
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PREPRINT 2009:24 
 

Bounds on 2m/r for static objects  
with a positive cosmological constant 
 
 
 

HÅKAN ANDRÉASSON 
CHRISTIAN G. BÖHMER 
 
 
 
 
 
Department of Mathematical Sciences 
Division of Mathematics 

CHALMERS UNIVERSITY OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
Göteborg Sweden 2009 





 
 

 

Preprint 2009:24 
 
 
 
 
 

Bounds on 2m/r for static objects with a positive 
cosmological constant 

 
Håkan Andréasson, Christian G. Böhmer 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Mathematical Sciences 
Division of Mathematics 

Chalmers University of Technology and University of Gothenburg 
SE-412 96  Göteborg, Sweden 

Göteborg, April 2009 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preprint 2009:24 

ISSN 1652-9715 
 

 

Matematiska vetenskaper 

Göteborg 2009 



Bounds on 2m/r for static objects with a positive

cosmological constant

H̊akan Andréasson
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Abstract
We consider spherically symmetric static solutions of the Einstein

equations with a positive cosmological constant Λ, and we investigate
the influence of Λ on the bound of M/R, where M is the ADM mass and
R is the area radius of the boundary of the static object. We find that
for any solution which satisfies the energy condition p+2p⊥ ≤ ρ, where
p ≥ 0 and p⊥ are the radial and tangential pressures respectively, and
ρ ≥ 0 is the energy density, and for which 0 ≤ ΛR2 ≤ 1, the inequality

M

R
≤ 2

9
− ΛR2

3
+

2
9

√
1 + 3ΛR2,

holds. If Λ = 0 it is known that infinitely thin shell solutions uniquely
saturate the inequality, i.e. the inequality is sharp in that case. The
situation is quite different if Λ > 0. Indeed, we show that infinitely
thin shell solutions do not generally saturate the inequality except in
the two degenerate situations ΛR2 = 0 and ΛR2 = 1. In the latter
situation there is also a constant density solution, where the exterior
spacetime is the Nariai solution, which saturates the inequality, hence,
the saturating solution is non-unique. In this case the cosmological
horizon and the black hole horizon coincide. This is analogous to the
charged situation where there is numerical evidence that uniqueness
of the saturating solution is lost when the inner and outer horizons of
the Reissner-Nordström solution coincide. We also apply the inequal-
ity to the Virgo cluster and obtain an upper bound for Λ from real
observational data.
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1 Introduction

A fundamental question concerning spherically symmetric relativistic static
objects is to determine an upper bound on the gravitational red shift. In the
case with a vanishing cosmological constant this is equivalent to determining
an upper bound on the compactness ratio M/R, where M is the ADM mass
and R the area radius of the boundary of the static object. Buchdahl’s
theorem [10] is well-known and shows that a spherically symmetric isotropic
object for which the energy density is non-increasing outwards satisfies the
bound

M

R
≤ 4

9
. (1.1)

The inequality is sharp, but the solution which saturates the inequality
within the class of solutions considered by Buchdahl violates the dominant
energy condition and is therefore unphysical. Moreover, the assumptions
that the pressure is isotropic, and the energy density is non-increasing, are
quite restrictive. In [1] it was shown that the bound (1.1) holds generally,
i.e. independently of the Buchdahl assumptions, for the class of solutions
which satisfy the energy condition

p + 2p⊥ ≤ ρ. (1.2)

Here p ≥ 0 is the radial pressure, p⊥ the tangential pressure and ρ ≥ 0 the
energy density. It should be pointed out that (1.2) is natural and is e.g.
satisfied for solutions of the Einstein-Vlasov system, cf. [4] for a review on
the Einstein-Vlasov system. Moreover, Bondi uses this condition in his study
on anisotropic objects in [9]. It was in addition shown in [1] that (1.1) is
sharp within this class of solutions and that the saturating solution is unique,
it is an infinitely thin shell. Since an infinitely thin shell is singular this
should be interpreted in the sense that M/R → 4/9 for a sequence of regular
shell solutions which approach an infinitely thin shell. That arbitrarily thin
shell solutions do exist has been shown for the Einstein-Vlasov system in
[2], cf. also the numerical study [7]. Since the saturating solution satisfies
(1.2), it satisfies in particular the dominant energy condition. Note on the
other hand that it neither satisfies the isotropy condition nor the assumption
on the energy density in the Buchdahl assumptions. An alternative proof
to the one in [1] was given in [15]. The advantage being that it is shorter
and more flexible since it allows for other energy conditions than (1.2).
The disadvantage is the proof of sharpness which does not show that the
saturating solution is unique. Moreover, the saturating solution constructed
in [15] has features which e.g. solutions of the Einstein-Vlasov system cannot
have.

In the present study we investigate the influence on the bound of M/R
in the presence of a positive cosmological constant. A previous study in
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this case was carried out in [11, 12, 8, 13, 14] under the assumptions used
by Buchdahl. Here we relax the Buchdahl assumptions and impose the
condition (1.2), and we find that if ΛR2 < 1, the inequality

M

R
≤ 2

9
− ΛR2

3
+

2
9

√
1 + 3ΛR2, (1.3)

holds generally for this class of solutions. In fact, the inequality holds in
the interior of the static object as well and not only at its boundary, cf.
Theorem 1. The proof of this part is an adaption of the method in [15].
The natural question of sharpness of (1.3) is also addressed but we have not
been able to give a completely satisfying answer. However, we give a detailed
analysis of sharpness for the class of infinitely thin shell solutions. Since an
infinitely thin shell solution saturates the Buchdahl inequality, i.e. the case
Λ = 0, as well as the inequality derived in [5] for charged static objects, it
is quite natural to investigate if infinitely thin shell solutions saturate (1.3)
as well. We show, by using ideas from [3], that generally this is not the case
except in two situations. The most interesting exception being an infinitely
thin shell solution for which ΛR2 → 1. This case belongs to the boundary of
the domain we consider. From (1.3) it follows that M/R → 1/3, as ΛR2 → 1,
for such a shell since it saturates the inequality. This is considerably lower
than 4/9 in (1.1), but the presence of a cosmological constant changes the
expression for the gravitational red shift which, as a matter of fact, becomes
unbounded in this case.

It is interesting to compare the result obtained in the present paper by
the result in [12] where constant density solutions where considered. In the
domain 0 ≤ ΛR2 ≤ 1, the following inequality

M

R
≤ 2

9
+

2
9

√
1− 3ΛR2

4
, (1.4)

is derived in [12] for constant density solutions. The pressure is given by the
Tolman-Oppenheimer-Volkov equation, and the condition (1.2) is not nec-
essarily satisfied in this case. Let us first point out that the inequality (1.3)
admits larger values of M/R than the inequality (1.4) when 0 < ΛR2 < 1.
At the end points of the interval the two inequalities however agree, i.e.
M/R ≤ 4/9 when ΛR2 = 0 and M/R ≤ 1/3 when ΛR2 = 1. As mentioned
above, in this work we construct an infinitely thin shell solution which satu-
rates the inequality when ΛR2 = 1. In [12] a sequence of isotropic constant
density, ρ0 say, perfect fluid spheres with increasing radius is considered,
where the radius can be controlled by the density. It turns out that in this
sequence there is exactly one solution which saturates the inequality when
ΛR2 = 1, namely the situation where Λ = 4πρ0 and the exterior spacetime is
the Nariai solution [16, 11, 12], which satisfies the energy condition provided
3pc ≤ ρ0, where pc is the central pressure. Hence, the saturating solution is
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non-unique when ΛR2 = 1. In the case of a constant density solution with
Λ = 4πρ0, it is exactly when ΛR2 = 1 that the cosmological horizon and the
black hole horizon coincide. It is quite striking that a similar result holds
in the case of charged solutions. In [6] numerical evidence is given that two
classes of saturating solutions to the inequality derived in [5] for charged
solutions exist. This happens exactly when the inner and the outer horizon
of the Reissner-Nordström black hole coincide.

The outline of the paper is as follows. In the next section we set up the
system of equations and present our two main results. Section 3 and 4 are
devoted to their proofs. In section 5 we give an application of the inequality
in the case of the Virgo cluster and obtain an upper bound of Λ from real
observational data.

2 Set up and main results

We consider the static and spherically symmetric line element in Gauss
coordinates relative to the r = const. hypersurfaces

ds2 = −e2ν(χ)dt2 + dχ2 + R2(χ)dΩ2, (2.5)

where t ≥ 0, χ ≥ 0, and dΩ is the standard metric on the unit sphere. The
resulting field equations Gab + Λgab = 8πTab are given by

1−R′2 − 2RR′′

R2
− Λ = 8πρ, (2.6)

R′2 − 1 + 2RR′ν ′

R2
+ Λ = 8πp, (2.7)

ν ′R′ + R(ν ′2 + ν ′′) + R′′

R
+ Λ = 8πp⊥. (2.8)

Here ρ, p and p⊥ are the energy density, the radial pressure and the tangen-
tial pressure respectively. In the present paper we assume that ρ ≥ 0, p ≥ 0,
and that the energy condition

p + 2p⊥ ≤ ρ, (2.9)

holds.
The invariant mass function in spherically symmetric cosmological space-

times can be defined as

m(χ) =
R(χ)

2
[
1−R′2(χ)

]
− Λ

6
R3(χ), (2.10)

where the prime denotes differentiation with respect to χ. Since we consider
non-isotropic solutions the Tolman-Oppenheimer-Volkov equation needs to
be modified and becomes

p′ = −(ρ + p)(4πp +
m

R3
− Λ/3)

R

R′
− 2

R′

R
(p− p⊥). (2.11)

We can now state our main result.
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Theorem 1 Let Λ ≥ 0 be given and assume that a solution of the Einstein
equations (2.6)–(2.8) exists on an interval [0, Rb]. Given an area radius R
with 0 < R ≤ Rb, then if

ΛR2 ≤ 1, (2.12)

it holds that
m

R
≤ 2

9
− ΛR2

3
+

2
9

√
1 + 3ΛR2. (2.13)

A consequence of the inequality is that as long as ΛR2 < 1, equation (2.10)
which can be written as

(R′)2 = 1− 2m

R
− ΛR2

3
, (2.14)

is meaningful since the right hand side is always positive. Indeed, we have
the following result.

Corollary 1 The inequality (2.13) implies that

1− 2m

R
− ΛR2

3
> 0, (2.15)

when ΛR2 < 1.

Proof of Corollary 1: We have from (2.13) that

2m

R
+

ΛR2

3
≤ 4

9
− ΛR2

3
+

4
9

√
1 + 3ΛR2. (2.16)

It is easy to see that the right hand side is an increasing function of ΛR2

in the interval [0, 1], and the right hand side equals 1 when ΛR2 = 1. This
completes the proof of the corollary.

2

Next we turn to the issue of sharpness. As was mentioned in the introduc-
tion, infinitely thin shell solutions saturate the Buchdahl inequality, i.e. the
case Λ = 0, as well as the inequality derived in [5] for charged static objects.
Thus it is natural to investigate if infinitely thin shell solutions also saturate
(2.13). As we will see below this is generally not the case. Let us for this
purpose consider a sequence of regular shell solutions which approach an in-
finitely thin shell. More precisely, by a regular solution Ψ = (p, p⊥, ρ, ν, R)
of the Einstein equations we mean that R and ν are C2 except at finitely
many points, that the matter quantities p, p⊥ and ρ are C1 except at finitely
many points, p has compact support and the equations (2.6)–(2.8) and (2.11)
are satisfied almost everywhere. Now let Ψk := (pk, (p⊥)k, ρk, νk, Rk) be a

5



sequence of regular solutions such that the matter terms pk, (p⊥)k and ρk

have support in [χk
0, χ1], where

lim
k→∞

χk
0

χ1
= 1. (2.17)

Assume that

‖R2
kp

k‖∞ < C, where C is independent on k, (2.18)

and ∫ χ1

χk
0

(ρ− 2p⊥)R2dχ → 0, as k →∞. (2.19)

Furthermore, denote by Mk the total ADM mass of the solution and assume
that M = limk→∞Mk exists, and assume that

Rk(χk
0) → R1 as k →∞, where R1 := Rk(χ1) for all k. (2.20)

We can now state our second result.

Proposition 1 Assume that {Ψk}∞k=1 is a sequence of regular solutions with
the properties specified above. Then

M

R1
=

2
9
− ΛR2

1

3
+

2
9

√
1 + 3ΛR2

1 −H(Λ, R1,M), (2.21)

where H > 0 when 0 < ΛR2
1 < 1, and H = 0 if ΛR2

1 = 1 or ΛR1 = 0.

Remark 1: It is thus clear that an infinitely thin shell with 0 < ΛR2
1 < 1

will not saturate the inequality. The two cases which give sharpness in the
inequality, i.e. when H = 0, belong to the boundary of our domain and these
should be treated as limits of sequences. For instance, in the case R1 = 0 we
think of a sequence {Rj

1}∞j=1, such that Rj
1 → 0 as j →∞, and for each fixed

j we consider a sequence of thin shells which approach an infinitely thin shell
at R = Rj

1. Likewise for the case ΛR2
1 = 1. In the former case the influence

of Λ becomes negligible since when R1 → 0, ΛR2
1 → 0, and an infinitely thin

shell at R1 = 0 will clearly saturate the inequality since it reduces to the
Buchdahl case, cf. [1]. In the latter situation we have M/R1 = 1/3, which
is considerably lower than the maximum value 4/9 when Λ = 0. However,
in contrast to the case with vanishing cosmological constant where the limit
M/R1 = 4/9 implies that the red shift factor is bounded by 2, the case when
ΛR2

1 approaches 1 does not provide a bound and the red shift factor can be
arbitrarily large. Recall here that a bound on the red shift follows from a
bound on

1√
1− 2M

R1
− ΛR2

1
3

.
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Remark 2: That sequences exist with the properties specified in the propo-
sition has been proved for the Einstein-Vlasov system in the case Λ = 0, cf.
[2] and [7] for a numerical study. It is interesting to note that the sequence
of shells constructed in [2], which approach an infinitely thin shell, have
support in [Rj

0, R
j
0(1 + (Rj

0)
q)], q > 0, where Rj

0 → 0 as j → ∞. Hence,
this sequence gives in the limit an infinitely thin shell with R1 = 0, which
corresponds to the degenarate case discussed in Remark 1 above.

3 Proof of Theorem 1

As mentioned in the introduction our method of proof is an adaption of the
method in [15] to the case with a positive cosmological constant. Let us
introduce the following variables

x =
2m

R
+

Λ
3

R2 = 1−R′2, (3.22)

y = 8πR2p, (3.23)

z = ΛR2. (3.24)

Furthermore, we introduce a new independent variable

β = 2 log R(χ), (3.25)

and we denote the derivative with respect to β by a dot.
The Einstein field equations (2.6)–(2.8) can now be rewritten as follows

2ẋ + x− z = 8πρR2, (3.26)

y = 8πpR2, (3.27)

ẋ

2(1− x)
(x + y − z) + ẏ +

(x + y − z)2

4(1− x)
= 8πp⊥R2. (3.28)

It should also be noted that

ż =
dz

dβ
=

1
2

R

R′
dz

dχ
=

1
2

R

R′
(Λ2RR′) = ΛR2 = z. (3.29)

Expressing ρ, p and p⊥ by the equations (3.26)–(3.28), the energy con-
dition

p + 2p⊥ ≤ ρ (3.30)

becomes

y +
ẋ

(1− x)
(x + y − z) + 2ẏ +

(x + y − z)2

2(1− x)
≤ 2ẋ + x− z. (3.31)
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Reordering of the terms and using (3.29) we obtain the inequality

(3x + y − 2− z)ẋ + 2(1− x)ẏ − 2(1− x)ż
≤ −1

2

[
3x2 + (y − z)2 − 2(x− y) + 2z(3− 4x)

]
:= −1

2u(x, y, z). (3.32)

Next, let us define

w =
(3(1− x) + 1 + y − z)2

(1− x)
, (3.33)

from which we can compute

ẇ =
4− 3x + y − z

(1− x)2
[(3x + y − 2− z)ẋ + 2(1− x)ẏ − 2(1− x)ż] (3.34)

≤ −4− 3x + y − z

2(1− x)2
u(x, y, z). (3.35)

Note that 0 ≤ x ≤ 1 and y > 0, and from the restriction (2.12) on Λ we also
have that 0 ≤ z ≤ 1. This latter condition is important to fix the sign of
the factor in front of u in (3.35) to ensure the validity of the optimization
problem below.

In view of (3.34) we thus find that w is decreasing if u is positive and
hence

w ≤ max
0≤x≤1,y≥0,0≤z≤1,u≤0

w(x, y, z). (3.36)

This optimization problem we solve by using MATLAB (the function fmin-
con) or Mathematica (the function NMaximize), and the maximum is
attained at (0, 0, 0) so that w ≤ w(0, 0, 0) = 16, and we thus get

(3(1− x) + 1− z)2 < 16(1− x). (3.37)

We introduce the dimensionless variables

X =
m(χ)
R(χ)

, (3.38)

so that the inequality reads(
3
2
X +

1
2
z

)2

≤ 2
3

(
3
2
X + z

)
. (3.39)

This can be written as(
X − 2

9
+

z

3
− 2

3

√
1
9

+
z

3

)(
X − 2

9
+

z

3
+

2
3

√
1
9

+
z

3

)
≤ 0. (3.40)
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The second factor is non-negative and vanishes only when X = z = 0 which
implies that

X ≤ 2
9
− z

3
+

2
3

√
1
9

+
z

3
. (3.41)

By inserting the expressions for X and z one obtains

m(χ)
R(χ)

≤ 2
9
− ΛR2(χ)

3
+

2
9

√
1 + 3ΛR2(χ), (3.42)

which is the claimed inequality. This completes the proof of Theorem 1.

2

Since the cosmological constant is regarded to be a very small quantity it is
interesting to make a Taylor expansion of the right hand side which implies
that

m

R
≤ 4

9
− Λ2R4

4
. (3.43)

Hence, the influence of Λ is of the second order.

4 Proof of Proposition 1

The proof uses the ideas in [3]. However, the arguments are slightly different,
in particular due to lack of monotonicity of ν when Λ > 0. We define

Γk := (4πpkR
3
k(χ) + mk −

Λ
3

R3
k(χ))

eνk

R′k(χ)
. (4.44)

We then have

Γ′k = (4π(ρk + pk + 2(p⊥)k)R2
k(χ)− ΛR2

k(χ))eνk . (4.45)

Below we sometimes drop the index k but it is inserted when we find it
necessary for clarity.

From the first field equation we find

R′′ = ∂χR′ = −4πρR +
m

R2
− Λ

3
R. (4.46)

Let us integrate Eq. (4.44) with respect to χ in the interval [χ0, χ1]. This
leads to

Γ(χ1)− Γ(χ0) =
∫ χ1

χ0

[
4π(ρ + p + 2p⊥)R2 − ΛR2

]
eνdχ

= eν(ξ)

∫ χ1

χ0

[
4π(ρ + p + 2p⊥)R2 − ΛR2

]
dχ, (4.47)
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where ξ ∈ [χ0, χ1]. By using the energy condition

p + 2p⊥ ≤ ρ, (4.48)

together with the condition (2.19) we obtain

Γ(χ1)− Γ(χ0) = eν(ξ)

∫ χ1

χ0

[
4π(2 ρ)R2 − ΛR2

]
dχ + o(k−1) (4.49)

= eν(ξ)

∫ χ1

χ0

[
−2R∂χR′ +

2m

R
− 5

3
ΛR2

]
dχ + o(k−1), (4.50)

where equation (4.46) was taken into account. Here o(k−1) is used for terms
which vanish in the limit k →∞. Since we are interested in the limit k →∞,
and since χk

0 → χ1, as k →∞, we note that∫ χ1

χk
0

2mk

Rk
− 5

3
ΛR2

kdχ → 0 as k →∞, (4.51)

and this term will therefore be included in the o(k−1) term. The first integral
is easily evaluated and we obtain

eν(ξ)
∫ χ1

χ0
[−2R∂χR′] dχ

= eν(ξ)

(
2R(χ0)

√
1− ΛR2(χ0)

3 − 2R1

√
1− 2M

R1
− ΛR2

1
3

)
+eν(ξ)

∫ χ1

χ0
2(R′)2dχ. (4.52)

Now (R′k)
2 is bounded by 1 in view of (2.14) and therefore the last integral

vanishes in the limit k →∞. Let us next show that

eνk(ξk) →

√
1− 2M

R1
− ΛR2

1

3
. (4.53)

From the Einstein equations we have

ν ′k =
4πRkpk + mk

R2
k
− ΛR2

k
3

R′k
, (4.54)

so that

νk(χ1)− νk(ξk) =
∫ χ1

ξk

4πRkpk + mk

R2
k
− ΛR2

k
3

R′k
dχ. (4.55)

Now since ΛR2
k(χ1) < 1 it follows from the argument following the formula-

tion of Theorem 1 that

R′k(χ) =

√
1− 2mk

Rk
−

ΛR2
k

3
> 0, for all χ ≤ χ1.
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Moreover, from the assumption (2.18) and the general fact that mk/Rk ≤
4/9 we get

∫ χ1

ξk

4πRkpk + mk

R2
k
− ΛR2

k
3

R′k
dχ ≤ C

∫ χ1

ξk

1
Rk

dχ

= C

∫ Rk(χ1)

R1

1
RkR

′
k

dRk ≤ C

∫ R1

Rk(ξk)

1
Rk

dRk

= C log
R1

Rk(ξk)
→ 0 as k →∞, (4.56)

where we used the assumption (2.20) for the final conclusion. The claim
(4.53) follows since for all k we have

eνk(χ1) =

√
1− 2M

R1
− ΛR2

1

3
,

since there is no matter in the region R > R1. This result together with the
condition (2.20), i.e.,

Rk(χk
0) → R1, as k →∞, (4.57)

implies that

Γk(χk
0) =

ΛR3
1

√
1− 2M

R1
− ΛR2

1
3

3
√

1− ΛR2
1

3

+ o(k−1).

Thus to summarize we have obtained

Γk(χ1) =

√
1− 2M

R1
− ΛR2

1

3

2R1

√
1− ΛR2

1

3
− 2R1

√
1− 2M

R1
− ΛR2

1

3


−

ΛR2
1

√
1− 2M

R1
− ΛR3

1
3

3
√

1− ΛR2
1

3

+ o(k−1). (4.58)

Here we again used (4.57). In view of the condition that limk→∞mk = M
we obtain in the limit after some rearranging

M

R1
− ΛR2

1

3
= 2

√
1− 2M

R1
− ΛR2

1

3

1−

√
1− 2M

R1
− ΛR2

1

3

− h(Λ, R1,M),

(4.59)

where

h(Λ, R1,M) :=
ΛR2

1

√
1− 2M

R1
− ΛR2

1
3√

1− ΛR2
1

3

. (4.60)
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It should now be noted that if h = 0, the expression (4.59) is equivalent to(
3
2

M

R1
+

1
2
ΛR2

1

)2

=
2
3

(
3
2

M

R1
+ ΛR2

1

)
, (4.61)

which in view of (3.39) leads to equality in (2.13). If we carry out the algebra
we find that (4.59) leads to the following inequality

M

R1
≤ 2

9
− ΛR2

1 +
2
9

√
1 + 3ΛR2

1 −H(Λ, R1,M), (4.62)

where

H =
(2
√

1− 2M
R1
− ΛR2

1
3 − h)h

M
R1
− 2

9 + ΛR2
1

3 + 2
9

√
1 + 3ΛR2

1

. (4.63)

It is straightforward to check that H > 0 when 0 < ΛR2
1 < 1, and that

H = 0 when R1 = 0 or 1 − 2M/R1 − ΛR2
1/3 = 0. In the latter case, since

H = 0 we have equality in (2.13), and from the proof of Corollary 1 we thus
find that necessarily ΛR2

1 = 1. Thus H = 0 when ΛR2
1 = 1. This completes

the proof of Proposition 1.

2

5 An astrophysical application

Let us work out the consequences of the inequality (1.3) where we already
assume that the cosmological constant is small and therefore use (3.43).
Since the square root of the cosmological constant has units inverse length
it follows that its effects become significant on large scales, for instance
the supercluster scale. To be explicit, let us consider the Virgo superclus-
ter. Its radius is about 1024m while its mass is about 1046kg. This re-
sults in (G/c2)(M/R) ' 10−4 and consequently we can simply neglect the
mass/radius term in the inequality (3.43). Therefore, we immediately find
a bound on the cosmological constant which reads

Λ ≤ 4
3

1
R2

, (5.64)

which for the Virgo supercluster implies

Λ ≤ 2× 10−48 1
m2

. (5.65)

Therefore, a small cosmological constant is a strict implication of the Ein-
stein field equations combined with energy conditions and the observational
input of masses and radii of large astrophysical structures.
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[2] H. Andréasson, On static shells and the Buchdahl inequality for the
spherically symmetric Einstein-Vlasov system. Commun. Math. Phys.
274, 409–425 (2007).

[3] H. Andréasson, On the Buchdahl inequality for spherically symmetric
static shells. Commun. Math. Phys. 274, 399–408 (2007).
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