.1) we have

B tj
In;ll < ChP|Gou;| < CZH/ ’ AE(T)AgvdTH
tj—l

Chﬁ 1 s ChP ChP
< Tzdr||Azv]| < ——(\/t; — Vti—1)lvls < [v]s.
k to1 k‘ \/7 J B8 \/E B
So
n n l
(233) k> talngl® < CRPtlok kY lngll < CHOt o],
j=1 Jj=1

By using (2.1) we have, for j > 2,

1 tj t B 8
11051 < Hk/ (T —tj—1)Guy(T dTH / HA3 2 E(1)Azv| dr

]71
<c/

so that, by Holder’s inequality with p = % and ¢ = 5 1< 8 <4,

t.

7j—1

|85

t 1-8
TfﬁdTg(ka(/J (T#)rdT) ‘

tjl

<omt (PR ™)

J
_1

< C’k4t 2.

The same result is obtained with 8 = 4. For j = 1 we have

Ak / " Gunr)dr| < ok / 12 i
0

<ka ”U|/@<Cl€4t12|rl}’/@

So we have, for j > 1,
s -1
16511 < Ckt; *|v]s.
Hence
= g i = s
(2.34) kY61 < ckitidlolg, kY tiall6s]® < Ch2talof?.
j=1 j=1
Put (2.31), (2.32), (2.33), and (2.34) in (2.30), to get
8
lenll < C(A” + k)v]s.
This completes the proof (2.17).
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To prove (2.18) we recall (2.29) and let v € HP2 We know that
k35 pill? = Elloall* + & 325 llpj|I%, where by (2.1)

B—1
kllpl® < kCh*P| AB(R)A™2 o* < Ch*|v]5-s,

and
n , n t
DIIES
j=2 j=27ti-1
oot 5 LI t 2
<2Z/ 1o(s)] ds+22/ / ) | as
=2 tj,1 =2 t]‘,1 S

tn n tj t;
<2 / lo(s)Pds +23° / (t; — ) / loe(7) 2 dr ds
j=27ti-1

t1 ti—1

tn tn
<2 / o]l dr + 2k / Tl ? dr,
0 t1

since t; — s < k < 7 and where, by (2.13),

p(s) + /Stj pe(T) d’i‘”2d8

tn
/0 loll? dr < Ch¥)uf?_,.

and
tn tn _
k/ o2 dr < Ch%k/ || A3 E(r) AT 0|2 dr
t1 t1
tn
< Chzﬁk/ T2 drlv|3,
k
< CHPPk(k™" —t,") < Ch?*P|v|3_,.
So
(2.35) EY el < Ch*Pluf3_s.

Jj=1

Now we compute k7, [[7;]|. Recall that n; = —(Rj, — I)GOu; and 1 =
—(Rp — I)Guy, so

1 [t 1 [t
Il = |(Ba = D6 [ war| < [ IR DG ar
. i),

j—1
1/%'
< - [nl d,
ke

j—
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and hence by (2.15) we have
n tn
(2.36) kY Il S/O In]| d= < Ch?|1og h[v]p-o-
For computing k37, [|0;]| we use (2.1) and obtain for 1 < 3 < 4,

1[4 ti _8 -2
=5 | ¢ =tolGuldr < [ AT B AT ] ar
j—1

tj_1

b,
< C/ 721 dr|v|gs.
t.

Hence
n n tn
94 B
EY 1651 =k 61l < Ck / 72+ drfol s
=2 =2 k
4 1.8 —148
SCki(k 1 -1, 4>’v|ﬂ—2
C s
< 4_5k4|v|ﬁ—27
and

k k 3 52
klld1] < / T||Guy (7)]| dT < / T||A4_5E(T)ATUH dr
0 0

k
c
< [ ritarulss < ;S kol
) -

Therefore, for 1 < § < 4,

kZHé <= ﬂmww-z

If we put =5 = |log k|, we also have

B

kZua I < 5 h P lelsa = Clloghlke™ 7 *£¥ o]

< Ckllog k|[v]—2 = Clog kl |-
Therefore, for 1 < 8 < 4, we have

o 8
(2.37) kD 11651 < Cp ks |vlg—a-
j=1
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where Cg ), = ﬁ for B < 4 and Cg ) = C|logk| for § = 4. Finally we put
(2.35), (2.36) and (2.37) in (2.29), to get

n 1
(k 3 HejH?) 2 < (0h5| log h| + cﬁ,kﬁ) 0] 52
j=1
|

3. FINITE ELEMENT METHOD FOR THE CAHN-HILLIARD-COOK EQUATION

Consider The Cahn-Hilliard-Cook equation (1.4) with mild solution
t
(3.1) X(t)=E{t)Xo+ / E(t —s)dW (s).
0

We recall the isometry of the Ito6 integral

(3.2) EH/ B(s)dw(s)| = E/ I1B(5)Q2 |3 ds,
where the Hilbert-Schmidt norm is defined by

o0
ITlEs =D 1Tl

where {¢;}7°, is an arbitrary O.N-basis for H. In the next theorem we
consider the regularity of the mild solution (3.1).

Theorem 3.1. Let X(t) be the mild solution (3.1). If Xo € Ly(Q, H?) and
||A Q llus < oo for some B> 0, then

=2 1
IX 00,9 < € (1X0ll 0oy + 1477 @2 s ), >0,

Proof. By using the isometry (3.2), the definition of the Hilbert-Schmidt
norm, and (2.1), (2.2) we get

2

2
IX() )

t
||L2(Q7Hﬁ) = E‘E(t)Xo + /0 E(t—s) dW(s)‘

IN

C(B|E(t)Xo ) + EH/Ot ATE(t—s) dW(s)HQ)

/\

b8 1
X012 ) + / 145 £()Q} 3 ds)

o(
C(I1X012, 10, +ZHA “Qill)
(

< C(IX0l12 010y + 1477 Q3 s )-

IN
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U

The finite element problem for Cahn-Hilliard-Cook equation is: Find
Xn(t) € Sp, such that

dX, 4+ A} X}, dt = P, dW,

(3:3) X5 (0) = P, Xo.

So the mild solution with can be written as
t
(3.4) Xh(t) = Eh(t)PhX[) + / Eh(t — S)Ph dW(S)
0

Theorem 3.2. Let X; and X be the mild solutions (3.4) and (3.1). If
Xo € Lo(Q, H?) and ||A%Q%||Hs < oo for some 3 € [1,r], then for all
t>0

[ X0 () =X (O Lo, m)
< OB (| Xoll 010y + | log I AT Q7 lns).
Proof. Use (3.1) and (3.4) and set F,(t) = Ep(t) P, — E(t) to get
(3.5) 1 Xn(t) — XDl ro0,m) < ller() ry,m) + lle2(O yo,m)

where e (t) = Fp(t)Xo and ea(t) = f(f Fp(t — s)dW (s). By using Theorem
2.1 we get

1 1
lex ()l zo0,m) = (BIF(H)Xol*)? < ChP(EIXo[3)? = OB Xoll 1,0, s19)-

For the second term we use the isometry (3.2), the definition of Hilbert-
Schmidt norm and Theorem 2.1,

a2, ) = E(H/Olt Fut — s) dW(s)H2>

t
- / | Fut — 5)Q |3s ds
0
00 t . )
-y / 1F(s) Q¥ ]2 ds
1=1~0

e 1
< C|logh|*n?’ Z Q213
=1

= C|log h*h*° | AP-2/2Q3 |3
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Now we consider the fully discrete Cahn-Hilliard-Cook equation (1.11)
with mild solution

(3.6) Xpn = EfPuXo + Zn: BT P AW,
j=1
where Eyp, = (I + kA?)~L.
Theorem 3.3. Let X}, and X be given by (3.5) and (3.1) . If Xy €
Ly(Q, HP) and ||A¥Q%||HS < oo for some [ € [1,min(r,4)], then
[ Xnn(t) = X ()l Lo,
< (Cl1og hlh? + Cp kD) (I1Xol 1y sy + 147 Q% lms),
where Cg 1, = & for B < 4 and Cgy, = C|logk| for = 4.
Proof. By using (3.1) and (3.6) we get, with F,, = E};, P, — E(t,),

n t]
en=FXo+ ) / Fo_ji1 dW (s)
j=17%-1

n t;
+ Z/ (E(tn —tj—1) — E(t, — s)) dW(s)
j=17ti—1
=eép1ten2tens

By using Theorem 2.2 we have

(3.7) len
By using the isometry (3.2) and Theorem 2.2 we get

n t. 9
b (13 [ Fesal)
j=1"ti-

-y / |Fo 1@ |3s ds
j=17ti-1
n

> 1
= kZZ 1 Feji1Q2 |
=1 j=1
< (C|log h|h” + Cg,kk4)2|Q2¢l’%—2
-1

l
= (C|log h|h? + Cj xk'3) || A"2" Q2 ||

1 8
Ly = (B|FaXol?)? < C(h° + kO Xoll 1,0 516)-

len,2]
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By using isometry property (3.2) again we have

len,s H%Q(Q,H)

n

-y / "B =ty 1) = B(tn — 5))Q% s ds

j=1"ti-1

A~ [ s =2 1 o
- Z/ |A=3(E(s — t;_1) — D) AE(tn — ) A"T Qb || ds.

1=1 j=1"%ti—1

Using the well-known inequality
=8 B
1A= (E(t) - T)w|| < Ot ]|,

with t = s —t;,w = AE(t, — S)A%Q%m, together with (2.2), we get

> tn B=2 1 2
S / JAE(t, — ) A" Q3> ds
1=1~0

NI

lensll3y@m < Ck

o0
B B=2 1 B B=2 1
<Ck2) A7 Q2o = Ck7|A™7 Q7 |ffs.
I=1
Putting these together proves the desired result. O
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