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NOTE ON THE ESTIMATION OF CROSSING INTENSITY FOR
LAPLACE MOVING AVERAGE

THOMAS GALTIER
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412 96 Göteborg, Sweden.
E-mail adress:galtier@chalmers.se

Abstract. The intensity of upcrossings of a levelu by a Laplace Moving Av-
erage (LMA) process is estimated by means of a saddlepoint approximation
of Rice’s formula. The LMA-process is defined by power spectral density,
skewness and kurtosis parameters.
The method is illustrated by measurements of sea elevation and stresses in
a vessel.

Key-words: Rice formula; Non-Gaussian process; Non-Gaussian Seas;
skewness; kurtosis; saddlepoint approximation; Laplace moving average;
mean upcrossing intensity;

1. I NTRODUCTION

In offshore engineering, one of the dominant sources of uncertainties
is related to environmental loads. Important characterisation of such loads
is the number of times a load upcrosses a levelu during the interval of time
[0, T ], denoted byNT (u). The expected valueE[NT (u)] is an important pa-
rameter used in design values and evaluation of safety levels for structures
exposed for environmental loads.
Let us denote a load byY (t), t ∈ [0, T ]. In this note we discuss the compu-
tation ofE[NT (u)] for Non-Gaussian processY (t), called Laplace Moving
Average, defined in Section 2. We assume thatY (t) is stationary and almost
surely continuously differentiable, thenE[NT (u)] = Tµ(u), whereµ(u) is
the intensity ofu-upcrossings given by the celebrated Rice’s formula:

Theorem 1. If the processY (t) is a.s. differentiable, then the expected
number of times the processY (t) crossesu in the upward directionµ(u) is
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2 NOTE ON THE ESTIMATION OF CROSSING INTENSITY FOR LMA

given by

µ(u)
a.a.u
=

∫ +∞

0

zfY (0),Ẏ (0)(u, z)dz, (1.1)

wherefY (0),Ẏ (0)(u, z) is the joint density ofY (0),Ẏ (0) and a.a.u shows that
the formula is always true for almost all values ofu.

For proof of this theorem, see Brillinger [10] or Zahle [11]. Under
more restrictive assumptions, see Marcus [7], Rice’s formula (1.1) is true
for a fixed levelu.
Examples of relevant applications ofµ(u) are:

• To bound the distribution of the maximal load (highest wave crest
or maximum response),MT = max{0≤t≤T} Y (t) - whereY (t) is
the sea surface elevation - during a specified interval of timeT . The
distribution ofMT can be bounded as follows

P (MT > u) ≤ P (Y (0) > u) + E[NT (u)].

• To model the ageing process in materials (fatigue analysis); as dam-
age accumulates with a rate depending both on the frequency and
the magnitude of the sea waves. As shown in Rychlik [9] the dam-
age rated can be bounded by

d ≤ c

∫ +∞

0

uβµ(u)du,

with equality whenu tends to infinity. Here constantsc, β are suit-
able dependent material.

• To define a transformed Gaussian process which is then used to
model sea waves; see Johannesson et al. [12] for more details.

The Gaussian processes are extensively studied and many results (tools)
are available. For example, ifY (t) is a zero mean Gaussian process, (1.1)
is an explicit form, viz.

µ(u) =
1

2

√

V ar[Ẏ (0)]

V ar[Y (0)]
exp

(

− u2

2V ar[Y (0)]

)

. (1.2)

However, in many cases the departure from Gaussianity cannot be neglected.
In this article we will focus on wave loads, see in Section 4. In the literature,
Stokes wavesare often used to describe the non-linear behaviour of waves.
These are defined by means of a spectrum and some physical modelling.
In this approach the sea surface is expressed as a second-order Volterra se-
ries of Gaussian processes. Here we will use the LMA-processto model
the wave loads. The LMA-process will have both a “correct” correlation
structure, skewness and kurtosis. However, contrary to Gaussian processes,
now (1.1) cannot be computed in an explicit form. In the literature, one
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can find different methods and tools to estimate Rice’s formula in the case
of a second-order Volterra series (Stokes waves), see Naess [5], Machado
[4], or Breitung [13] and the asymptotic expansion method of Hagberg [8].
In this article we will in particular focus on the saddlepoint approximation
proposed in Machado et al. [3] and adapt it to an LMA case. The method
uses the cumulant generating function, see Section 3. The accuracy of the
proposed approach is shown in Section 4.

2. L APLACE M OVING AVERAGE

A short overview of the Generalized Laplace Laws and some essen-
tial properties of the Laplace moving average will be given here, see Kotz
et al. [2] for more details on this subject. Following [2], the generalized
Laplace laws are described by their characteristic functions, and, in the one
dimensional case, are given by

φ(u) =

(

1 − iµu +
σ2u2

2

)1/ν

whereµ ∈ R andσ > 0. We useL(µ, σ, ν) for the above-defined dis-
tribution with the standard values of the parameters:µ = 0 (symmetric
case), scaleσ = 1, and shapeν = 1. By default, if any of the parameters
are dropped from the notation they are assumed to be set to their standard
value.
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FIGURE 1. Symmetric (left) and asymmetric (right)
Laplace distribution with scale parameterσ = 1, and shape
parameter1/ν = 1
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Definition 1. (LAPLACE MOTION). A Laplace MotionL(t) with the asym-
metry parameterµ, the space scale parameterσ and the time scale param-
eterν, LM (µ, σ, ν) is defined by the following conditions

(1) it starts at the origin, i.e.,L(0) = 0;
(2) it has independent and stationary increments;
(3) the increments by the time scale unit have a symmetric Laplace dis-

tribution with the parameterσ, i.e.,

L(t + ν) − L(t)
d
= L(µ, σ)

If µ = 0, σ = 1 andν = 1 the processL(t) is called standard Laplace
motion.

Following [2] we can define the process referred as aLaplace Moving
Averageby

Y (t) =

∫

R

f(t − x)dΛ(x). (2.1)

Since the scaling of the kernel functionf can be equivalently ex-
pressed by the corresponding scaling parameterν, we always assume that
f is scaled so that

∫

f 2 = 1. The next result lists basic facts about this class
of second-order processes. Here and in what follows, the Fourier transform
is defined by

F {f} (ω) =

∫

R

exp (−iωt) f(t)dt.

Theorem 2. LetΛ be a stochastic Laplace measure with parametersµ and
σ controlled by the Lebesgue measure onR that is divided byν. Further,
let Y (t) be the moving average process defined by (2.1). Then

(1) the marginal distribution ofY (t) is given by the characteristic func-
tion

φY (t)(u) = exp

(

−1

ν

∫

R

log

(

1 − iµuf(x) +
σ2f 2(x)u2

2

)

dx

)

,

and more generally its finite dimensional distribution of
Y (t) = (Y (t1), . . . , Y (tn)) is given by the characteristic function
at u = (u1, . . . , un)

φY (t)(u) = exp

(

−1

ν

∫

Rn

log

(

1 − iµuT ft(x) +
σ2

2

(

uT ft(x)fT
t (x)u

)

)

dx

)

,

whereft(x) = (ft1(x), . . . , ftn(x)) is the vector of the kernel func-
tion.
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(2) The autocorrelation functionρ(τ) of Y (t) is given by

ρ(τ) =

∫ +∞

−∞

f(x − τ)f(x)dx =
(

f ∗ f̃
)

(τ),

wheref̃(x) = f(−x) and * denotes the convolution operator.
(3) In R, the spectral densityR(ω) of Y (t) is given by

R(ω) =
σ2 + µ2

ν
.
F {f(ω)}F

{

f̃(ω)
}

2π
.

In particular, if f is symmetric, then

R(ω) =
σ2 + µ2

ν

∣

∣F {f(ω)}2
∣

∣ /(2π). (2.2)

3. SADDLEPOINT M ETHOD

If the kernel function is differentiable then the derivative of the pro-
cessẎ (t) exists and the expected number of times the processY (t) crosses
u in the upward directionµ(u), is given by theRice formula(1.1). Daniels
[6] introduces the saddlepoint approximation as a formula to approximate
the probability density function from the cumulant generating function. In
Machado et al. [3] the method is used to derive an approximation of µ(u).
As mentioned before, the saddlepoint method is for using thecumulant gen-
erating function

K(s, t) = ln
{

E
[

e−isY (0)−itẎ (0)
]}

= ln
{

φY (0),Ẏ (0) (−is,−it)
}

,

whereφY (0),Ẏ (0)is the joint characteristic function ofY (0) andẎ (0).
Following [3], for the symmetrical cumulant generating function K(s, t)
in t, i.e. K(s, t) = K(s,−t), one has the following expression for the
approximation of the mean upcrossing intensityµ(u)

µ(u) ≈ f̂(u)

√

g′′(0)√
2π

(

1 +
h′′(0)

2h(0)g′′(0)
− 1

24

giv(0)

g′′(0)2

)

= µsd(u), (3.1)

whereg(t) = K(st, t) − stu, h(t) = 1√
K11(st,t)

andst satisfiesK1(st, t) =

u.
Here

K1(s, t) =
∂K(s, t)

∂s
, K11(s, t) =

∂2K(s, t)

∂s2

andf̂(u) is the saddlepoint approximation for the density ofY (0) given by
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f̂(u) =
h(0)√

2π
eg(0).

ConsiderY (t) as an LMA-process defined as in (2.1). Since

sY (0) + tẎ (0) =

∫ +∞

−∞

(

sf(x) + tḟ(x)
)

dΛ(x)

By (1), in Theorem 2, we show that

φY (0),Ẏ (0)(s, t) = exp

(

iγ

∫ +∞

−∞

sf(x) + tḟ(x)dx

)

. exp

(

−1

ν

∫ +∞

−∞

log (r(x; s, t)) dx

)

,

wherer(x; s, t) = 1 − iµ
(

sf(x) + tḟ(x)
)

+ σ2

2

(

sf(x) + tḟ(x)
)2

.

Hence the cumulant generating function is given by

K(s, t) = γ

∫ +∞

−∞

sf(x) + tḟ(x)dx − 1

ν

∫ +∞

−∞

log (r(x; s, t)) dx.

It is easy to show thatK(s, t) = K(s,−t) and hence one can apply (3.1) to
approximateµ(u).

4. NUMERICAL EXAMPLES

In this section we will illustrate the accuracy of the saddlepoint ap-
proximation of the upcrossing intensityµ(u) for LMA-processes. Two typ-
ical signals for offshore engineering will be considered; the sea surface el-
evation measured at a fixed location and the stresses in a vessel.
The two signals will be modelled by means of Gaussian and LMA pro-
cesses. For two models, the intensity of the upcrossings will be computed
and will be compared with the observed upcrossings in the signals.
Note that for a zero-mean stationary Gaussian process the number of times
the process crosses the levelu in the upward direction per time units is given
by the algebraic form (1.2).

4.1. Measured sea level.Let consider forty minutes measurements of sea
surface elevation at a fixed location (see Figure 2 left plot). This is a slightly
non Gaussian signal having kurtosis equal to 3.1732 and skewness equal to
0.2546, which are typical values for this type of signals. Often Gaussian
process would be used to describe the signal.
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FIGURE 2. Measured sea surface elevation (left) and corre-
sponding power spectral density (p.s.d.) in log scale (right).

Let us assumeY (t) as being an LMA. The processY (t) is defined by
mean, variance, skewness, kurtosis and the kernel functionf(t) (see Figure
3, left plot). Note thatf(t) is not uniquely defined by p.s.d. We choose the
symmetrical and normed kernel given by (2.2). Parameters ofthe Laplace
Motion, see Definition 1, are computed following Åberg et al.[1], using
observed values of variance, skewness and kurtosis.
In Figure 3 (right plot), the observed intensity of the upcrossings (irregu-
lar solid line) is compared with the theoretical intensity of the upcrossings
computed for the Gaussian process (dashed line) and saddlepoint approxi-
mationµsd(u) of the intensity of th upcrossings for the LMA.
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FIGURE 3. Kernel functionf(t) derived from p.s.d in Fig-
ure 2 right plot (left). Mean upcrossing intensity for sea
level (right); Observed signal (irregular solid line), saddle-
point approximation (regular solid line) and from Rice for-
mula (1.2) under Gaussian assumption (dashed line).
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We see that the observed intensity of the upcrossings andµsd(u) are
very close. The intensity of the upcrossings computed for the Gaussian
process is less accurate.

4.2. Measured Stresses.The second example is the thirty-minute mea-
sured stresses in the after section of a container ship (see Figure 4, left
plot). Here the kurtosis is equal to 7.6572 and the skewness is equal to
1.1219. Obviously, this signal is not a realisation of a Gaussian process.
Again, the LMA process will be used to model the variability of the signal.
Similarly as in Section 4.1, we estimated the four parameters of the LMA
and computed the kernel function (see Figure 5, left plot) asin (2.2). In
Figure 4 (right plot), we can see that the power spectral density has more
peaks than the p.s.d. shown in Figure 2. These are caused by resonances of
the structure.
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FIGURE 4. Measured stress in a container ship (left) and
corresponding power spectral density (p.s.d.) in log scale
(right).

In Figure 5 (right plot), the irregular solid line is the observed intensity
of the upcrossings and the regular line isµsd(u)). Again, the agreement
between the observed intensity of the upcrossings andµsd(u) is excellent.
For comparison, upcrossings for a Gaussian process having the p.s.d. is
shown in Figure 5, also as a dashed line.
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FIGURE 5. Kernel functionf(t) derived from p.s.d. in fig-
ure 4, right plot (left). Mean upcrossing intensity for struc-
tural response (right); Observed signal (irregular solid line),
saddlepoint approximation (regular solid line) and from Rice
formula (1.2) under Gaussian assumption (dashed line).

We can see that the Gaussian model cannot be used here.

5. CONCLUSION

In this paper we have shown that the intensity of the upcrossings of
Non-Gaussian signals could be accurately estimated by means of the theo-
retical intensity of the upcrossings of LMA models. We have also demon-
strated that the saddlepoint method can be used to approximate µ(u) for
high values ofu.
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