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Abstract. The intensity of upcrossings of a levdby a Laplace Moving Av-
erage (LMA) process is estimated by means of a saddlepgimozipnation
of Rice’s formula. The LMA-process is defined by power spledéasity,
skewness and kurtosis parameters.

The method is illustrated by measurements of sea elevatidrstaesses in
a vessel.
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1. INTRODUCTION

In offshore engineering, one of the dominant sources of niaicgies
is related to environmental loads. Important characteoisaf such loads
is the number of times a load upcrosses a lev@liring the interval of time
[0, T, denoted byVr(u). The expected valuB[Nz(u)] is an important pa-
rameter used in design values and evaluation of safetysléwektructures
exposed for environmental loads.

Let us denote a load by (¢), t € [0, T]. In this note we discuss the compu-
tation of E[Nr(u)] for Non-Gaussian proce3§(t), called Laplace Moving
Average, defined in Section 2. We assume ihd} is stationary and almost
surely continuously differentiable, théty Ny (u)] = Tu(u), wherep(u) is
the intensity ofu-upcrossings given by the celebrated Rice’s formula:

Theorem 1. If the processY (¢) is a.s. differentiable, then the expected
number of times the proce$¥t) crosses: in the upward direction:(u) is
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2 NOTE ON THE ESTIMATION OF CROSSING INTENSITY FOR LMA

given by

+oo
) / 2 Fy o0 (1 22, (1.1)
0

wherefy o y o) (1, 2) is the joint density of (0),Y(0) and a.a.u shows that
the formula is always true for almost all values:of

For proof of this theorem, see Brillinger [10] or Zahle [11].ndér
more restrictive assumptions, see Marcus [7], Rice’s foanflil1) is true
for a fixed leveh.

Examples of relevant applications ofu) are:

e To bound the distribution of the maximal load (highest wakest
or maximum responsel\/; = maxo<i<7} Y (t) - whereY(t) is
the sea surface elevation - during a specified interval c# imThe
distribution of M+ can be bounded as follows

P(My > u) < P(Y(0) > u) + E[Np(u)).

e To model the ageing process in materials (fatigue analyesssjam-
age accumulates with a rate depending both on the frequentty a
the magnitude of the sea waves. As shown in Rychlik [9] the dam-
age ratel can be bounded by

+oo
d< c/ u? pu(u)du,
0

with equality whenu tends to infinity. Here constants are suit-
able dependent material.

e To define a transformed Gaussian process which is then used to
model sea waves; see Johannesson et al. [12] for more details

The Gaussian processes are extensively studied and maittg {&z0ls)
are available. For example,¥f(¢) is a zero mean Gaussian process, (1.1)
is an explicit form, viz.

1 [Var[Y(0)] u?
W) = 3\ Vary o) <_2Va7"[Y(O)]) : (1.2)

However, in many cases the departure from Gaussianity taenmeeglected.

In this article we will focus on wave loads, see in Sectiomhk literature,
Stokes waveare often used to describe the non-linear behaviour of waves
These are defined by means of a spectrum and some physicallintgnde

In this approach the sea surface is expressed as a secardvolrra se-
ries of Gaussian processes. Here we will use the LMA-protessodel

the wave loads. The LMA-process will have both a “correctiretation
structure, skewness and kurtosis. However, contrary te§amn processes,
now (1.1) cannot be computed in an explicit form. In the &tere, one
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can find different methods and tools to estimate Rice’s foantuthe case
of a second-order \olterra serieStokes wavegssee Naess [5], Machado
[4], or Breitung [13] and the asymptotic expansion method afjberg [8].
In this article we will in particular focus on the saddlepaapproximation
proposed in Machado et al. [3] and adapt it to an LMA case. Ththaod
uses the cumulant generating function, see Section 3. Theay of the
proposed approach is shown in Section 4.

2. LAPLACE MOVING AVERAGE

A short overview of the Generalized Laplace Laws and someness
tial properties of the Laplace moving average will be giveneh see Kotz
et al. [2] for more details on this subject. Following [2]etlgeneralized
Laplace laws are described by their characteristic funstiand, in the one
dimensional case, are given by

1/v
o(u) = (1 —ipu + 022u2)

wherey € Rando > 0. We useL(u,o,v) for the above-defined dis-
tribution with the standard values of the parameters= 0 (Ssymmetric
case), scale = 1, and shape = 1. By default, if any of the parameters
are dropped from the notation they are assumed to be setitcstardard
value.

FIGURE 1. Symmetric (left) and asymmetric (right)
Laplace distribution with scale parameter= 1, and shape
parameterl /v = % (crossed line),l /v = 1 (solid line),
/v = % (dotted line), respectively.
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Definition 1. (LAPLACE MOTION). A Laplace Motioh(t) with the asym-
metry parameter., the space scale parameterand the time scale param-
eterv, LM (u,0,v) is defined by the following conditions

(1) it starts at the origin, i.e.L(0) = 0;

(2) it has independent and stationary increments;

(3) the increments by the time scale unit have a symmetric Laples:
tribution with the parametes, i.e.,

Lt+v) = L(t) £ £(p, 0)

If » = 0,0 = 1andv = 1the procesd.(t) is called standard Laplace
motion.

Following [2] we can define the process referred asjlace Moving
Averageby

Y(t) = /R F(t — 2)dA(x). (2.1)

Since the scaling of the kernel functighcan be equivalently ex-
pressed by the corresponding scaling parametare always assume that
fis scaled so thaf f? = 1. The next result lists basic facts about this class
of second-order processes. Here and in what follows, theétdvansform
is defined by

F{f}(w)= /exp(—iwt) f(t)dt.

R
Theorem 2. Let A be a stochastic Laplace measure with parameteasd
o controlled by the Lebesgue measure®ihat is divided by. Further,
let Y'(¢) be the moving average process defined by (2.1). Then

(1) the marginal distribution ofY"(¢) is given by the characteristic func-
tion

by ) (u) = exp (—% /IR log (1 —dpuf(x) + w> dw) 7

and more generally its finite dimensional distribution of
Y(t) = (Y(t1),...,Y(t,)) is given by the characteristic function
atu = (ug, ..., uy,)

Py (U) = exp (—% /n log (1 —ipu® fi(z) + %2 (qut(x)ftT(x)u)) dx) ,

where fi(z) = (fi, (x),..., fi,(x)) is the vector of the kernel func-
tion.
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(2) The autocorrelation functiop(r) of Y (¢) is given by

“+o0o

o= [ fa == (1+7) (),

wheref(z) = f(—x) and * denotes the convolution operator.
(3) In R, the spectral densiti(w) of Y (¢) is given by

o2+ 2 FU@YF{fw)}

R(w) = o
In particular, if f is symmetric, then
o’ + pi? 2

R(w) = ——— |F{f(w)}"] /(2m). (2.2)

3. SADDLEPOINT METHOD

If the kernel function is differentiable then the derivatiof the pro-
cessY (t) exists and the expected number of times the prokgsgscrosses
w in the upward direction(u), is given by theRice formula(1.1). Daniels
[6] introduces the saddlepoint approximation as a formalagproximate
the probability density function from the cumulant genexgfunction. In
Machado et al. [3] the method is used to derive an approxanaif /.(u).
As mentioned before, the saddlepoint method is for usingaineulant gen-
erating function

K(s,t) = n{E [efisY(O)fitY(O)}}

Dy (0),7(0) (1, —it)} :
wheregy ;) v(q)is the joint characteristic function af (0) andY (0).
Following [3], for the symmetrical cumulant generating ¢tion K (s, t)

int, i.e. K(s,t) = K(s,—t), one has the following expression for the
approximation of the mean upcrossing intengity)

= In

. (0 W0 1 v 0
m(u) ~ f(u) 5%) (1 + 2h(0)(g”>(0) — ﬂju(é)b = u*(u), (3.1)
whereg(t) = K(s,t) — suu, h(t) = % ands, satisfiesK (s, t) =
" v K11(st,t)
Here
2
Ki(s,6) = 8K(§j’t), Ku(s,1) = ag—ij’t)

and f(u) is the saddlepoint approximation for the densityra) given by
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ConsiderY (t) as an LMA-process defined as in (2.1). Since

sY (0) +tY(0) = /+OO <sf(x) + tf(x)) dA(z)

—0o0

By (1), in Theorem 2, we show that

+o0 . 1 +o0
Sravolst =e (i [ T sr) vifs) oo (<1 [ togssiyar)
. ) . 2
wherer(z;s,t) =1 —ip (sf(x) + tf(a:)) + % (sf(x) + tf(x)) :
Hence the cumulant generating function is given by

—+o00

+oo .
K(s,t) = 7/ sf(x) +tf(x)de — %/ log (r(x;s,t)) d.

o0 —0o0

It is easy to show thak((s,t) = K (s, —t) and hence one can apply (3.1) to
approximateu(u).

4. NUMERICAL EXAMPLES

In this section we will illustrate the accuracy of the sagdiat ap-
proximation of the upcrossing intensity«) for LMA-processes. Two typ-
ical signals for offshore engineering will be considerdgt sea surface el-
evation measured at a fixed location and the stresses in @ vess
The two signals will be modelled by means of Gaussian and L& p
cesses. For two models, the intensity of the upcrossinddwitomputed
and will be compared with the observed upcrossings in theatsg
Note that for a zero-mean stationary Gaussian process thbemof times
the process crosses the leveh the upward direction per time units is given
by the algebraic form (1.2).

4.1. Measured sea level.Let consider forty minutes measurements of sea
surface elevation at a fixed location (see Figure 2 left plbh)s is a slightly
non Gaussian signal having kurtosis equal to 3.1732 andrsd&swequal to
0.2546, which are typical values for this type of signalste@fGaussian
process would be used to describe the signal.
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Signal Sea Level Log scale spectrum
: 10 T T

log(S(w)) [m? s / rad]

' ' ' '
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FIGURE 2. Measured sea surface elevation (left) and corre-
sponding power spectral density (p.s.d.) in log scale {yigh

Let us assum& (¢) as being an LMA. The proces§(t) is defined by
mean, variance, skewness, kurtosis and the kernel fung¢tigr{see Figure
3, left plot). Note thatf(¢) is not uniquely defined by p.s.d. We choose the
symmetrical and normed kernel given by (2.2). ParametetBeoLaplace
Motion, see Definition 1, are computed following Aberg et Hl], using
observed values of variance, skewness and kurtosis.
In Figure 3 (right plot), the observed intensity of the upsiags (irregu-
lar solid line) is compared with the theoretical intensifyttte upcrossings
computed for the Gaussian process (dashed line) and sadulepproxi-
mationy*¢(u) of the intensity of th upcrossings for the LMA.

Kemel . Mean Upcrassing Intensty

FIGURE 3. Kernel functionf(¢) derived from p.s.d in Fig-
ure 2 right plot (left). Mean upcrossing intensity for sea
level (right); Observed signal (irregular solid line), déad
point approximation (regular solid line) and from Rice for-
mula (1.2) under Gaussian assumption (dashed line).
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We see that the observed intensity of the upcrossings:&iid) are
very close. The intensity of the upcrossings computed fer@aussian
process is less accurate.

4.2. Measured StressesThe second example is the thirty-minute mea-
sured stresses in the after section of a container ship (geeeH, left
plot). Here the kurtosis is equal to 7.6572 and the skewrsessjual to
1.1219. Obviously, this signal is not a realisation of a G&rs process.
Again, the LMA process will be used to model the variabilifytioe signal.
Similarly as in Section 4.1, we estimated the four paransetéthe LMA
and computed the kernel function (see Figure 5, left plotha®.2). In
Figure 4 (right plot), we can see that the power spectralidehas more
peaks than the p.s.d. shown in Figure 2. These are causeddnarees of
the structure.

Signal Stress Log scale spectrum for Stress
T T T T

N
10g(S(w)) [m?

L L L L L L L L
50 20 ) 0 5 0 2 4 § 8 1 12
Frequency [rad/s]

FIGURE 4. Measured stress in a container ship (left) and
corresponding power spectral density (p.s.d.) in log scale

(right).

In Figure 5 (right plot), the irregular solid line is the obged intensity
of the upcrossings and the regular lineui¥(u)). Again, the agreement
between the observed intensity of the upcrossings.éfid:) is excellent.
For comparison, upcrossings for a Gaussian process hdwng.s.d. is
shown in Figure 5, also as a dashed line.
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Kemel Mean Upcrossing Intensity
12 T 10 T T

FIGURE 5. Kernel functionf(¢) derived from p.s.d. in fig-
ure 4, right plot (left). Mean upcrossing intensity for stru
tural response (right); Observed signal (irregular sohd),
saddlepoint approximation (regular solid line) and fromeRic
formula (1.2) under Gaussian assumption (dashed line).

We can see that the Gaussian model cannot be used here.

5. CONCLUSION

In this paper we have shown that the intensity of the upangssof
Non-Gaussian signals could be accurately estimated by srefahe theo-
retical intensity of the upcrossings of LMA models. We haisoalemon-
strated that the saddlepoint method can be used to appriexjna) for
high values of.
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