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FINITE ELEMENT APPROXIMATION OF THE
LINEARIZED CAHN-HILLIARD-COOK EQUATION

STIG LARSSON' AND ALI MESFORUSH

ABSTRACT. The linearized Cahn-Hilliard-Cook equation is discretized
in the spatial variables by a standard finite element method. Strong
convergence estimates are proved under suitable assumptions on the
covariance operator of the Wiener process, which is driving the equation.
The backward Euler time stepping is also studied. The analysis is set in
a framework based on analytic semigroups. The main part of the work
consists of detailed error bounds for the corresponding deterministic
equation.

1. INTRODUCTION

When the Cahn-Hilliard equation (cf. [2, B]) is perturbed by noise, we
obtain the so-called Cahn-Hilliard-Cook equation (cf. [II, 5])

du — Avdt =dW, forxeD,t >0,
v=—-Au+ f(u), forxeD,t>0,

1.1

(11) Ou o, 92% _ o forzedD, t>0,
on on
U(,O) = Uo,

where u = u(z,t), A = Zle 68722, and 8% denotes the outward normal deriv-

ative on 9D. We assume that D is a bounded domain in R? for d < 3 with
sufficiently smooth boundary. A typical f is f(s) = s* — s. The purpose of
this work is to study numerical approximation by the finite element method
of the linearized Cahn-Hilliard-Cook equation, where f = 0.

We use the semigroup framework of [I2] in order to give a rigorous
meaning. Let ||-|| and (-,) denote the usual norm and inner product in the
Hilbert space H = La(D) and let H®* = H*(D) be the usual Sobolev space
with norm |-||s. We also let H be the subspace of H, which is orthogonal
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2 S. LARSSON AND A. MESFORUSH

to the constants, that is, H = {v € H : (v,1) = 0}, and we let P: H — H
be the orthogonal projector.
We define the linear operator A = —A with domain of definition

ov

D) ={ven: 3"

(A) o

Then A is selfadjoint, positive definite, unbounded linear operator on H

with compact inverse. When it is considered as an unbounded operator on

H, it is positive semidefinite with an orthonormal eigenbasis {goj};?io and
corresponding eigenvalues {\;}32, such that

=0 on 82)}.

0:)\0</\1§)\2_-~-§)\'§-~-, Aj — 00.
The first eigenfunction is constant, ¢ = |D| . We also define
E s 2 1/2
(1:2) ol = 43P0l = (3 ) ) ser
j=1

and H* = {v € H : |v|s < oo} for s > 0 and H® equals the closure of H with
respect to |-|s for s < 0. Then H? = H and |jv||> = |[v]3 + (v, )% Tt is well
known that, for integer s > 0, H* is a subspace of H* N H characterized by
certain boundary conditions and that the norms |- |s and ||-||s are equlvalent

on H*. In particular, we have H' = H' N H and the norm |v|; = HA2v|| =

V| is equivalent to ||v||; on H.
For v € H we define

o

_ 4 A2 2

o tA%, Zet,\v%
j=0

Then {E(t)}i>0 = {e—t4 }>0 is the analytic semigroup on H generated by
—A2. We note that

to = Ze (v,0,)¢; + (v, 90)00 = E()Pv+ (I - P)o,

where (I — P)v = |D|™! [, vdz is the average of v.

Let (2, F,P,{Fi}+>0) be a filtered probability space, let @ be a selfad-
joint, positive semidefinite, bounded linear operator on H, and let {W () }+>0
be an H-valued Q-Wiener process adapted to the filtration {F;}+>o0.

Now the Cahn-Hilliard-Cook equation (|1.1)) may be written formally

(1.3) dX(t)+ A2X(t)dt + Af(X(t))dt =dW(t), t>0; X(0)=X,.

The semigroup framework of [12] gives a rigorous meaning to this in terms
of the mild solution, which satisfies the integral equation

X(t):E(t)Xo—/O E(t—s)Af(X(s))ds+/0 E(t —s)dW(s),
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where fot ... dW (s) denotes the H-valued It6 integral. Existence and unique-
ness of solutions is proved in [6]. This is based on the natural splitting of
the solution as X (t) = Y (¢) + Wa(t), where

/Et—s AT (s)

is a stochastic convolution, and where

Y(t) = E(t)Xo — /t E(t—s)Af(X(s))ds
0
satisfies the random evolution problem
Y(t)+ AY () + Af(Y(t) + Wa(t)) =0, t>0; Y(0)= X.

The study of the stochastic convolution W4(t) is thus a first step towards
the study of the nonlinear problem.

In this work we therefore study numerical approximation of the linearized
Cahn-Hilliard-Cook equation

(1.4) dX + A°X dt=dW, t>0; X(0)= X,

with the mild solution
t
(1.5) X(t)=E(t)Xo+ / E(t — s)dW (s).
0

The nonlinear equation is studied in a forthcoming paper [I1]. We remark
that a linearized equation of the form , but with A2 replaced by 42+ A
is studied by numerical simulation in the physics literature [7,, 9].

For the approximation of the Cahn-Hilliard equation we follow the frame-
work of [§]. We assume that we have a family {S}, },~o of finite-dimensional
approximating subspaces of H!. Let P,: H — S} denote the orthogonal
projector. We then define S;, = {x € Sy : (x,1) = 0}. The operator
Ap: S, — S, (the “discrete Laplacian”) is defined by

(Ath 77) = (VX7V7’)7 vX € Sha ne Shv
The operator Ay, is selfadjoint, positive definite on Sy, positive semidefinite
on Sy, and Ay, has an orthonormal eigenbasis {¢y, ; }?[:’LO with corresponding
eigenvalues {\, ; }j-V:hO. We have

0=MXo <A1 < < Apj < < ANy,

and ¢p0 = Yo = ]’D]_%. Moreover, we define Ey(t): Sy, — Sp, by
Np,
Ep(tyon = e vy = e i (uy, 01 5) on
=0
Np,
= e i (o, 0n5) @h. + (vhs P0) 0,
j=1
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Then {E}(t)}+>0 is the semigroup generated by —A,QL. Clearly, P,: H — Sy,
and

Eh(t)PhU = Eh(t)PhPU + (I - P)U.

The finite element approximation of the linearized Cahn-Hilliard-Cook
equation ([1.4) is: Find X}(¢) € Sy, such that,

(1.6) dX, + A2 Xy dt = P, dW, t>0; X(0) = P,Xo.
The mild solution of (|1.6|) is

t
(1.7) Xh(t) = Eh(t)PhXo + / Eh(t — S)Ph dW(S)
0
We note that

/ Et—s)(I—-P)dW(s)=(I— P)/ dW(s) = (I — P)W(t),

0 0

so that

X(t)=E{t)Xo+ /t E(t—s)dW(s) = E(t)PXo+ (I — P)Xy

(1.8) . 0

+/ E(t—s)PdW(s)+ (I — P)W(t),
0

and similarly

Xu(t) = Ep(t)P,PXo + (I — P) X
+ /t En(t — s)P,PdW (s) + (I — P)W ().
0

Therefore, the error analysis can be based on the formula
Xn(t) — X(t) = (En(t)Py — E(t)) PXo

(L9) o (Bt — 5)Pu— Bt — 5)) PaW(s),

and it is sufficient to work in the spaces H and S;,. Note that the numerical

computations are carried out in Sj, and that S} is only used in the analysis.
Let k = 4t be a timestep, t, = nk, 60X, = Xpn — Xpp_1, W, =

W(t,) — W(tn—1), and apply Euler’s method to (|1.6|) to get

(1.10) 6Xpn+ A Xpnot = P,oW,, n>1; Xno=PyXo.

With Eyj, = (I + kA2)~! we obtain a discrete variant of the mild solution

n
Xnn = EpPuXo+ Y Ep 4 P oW,
j=1
In Section [2| we assume that {Sp}r~0 admits an error estimate of order
O(h") as the mesh parameter h — 0 for some integer 7 > 2. Then we show
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error estimates for the semigroup Ej,(t) with minimal regularity requirement.
More precisely, in Theorem we show, for 5 € [1,7] and all ¢t > 0,

1Fw(t)oll < OB Jols, v e HP,
t 1 .
([ 15yl ar)” < Clloghii? ol-a, ve 12
0

where F},(t) = Ey(t)P, — E(t) is the error operator in (1.9).

Analogous estimates are obtained for the implicit Euler approximation in
Theorem [2.2]

In Section 3| we follow the technique developed in [14] [I3] and use these
estimates to prove strong convergence estimates for approximation of the
linear Cahn-Hilliard-Cook equation. Let Lo(£2, H?) be the space of square
integrable HP-valued random variables with norm

L) Xein = (BIXBY) = ([ KB aPw)”

and let | T||us denote the Hilbert-Schmidt norm of bounded linear operators
on H, ||T|%4g = P | T#;]1?, where {#;}52, is an arbitrary orthonormal
basis for H. In Theorem [3.1] we study the spatial regularity of the mild

solution (|1.5)) and show
p=2 1
HXG)HLQ(SLH@) < C(HXOHLQ(QH[%) +A72 Q2lns) for B> 0.
Moreover, in Theorem we show strong convergence for the mild solution
Xp, in (|1.7):
[ Xn(t) = X (Ol Lo(e,m)
B=2 1
< CW (| Xoll Ly + | og Bl AT Q3 lus), B € [1.7).
In Theorem for the fully discrete case we obtain similarly, for 3 €
[1, min(r, 4)],
[ Xnn(t) = X ()l Lo (2, m)
B
< (Cllog h|h” + Cr,gk 1) (1| Xoll 0, 7oy + 14" Q% lus),
where Cgj = & for f < 4 and Cg = C|logk| for 5 = 4.
Note that these bounds are uniform with respect to ¢t > 0.

. =2 1 .
Our results require that ||A 2 Qé s < oo. In order to see what this
means we compute two special cases. For Q = I (spatially uncorrelated

noise, or space-time white noise), by using the asymptotics A\; ~ j %, we
have

1A QE |l = 4% ||HS—ZAﬁ2NZ]ﬁ2>d<OO

if B <2 —%. Hence, for example B <53 L if ¢ = 3. On the other hand, if Q
is of trace class, Tr(Q) = ||Q |3s < o0, then we may take § = 2.
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There are few studies of numerical methods for the Cahn-Hilliard-Cook
equation. We are only aware of [4] in which convergence in probability
was proved for a difference scheme for the nonlinear equation in multiple
dimensions, and [10] where strong convergence was proved for the finite
element method for the linear equation in 1-D.

2. ERROR ESTIMATES FOR THE DETERMINISTIC CAHN-HILLIARD
EQUATION

We start this section with some necessary inequalities. Let {E(¢)}i>0 =
{e—tA2}t20 and {Ep(t)} >0 = {e_tA%}tzo be the semigroups generated by
—A? and —A,zl, respectively. By the smoothing property there exist positive
constants ¢, C' such that

(2.1) 1A En(8)Pu Pl + | AP E() Pl < Ct~Fe o], 5 =0,
t ¢

(2.2) / HAhEh(s)PhPUH2d8+/ |AE(s)Pv|* ds < C||v|>.
0 0

Let Ry: H' — Sj, be the Ritz projector defined by
(VRuv,Vy) = (Vu,VY), Vx € Sh.

It is clear that Ry = A,:lphA. We assume that for some integer r > 2, we
have the error bound, with the norm defined in (1.2)),

(2.3) |Ryv — | < ChPvlg, ve HP, 1<pB<r

This holds with » = 2 for the standard piecewise linear Lagrange finite
element method in a bounded convex polygonal domain D. For higher order
elements the situation is more complicated and we refer to standard texts
on the finite element method. In the next theorem we prove error estimates
for the deterministic Cahn-Hilliard equation in the semidiscrete case.

Theorem 2.1. Set F},(t) = Ey(t)P, — E(t). Then there are hg and C, such
that for h < hg, 1 < 8 <r andt >0, we have

24) B0l < W ol ve B,
t 1 .
(2.5) (/ [Bn(r)el?dr)? < Cllogh|h® [ols—s, v e 1.
0

Note that Fj,(t)v = Fj,(t)Pv for v € H, so that it is sufficient to take
v € H. The reason why we assume [ > 1 is that in (2.5)) we need at least
v € H! for Ey(t)Pyov to be defined.

Proof. Let u(t) = E(t)v, up(t) = Ex(t)Pyv be the solutions of
(2.6) ug + A%u =0, t>0; u(0)=uv,
(2.7) upt + Ajup =0, t>0; up(0) = Pyo.
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Set e(t) = up(t) — u(t). We want to prove that

le®)Il < CR” v]g, v e HY,

t 1 .
(/ le(r)I2dr)* < Cllogh|n? Juls_a, v e 72
0

Let G=A"'Pand G}, = A,:lPhP. Apply G to (2.6 to get Guy + Au = 0,
and apply G%L to (2.7)) to get G%uh,t + up, = 0. Hence,
Giei +e=—Giup — u+ Gp(Guy + Au) = (GLA — Nu — G (GLA — I)Guy,
that is,

(2.8) Ghei+e=p+ G,

where p = (R, — Iu,n = —(Rj, — I)Guy. Take the inner product of (12.8])
by e; to get

Sl = (p,e0) + (0, Gier)
2 dt € = p, et 1, Ghnet),

Since (n, Grer) < |InllGrecll < 5llnll* + 51| Gret||?, we obtain

IGheell* +
d
|Ghedll* + Fllell* < 2(p, e0) + Inll*

Multiply this inequality by ¢ to get ¢||Gre,l|* + t-3|lel|? < 2t(p, er) + t]n]|*.
Note that

d o d 9 9 . d
E el = S llel®) — el t(p.e0) = S (tp,)) — (pre) — o1,
so that

d d
tlGrel® + a(ﬂlellr‘)) < 2— (t(p €)) +2|(p, €)] +2[t(pr, €)| + tnl* + [le]*.

dt
But
1 2, L o
(o)l < llpllllell < 5llpll™ + 5 llel,
1 1
[t(pe, )| < tllpellle]l < 5t2\|pt\l2 + §||6||2-
Hence,

d d
HlGreal® + 3 (tllel®) < 2 (t(,€)) + loll* + llpel* + tlinl* + 3lle]”

Integrate over [0,¢] and use Young’s inequality to get

t t t
1
7(|Gred|? dr + tlle]|? < 2t|pl]*> + stllel® + [ lplPdr+ [ 73(|pe]|*dr
0 2 0 0
t t
+/0 Tunu2dT+3/0 le|2 dr.

t
(29)  tllel* < CltHPIIQJrC’/0 (ol + 72l pel® + 7llnl* + llel|*) dr.

Hence,



8 S. LARSSON AND A. MESFORUSH

We must bound fg lle||? dr. Multiply (2.8) by e to get

1d 2 2 1 2 1 2
- < < Z —
5 g Grell™Hlel™ < llollllell +lnllliGrell < Sllol"+5 llell +||n||0123§t!\GheH7
so that
d
2.1 — 2 2<pl? +2 .
(2.10) 1Grel?+ 11l < 1l + 2[| gmas, |Gre

Integrate (2.10)), note that Gje(0) = A, ' Py(P, — I)v = 0, to get

t t t 9
(Gell> + [ lelPar < [ lpIP ar + max [Grell* + ( [ Inlar)
0 0 Os7<t 0

Hence, since t is arbitrary,

b b t 9
(21) [ eipar < [pipar ([ mlar)”
0 0 0

We insert (2.11)) in (2.9)) and conclude

t
tllel® < Ctllp))? + C/O (Il + 72l pel® + 7lln]?) dr

+c(/0t|yn|| ar)”

We compute the terms in the right hand side. With v € HP, recalling
p = (Rp — Iu and using ([2.3)), we have

(213) ||p(t)]| < Chlu(t)]s < CHP|E()A2v] < CH?|| A% 0] < ChPJols,
so that,

(2.12)

fol? < w1l ar < CHof
Similarly, by ,
loe(®)| < CROlua(b)] < CHP||A2E () A o] < CRPE Jols,
so that
(2.14) /Ot 2| prl? dr < CHP ]2,
Moreover, since n = —(Rp, — I)Guy,
[n(#)]| < CHP|Gui(t)]5 < CHP|AB(t) AZol| < ChOt 2o,
so that
t 9 t
(/0 Inllar)” < ontjof, /0 PP dr < CH2Huf3,
By inserting these in we conclude
tllel|* < Ch*’tjul3,
which proves .
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To prove (2.5) we recall (2.11)) and let v € H?~2. By using (2.3) and ([2.2)

we obtain
t t t ~

| / HpHZdT<Ch2/B/ ]u\%dT:Chzﬁ/ IAE(r)A%2 |2 dr
0 0 0

< Ch2ﬁ|v\%_2.

(2.15

Now we compute fg |In|| d=. To this end we assume first 1 < 5 < r and let

1 <~ < (. By using (2.1) and ({2.3]) we get
t t t - B
/0 || dr < cm/o \Gutlﬁ,dT:Ciﬂ/o 14222 p(r) A% | dr

t
Q4B
<Ch7/ T T e dr |u]g_s,
0

where, since 0 < f—vy <r—1,
t 5 4 t% 4 C 0o 4
/ T e dr = / e %7 ds < / e 1 ds.
0 B=7Jo B=7Jo
Hence, with C' independent of g,

t ChY
2.16 / n|| dr < v|g_a.
(2.16) ; il ﬁ_7| -2

Now let ﬁ—iv: |logh| = —logh, soy — [ as h — 0, and
vlogh = (y— B+ () logh =1+ [logh.

Therefore we have

By
i | log hleY!°8" = |log hle* P18 < C|log h|hP.
-7
Put this in (2.16) to get, for 1 < g <r,
t
(217) | nliar < cnioghljels-s,
0

and hence also for 1 < @ < r, because C' is independent of 3. Finally, we

put @15) and (217) in (@11 to get
t 1
([ llelpar) < Clioghin®lels-s,
0

which is (2.5)). O

Now we turn to the fully discrete case. The backward Euler method
applied to

Upt + A%uh =0, t>0; wup(0)= Pyo,
defines U,, € S}, by
(2.18) OU, + A3U, =0, n>1; Uy= Py,
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where OU,, = %(Un — Up—1). Denoting £}, = (I + kA?L)_", we have U,, =
E7,v. The next theorem provides error estimates in the Ly norm for the
deterministic Cahn-Hilliard equation in the fully discrete case.

Theorem 2.2. Set F,, = E}, P, — E(t,). Then there are ho, ko and C, such
that for h < hg, k < ko, 1 < < min(r,4), and n > 1, we have

(2.19)  ||Fpoll < C(h° + kD)|vlg, v e HP,

n 1 .
(2.20) (k;z ||Fjv||2) < (Cllog hlh? + Capk ) |v]g_a, v e P2,
j=1

where Cgj, = & for B <4 and Cgj, = C|logk| for = 4.

Proof. Let G and G}, be as in the proof of Theorem 2.1} With e,, = U,,—u,, =
Ep, Prv — E(t,)v, we get

(2.21) G,Qﬁen + en = pn + Gpnp + Gron,
where u, = u(ty), urn = u(ty) and

pn = (Rn — Dup, nn=—(Rp—I1)GOuy,, 0p=—G(Ou, — utpy).
Multiply by Oe,, and note that

1 1
(n> GrOen) < ||77n”2 + ZHGhaenHQa (0n, Groen) < ||5nH2 + ZHGhaenWa

to get

(222)  [[Ghdenl + 2en, Den) < 2pn, Den) + 2l + 20501
We have the following identities

(2.23) d(anby) = (0ay)by, + an—1(0by,)

(2.24) = (Oan)by, + ay(0by,) — k(day)(0by,).

By using we have

2(en, Den) = Ollenl|” + K[| Oen|?,
(pns Oen) = 0(pn, en) — (Opn, en) + k(Opn, Oey).
Put these in (2.22)) and cancel k||de,||? to get
IGhOenl® + Ollen]|* < 20(pn, en) — 2(Dpn, en) + kll0pnll* + 2/l + 2[16a .

Multiply this by ¢,_1 and note that k < t,_1 for n > 2, so that we have for
n>1

tn-1/|Grden | +tn-10|enl|?
(2.25) < 2tn—10(pn, €n) — 2tn—1(0pn, €n) + 7531_1||50n||2
+ 2t 1|71 + 2tn1[|8n 1.
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By ([2.23]) we have
tn—10len]|* = 8(tallenl®) — llenll?,
2tn—18(pna en) = 2a(tn(pn7 en)) - 2(p7h en)‘

Put these in (2.25) to get
tn—lHGhaen||2+a(tn||enH2)
(2.26) < C(3(tn(pnsen)) + lonll® + ta_110pnl1? + llenl|®)
+ C(tn—l||77n||2 + tn—IH‘;TLHQ)'
Note that

n

@27) kY 0(tlle ) = tallenl® kZa (p7.€7)) = tulpnsen).

j=1

By summation in (2.26]) and using (2.27)) we get

n
Bt llGrdes [P+tallenl® < Callpal
j=1

(2.28) +CkY (Il + 651110017 + lle; )

+CRY (tioalng|® + t—1]16;]1%).

j=1

Now we estimate k37, lej||?. Take the inner product of (2.21)) by e, to
get

(2.29) 2(G}0en, en) + llenll* < llpnll® + 2(1lmall + [18a]1) |Grenll.

By ([2.24]) we have

(2.30) 2(G2den, e) = 2(0Ghen, Gren) = 0||Grenl® + k||0Ghen ||
By summation in (2.29)) and using Greg = 0, we get

IGhenll® + kZ lejlI* < ffz loill* + 5 maXIIGh%H
7j=1 7j=1

w263 (Il + 1551))’

Hence,

(2.31) kZ leslI? < kZ ol +2(6S (gl + 1510 )

7=1
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By putting (2.31) in (2.28) we get

tn||€nH2 SCthanQ

n
44%23@mW+ﬁ4wwW+w4mm%wfw@w)

(;nm+wn)

Now we compute the terms in the right hand side. With v € H? we have

by (ZT3).

(2.33) lpnll® < CRP0l3, B Nlpill> < CR*Pty|ul3.
j=1

(2.32)

By using the Cauchy-Schwartz inequality we have

- 2 2 - 2 1[4 2
kztjAHanH :kztlek/ PthH
j=1 =2 ti—1
n

1 [ tj
(g [ e [ PR ar)

j=2 i-1 i-1
tn
< [ Plofpar,
0
Hence, by (2.14),
n
(2.34) kY 5 1 10p5]7 < ChP o3,

By using ([2.3]) and we have

mmson%ﬂw:H/ AB(7)AS v |
Chﬂ ChB
— 773 dr|| A% v <7 t:— i )| vlg < vla.
=% ) 1420l < 5=Vt = Vil < —=lols
So
n n i
(2.35) BY bl < Ch*Ptalolz, kY Ingll < CROtE v,

j=1 j=1
By using ([2.1) we have, for j > 2,

1 t; t;
16;]] < Hk/ (T—tj_l)Gutt(T)dTH g/] 1433 E(r) A% v|| dr
tj—1

< c/ = drfols,
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so that, by Holder’s inequality with p = % and ¢ = ;75,1 < § <4,

t; t 4-8
/J 7'_64+6 dT§CkZ</J T_GIB)%C[T) ‘
t ti—1

j—1 J—

<

_ __2_ 2 (48
gCﬁ(%(%:ﬁ 4 E )) 1

2,4
< Ckit 2.
The same result is obtained with G = 4. For j = 1 we have

—248

o1 < Hli/okTGutt(T)dTH < C% /OkT 1 drlvls

—243
1 |’U

4 B -1
<C—=k | < Ckity *|vlg.

2+ 0
So we have, for j > 1,

s -1
161 < Ckat; *|v]g.
Hence,

n n
8,1 8
(2.36) EY NG < ckatdlolg, kD tialld]® < Ck2tn|vf3.
=1 =1

Put (2.33)), (2.34), (2.35), and (2.36]) in (2.32)), to get
B
lenll < C(H? + ED)lolg.

This completes the proof (2.19)).
To prove (2.20) we recall (2.31)) and let v € H~2. For the first term we

write &30, o711 = klloa | + % 30y llp 12, where by (&)
KllorI? < kCh2 | AE(K) A" v]]? < Ch*Juls_s,

and

n n t;
>l = [
=2 j=27ti-1
"ot ) Nt tj 2
<2 [ pePds 2y [ ] [T s as
j:2 tj—l ]:2 tj—l S

tn n t; t;
<2 / Io(s)[2ds +23° / (t; — 5) / oe(r)[|? dr ds
t1 j=2 ti—1

ti—1

p(s) + /Stj pe(T) dTHQdS

tn tn
<2 / loll? dr + 2k / Tllpe]? dr,
0 t1

since t; — s < k < 7 and where, by (2.15),

tn
/0 Il dr < Ch o2,
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and . .
k[ o2 dr < CR2k / T ASE(r) A% |2 dr
t t
1 ltn
< Ch¥k / T2dT |v]3
k
< CRk(k™" — 17 o3y < CH2P|u]3,.
So
(2.37) kY lpill? < Ch¥loff_s.

j=1
Now we compute k%, [[7;]|. Recall that n; = —(Rj, — I)GOu; and 1 =
—(Rp — I)Guy, so

1 [ 1 [t
Il = ||Bs = D6 [7 war| < [ IR = DG ar
K, k),

j—1
1 (b
< = d
< / Inll .

j—1

and hence by (2.17) we have
n tn
(2.38) eIl < [l ar < P og o]
j=1
For computing k37, || we use (2.1) and obtain for 1 < 8 < 4,

1 tj tj 8 -2
160 <+ / (r — tj—1) | Gu(r)] dr < / 1443 B(r) A%T || dr

k ti—1 tj—1

t; 91 B
< C’/ T2 1 dr u]g_a.
ti—1

Hence,
n tn
bS8 < [ driolss
j=2 F
4 148 -1+
< Ck—— ti—t, 4) _
_Ck4_ﬁ(k Tt 0] 52
C s
S 4_/6k4‘vyﬁ_2
and

k k 3 52
Ello1]| < / T||Guge (7) || dT < / T”A475E(T)ATUH dr
0 0

8
kTlv|g—s.

F C
< C/ ril dr |v|g_2 <
0 4
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Therefore, for 1 < § < 4,

kZué I < okl

If we put ﬁ = |log k|, we also have
1-=F k
kZ 551 < kT bola-a = Cllog kfke™ 5 %
< Ck|log k||v|g—2 = C|log k||v|g—2.

Therefore, for 1 < 8 < 4, we have

g s
(2.39) B 61 < Caik|v]p—o.

j=1

where C’g k = ﬂ for ﬂ <4 and C’gk = C|logk| for = 4. Finally we put

2:37), @2:38) and in 231, to get
(kz Hejyy?f < (Chﬂuogm + Cak ) v]-a.
j=1
u

3. FINITE ELEMENT METHOD FOR THE CAHN-HILLIARD-COOK EQUATION

Consider the linear Cahn-Hilliard-Cook equation (|1.4])) with mild solution
t
(3.1) X(t)=E(t)Xo+ / E(t — s)dW (s).
0

We recall the isometry of the It6 integral

2 B / Bs)aw(s)| } = / 1B(:)Q% s ds

where the Hilbert-Schmidt norm is defined by

oo
ITlEs = > 1Tl

=1

where {¢;};°, is an arbitrary orthonormal basis for H. In the next theorem
we consider the regularity of the mild solution (3.1). The Lo(£, H?)-norm
is defined in ((1.11)).

Theorem 3.1. Let X(t) be the mild solution (3.1) with Xo € Lo(Q, H?)
and ||A?Q%||HS < oo for some 3> 0. Then

=2 1
IX(0) 1,000 < C(IX0ll g 0) + 14T Q2 lus), £ 0.
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Moreover, if 3 =0, then for the norm in H we have
1AL 1
X O Lo,y < C(”XOHLQ(Q,H) + A7 Q% ||us + t2>, t>0.

Proof. Recall the definition of |-|g in . By using the isometry . the
definition of the Hilbert-Schmidt norm, and ., we get, for § > 0,

see ,

X, i) = B BC X0+/ B(t— 5P ()|}

IN

C(E{||A% PE(t)Xo|"} + E H/ AZPE(t - 5)dW (s H 3

IN

IN

(1012, 10 +Z/ 45 B(s)PQ3 61 ds)

< c(11%l?2, QHg>+Z||A Qi)

{
(
(X0l oy [ 147 B Q3 s )
(
(
(

= C(I1X01%, o) + HATQEHHS).
For 8 = 0 and the H-norm, there are additional terms
E{[[(I - P)Xol*} = E{(X0,0)*} < [ X017, (0.m):
E{|[(I — P)W(£)[2} = B{(W(t),0)*} < Ct.
O

The finite element problem for Cahn-Hilliard-Cook equation is: Find
Xn(t) € Sp, such that

(3.3) dXp, + A2 X, dt = P, dW, t>0; X,(0) = P,X,.
So the mild solution can be written as

t
(3.4) Xh(t) = Eh(t)PhXo + /0 Eh(t — S)Ph dW(S)

Theorem 3.2. Let X and X be the mild solutions (3.4]) and (3.1) with

Xo € Lo(Q, HP) and HA#Q%HS < oo for some [ € [1,7]. Then there are
ho and C, such that, for h < hg and t > 0,

1 X0 () =X ()| Lo (0,1
-2 1
< CHP (|| Xoll 0 rey + 1 og PIIA™Z Q2 ||mss).
Proof. Use (3.1)) and (3.4) and set Fy(t) = Ex(t)P, — E(t) to get

[ Xn(t) = X (Ol Lo.my < llex@llzo.m) + lle2(®l Lo,y
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where, see (|1.9)),
e1(t) = Fi(t)Xo = Fi(t) P Xo,
t t
ea(t) = / Fi(t — s)dW(s) = / Fi(t — s)PdW (s).
0 0
By using Theorem [2.1] we get
21 8 2\3 8
ler (Ol o) = (Bl Fa(t)Xol*)? < Ch(E[Xo[5)? = Ch”|[Xoll L, (q o)

For the second term we use the isometry (3.2)), the definition of Hilbert-
Schmidt norm and Theorem

le2(8)113, 001 = E<H/Ot Fy(t— s) dW(s)H2>
-/ N - 9)Q} s ds

-y / 1B ()@l ds
=170

e 1
< C|logh|*n*’ Z Q212
=1

1
= Ol log |’ | AP~22Q3 g
O

Now we consider the fully discrete Cahn-Hilliard-Cook equation (|1.10))
with mild solution

n
(3.5) Xnm = B PuXo+ Y Ep 4Py oW,
j=1
where Ep, = (I + kA%)_l.

Theorem 3.3. Let X, and X be given by (3.5) and (3.1) with Xy €

Ly(Q, HP) and ||A¥Q%||Hs < oo for some (3 € [1,min(r,4)]. Then there
are hg, kg and C, such that, for h < hg, k < kg, andn > 1,

[ Xnn () = X ()| Lo (2,11)
8 B=2 1
< (Cliog hlh” + Cp k1) (I1Xoll 1y 0y + 11477 Q2 lms),

where Cg = 125 for B <4 and Cgy = C|logk| for § = 4.



18 S. LARSSON AND A. MESFORUSH

Proof. By using (3.1)) and (3.5) we get, with F,, = E}, P, — E(t,),

n tj
en=FpXo+) / Fpji1 dW (s)
=17t

n

n Z/ " (Bt — tj-1) — E(ta — ) dW(s)

j=17ti-1

=eén1 T en2+ens.

By using Theorem [2.2] we have

NI

B8
(3.6) lenillza.m = (BIFaXol?)? < O + k7)1 Xo 1, 0, 115)-

By using the isometry (3.2]) and Theorem we get
) "ot 2
Lo(QH) = E(HZ/ Frnojm dW(S)H )
j=17%ti-1
n t; L
=3 [ 1B @ s s
j=17ti-1

o0 n 1
= kY > IFjnQ2 e
=1 j=1
< (C|logh]hﬁ+Cg’kk§)2‘Q%¢l|Ea—2
=1

l
= (Cllog hlh? + Cp k7 )| AT QF | 3.

len,2

By using the isometry property (3.2)) again we have

||en,3||%2(Q,H)
<u(|> [7 -t - B - spaws))
R

n

t]' 1
-y / 1Bt — t1) — E(tn — )@} g ds
j=17ti-1

tj —2 1
= ZZ/,_l JA=3(E(s — ;1) — DAE(t, — $)A™> Q2 ¢y| ds.

1=1 j=1"%

Using the well-known inequality

JA= (E(t) — Dw| < Ct7 |lwl],
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with t = s —tj,w = AE(t, — s)A% Q%qbl, together with (2.2)), we get

8 = [tn B2 1
lensl,om < CkE S / |AE(t, — ) AT Q3| ds
=1

[ee]
B 8=2 1 B B=2 1
<Ck2Y AT Qrg|* = Ckz[A™2 Q2.
=1

Putting these together proves the desired result. ([
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