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SPATIAL APPROXIMATION OF STOCHASTIC CONVOLUTIONS

MIHÁLY KOVÁCS1, FREDRIK LINDGREN1, AND STIG LARSSON1,2

Abstract. We study linear stochastic evolution partial differential equations

driven by additive noise. We present a general and flexible framework for rep-

resenting the infinite dimensional Wiener process which is driving the equation.
Since the eigenfunctions and eigenvalues of the covariance operator of the pro-

cess are usually not available for computations, we propose an expansion in an

arbitrary frame. We show how to obtain error estimates when the truncated
expansion is used in the equation. For the stochastic heat and wave equations

we combine the truncated expansion with a standard finite element method

and derive a priori bounds for the mean square error. Specializing the frame to
biorthogonal wavelets in one variable, we show how the hierarchical structure,

support and cancellation properties of the primal and dual bases lead to near
sparsity and can be used to simplify the simulation of the noise and its update

when new terms are added to the expansion.

1. Introduction

We study linear stochastic evolution problems of the form

(1.1) dX(t) = AX(t) dt+B dW (t), t > 0; X(0) = 0,

where X(t) is a stochastic process on a probability space (Ω,F ,P) with values in
a separable Hilbert space H. The operator A is the infinitesimal generator of a
strongly continuous semigroup etA of bounded linear operators on H, W (t) is a Q-
Wiener process on a Hilbert space U , and B : U → H is a bounded linear operator.
The covariance operator Q of W (t) is a self-adjoint, positive semidefinite, bounded
linear operator on U .

Under appropriate assumptions, (1.1) has a unique weak solution which is given
by the stochastic convolution, (see 3.2),

X(t) = WA(t) :=
∫ t

0

e(t−s)AB dW (s).

The motivation for studying the stochastic convolution WA is that this is the first
step towards studying more general evolution problems driven by additive noise of
the form

dX(t) =
(
AX(t) + f(X(t))

)
dt+B dW (t), t > 0; X(0) = X0.
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2 M. KOVÁCS, F. LINDGREN, AND S. LARSSON

This can be given a rigorous meaning as an integral equation,

X(t) = etAX0 +
∫ t

0

e(t−s)Af(X(s)) ds+
∫ t

0

e(t−s)AB dW (s)

= Y (t) +WA(t),

where Y satisfies

Y ′(t) = AY (t) + f(Y (t) +WA(t)), t > 0; Y (0) = X0.

Thus, once WA is known, we may study Y by means of methods for evolution dif-
ferential equations with random data. The analysis methods for WA and Y may be
quite different. This framework is sufficiently general to include the stochastic heat
equation, the stochastic wave equation, and the stochastic Cahn-Hilliard equation.

The Q-Wiener process is often represented as an orthogonal series,

W (t) =
∞∑
k=1

γ
1/2
k βk(t)fk,

where {γk}∞k=1 are the eigenvalues and {fk}∞k=1 an orthonormal basis of eigenvectors
of the covariance operator Q and {βk}∞k=1 are independent real-valued Brownian
motions. However, these eigenvectors are not always available for computations.
We therefore propose an expansion in terms of an arbitrary frame which is not
related to Q.

Let thus {φj}j∈J , with countable index set J , be a frame for U with corre-
sponding dual frame {φ̃j}j∈J , so that 〈φj , φ̃j〉 = δij and

f =
∑
j∈J
〈f, φ̃j〉φj , f ∈ U,

see [8]. Let J ⊂ J be a finite set and define a projector PJ by

PJf :=
∑
j∈J
〈f, φ̃j〉φj , f ∈ U.

Define the truncated finite dimensional process

W J(t) :=
∑
j∈J
〈W (t), φ̃j〉φj , t ≥ 0.

and the corresponding stochastic convolution

W J
A(t) :=

∫ t

0

e(t−s)AB dW J(s).

In Theorem 3.2 we prove a formula for the mean square of the truncation error,

E
(
‖WA(t)−W J

A(t)‖2
)

=
∫ t

0

‖esAB(I − PJ)Q1/2‖2HS ds,

which is the basis for our further analysis. Here ‖T‖HS denotes the Hilbert-Schmidt
norm of bounded linear operators T : U → H given by

‖T‖2HS =
∞∑
k=1

‖Tfk‖2(1.2)

for some and, hence, for any orthonormal basis {fk}∞k=1 in U .
In Section 4 we introduce the deterministic heat and wave equations and their

spatial approximation by a standard Galerkin finite element method. In particular,
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we consider the elliptic operator Λu = −∇ · (a∇u) + cu in a spatial domain D with
boundary condition u = 0 on ∂D as an unbounded linear operator on the Hilbert
space H = L2(D). Its finite element approximation is denoted Λh.

The stochastic heat equation is then of the form (1.1) with A = −Λ, B = I,
H = U = L2(D) and the spatial finite element discretization leads to the truncated
stochastic convolution,

W J
Ah

(t) :=
∫ t

0

e(t−s)AhPhPJ dW (s) =
∫ t

0

e−(t−s)ΛhPhPJ dW (s),

where Ah = −Λh and Ph is the orthogonal projector onto the finite element function
space.

For the discretization error we prove in Theorem 5.1 the convergence estimate

E
(
‖W J

A(t)−W J
Ah

(t)‖2
)
≤ Ch2β‖Λ

β−1
2 PJQ

1
2 ‖2HS

= Ch2β
∑
j,k∈J

〈Λ
β−1

2 φj ,Λ
β−1

2 φk〉〈Qφ̃j , φ̃k〉, β ∈ [0, r],

where h is the mesh size and r ≥ 2 is the order of the finite element method.
Similarly, for the truncation error we show in Theorem 5.2 that

E
(
‖WA(t)−W J

A(t)‖2
)
≤ 1

2
‖Λ− 1

2 (I − PJ)Q
1
2 ‖2HS

=
1
2

∑
j,k∈J\J

〈Λ−1φj , φk〉〈Qφ̃j , φ̃k〉.

Analogous convergence estimates are proved for the stochastic wave equation in
Section 6.

The first form of the above convergence estimates, expressed in terms of the
Hilbert-Schmidt norm, can be evaluated easily by (1.2) if Λ and Q have a common
eigenbasis, that is, if Λ and Q commute, and if W is expanded in the common
eigenbasis. This approach is taken in several papers on numerical methods for
stochastic partial differential equations, for example, [14], [17], and [18].

However, it is often not realistic to assume that Λ and Q commute. Then the
latter form of the estimates is useful if the frames {φj}j∈J , {φ̃j}j∈J are chosen so
that we can exploit decay properties and near sparsity of 〈Λ

β−1
2 φj ,Λ

β−1
2 φk〉 and

〈Qφ̃j , φ̃k〉.
This is exemplified in Section 7, where we specialize to biorthogonal wavelets

in one variable. Assuming that the covariance operator Q is an integral operator
with smooth kernel, we show in Theorem 7.1 how to balance the discretization and
truncation error so that the total error convergences with rate O(h2).

We also demonstrate how the hierarchical structure of the wavelet basis can be
exploited to simplify the simulation of the Wiener process and its update when new
terms are added to the expansion.

This work was inspired by [1], where the noise is viewed as a Martingale measure
on space-time, which is approximated by a random function, piecewise constant in
space-time. The resulting differential equation is then solved by the finite element
method. This method does not generalize to spatially correlated noise and is there-
fore limited to one spatial dimension. This is because the solution of the stochastic
heat equation with uncorrelated noise in multiple dimensions is not smooth enough
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to admit convergence estimates. The Haar wavelet was used in [9] together with
correlated noise, but this work is also limited to one spatial dimension.

2. Preliminaries

Let H and U denote two separable real Hilbert spaces. We denote both their
scalar products and norms by 〈·, ·〉 and ‖ · ‖; they are distinguished by the context.
The space of bounded linear operators from U to H is denoted by B(U,H) with
standard norm also denoted ‖ · ‖. We write T ≥ 0 if T ∈ B(H,H) is selfadjoint,
positive semidefinite.

A countable subset {φj}j∈J ⊂ H is a frame for H if there exist a, b > 0 such
that

(2.1) a‖f‖2 ≤
∑
j∈J
|〈f, φj〉|2 ≤ b‖f‖2 , f ∈ H.

The numbers a and b are called frame constants. Then there exists a frame {φ̃j}j∈J
with 〈φj , φ̃j〉 = δij and

b−1‖f‖2 ≤
∑
j∈J
|〈f, φ̃j〉|2 ≤ a−1‖f‖2 , f ∈ H.

The frame {φ̃j}j∈J is called the dual frame of {φj}j∈J , see, for example, [8]. We
may now write

f =
∑
j∈J
〈f, φ̃j〉φj , f ∈ H.

Let L1(U,H) denote the set of nuclear operators from U to H, that is, T ∈
L1(U,H) if T ∈ B(U,H) and there are sequences {aj}∞j=1 ⊂ H, {bj}∞j=1 ⊂ U with∑∞
j=1 ‖aj‖‖bj‖ <∞ and such that

(2.2) Tf =
∞∑
j=1

〈f, bj〉aj , f ∈ U.

These operators are also referred to as trace class operators from U to H. Clearly,
trace class operators are compact. It is well known that L1(U,H) is a Banach space
with the norm

‖T‖1 = inf
{ ∞∑
j=1

‖aj‖‖bj‖ : Tf =
∞∑
j=1

〈f, bj〉aj
}
.

Below we collect some facts about trace class operators.

Lemma 2.1. Let T ∈ L1(H,H) and {φj}j∈J be a frame with corresponding frame
constants a and b. Then the trace of T ,

(2.3) Tr(T ) =
∑
j∈J
〈Tφj , φ̃j〉,

is well defined and is independent of the choice of frame. If, in addition, T ≥ 0,
then

(2.4) aTr(T ) ≤
∑
j∈J
〈Tφj , φj〉 ≤ bTr(T ).
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Proof. Since T ∈ L1(H,H) we have (2.2). Then 〈Tφk, φ̃k〉 =
∑∞
j=1〈φk, bj〉〈aj , φ̃k〉

and hence∑
k∈J

|〈Tφk, φ̃k〉| ≤
∑
k∈J

∞∑
j=1

|〈φk, bj〉〈aj , φ̃k〉| =
∞∑
j=1

∑
k∈J

|〈φk, bj〉〈aj , φ̃k〉|

≤
∞∑
j=1

(∑
k∈J

|〈φk, bj〉|2
) 1

2
(∑
k∈J

|〈aj , φ̃k〉|2
) 1

2 ≤
√
b

a

∞∑
j=1

‖aj‖‖bj‖ <∞.

Therefore, the series in (2.3) converges absolutely and by Fubini’s theorem∑
k∈J

〈Tφk, φ̃k〉 =
∑
k∈J

∞∑
j=1

〈φk, bj〉〈aj , φ̃k〉 =
∞∑
j=1

∑
k∈J

〈φk, bj〉〈aj , φ̃k〉 =
∞∑
j=1

〈aj , bj〉

is independent of the frame. This proves the first statement; for the second we refer
to [8, p. 64]. �

Lemma 2.2. If T ∈ L1(H1, H2), S1 ∈ B(H2, H3), and S2 ∈ B(H3, H1), then S1T ∈
L1(H1, H3) and TS2 ∈ L1(H3, H2). Moreover, if T ∈ L1(H1, H2), S ∈ B(H2, H1),
then

Tr(ST ) = Tr(TS) ≤ ‖S‖‖T‖1.(2.5)

If T ≥ 0, then T ∈ L1(H,H) if and only if the series in (2.3) converges for some
orthonormal basis {φj}j∈J and in this case ‖T‖1 = Tr(T ).

Proof. The proofs for Hi = H are given in [5, Appendix C]. The general case is
proved in the same way. �

Lemma 2.3. Let T ∈ B(U,H) and assume that TT ∗ ∈ L1(H,H). Then T ∗T ∈
L1(U,U) and Tr(TT ∗) = Tr(T ∗T ).

Proof. Since TT ∗ ≥ 0, it follows from the spectral theorem and Lemma 2.2 that
‖TT ∗‖1 = Tr(TT ∗) =

∑∞
i=1 λi, where {λi} ⊂ R+ are the eigenvalues of TT ∗.

Let {ei} ⊂ H be corresponding orthonormal eigenvectors. Since (T ∗T )T ∗ei =
T ∗(TT ∗)ei = λiT

∗ei, λi are eigenvalues of T ∗T . By assumption TT ∗ is compact
and, since (T ∗T )2 = T ∗TT ∗T = T ∗(TT ∗)T , it follows that (T ∗T )2 is compact and,
hence, so is T ∗T . Finally, as above, eigenvalues of T ∗T are eigenvalues of TT ∗ and
thus their eigenvalues coincide. Hence, Tr(TT ∗) = Tr(T ∗T ) by the last statement
of Lemma 2.2. �

Finally, we recall that T ∈ B(U,H) is a Hilbert-Schmidt operator if

(2.6) ‖T‖2HS =
∞∑
k=1

‖Tfk‖2 =
∞∑
k=1

〈T ∗Tfk, fk〉 <∞,

for some and hence, for any orthonormal basis {fk}∞k=1 of U . in U . It is well
known that the set of Hilbert-Schmidt operators, denoted by L2(U,H), becomes
a separable Hilbert space under the usual addition and scalar multiplication and
with scalar product 〈S, T 〉 =

∑∞
k=1〈Sfk, T fk〉, where {fk}∞k=1 is any orthonormal

basis of U . It is clear from the above that

‖T‖2HS = Tr(T ∗T ) = Tr(TT ∗) = ‖T ∗‖2HS
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and, by (2.4), we have the norm equivalence

(2.7) b−1
∑
j∈J
‖Tφj‖2 ≤ ‖T‖2HS = Tr(T ∗T ) ≤ a−1

∑
j∈J
‖Tφj‖2

for any frame {φj}j∈J in U . This makes it possible to estimate the trace, or Hilbert-
Schmidt norm, by using an arbitrary frame instead of an orthonormal basis, which
will be crucial in the following. More generally, we have the following result for a
product of operators.

Lemma 2.4. Let Q ∈ B(H) with Q ≥ 0 and with an orthonormal basis of eigen-
vectors. Let T ∈ B(H) and let {φj}j∈J be a frame for H. If QT ∗T ∈ L1(H,H),
then ‖TQ 1

2 ‖HS <∞ and

Tr(TQT ∗) = ‖TQ 1
2 ‖2HS = Tr(QT ∗T ) =

∑
j,k∈J

〈Tφj , Tφk〉〈Qφ̃j , φ̃k〉.

Proof. Let {(γk, fk)}∞k=1 be eigenpairs of Q, cf. Remark 3.1. Since QT ∗T is trace
class, we may use (2.3) to expand Tr(QT ∗T ) in {fk}∞k=1:

Tr(QT ∗T ) =
∞∑
k=1

〈QT ∗Tfk, fk〉 =
∞∑
k=1

〈Tfk, TQfk〉 =
∞∑
k=1

γk〈Tfk, T fk〉

=
∞∑
k=1

‖TQ 1
2 fk‖2 =

∞∑
k=1

‖TQ 1
2 fk‖2 = ‖TQ 1

2 ‖2HS = Tr(TQT ∗),

where (2.6) was finally used. On the other hand, by expanding in {φj}j∈J and
using Qφ̃j =

∑
k∈J 〈Qφ̃j , φ̃k〉φk, we conclude

Tr(QT ∗T ) =
∑
j∈J
〈QT ∗Tφj , φ̃j〉 =

∑
j∈J
〈Tφj , TQφ̃j〉 =

∑
j,k∈J

〈Tφj , Tφk〉〈Qφ̃j , φ̃k〉.

�

3. Approximation of the stochastic convolution

3.1. Wiener process. Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space. Let
U be a separable Hilbert space and Q ∈ B(U,U) with Q ≥ 0 (selfadjoint, positive
semidefinite). Let {W (t)}t≥0 be a U -valued stochastic process on (Ω,F ,P) which
is adapted, that is, W (t) is Ft-measurable. We say that W is a Q-Wiener process
in U if

(i) W (0) = 0,
(ii) W has continuous trajectories (almost surely),

(iii) W has independent increments,
(iv) W (t)−W (s) is a U -valued Gaussian random variable with zero mean and

covariance operator (t− s)Q for 0 ≤ s ≤ t.
The last statement means that Q is the unique operator defined by

(3.1) E
(〈

(W (t)−W (s)), x
〉〈

(W (t)−W (s)), y
〉)

= (t− s)〈Qx, y〉, x, y ∈ U.

Condition (iv) implies that Tr(Q) <∞ because the covariance operator of a Gauss-
ian random variable is necessarily of trace class, see [5, Proposition 2.15]. Therefore,
W is also called a nuclear Wiener process.

A nuclear Wiener process can be constructed starting from its covariance oper-
ator Q and the construction extends to the case when Tr(Q) =∞ in the following
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way. Let Q ∈ B(U,U) with Q ≥ 0. The Cameron-Martin space is defined as
U0 := Q

1
2U endowed with the scalar product 〈x, y〉0 := 〈Q− 1

2x,Q−
1
2 y〉, where Q−1

is understood as the pseudo-inverse if Q is not injective. Let {ej}∞j=1 be an or-
thonormal basis for U0, let {βj}∞j=1 be mutually independent real-valued Brownian
motions on (Ω,F ,P).

Let L2(Ω, U) denote the space of square integrable U -valued random variables
endowed with the usual norm

‖X‖L2(Ω,U) =
(
E
(
‖X‖2U

))1/2

=
(∫

Ω

‖X(ω)‖2U dP(ω)
)1/2

.

If Tr(Q) <∞, then the series

(3.2) W (t) :=
∞∑
k=1

βk(t)ek

converges in L2(Ω, U) to a U -valued stochastic process, which has a version that is
a nuclear Q-Wiener process, see [5, Section 4] and [15, Section 2].

If Tr(Q) = ∞, then the series (3.2) does not converge in L2(Ω, U). However,
it converges in L2(Ω, U1) for a suitable (usually larger) space U1 (see [5, Section
4.3.1]) to a U1-valued stochastic process, which has a version that is a U1-valued
nuclear Wiener process. The constructed process, still denoted by W (t), is called
a cylindrical Q-Wiener process in U . Also, it is easy to see that

(3.3) Wx(t) =
∞∑
k=1

βk(t)〈ek, x〉, x ∈ U,

exists in L2(Ω,R) and defines a real-valued Wiener process (Brownian motion)
satisfying

(3.4) E
(
Wx(t)Wy(t)

)
= t〈Qx, y〉, x, y ∈ U,

cf. (3.1). Hence, we may write formally 〈W (t), x〉 = Wx(t) although the process
W (t) constructed from (3.2) takes values in U1.

In either case, Tr(Q) <∞ or Tr(Q) =∞, we denote by W (t) the series in (3.2),
which is formal in case Tr(Q) =∞, and call it a Q-Wiener process in U .

Remark 3.1. It is often the case that there is an orthonormal basis {fk}∞k=1 in U con-
sisting of eigenvectors of Q with corresponding non-negative eigenvalues {γk}∞k=1.
Then ek = Q1/2fk = γ

1/2
k fk is an orthonormal basis for U0 and, in particular, (3.2)

becomes

W (t) =
∞∑
k=1

γ
1/2
k βk(t)fk.

However, we prefer to avoid the eigenvector expansion of W (t).

3.2. Stochastic convolution. In what follows we need a simplified case of the
stochastic integral, namely where the integrand is deterministic. In this case the
class of integrands can be easily described. Let F : [0,∞) → L2(U0, H) be a
measurable function, where L2(U0, H) is regarded as a Hilbert space and is endowed
with its Borel sigma algebra, with∫ t

0

‖F (s)‖2L2(U0,H) ds =
∫ t

0

‖F (s)Q
1
2 ‖2HS ds <∞.
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Then the stochastic integral
∫ t

0
F (s) dW (s) is a well defined Gaussian random vari-

able with covariance operator

QF (t)x =
∫ t

0

F (s)QF ∗(s)x ds, x ∈ H,

and the Itô isometry,

(3.5)
∥∥∥∫ t

0

F (s) dW (s)
∥∥∥2

L2(Ω,H)
=
∫ t

0

‖F (s)Q
1
2 ‖2HS ds = Tr(QF (t))

holds, see [5, Chapter 4] and [15, Chapter 2]. In particular, let A generate a C0-
semigroup etA on H and let B ∈ B(U,H). Assume that the operator QA(t), defined
by

(3.6) QA(t)x =
∫ t

0

esABQB∗esA
∗
xds,

has finite trace for all t ≥ 0. Note that, by (2.5), the latter always holds in case
Tr(Q) <∞. Then the stochastic convolution,

(3.7) WA(t) =
∫ t

0

e(t−s)AB dW (s),

exists and defines anH-valued a Gaussian random variable with covariance operator
QA(t). Furthermore, WA is the unique weak solution of

dX(t) = AX(t) dt+B dW (t), t > 0; X(0) = 0.

More precisely, this means that WA is the unique (up to modification) solution of

〈X(t), η〉 =
∫ t

0

〈X(s), A∗η〉ds+
∫ t

0

lηB dW (s), t ≥ 0,(3.8)

where lη : H → R is given by lηx = 〈x, η〉 and η ∈ D(A) (see [5, Theorem 5.4]).

3.3. Truncation of the Wiener process. We now approximate the stochastic
convolution by truncating the expansion of W (t) in an arbitrary frame. Thus, let
{φj}j∈J ⊂ U be a frame for U with frame constants a, b and dual frame {φ̃j}j∈J .
Let J ⊂ J be a finite set and define a projection onto SJ := span(φj)j∈J by

PJx :=
∑
j∈J
〈x, φ̃j〉φj , x ∈ U.

The adjoint P ∗J of PJ is given by P ∗Jx :=
∑
j∈J〈x, φj〉φ̃j , x ∈ U. Set

(3.9) W J(t) :=
∑
j∈J
〈W (t), φ̃j〉φj ,

where 〈W (t), φ̃j〉 = Wφ̃j
(t) =

∑∞
k=1 βk(t)〈ek, φ̃j〉 is well defined by (3.3) even if

Tr(Q) =∞ and thus W is not necessarily U -valued.

Lemma 3.1. If {W (t)}t≥0 is a Q-Wiener process in U given formally by (3.2),
then the process {W J(t)}t≥0 in (3.9) is a nuclear QJ = PJQP

∗
J -Wiener process in

U .
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Proof. We have that

W J(t) =
∑
j∈J

Wφ̃j
(t)φj =

∑
j∈J

∞∑
k=1

βk(t)〈ek, φ̃j〉φj

=
∞∑
k=1

βk(t)
∑
j∈J
〈ek, φ̃j〉φj =

∞∑
k=1

βk(t)PJek,

(3.10)

where the latter series converges in L2(Ω, U). The continuity of the paths follows
from the fact that the processes {Wφ̃j

(t)}, j ∈ J , are real-valued Brownian motions
and that the index set J is finite. That the increments are independent and have a
Gaussian law with the proper covariance operator can be verified from (3.10). �

Note that if Tr(Q) < ∞, then W J(t) = PJW (t) and the lemma above is even
more straightforward. We define the corresponding stochastic convolution

(3.11) W J
A(t) :=

∫ t

0

e(t−s)AB dW J(s),

which exists as Tr(QJ) <∞. Next we provide a formula for the truncation error.

Theorem 3.2. Let Q ∈ B(U,U) with Q ≥ 0. Let A generate a C0-semigroup
etA on H, let B ∈ B(U,H), and let W (t) be a Q-Wiener process in U . Assume
that Tr(QA(t)) < ∞, t ≥ 0, where QA(t) is defined in (3.6). Then the stochastic
convolutions in (3.7) and (3.11) are well defined and

WA(t)−W J
A(t) =

∫ t

0

e(t−s)AB(I − PJ) dW (s)

and

E
(
‖WA(t)−W J

A(t)‖2
)

=
∫ t

0

Tr
(

esAB(I − PJ)Q(I − PJ)∗B∗esA
∗
)

ds

=
∫ t

0

‖esAB(I − PJ)Q1/2‖2HS ds.
(3.12)

Proof. We first show that W J
A(t) = Z(t) a.s., where

Z(t) =
∫ t

0

e(t−s)ABPJ dW (s).

We have that Z and W J
A are, respectively, the unique solutions of

〈X(t), η〉 =
∫ t

0

〈X(s), A∗η〉ds+
∫ t

0

lηBPJ dW (s), t ≥ 0,

and

〈X(t), η〉 =
∫ t

0

〈X(s), A∗η〉ds+
∫ t

0

lηB dW J(s), t ≥ 0,

where lη : H → R is given by lηx = 〈x, η〉 and η ∈ D(A) (cf. (3.8)). Since
Tr(QJ) < ∞, it follows that W J is U -valued and

∫ t
0
lηB dW J(s) = lηBW

J(t). A
simple calculation, similar to that in the proof of Lemma 3.1, shows that

lηBW
J(t) =

∞∑
k=1

βk(t)lηBPJek.
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Now it is not hard to see that the latter equals to
∫ t

0
lηBPJ dW (s), almost surely and

hence the claim is proved. Therefore, WA(t)−W J
A(t) =

∫ t
0

e(t−s)AB(I−PJ) dW (s)
and thus (3.12) follows by Itô’s isometry (3.5). �

4. The finite element method for the deterministic problem

In this section we set the deterministic heat and wave equations in the form

X ′(t) = AX(t), t > 0; X(0) = X0.

We also consider spatial approximation by the finite element method and recall
some error estimates.

4.1. An elliptic operator. Let D ⊂ Rd, d = 1, 2, 3, be a bounded spatial domain
with sufficiently smooth boundary ∂D. We introduce the elliptic operator

Λu := −∇ · (a∇u) + cu, in D,
where a, c are smooth coefficients with a(x) ≥ a0 > 0 and c(x) ≥ 0 for all x ∈ D.
Together with the boundary condition u = 0 on ∂D this defines an unbounded
operator Λ on L2(D) with domain of definition D(Λ) = H2(D) ∩H1

0 (D).
In order to describe regularity of fractional order we introduce the norms

‖v‖Ḣβ = ‖Λβ/2v‖ =
( ∞∑
j=1

λβj 〈v, ϕj〉
2
)1/2

, β ∈ R,(4.1)

where 〈·, ·〉, ‖·‖ are the scalar product and norm in L2(D) and λj , ϕj denote the
eigenvalues and corresponding orthonormal eigenvectors of Λ. The corresponding
spaces are

Ḣβ = D(Aβ/2), β ≥ 0,

and, for β < 0, Ḣβ is the closure of L2(D) with respect to the norm in (4.1).
Clearly Ḣ0 = L2(D), and it is known that, for integer β > 0, these spaces can be

described in terms of standard Sobolev spaces and that the norms are equivalent to
the standard Sobolev norms. For example, Ḣ1 = H1

0 (D) and Ḣ2 = H2(D)∩H1
0 (D)

with

‖v‖Ḣ1 ≡ ‖v‖H1 , v ∈ Ḣ1; ‖v‖Ḣ2 ≡ ‖v‖H2 , v ∈ Ḣ2,

see [16, Lemma 3.1]. The spaces of negative order can be identified with dual
spaces, Ḣ−β = (Ḣβ)∗ with ‖f‖Ḣ−β = supv〈f, v〉/‖v‖Ḣβ .

We now introduce the standard finite element method. For this purpose we
consider the equation Λu = f . Its weak formulation is: find u ∈ H1

0 (D) = Ḣ1 such
that

(4.2) a(u, v) = 〈f, v〉, ∀v ∈ Ḣ1,

where a(u, v) = 〈a∇u,∇v〉 + 〈cu, v〉 = 〈Λu, v〉 is the bilinear form associated with
Λ.

Let {Th} be a regular family of triangulations of D with meshsize h. Let
{Vh}0<h<1 be a family of finite dimensional subspaces of Ḣ1, where each Vh con-
sists of continuous piecewise polynomials of degree ≤ r − 1 (r ≥ 2) with respect to
a triangulation Th.

The approximate solution uh ∈ Vh of (4.2) is defined by

a(uh, χ) = 〈f, χ〉, ∀χ ∈ Vh.
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We define orthogonal projectors Ph : Ḣ0 → Vh, Rh : Ḣ1 → Vh by

〈Phf, χ〉 = 〈f, χ〉, a(Rhv, χ) = 〈v, χ〉, ∀f ∈ Ḣ0, v ∈ Ḣ1, χ ∈ Vh.
We also define the linear operator Λh : Vh → Vh by

〈Λhv, χ〉 = a(v, χ), ∀v, χ ∈ Vh,
so that equation (4.1) can be written Λhuh = Phf .

Our assumptions about the finite element method are summarized in the follow-
ing error estimate:

(4.3) ‖Rhv − v‖ ≤ Chr‖v‖Ḣr , ∀v ∈ Ḣr.

For d = 1 this holds in great generality. For d = 2, 3 this holds for piecewise linear
finite elements (with r = 2) in a convex polygonal domain D. For domains with
curved boundary, and for higher order elements, there are additional difficulties
concerning the approximation near the boundary, which we do not address here,
see [16]. Actually, v ∈ Hr(D)∩H1

0 (D) would be sufficient for the error estimate in
(4.3) but the present formulation is more convenient.

4.2. The deterministic heat equation. We now consider the parabolic problem

u′(t) + Λu(t) = 0, t > 0; u(0) = v,

and its spatially semidiscrete finite element approximation

u′h(t) + Λhuh(t) = 0, t > 0; uh(0) = Phv.

Their solutions given by the analytic semigroups on H = Ḣ0 generated by A = −Λ
and Ah = −Λh, respectively,

u(t) = e−tΛv =
∞∑
j=1

e−tλj 〈v, ϕj〉ϕj , uh(t) = e−tΛhPhv =
Nh∑
j=1

e−tλh,j 〈v, ϕh,j〉ϕh,j .

We will use the smoothing property∫ t

0

‖e−sΛv‖2 ds ≤ 1
2
‖v‖2.(4.4)

Finally, we introduce the error operator

(4.5) Fh(t)v = e−tΛhPhv − e−tΛv.

Under the above assumptions we have the following error estimate, where 0 ≤ β ≤ r,(∫ t

0

‖Fh(s)v‖2 ds
)1/2

≤ Chβ‖v‖Ḣβ−1 , t ≥ 0.(4.6)

This follows from [16, Theorem 2.5].

4.3. The deterministic wave equation. We now consider the wave equation,

(4.7) u′′(t) + Λu(t) = 0, t > 0; u(0) = v1, u
′(0) = v2,

and its spatially semidiscrete finite element approximation,

(4.8) u′′h(t) + Λhuh(t) = 0, t > 0; uh(0) = Phv, u
′
h(0) = Phw.

In the standard way we set

U =
[
u
u′

]
, V =

[
v1

v2

]
, A =

[
0 I
−Λ 0

]
.
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Then A is an unbounded operator on H = Ḣ0 × Ḣ−1 with

D(A) =
{
v ∈ H : Av =

[
v2

−Λv1

]
∈ H = Ḣ0 × Ḣ−1

}
= Ḣ1 × Ḣ0.

Here Λ is regarded as a bounded linear operator Ḣ1 → Ḣ−1. The operator A is
the generator of a strongly continuous semigroup (C0-semigroup) etA on H and

etA =
[

C(t) Λ−1/2S(t)
−Λ1/2S(t) C(t)

]
,

where C(t) = cos(tΛ1/2) and S(t) = sin(tΛ1/2) are the cosine and sine operators.
For example, using {(λj , ϕj)}∞j=1, orthonormal eigenpairs of Λ, we have

Λ−1/2S(t)v = Λ−1/2 sin(tΛ1/2)v =
∞∑
j=1

λ
−1/2
j sin(tλ1/2

j )(v, ϕj)ϕj .

Defining Ah and etAh in the analogous way,

Ah =
[

0 I
−Λh 0

]
, etAh =

[
Ch(t) Λ−1/2

h Sh(t)
−Λ1/2

h Sh(t) Ch(t)

]
,

where Ch(t) = cos(tΛ1/2
h ) and Sh(t) = sin(tΛ1/2

h ), we may write the solutions of
(4.7) and (4.8) as

U(t) = etAV, Uh(t) = etAhPhV.

We will find that it is relevant to focus on the error in the first component uh = U1,h

with initial-values v1 = 0, v2 = v and define an error operator by

Fh(t)v = Λ−1/2
h Sh(t)Phv − Λ−1/2S(t)v.(4.9)

Under the above assumptions we have the error estimate, where 0 ≤ β ≤ r + 1,

‖Fh(t)v‖ ≤ C(1 + t)h
r
r+1β‖v‖Ḣβ , t ≥ 0.(4.10)

This follows from [12, Corollary 4.3, Theorem 5.3].

5. Application to the stochastic heat equation

We now consider the stochastic heat equation

dX(t) + ΛX(t) dt = dW (t), t > 0; X(0) = 0,

which is of the form (1.1) with H = U = Ḣ0, A = −Λ, W a Q-Wiener process on
U = Ḣ0, and B = I. We thus study the stochastic convolutions

X(t) = WA(t) =
∫ t

0

e(t−s)A dW (s) =
∫ t

0

e−(t−s)Λ dW (s),

XJ(t) = W J
A(t) =

∫ t

0

e(t−s)APJ dW (s) =
∫ t

0

e−(t−s)ΛPJ dW (s),

XJ
h (t) = W J

Ah
(t) =

∫ t

0

e(t−s)AhPhPJ dW (s) =
∫ t

0

e−(t−s)ΛhPhPJ dW (s).
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The condition Tr(QA(t)) <∞ now becomes, see (3.5), (3.6), (2.6), and (4.4),

Tr(QA(t)) =
∫ t

0

‖e−sΛQ 1
2 ‖2HS ds =

∫ t

0

∞∑
j=1

‖e−sΛQ 1
2φj‖2 ds

=
∞∑
j=1

∫ t

0

‖Λ 1
2 e−sΛΛ−

1
2Q

1
2φj‖2 ds ≤ 1

2

∞∑
j=1

‖Λ− 1
2Q

1
2φj‖2

=
1
2
‖Λ− 1

2Q
1
2 ‖2HS <∞.

(5.1)

This guarantees the existence of the stochastic convolutions, see Theorem 3.2. We
begin with the discretization error.

Theorem 5.1. Let A = −Λ and let W a Q-Wiener process in Ḣ0. Assume
‖Λ

β−1
2 Q

1
2 ‖HS < ∞ for some β ∈ [0, r]. If {φj}j∈J is a frame for Ḣ0 with

φj ∈ Ḣβ−1, then

(5.2) E
(
‖W J

A(t)−W J
Ah

(t)‖2
)
≤ Ch2β‖Λ

β−1
2 PJQ

1
2 ‖2HS.

If, in addition, Q has an orthonormal basis of eigenvectors and φj ∈ Ḣβ−1, then

E
(
‖W J

A(t)−W J
Ah

(t)‖2
)
≤ Ch2β

∑
j,k∈J

〈Λ
β−1

2 φj ,Λ
β−1

2 φk〉〈Qφ̃j , φ̃k〉.(5.3)

Proof. With Fh as in (4.5), we have

W J
A(t)−W J

Ah
(t) =

∫ t

0

Fh(t− s)PJ dW (s)

and hence, by using (3.5), (2.6), (4.6), and an orthonormal basis,

E
(
‖W J

A(t)−W J
Ah

(t)‖2
)

=
∞∑
j=1

∫ t

0

‖Fh(s)PJQ
1
2 fj‖2 ds

≤ Ch2β
∞∑
j=1

‖Λ
β−1

2 PJQ
1
2 fj‖2 = Ch2β‖Λ

β−1
2 PJQ

1
2 ‖2HS.

This proves (5.2). Using Lemma 2.4 with T = Λ
β−1

2 PJ , we obtain

‖Λ
β−1

2 PJQ
1
2 ‖2HS =

∑
j,k∈J

〈Λ
β−1

2 PJφj ,Λ
β−1

2 PJφk〉〈Qφ̃j , φ̃k〉

=
∑
j,k∈J

〈Λ
β−1

2 φj ,Λ
β−1

2 φk〉〈Qφ̃j , φ̃k〉,

which proves (5.3). �

We now consider the truncation error. We assume that QΛ−1 is trace class.
By Lemma 2.4 with T = Λ−

1
2 this implies that Λ−

1
2Q

1
2 is Hilbert-Schmidt as

required in (5.1). Clearly, the two assumptions coincide when Λ and Q commute,
in particular, when Q = I.
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Theorem 5.2. Let A = −Λ and let W be a Q-Wiener process in Ḣ0, where Q has
an orthonormal basis of eigenvectors. Assume QΛ−1 ∈ L1(Ḣ0, Ḣ0). If {φj}j∈J is
a frame for Ḣ0, then

E
(
‖WA(t)−W J

A(t)‖2
)
≤ 1

2
‖Λ− 1

2 (I − PJ)Q
1
2 ‖2HS

=
1
2

∑
j,k∈J\J

〈Λ−1φj , φk〉〈Qφ̃j , φ̃k〉.

Proof. By using (3.12), (4.4), and an orthonormal basis, we get

E
(
‖WA(t)−W J

A(t)‖2
)

=
∞∑
k=1

∫ t

0

‖e−sΛ(I − PJ)Q
1
2 ek‖2 ds

≤ 1
2

∞∑
k=1

‖Λ− 1
2 (I − PJ)Q

1
2 ek‖2 =

1
2
‖Λ− 1

2 (I − PJ)Q
1
2 ‖2HS.

Lemma 2.4 with T = Λ−
1
2 (I − PJ) now gives

‖Λ− 1
2 (I − PJ)Q

1
2 ‖2HS =

∑
j,k∈J

〈Λ− 1
2 (I − PJ)φj ,Λ−

1
2 (I − PJ)φk〉〈Qφ̃j , φ̃k〉

=
∑

j,k∈J\J

〈Λ−1φj , φk〉〈Qφ̃j , φ̃k〉.

�

The same framework, with A = −Λ2, applies to the linear stochastic Cahn-
Hilliard equation,

dX(t) + Λ2X(t) dt = dW (t), t > 0; X(0) = 0,

see [13]. Similar theorems may be proved for this equation but we refrain from
giving the details.

6. Application to the stochastic wave equation

We now consider the stochastic wave equation
dX1(t) = X2(t) dt,

dX2(t) = −ΛX1(t) + dW (t),
t > 0; X1(0) = X2(0) = 0,

which is of the form (1.1) with H = Ḣ0 × Ḣ−1,

A =
[

0 I
−Λ 0

]
, B =

[
0
I

]
,

as in Subsection 4.3, and W a Q-Wiener process on U = Ḣ0. We thus study the
stochastic convolutions

X(t) = WA(t) =
∫ t

0

e(t−s)A dW (s) =
∫ t

0

[
Λ−

1
2S(t− s)
C(t− s)

]
dW (s),

XJ(t) = W J
A(t) =

∫ t

0

e(t−s)APJ dW (s) =
∫ t

0

[
Λ−

1
2S(t− s)
C(t− s)

]
PJ dW (s),

XJ
h (t) = W J

Ah
(t) =

∫ t

0

e(t−s)AhPhPJ dW (s) =
∫ t

0

[
Λ−

1
2

h Sh(t− s)Ph
Ch(t− s)Ph

]
PJ dW (s).
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Estimating Tr(QA(t)) by means of (3.5), an orthonormal basis, and the bounded-
ness of the sine and cosine operators, we get

Tr(QA(t)) =
∫ t

0

‖esABQ 1
2 ‖2L2(U,H) ds =

∫ t

0

∞∑
j=1

‖esABQ 1
2φj‖2H ds

=
∫ t

0

∞∑
j=1

(
‖Λ− 1

2S(s)Q
1
2φj‖2 + ‖Λ− 1

2C(s)Q
1
2φj‖2

)
ds

≤ 2t
∞∑
j=1

‖Λ− 1
2Q

1
2φj‖2 = 2t‖Λ− 1

2Q
1
2 ‖2HS.

(6.1)

We thus have Tr(QA(t)) < ∞, and existence of the stochastic convolutions, under
the same condition as for the heat equation, namely, ‖Λ− 1

2Q
1
2 ‖HS <∞, see (5.1).

We begin with the discretization error. We restrict the analysis to the first
component XJ

1 = W J
A,1 in order to shorten the presentation.

Theorem 6.1. Let W J
A and W J

Ah
be as above. Assume ‖Λ

β−1
2 Q

1
2 ‖HS < ∞ for

some β ∈ [0, r + 1]. If {φj}j∈J is a frame for Ḣ0 with φj ∈ Ḣβ−1, then

(6.2) E
(
‖W J

A,1(t)−W J
Ah,1

(t)‖2
)
≤ C(t)h

2r
r+1β‖Λ

β−1
2 PJQ

1
2 ‖2HS.

If, in addition, Q has an orthonormal basis of eigenvectors, then

E
(
‖W J

A,1(t)−W J
Ah,1

(t)‖2
)
≤ C(t)h

2r
r+1β

∑
j,k∈J

〈Λ
β−1

2 φj ,Λ
β−1

2 φk〉〈Qφ̃j , φ̃k〉.(6.3)

Proof. With Fh as in (4.9) we have

W J
A(t)−W J

Ah
(t) =

∫ t

0

Fh(t− s)PJ dW (s)

and hence, by using (3.5), (4.10), and an orthonormal basis,

E
(
‖W J

A,1(t)−W J
Ah,1

(t)‖2
)

=
∫ t

0

∞∑
j=1

‖Fh(s)PJQ
1
2 ej‖2 ds

≤ C(t)h
2r
r+1β

∞∑
j=1

‖Λ
β−1

2 PJQ
1
2 ej‖2 = C(t)h

2r
r+1β‖Λ

β−1
2 PJQ

1
2 ‖2HS.

This proves (6.2). The bound (6.3) is then obtained in the same was as (5.3). �

We now consider the truncation error. Recall from the discussion before Theorem
5.2 that QΛ−1 ∈ L1(Ḣ0, Ḣ0) implies ‖Λ− 1

2Q
1
2 ‖2HS <∞ as required in (6.1).

Theorem 6.2. Let W J
A and W J

Ah
be as above. Assume that W is Q-Wiener pro-

cess in Ḣ0 where Q has an orthonormal basis of eigenvectors. Assume QΛ−1 ∈
L1(Ḣ0, Ḣ0). If {φj}j∈J is a frame for Ḣ0, then

E
(
‖WA(t)−W J

A(t)‖2
)
≤ 2t‖Λ− 1

2 (I − PJ)Q
1
2 ‖2HS

= 2t
∑

j,k∈J\J

〈Λ−1φj , φk〉〈Qφ̃j , φ̃k〉.
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Proof. By using (3.12) and an orthonormal basis we get

E
(
‖WA(t)−W J

A(t)‖2
)

=
∫ t

0

∞∑
k=1

‖esA(I − PJ)Q
1
2 ek‖2H ds

=
∫ t

0

∞∑
k=1

(
‖Λ− 1

2S(s)(I − PJ)Q
1
2 ek‖2 + ‖Λ− 1

2C(s)(I − PJ)Q
1
2 ek‖2

)
ds

≤ 2t
∞∑
k=1

‖Λ− 1
2 (I − PJ)Q

1
2 ek‖2 = 2t‖Λ− 1

2 (I − PJ)Q
1
2 ‖2HS.

The proof is now completed in the same way as the proof of Theorem 5.2. �

7. Application to wavelets

In this section we investigate the error bounds for the heat equation in Section 5
when d = 1 and various assumptions on Q and choices of the frame {φj}j∈J . The
error bounds for the wave equation in Section 6 can be dealt with in a similar way.

7.1. White noise. Let Q = I and {φj}j∈J ⊂ Ḣβ−1 (β ≤ r) be a frame for H.
Theorems 5.2 and 5.1 then yield

E
(
‖WA(t)−W J

Ah
(t)‖2

)
≤ 2E

(
‖WA(t)−W J

A(t)‖2
)

+ 2E
(
‖W J

A(t)−W J
Ah

(t)‖2
)

≤ ‖Λ− 1
2 (I − PJ)‖2HS + Ch2β‖Λ

β−1
2 PJ‖2HS

≤ C
∑

j∈J\J

‖Λ− 1
2φj‖2 + Ch2β

∑
j∈J
‖Λ

β−1
2 φj‖2,

where we used (2.7) to evaluate the Hilbert-Schmidt norm. Let now d = 1, D =
(0, 1), Λ = − d2

dx2 and φj = ψl,k, J = {j = (l, k) : k = 0, . . . , 2l − 1, l = 0, 1, . . . },
where {{ψl,k}2

l−1
k=0 }∞l=0 is the Haar wavelet basis for L2(D). Then, with β = 1,

J = {(l, k) ∈ J : l ≤ N}, and anticipating the bound for 〈Λ−1ψl,k, ψl,k〉 in (7.12),
we have

E
(
‖WA(t)−W J

Ah
(t)‖2

)
≤ C

∞∑
l=N+1

2l−1∑
k=0

〈Λ−1ψl,k, ψl,k〉+ Ch2
N∑
l=0

2l−1∑
k=0

1

≤ C
∞∑

l=N+1

2l−1∑
k=0

2−2l + Ch2
N∑
l=0

2l ≤ C2−N + Ch22N .

To optimize the error estimate choose h = 2−N and obtain

E
(
‖WA(t)−W J

Ah
(t)‖2

)
≤ Ch.

If instead we choose φj(x) = ϕj(x) =
√

2 sin(πjx), j = 1, 2, ..., the orthonormal
eigenfunctions of Λ, and again β = 1, we get

E
(
‖WA(t)−WN

Ah
(t)‖2

)
≤ C

∞∑
j=N+1

π2

j2
+ Ch2

N∑
j=1

1 ≤ C 1
N

+ Ch2N.

Optimizing by setting h = 1
N , we obtain

E
(
‖WA(t)−WN

Ah
(t)‖2

)
≤ Ch.
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Thus, in both cases we obtain the mean square rate of convergence O(h
1
2 ), which

is optimal for Q = I. Note that without truncation we would have (cf. [17])

E
(
‖WA(t)−WAh(t)‖2

)
≤ Ch2β‖Λ

β−1
2 ‖2HS,

where ‖Λ
β−1

2 ‖2HS = π2
∑∞
j=0 j

2(β−1) <∞ if and only if β < 1
2 .

7.2. Smoother noise. When turning to concrete examples one usually assumes
that the frame and its dual satisfy support and cancelation conditions. To make
this more precise we assume that there is a levelwise organization of the frame,
that is, J = {(j, k) : j ∈ N, j ≥ j0, k ∈ ∆j}, where ∆j is an index set whose size
depends on j and the spatial dimension d. Then the support and the cancelation
conditions can be written as

(H1) diam(suppφj,k) ∼ diam(supp φ̃j,k) ∼ 2−j , j ≥ j0,
(H2) for f ∈W m̃,∞(D) we have

|〈f, φj,k〉| ≤ C2−j(s+d/2)|f |W s,∞(suppφj,k), s ≤ m̃, j ≥ j0,

and for f ∈Wm,∞(D) we have

|〈f, φ̃j,k〉| ≤ C2−j(s+d/2)|f |W s,∞(supp φ̃j,k), s ≤ m, j ≥ j0.

Here D ⊂ Rd with polygonal or smooth boundary and |f |W s,∞(·) denotes the usual
seminorm. We remark that in the wavelet literature condition (2.1) is often referred
to as H-stability or stability. For example, the Haar basis in one dimension satis-
fies the above conditions with m = m̃ = 1. In multiple dimensions for nontrivial
domains it is highly complicated to construct an explicit basis together with its
dual satisfying these conditions. Even in one dimension for an interval the con-
struction is tedious, but there are explicit wavelet bases (with explicit dual basis)
satisfying (H1) and (H2) for all m ≤ m̃ with m+m̃ even, see [7]. Assuming a frame
with properties (H1) and (H2) and enough regularity, one obtains decay estimates
for scalar products like 〈Qφ̃i,l, φ̃j,k〉 and 〈Λ

β−1
2 φi,l,Λ

β−1
2 φj,k〉 needed for the error

estimates in Theorems 5.1 and 5.2, see [6].
Finally, we demonstrate in a simple concrete example how to get optimal error

estimates by choosing an appropriate frame if the noise is smooth enough. Let
d = 1, D = (0, 1), U = H = L2(D), B = I, and Λu = −(au′)′ + cu with smooth
coefficients a ≥ a0 > 0, c ≥ 0. Let Q be given as an integral operator (Qf)(x) :=∫ 1

0
q(x, y)f(y) dy. Unless the functions a, c, q are very special, Λ and Q do not

commute and their eigenfunctions are not known explicitly. Since Q is assumed to
be given, one can simulate the truncated noise W J efficiently, see Subsection 7.3.

We will use the wavelet basis constructed in [7]. It satisfies (H1) and (H2) with
m ≤ m̃ and m+ m̃ even. Moreover, for j ∈ N, one obtains inverse estimates

(7.1)
‖φj,k‖Hs(D) ≤ C2sj‖φj,k‖L2(D), 0 ≤ s ≤ γ,

‖φ̃j,k‖Hs(D) ≤ C2sj‖φ̃j,k‖L2(D), 0 ≤ s ≤ γ̃,

where γ = m− 1
2 and γ̃ can be chosen as large as we want by using m̃ large in the

construction (see also [4]). Further, the number of frame elements on level i, that
is, #∆i (this index set is the same for the primal and dual frames), satisfies

(7.2) #∆i ≤ C2i.
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We also have a bound on the number of basis functions that have intersecting
supports. For this purpose, let

(7.3) ∆jkil := suppφj,k ∩ suppφi,l.

Then, for j ≥ i, the number of φj,k whose supports intersect the support of a fixed
φi,l is given by

(7.4) #{k ∈ ∆j : ∆jkil 6= ∅} ≤ C2j−i.

Taking also into account the number of φi,l given by (7.2), and finally interchanging
the roles of i and j, we conclude

(7.5) #{l ∈ ∆i, k ∈ ∆j : ∆jkil 6= ∅} ≤ C2max(i,j).

The reason why (7.4) holds is that the construction in [7] may be performed so
that, except for some boundary functions whose number is uniformly bounded in
j, the φj,k are linear combinations of a uniformly bounded number of translates
and dilates θj+1,k of a function θ with compact support. This is done in such a
way that the supports of the φj,k move equally fast as the θj+1,k when k grows.
More precisely, θj,k(x) = θ(2jx− k), and there exists a non-positive integer N and
a non-negative integer M such that for all j ≥ j0 and k ∈ ∆j \∆B

j (where ∆B
j refer

to the boundary functions), φj,k may be written as

φj,k =
M∑
l=N

aj+1,k+lθj+1,k+l

for some real numbers aj+1,k+l. To show (7.4) is then a matter of computing bounds
on the number of k for which ∆jkil is nonempty.

Theorem 7.1. Let d = 1, D = (0, 1), U = H = L2(D), B = I, and A =
−Λu = −(−(au′)′ + cu) with smooth coefficients a ≥ a0 > 0, c ≥ 0, and WA as
in Section 5. Let (Qf)(x) :=

∫ 1

0
q(x, y)f(y) dy with q ∈ W 3,∞(D × D). Let {φj,k}

be a frame with dual frame {φ̃j,k} as constructed in [7] with properties (H1) and
(H2) with m ≥ 2 and m̃ ≥ 2 so large that (7.1) holds with γ = γ̃ = 1. Then, for
J = {(j, k) ∈ J : j ≤ N} and h = 2−N , we have

E
(
‖WA(t)−W J

Ah
(t)‖2

)
≤ Ch4.

Proof. We use Theorems 5.1 and 5.2 with β = 2. We must bound 〈Qφ̃i,l, φ̃j,k〉,
〈Λ−1φi,l, φj,k〉, and 〈Λ 1

2φi,l,Λ
1
2φj,k〉.

By using (H2), first with s = 2, then with s = 1, we obtain

|〈Qφ̃i,l, φ̃j,k〉| ≤ C2−j(2+1/2)|Qφ̃i,l|W 2,∞(supp φ̃j,k)

= C2−
5
2 j ess-sup
x∈supp φ̃j,k

∣∣〈q′′xx(x, ·), φ̃i,l〉
∣∣

≤ C2−
5
2 j2−

3
2 i ess-sup
x∈supp φ̃j,k, y∈supp φ̃i,l

∣∣q′′′xxy(x, y)
∣∣(7.6)

≤ C2−
5
2 j−

3
2 i‖q‖W 3,∞(D×D) ≤ C2−

5
2 j−

3
2 i.(7.7)

Since Q is symmetric we have the same estimate with i and j interchanged, so that

(7.8) |〈Qφ̃i,l, φ̃j,k〉| ≤ C2−
5
2 max(i,j)− 3

2 min(i,j),



SPATIAL APPROXIMATION OF STOCHASTIC CONVOLUTIONS 19

and, alternatively,

(7.9) |〈Qφ̃i,l, φ̃j,k〉| =
√
〈Qφ̃i,l, φ̃j,k〉〈Qφ̃j,k, φ̃i,l〉 ≤ C2−2(i+j).

By our assumption on Λ we have (Λ−1u)(x) =
∫ 1

0
g(x, y)u(y) dy, where Green’s

function g ∈W 1,∞(D ×D). Thus, by (H2) with s = 1 and (H1), we get

|〈Λ−1φi,l, φj,k〉| ≤ C2−
3
2 j |Λ−1φi,l|W 1,∞(suppφj,k)

= C2−
3
2 j ess-sup
x∈suppφj,k

∣∣∣ ∫ 1

0

g′x(x, y)φi,l(y) dy
∣∣∣

≤ C2−
3
2 j ess-sup
x∈suppφj,k, y∈suppφi,l

|g′x(x, y)|
∫ 1

0

|φi,l(y)|dy(7.10)

≤ C2−
3
2 j‖g‖W 1,∞(D×D)

∫ 1

0

|φi,l(y)|dy(7.11)

≤ C2−
3
2 j‖g‖W 1,∞(D×D)| suppφi,l|

1
2 ‖φi,l‖L2(D) ≤ C2−

3
2 j−

1
2 i.

By the symmetry of Λ−1, we conclude

(7.12) |〈Λ−1φi,l, φj,k〉| ≤ C2−(i+j).

This also holds for the Haar basis used in Subsection 7.1 because it has m = m̃ = 1.
Since ‖Λ 1

2u‖L2(D) ≤ C‖u‖H1(D) for u ∈ H1
0 (D), we have, by (7.1) with s = 1,

(7.13) |〈Λ 1
2φi,l,Λ

1
2φj,k〉| ≤ C2i+j = C2max(i,j)+min(i,j).

If ∆jkil := suppφj,k ∩ suppφi,l = ∅ (cf. (7.3)), then the left hand side of (7.13)
vanishes. This is because Λ is a local operator. More precisely, if ∆jkil = ∅, then

〈Λ 1
2φi,l,Λ

1
2φj,k〉 = 〈aφ′i,l, φ′j,k〉 + 〈cφi,l, φj,k〉 = 0.

To finish the proof we use Theorem 5.2, (7.2), (7.9), (7.12), and h = 2−N , to get

E
(
‖WA(t)−W J

A(t)‖2
)
≤

∞∑
i=N+1

∑
l∈∆i

∞∑
j=N+1

∑
k∈∆j

〈Λ−1φi,l, φj,k〉〈Qφ̃i,l, φ̃j,k〉

≤ C
∞∑

i=N+1

∞∑
j=N+1

2i2j2−(i+j)2−2(i+j) = C
( ∞∑
i=N+1

2−2i
)2

≤ C2−4N = Ch4.

Finally, by Theorem 5.1 with β = 2, (7.5) (7.8), and (7.13), we get

E
(
‖W J

A(t)−W J
Ah

(t)‖2
)
≤ Ch4

N∑
i=j0

∑
l∈∆i

N∑
j=j0

∑
k∈∆j

〈Λ 1
2φi,l,Λ

1
2φj,k〉〈Qφ̃i,l, φ̃j,k〉

≤ Ch4
N∑
i=j0

N∑
j=j0

2max(i,j)2max(i,j)+min(i,j)2−
5
2 max(i,j)− 3

2 min(i,j)

= Ch4
N∑
i=j0

N∑
j=j0

2−
1
2 (max(i,j)+min(i,j)) = Ch4

N∑
i=j0

N∑
j=j0

2−
1
2 (i+j)

= Ch4
( N∑
i=j0

2−
1
2 i
)2

≤ Ch4.
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This completes the proof. �

Remark 7.1. In applications the kernel q and its derivatives up to a certain degree
often exhibit a decay, that is, Dαq(x, y)→ 0 as |x−y| → ∞ for |α| ≤M . This decay
can be taken into account when estimating (7.6) and instead of using the uniform
estimate that leads to (7.7) one obtains additional decay for terms involving basis
functions with disjoint supports based on the decay of the appropriate derivative
of q. The same applies when estimating (7.10) by (7.11) in case the differential
operator is of higher order with corresponding decay of its Green’s function. This
additional decay results in a lower truncation level N than the N = − log2(h)
required in Theorem 7.1 to balance the order of the truncation error and the dis-
cretization error. This is also the case when using a wavelet (dual wavelet) basis
with higher order of cancelation and smoothness provided the noise is more smooth,
that is, if m > 2 we may obtain a higher rate in (7.7).

Remark 7.2. If the noise is less smooth but still trace class, say q ∈W 1,∞(D×D),
then the convergence rate in Theorem 7.1 reduces to O(h2), but no smoothness of
the wavelets is needed and lower order cancelation property suffices, that is, the
simple Haar basis can be used. For example, the case Q := Λ−1 is covered here,
corresponding to an SPDE arising in path sampling problems for SDE’s [10].

7.3. Computational considerations. The key to the approximation of the noise
is the ability to simulate the truncated process W J(t), or for practical purposes,
in the presence of time discretization, its increments ∆W J(t) = W J(t + ∆t) −
W J(t). In order to do this, one needs to generate ∆ ~W J(t), an R#J -valued Gaussian
random variable with covariance matrix (Q∆ ~WJ (t))jk = ∆t〈Qφ̃j , φ̃k〉. This can be
achieved in the following way. First generate an R#J -valued random variable ~Z
with independent standard Gaussian components. Then compute the Cholesky
factorization Q∆ ~WJ (t) = LJ(t)LJ(t)∗ of the covariance matrix of ∆ ~W J(t). Finally,
∆ ~W J(t) = LJ(t)~Z (in distribution) and ∆W J(t) =

∑
j∈J(∆ ~W J(t))jφj

In [2] it is shown that the Cholesky factorization can be obtained by successively
updating an initial factorization by adding rows successively to the initial Cholesky
factor. It is also shown there that adding one row and column results in roughly
log2(#J) operations (as #J → ∞) when updating the Cholesky factorization for
a nearly sparse matrix and that the Cholesky factor of such a matrix remains
nearly sparse. This implies that the cost of computing the Cholesky factorization is
O(#J log2(#J)) and the matrix vector multiplication with LJ(t) can be achieved
in O(#J log(#J)) operations. If the kernel q of the covariance operator Q exhibits
decay as discussed in Remark 7.1, then the matrix Q∆ ~WJ (t) will be nearly sparse
(see [2] and [3]). Thus the above computational complexity applies. If one wants to
refine the finite element mesh, then one needs to truncate the process on a higher
level J ′ ⊃ J in order to preserve the order of the finite element method according
to Theorem 7.1. However, since the approximation of the process is independent
of the finite element method and it is expanded in a hierarchical basis, there is no
need to simulate the process, or its increments, from scratch. The new covariance
matrix Q∆ ~WJ′ (t) is obtained from Q∆ ~WJ (t) by adding #J ′ − #J new rows and
columns. If one stores the initial random variable ~Z one just generates #J ′ −#J
additional independent standard Gaussian random variables, updates the Cholesky
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factor LJ(t) to LJ′(t) by computing #J ′ − #J new rows and then updates the
∆W J(t) to ∆W J′(t) by computing the last #J ′ −#J components.

Remark 7.3. Since the decay in the error estimate in Theorem 7.1 comes mainly
from the smoothness (and decay) of q it might be worthwhile to interchange the
roles of the primal and dual basis. Usually the primal basis is easier to work with
and if the dual basis does not have some of the desired properties (cancelation,
small support), then the loss in the error estimate can be compensated, if the
kernel q is smooth (or decays) enough, by using the good properties of the primal
basis. This will also make the computation of the elements of the relevant matrix
(Q∆ ~WJ (t))jk = ∆t〈Qφj , φk〉 simpler.

Remark 7.4. The finite dimensional process PhW (t) could be simulated directly
via a finite eigenfunction expansion which is very expensive in general as it requires
the diagonalization of PhQPh in Vh. The other main drawback of this approach in
contrast to the biorthogonal wavelet expansion, is that it does not allow updates.
That is, when using a different mesh, the eigenvalue computation has to be done
from scratch, while for the wavelet expansion of W the existing computations can be
updated. Nevertheless, this direct approach is quite feasible in the case of stationary
kernels analytic at 0, such as the Gauss kernel, and the orthogonal expansion of
PhW (t) can be truncated severely without losing the asymptotic order of the finite
element method [11].
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E-mail address: fredlind@chalmers.se

Department of Mathematical Sciences, Chalmers University of Technology and Uni-
versity of Gothenburg, SE–412 96 Göteborg, Sweden
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