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Abstract

Estimation of extreme wave height across the oceans is important for marine safety

and design, but is hampered by lack of data. Buoy and platform data are geograph-

ically limited, and though satellite observations offer global coverage, they suffer

from temporal sparsity and intermittency, making application of standard methods

of extreme value estimation problematical. A possible strategy in the face of such

difficulty is to use extra model assumptions to compensate for lack of data. In this

spirit we report initial exploration of an approach to estimation of extreme wave

heights using crossings methods based on a log-Gaussian model. The suggested

procedure can utilize either intermittent satellite data or regular time series data

such as obtained from a buoy, and it is adapted to seasonal variation in the wave

height climate. The paper outlines derivation of the method and illustrates its

application to data from the Atlantic and Pacific oceans. A numerical comparison

is made with the results of an annual maximum analysis for sites at which both

satellite and buoy data are available. The paper concludes with a discussion of the

applicability of the new approach, its relationship to other extreme value methods

and desirable directions for further development.

Keywords: Return values, wave heights, crossing intensity, Gaussian processes, sea-

sonality

1 Introduction

Significant wave height, Hs, at a particular location and time is a measure of the sea

state, a local average of the prevailing wave heights or, equivalently, of variability of

the sea surface elevation at that place and time. Estimates of the large values of Hs
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likely to be encountered are important parameters for the design of vessels and marine

structures. In naval architecture, for example, knowledge of extreme Hs is needed to

assess the response of a ship travelling the oceans and continuously suffering stresses

shortening its fatigue life. Estimates of extreme Hs across the oceans also play an

important rôle in the work of the Naval Classification Societies in rating vessels for

operation in different parts of the world. These uses point up the need for estimates of

extreme Hs over the whole marine globe

The severity of the wave climate is typically summarized in terms of return levels,

taken in this context to be high quantiles of the distribution of the annual maximum

significant wave height. Suppose that z(t) denotes Hs at time t for a particular location

and that M(z) = max1≤t≤1 z(t) denotes its annual maximum. Then the T -year return

level of Hs at the location, denoted by zT , is defined by

P(M(z) > zT ) =
1

T
. (1)

Estimation of zT clearly demands knowledge of the upper tail of the distribution of

M(z). Observations of Hs for the estimation may be available at some locations where

there are buoys or platforms. Since the resulting data are usually in the form of regular

time series of several observations per day, methods of estimation based on annual max-

ima or Peaks Over Threshold (POT) may be used. Such data are, however, limited both

in number and geographical extent. Alternatives offering global coverage are observa-

tions of Hs from satellites, and reconstructions of Hs from numerical ocean-atmosphere

models based on large-scale meteorological data. In this paper we focus on the first of

these, the closer to direct observation of significant wave height. We report on initial

exploration of a new method aiming to estimate location-specific Hs return levels over

large ocean areas from satellite observations. The emphasis is on wide spatial coverage

over optimal estimation at individual locations. We comment further on the use of

model data in Section 4.

Though satellite observations of Hs offer global spatial coverage, they suffer from

restricted temporal coverage; the satellite returns to the same location only at intervals

of the order of days, and the returns are not equally spaced (see, for example, Anderson

et al 2002). Thus the observed values, z(ti), at the location are made at times ti that

are sparse and irregular, posing difficulties for application of standard annual maxima

and POT estimation methods. Evidently extra information or stronger assumptions

are needed to compensate for the data limitations. This paper explores how far an

assumption of Gaussianity of ln z(t) can carry the estimation, and to what extent and

to what rarity of events it is applicable.

Our approach is based on the theory of level-crossings of stochastic processes. We

take z(t) to be modelled as a stochastic process and use the following relationship
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between crossings of a level u and the distribution of the maximum over a period of

time:

P(M(z) > u) = P(z(0) > u) + P(N(u; z) > 0, z(0) ≤ u) (2)

where N(u; z) is the number of upcrossings of the level u during unit time (here one

year). For reasonable models of z, as u increases, the probability P(z(0) > u) and the

restriction z(0) ≤ u in the second probability in (2) become negligible, so that for large

u,

P(M(z) > u) ≈ P(N(u; z) > 0). (3)

Furthermore, writing N for N(u; z),

E[N ] − 1

2
E[N(N − 1)] ≤ P(N > 0) ≤ E[N ].

When ln z is a Gaussian processes satisfying some smoothness assumptions, the term

E[N(N − 1)] tends faster to zero than E[N ] (see, for example, Chapter 4 in Azais &

Wschebor (2009)), and so

P(M(z) > u) ≈ E[N ]. (4)

The expectation in (4) can be evaluated by means of Rice’s formula (an approach

referred to here as Rice’s method); see, for example Marcus (1977). In the present paper,

approximations for the expectation are proposed based on estimation of total variation

of the process and the modelling of seasonality. An initial version of the methodology

is sensitive to estimation of the total variation, and so an improved version based on

upcrossings of an interval and referred to as the modified Rice method is developed and

used to find conservative estimates of return levels.

The outline of the paper is as follows. In Section 2, the framework of crossing

methods for estimation is outlined, introducing the Rice and modified Rice methods,

and describing assumptions and estimation methodology. In Section 3, an application

to satellite data is given, indicating the advantage of the methodology when data are

sparse and intermittent. For comparison, the methodology is also applied to buoy data

and results are compared to those based on annual maxima. Finally, Section 4 reviews

the current limitations and applicability of the crossings-based approach.

2 Crossing methods for estimation of return values

The purpose in this section is to find reasonable estimates of E[N ] in Equation (4).

Rice’s formula in the non-stationary case (see, for example, Marcus (1977)) states

that

E[N ] =

∫ 1

0
µt(u; z) dt. (5)
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Here µt(u; z) is the upcrossing intensity of the level u by z, or equivalently of ln u by

ln z, given by Rice’s formula

µt(u; z) = µt(ln u; ln z) =

∫ ∞

0
sfln z(t), ˙ln z(t)(ln u, s) ds (6)

when z is a continuously differentiable process satisfying some regularity assumptions

(see Leadbetter et al. (1983, Chapter 7)) and fln z(t), ˙ln z(t) denotes the density function

of (ln z(t), ˙ln z(t)).

If ln z is a stationary Gaussian process with mean m and variance σ2, the integral

in Equation (6) can be evaluated explicitly, yielding

µt(u; z) = µ(u; z) =
1

2
√

2π

γ

σ
e−(ln u−m)2/2σ2

(7)

where γ = E[| ˙ln z(t)|]. The quantity γ can be estimated by the sample total variation

γ∗ =
1

Tobs

∑

| ln z(ti) − ln z(ti−1)|, (8)

where Tobs is the length of the observation period in years and the ti are the time

instants of successive measurements.

In the following, the aim is to evaluate the expression in (6) in non-stationary cases.

A model for the time-variation of the intensity in (6) is needed. Here a standard model

incorporating seasonality is used, as presented in the following subsection.

2.1 Framework for seasonal modelling

Study of satellite measurements (Baxevani et al (2005)) suggests that for North Atlantic

locations, ln z(t) can be reasoanably approximated by a normally distributed variable

with seasonally varying mean and constant variance σ2 = V[ln z(t)]. (Elsewhere, for

example at Hawaiian buoy 51001, it has been observed that V[x(t)] depends on the

season.) Accordingly, representing the mean by a simple cosine curve, we assume

ln(z(t)) = m0 + A cos(2πt + φ) + x(t) = m(t) + x(t), (9)

where m0 and A are constants, m(t) denotes E[ln z(t)] and x(t) ∼ N(0, σ2). The func-

tions m and σ2 are taken to depend on location. In the sequel we further assume that

m(t) varies much more slowly than x(t) and that x(t) is a stationary Gaussian process,

at least approximately during the season of severe storms dominating the estimation of

return values zT .
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2.2 Rice’s method: computation of E[N ]

Assuming the model in (9), we find an approximation for E[N ] = E[N(u; z)] as follows.

Obviously,
d

dt
ln z(t) = ṁ(t) + ẋ(t)

in distribution. For satellite data, often |ṁ(t)| < 0.01E[|ẋ(t)|] so that it is a reasonable

approximation to take ṁ(t) to be negligible relative to ẋ(t). Thus

µt(ln u; ln z) ≈ µt(ln u − m(t); x) ≈ µ(ln u − m(t); x), (10)

where µ is the expression (7) for the stationary case. From (7) and (10) we arrive at

the desired approximation

E[N ] ≈ 1

2
√

2π

∫ 1

0

γ

σ
e−[ln(u)−m(t)]2/2σ2

dt. (11)

If σ2 is small, then for high levels u a close approximation to the integral in (11) may

be found (see Appendix) using Taylor’s formula, giving the more explicit expression:

E[N ] ≈ 1

4π

γ
√

A(ln(u) − m0 − A)
e−(ln(u)−m0−A)2/2σ2

. (12)

The required return level estimate z∗T may be found by solving for u (replacing

parameters by their estimates) in

1

4π

γ
√

A(ln(u) − m0 − A)
e−(ln(u)−m0−A)2/2σ2

=
1

T
(13)

(or in a similar expression in which the left hand side is replaced by the integral which

it approximates, evaluated numerically) where σ2 is the variance of x(t) and γ is the

total variation in the stormy period. In practice, (11) and (12) lead to almost identical

estimates of zT . We call this method of estimation of return levels (by either (11) or

(12)) Rice’s method.

2.3 An Example

To examine the practicality of return level estimation based on (13) we discuss the case

in which the residual process x(t) is modelled as an Ornstein-Uhlenbeck process. This is

an interesting process because it has very irregular sample paths, so will give a searching

test of the procedure.

Example: Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process is a zero-mean stationary Gaussian Markov process

with covariance function

r(τ) = σ2 e−α|τ |,
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where we take the time variable τ to be measured in seconds. For simplicity let α = 1,

σ2 = 1. Moreover, assume that m0 = 0 and A = 0 in (9). In actuality observations are

made at discrete times, and so the model used is a discrete skeleton of the continuous time

process. Thus the values xi = x(i ∆t), where ∆t is the discretization step, form an AR(1)

time series. This is not a totally unrealistic model for measured signals from buoys, but

the specific interest for the present discussion is that the model has very irregular sample

paths so that E[γ∗] diverges to infinity as the discretization step approaches zero, and

hence the currently proposed Rice method is likely to face difficulties.

Suppose that we wish to find the 100-year level for x; that is, the solution of the equation

P(M(x) > u) = 0.01. For such long periods the asymptotic result derived by Pickands

(1969) is useful:

lim
S→∞

P
(
√

2 ln(S) (MS(x) − kS) ≤ u
)

= exp(−e−u),

where MS denotes the maximum over time S, and

kS =
√

2 ln(S) +
ln(ln(S)) − ln(π)

2
√

2 ln(S)
.

From this, with S = 3.15 × 107, the 100-year value can be approximated by

xAs

100 = kS + (− ln(− ln(1 − 1/100)))/
√

2 ln(S) = 6.8.

Suppose that we have sampled x every ∆t seconds. Then

E[γ∗] =
2
√

2(1 − r(∆t))

∆t
√

2π
,

and hence, with

f0 =

√

2(1 − exp(−∆t))

2π ∆t
,

the Rice method of Section 2.2 would be expected to give the estimate of the 100-

year value as xRi
100 =

√

2 ln(100 T f0), even without sampling variation. For ∆t =

1, 0.1, 0.01, 0.001 we find that xRi
100 is equal 6.35, 6.56, 6.74, 6.90, respectively. The

asymptotic formula shows that these levels correspond, approximately, to return periods

of 7.3, 24.0, 66.7, 179.5 years respectively, somewhat different from the nominal 100 years.

Thus, unsatisfactorily, the estimates γ∗ depend sensitively on observation frequency. 2

2.4 Modified Rice method

The example above shows that the Rice method, being based on individual crossings

of a level, is sensitive to local fluctuations of ln z. An alternative is to base return level

estimation on ‘storms’: episodes of generally raised sea-surface levels separated by calm

periods of low levels. Compared to the Rice method the storms approach focusses on

longer time periods and larger-than-local fluctuations during them, avoiding potential

problems of unbounded total variation.
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Mathematically speaking, we define a storm in terms of a pair of reference levels,

u0 < u say; then a storm is an excursion above u0 that also exceeds u. The number of

storms during an observation interval of length Tobs is therefore the number of upcross-

ings of the interval [u0, u], as illustrated in Figure 1. We use the notation NS
Tobs

(u0, u; z)

u0

u

v

Figure 1: Illustration of crossings related to storms. Here, NS
Tobs

(u0, u; z) = 3

for this number and we adopt the convention that NS
1 (u0, u; z) = NS(u; z). Suppose

now that v is a level exceeding u. Neglecting the probability that we start to observe

within a storm, we find by the same argument as for (3) the approximation:

P(M(z) > v) ≈ P(NS(v; z) > 0),

with equality as v approaches infinity. As before, the inequality

P(NS(v; z) > 0) ≤ E[NS(v; z)]

is employed and a new estimate, called zOsc
T , of the return value is defined as the solution

to the equation

E[NS(zOsc
T ; z)] =

1

T
.

Since P(NS(v; z) > 0) ≤ E[NS(v; z)] ≤ E[N(v; z)], it follows that zOsc
T is smaller than

the estimate derived using Rice’s method, but still conservative.

Example, continued

For the Ornstein-Uhlenbeck process x it is known (Rychlik 1996) that

E[NS(v; x)] =
α√
2π

(

∫ v/σ

u0/σ

eτ2/2 dτ

)−1

. (14)
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Taking u0 = 0 and solving the equation E[NS(v)] = 0.01 we obtain an upper bound for

the 100-year return level x100. In the present example the bound, xOU
100 say, is equal to

6.76, which is close to, but smaller than, the asymptotic estimate xAs
100 = 6.8. 2

In general, except in some simple cases and Markov processes, no explicit formula for

E[NS(v; z)] is known, so we seek an approximation. To do so we borrow an idea from

Peaks-Over-Threshold methodology, making use of the intermediate threshold u with

v > u > u0. At high levels of v we expect exceedances of v to be rare isolated events,

so that the proportion of storms (upcrossings of [u0, u]) in which v also is exceeded,

as measured say by E[NS(v; z)]/E[NS(u; z)], can be expected to be approximately the

same as the proportion of upcrossings of the level u that lead to upcrossings of v,

E[N(v; z)]/E[N(u; z)]; and these proportions can be expected to become closer as v

increases. This suggests the following as a reasonable approximation:

E[NS(v; z)] ≈ E[NS(u; z)]
E[N(v; z)]

E[N(u; z)]
. (15)

We now turn to return level estimation. The intensity of storms, E[NS(u; z)] = λu

say, can be estimated by

λ∗
u =

1

Tobs
NS

Tobs
(u; z).

Also, using (12) with u0 = exp(m0 + A), we find for the ratio of expectations on the

right-hand side of (15)

E[N(v; z)]

E[N(u; z)]
≈
√

ln(u) − ln(u0)

ln(v) − ln(u0)
e−
[

(ln(v)−ln(u0))2−(ln(u)−ln(u0))2
]

/2σ2

(16)

A convenient choice for u is u = u0 exp(cσ), where c is a constant to be chosen. Then

the T -year return level zT satisfies

zT = u0 exp(cT σ) = exp(m0 + A + cT σ), (17)

where, by (16), cT is the solution to

λuT =

√

cT exp(c2
T )

c exp(c2)
. (18)

The return level zT given by (17) and (18) is a function of the intensity of storms λu, and

hence of the threshold u = exp(m0+A+cσ). We can estimate zT by replacing unknown

parameters in the determining equations by their own estimates. The parameters σ2, A

and m0 can be estimated for any location from satellite data as described in Baxevani

et al (2005). Once u is determined, the intensity λu can be estimated directly from

observations as described above. Thus the remaining issue is the determination of the
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constant c > 0. In general this is a matter to be explored empirically. We discuss it in

the light of findings from buoy data in Section 3.3.

Example, continued further

We apply the modified Rice method to the OU-process, calculating the intensity of storms

by means of (14),

λu = E[NS(u)] =
1√
2π

(
∫ u

0

eτ2/2 dτ

)−1

.

For u = 2, 3, 4, 5, 6 the estimates of x100 are found from (17) to be 6.54, 6.62, 6.67, 6.71

and 6.74, respectively. The values should be compared with the bound xOU
100 = 6.76

found earlier. We conclude that the method shows some promise even for this extremely

irregular process. 2

3 Implementation and Applications

In this section we use satellite and buoy data to explore the choice of c in the estimation

of λu discussed in §2.4. We also illustrate application of the modified Rice method and

compare its results to those of an analysis based on annual maxima.

3.1 Data

The satellite (altimeter) data used are measurements of Hs made by the TOPEX/Posei-

don satellite at discrete locations along one-dimensional tracks over the oceans at dif-

ferent periods between October 1992 and January 1999. The data were obtained from

the Southampton National Oceanography Centre (NOC). Drift in the TOPEX obser-

vations for 1997 to 1999 was corrected by the method of Challenor and Cotton (1999)

and Caires and Sterl (2005).

The buoy data are from the National Data Buoy Center (NDBC) (http://www.ndbc.

noaa.gov). Data from the six buoys listed in Table 1, all located in the northern hemi-

sphere (see Figure 2), were used. Observations were hourly. As is often the case with

buoy data, gaps in the time series occur; see Table 1. Moreover, the stormy seasons

of the year often contained long time intervals without data (for these buoys: 8 in 21

years, 9 in 22, 9 in 20, 5 in 21, 6 in 20, 10 in 20 respectively).
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Table 1. Buoys from NDBC

Buoy Location Observed period Percentage

missing obs.

44004 N 38.48, W 70.43 1 Jan 1983 – 31 Dec 2003 20

44005 N 43.19, W 69.16 1 Jan 1982 – 31 Dec 2004 20

44011 N 41.11, W 66.58 1 Jan 1985 – 31 Dec 2005 16

46001 N 54.31, W 146.53 1 Jan 1983 – 31 Dec 2003 12

46005 N 46.85, W 131.02 1 Jan 1983 – 31 Dec 2003 18

51001 N 23.43, W 162.21 1 Jan 1982 – 31 Dec 2002 22

 160oW  140oW  120oW  100oW   80oW   60oW 

  24oN 

  30oN 

  36oN 

  42oN 

  48oN 

  54oN 

44004

44005
44011

46001

46005

51001

Figure 2: Locations of the buoys considered (Mercator projection).

3.2 Seasonal components and the residual process

An estimate m̂ of the mean function m(t) = m0 + A cos(2π t + φ) was found for each

of the six buoys, and the residuals x(t) = ln(z(t)) − m̂(t) extracted. Normal QQ plots

of these residuals taken approximately every fifth day (to avoid possible dependence

effects) were examined. Figure 3 focusses on the upper 5% portions of these plots.

The solid line in each plot corresponds to a Normal distribution with zero mean and

a standard deviation equal to the sample standard deviation of the sampled residuals.

The dotted lines are estimates of pointwise 2.5% and 97.5% percentiles of QQ plots from

such a Normal distribution obtained by simulation of 1000 samples. It is seen that the

observations from five of the buoys appear broadly consistent with the assumption of a

stationary Normal distribution for ln Hs after seasonal mean-correction. In the case of

Buoy 46005 there must be some doubt about such a model; residuals appear heavier-

tailed than Normal in this case. On the other hand for Buoy 51001 the known seasonal
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change in variance appears not to result in departure of the largest residuals from

a normal-induced model (a feature consistent with the upper tail of the distribution

of residuals being dominated by a particular season). Though apparent consistency

with assumption in five cases is far from confirmation of a stationary Normal model

for residuals (not least because the hypothesis is empirically-based), nevertheless it

motivates further examination of the crossings approach.

Normal quantile
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Buoy 44011
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Buoy 46001
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0.
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5
0.

6
0.

7
0.

8
0.

9

Buoy 51001

Figure 3: Upper 5% portions of Normal QQ plots of residual values. The solid line corresponds

to a Normal distribution with zero mean and standard deviation matching that of the residuals.

Dotted lines show estimated pointwise 95% limits based on 1000 samples simulated from this

Normal distribution.

3.3 Choice of c and estimation of the intensity λu of storms

Once the seasonal model is fitted, estimation of λu in the modified Rice method of §2.4

hinges on choice of c. We therefore investigate, using the buoy data, how estimation

of λu and, from it, return levels obtained by the modified Rice method are affected by

different choices of c, taking u = exp(m0 + A + c σ).

Temporarily we write λc for λu, and calculate the estimate λ∗
c for each buoy at

c = 2.0, 2.1, . . . , 2.9, then use the modified Rice method to calculate the resulting

estimated 100-year return levels. Figure 4 shows the estimated z100 in relation to c. In

the figure the dots correspond to estimates based on (18) with λ∗
u estimated individually,

while the crosses show estimates obtained by replacing λ∗
u for each buoy and value of

c by the average λ̄∗
c of the estimates for all six buoys We note that the two sets of
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estimates are quite similar; differences are mostly within one metre. These results give

some grounds for hope that there is approximate regional stability in λu. Consequently,

we propose to use (18) with the value λ̄c deduced from Figure 4 to estimate 100-year

values in regions where λ∗
u is not available. A balance has to be struck between model

error, if c is too low, and lack of data if c is too high. In the rest of this paper we use

c = 2.2 for the calculations using the modified Rice method.
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H
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Figure 4: Estimates of 100-year significant wave height as estimated by modified Rice’s method

as a function of c. Dots: based on λ∗
u; X-marks: based on λ̄u. Left panel: Buoy 44004 (solid),

Buoy 44005 (dashed). Centre panel: Buoy 46001 (solid), Buoy 46005 (dashed). Right panel:

Buoy 51001 (solid), Buoy 44011 (dashed).

3.4 Global estimation of return levels from satellite observations

Baxevani, Caires and Rychlik (2009) give estimates of the seasonal parameters m0, A, σ

around the globe, based on satellite data. Together with the chosen λ∗
u of §3.3, these

yield global conservative estimates of return levels of Hs by the modified Rice method.

Figure 5 shows the estimated 100-year return levels. There are large uncertainties in

estimated parameters for some locations; the effects are particularly visible for the

Mediterranean between France and Sardinia where the estimated 100-year Hs is very

large.

Satellite observations are available in particular at the locations of five of the buoys

considered in §3.3 (the exception being buoy 46005). For comparison the estimated

100-year return levels (m) found by the modified Rice method for the parallel data sets

are presented in Table 2.

Table 2. 100-year return values (in m) estimated by the modified Rice method (c = 2.2) based

respectively on satellite data and buoy data

Buoy 44004 44005 44011 46001 51001

Satellite data 16.5 16.4 16.0 17.0 8.2

Buoy data 19.7 15.9 17.0 16.6 11.2
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Figure 5: Estimated z100 by modified Rice’s method. Contour lines are placed at 5, 10, 15 and

20 meters.

In Table 2 the modified Rice method was used with the storm intensity λ̄c = 2.2.

The parameters were estimated using satellite data and buoy data, upper and lower

rows, respectively. The estimates of parameters based on satellite data uses spatio-

temporal measurements from 4 by 4 degree space regions and hence this model are

based on smoother data, rendering less variability than the estimates based on buoys

which are at fixed locations. However, the estimated 100-year significant wave heights

are relatively close although conservative.

3.5 Comparison with method of annual maxima

Although the modified Rice method is proposed with satellite data in view, its use with

buoy data allows it to be compared with the classical method based on the fitting of a

Gumbel, or, more generally, a Generalized Extreme Value (GEV) distribution to annual

maxima. Accordingly maximum likelihood return level estimates for 100 and 1,000 years

found by the annual maxima approach based on Gumbel and GEV distributions are

shown in Table 3 alongside corresponding estimates found by the modified Rice method.

In the table, the estimated crossing intensity λ∗
c with c = 2.2 was used. For the annual

maxima analyses we used seasonal years, beginning on 1 July. If, as here, substantial

numbers of observations are missing during the stormy parts of the year, the observed

annual maximum is likely to be less than the true maximum, and so we expect return
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levels to be under-estimated by an annual maximum method.

Table 3. Return values (in m) by different methods.

Buoy Gumbel GEV Mod. Rice, c = 2.2

x100 x1000 x100 x1000 x100 x1000

44004 13.24 15.57 17.44 30.40 19.05 25.35

44005 11.08 13.36 10.30 11.61 15.65 20.85

44011 13.28 15.88 11.96 13.04 17.55 22.65

46001 15.61 18.65 13.44 14.30 16.75 20.55

46005 16.79 20.29 13.74 14.26 18.85 23.65

51001 13.65 16.76 12.11 13.51 11.35 13.85

We observe relatively large spreads in the estimates of the 100-year values using the

annual maximum method, although the values are of the same magnitude.

4 Discussion

In this section we discuss limitations, applicability and possibilities for further develop-

ment of the modified Rice method. A relationship with POT methods is described.

4.1 Precision and Seasonality

Standard errors: A limitation of the method as presented here is that it does not pro-

vide estimates of precision of the return level estimates. Precision estimates are, of

course, essential for comparisons and for rational decision-making. A promising way to

find them here appears to be by a bootstrap approach in conjunction with uncertainty

estimates from the seasonal modelling. Further development in this direction is needed.

Seasonality: It would clearly be possible – and desirable – to model seasonality more

flexibly than by a single sine-cosine function. Multi-frequency harmonic models and

non-parametric regression models could be accommodated easily within the approach.

The constancy of variance assumed in the seasonal model is similarly not essential; a

varying σ2 could be accommodated in the procedures at the expense of some extra

numerical complexity. The treatment of seasonality in the approach, however, whether

with simple or sophisticated models, tacitly assumes that seasonality in the extremes is

the same as that in everyday observations, a strong assumption. For application, this

is something to be checked, a substantial task for the whole globe.
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4.2 The Gaussian assumption and relationship to the POT method

The Gaussian assumption enters through expression (12) which is used in (16) to find zT

from (17) and (18). Its rôle is to connect information about properties (of the physical

processes generating Hs) at the moderate level u to information about properties at

more extreme levels v. In essence the modified Rice method uses an empirical estimate

of properties at an accessible level u and extrapolates to higher levels on the basis of an

assumed Gaussian distribution linking u to higher levels. In this it is similar in spirit

(though not in its linking distribution) to the POT method, as the following shows.

In the stationary case the POT method can be derived from an assumption that

storms associated with exceedance of level u0 occur through time according to a homo-

geneous Poisson process of rate ν0, say, and have, independently, storm peaks S whose

excesses over u0 are distributed according to a Generalized Pareto distribution, so that

P(S > s) = {1 + ξ(s − u0)/τ}−1/ξ , (s > u),

for suitable parameters τ > 0 and ξ. Under this model the two-dimensional point

process with points (ti, si), where the ti are the occurrence times of storms and si

the corresponding peak sizes, is a Poisson process in the plane for which the number

of points in regions of the form [0, 1] × (s,∞) for s > u0 is Poisson distributed with

mean ν0P(S > s). Suppose as before that v > u > u0. Then the probability that the

maximum Hs over a year exceeds v, being the probability that at least one storm peak

exceeds v, is

P(M > v) = 1 − e−ν0P(S>v)

≈ ν0P(S > v)

= ν0P(S > u)P(S > v|S > u) (19)

for v making the probability small. Storms associated with exceedances of level u are

obtained by thinning those associated with level u0 and so occur in a Poisson stream of

rate ν0P(S > u) = νu say. Thus the probability (19) may be written as

P(M > v) ≈ νu
P(S > v)

P(S > u)
. (20)

To account for non-stationarity, the rate of occurrence of storms, ν0, and the parameters

ξ and τ of the generalized Pareto distribution are taken to vary with time. Similar

arguments then show that (20) generalizes to

P(M > v) ≈
∫ 1

0
νu(t)

P(St > v)

P(St > u)
dt, (21)

where St denotes the generalized Pareto-distributed storm peak at time t. The POT

method chooses a threshold u (possibly itself time-dependent) above which there are
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sufficient data and the generalized Pareto distribution fits well. It then estimates the

rate function νu(t) empirically from the observed frequency of exceedances, estimates

the generalized Pareto distribution from the magnitudes of the excesses, and obtains

return level estimates from (21) or (19).

The modified Rice method on the other hand has (from (15) )

P(M > v) ≤ E[NS(u; z)]
E[N(v; z)]

E[N(u; z)]

which gives by (11)

P(M > v) ≤ E[NS(u; z)]

∫

P(ln z(t) > ln v) dt
∫

P(ln z(t) > ln u) dt
, (22)

which if σ2 is small is, by (12), approximately

P(M > v) ≤ E[NS(u; z)]
e−(ln(v)−m0−A)2/2σ2

/
√

ln(v) − m0 − A

e−(ln(u)−m0−A)2/2σ2/
√

ln(u) − m0 − A
(23)

≈ E[NS(u; z)]
P(ln z(t0) > ln v)

P(ln z(t0) > ln u)
(24)

where t0 is the time at which m(t) attains its maximum. (The approximation (24)

follows from (23) by the fact that Mills’ ratio (1− Φ(u))/φ(u) ∼ 1/u as u → ∞, where

Φ and φ denote the standard Normal distribution and density functions.)

We compare the POT and modified Rice approaches by comparing (21) with (22)

or its approximation (24). We note:

(i) It is tacitly assumed in the modified Rice method that the occurrence rate λu

of storms associated with exceedance of level u remains constant throughout the

year. In this case the estimate λ∗
u in the modified Rice approach is the same as the

estimate of νu in the POT approach. (If, however, storm occurrence is seasonal,

then λ∗
u estimates the annual average of νu(t).)

(ii) The two approaches differ in their extrapolation from u to v, POT using a condi-

tional distribution (which is still generalized Pareto), and modified Rice using a

Gaussian distribution. Use of the generalized Pareto rests on a semi-parametric

justification, the fact that this form is guaranteed at high enough levels whenever

the tail of the distribution of S decays to zero in a regular manner (de Haan 1970).

Use of the Normal distribution on the other hand is based on purely empirical

evidence such as Figure 3. If the Normal assumption holds, then the Generalized

Pareto distribution would be expected to give a reasonable approximation to it in

the upper tail; on the other hand if the Normal assumption does not hold, then

the Generalized Pareto would provide a flexible model for tail behaviour anyway.

However, data at high levels would be needed to fit it (though see below).
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(iii) The ability of the modified Rice method to yield estimates even when few observa-

tions of storm peaks are available (as is likely to be the case for satellite data) rests

on the implicit assumption that the Gaussian distribution of ln Hs is universal at

all levels, central and extreme, so that parameters estimated from non-extreme

data are taken to be relevant to extremes too. In this respect the modified Rice

method contrasts strongly with the POT method, which – as described above –

attempts to use only extreme data for inference about extremes. An extension

of the POT method, however, inspired by the crossings approach, would assume

a Generalized Pareto distribution for ln Hs at high levels with seasonally vary-

ing location and local scale parameters that are the same as those at everyday

levels (but without the everyday distribution itself necessarily being Generalized

Pareto). Comparison of such an approach with the modified Rice method would

be of interest. A point process framework would be natural for it.

(iv) The generalized Pareto distribution can represent both heavy and light tails. Even

when a comparatively light tail is appropriate at very high levels, it is possible

that at more moderate levels a heavy-tailed generalized Pareto distribution can

give a good approximation (this is related to the penultimate phenomenon ob-

served by Fisher & Tippett 1928). Thus extrapolation methods based on the

Normal distribution may be anti-conservative in comparison to those based on

the generalized Pareto. Though such anti-conservatism would act counter to the

conservatism at the heart of the Rice method, it may suggest caution in the degree

of extrapolation attempted.

(v) The modified Rice and POT approaches differ technically in the way in which

seasonality is taken into account; the POT method averages νu(t)P(S > v|S > u)

over the seasons, but the modified Rice method (22) averages numerator and

denominator separately in the extrapolation ratio, and does not, as noted in (i),

explicitly allow for seasonality in λu.

4.3 Missing data and alternative approaches

Deeper investigation of the treatment of signals with large fractions of missing values

is beyond the scope of this article. As pointed out by Rydén (2008), seasons with

unusually low values may actually tend to increase the point estimates of return values.

Let us finally remark that for extreme winds, non-threshold methods have been

proposed which take into account several values per year and occurrences of clustered

values (Cook, 1982). A method for utilizing satellite data in the estimation of extreme

Hs based on POT assumptions and asymptotic properties of threshold exceedances is

outlined in Anderson et al (2001).
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5 Conclusions

This paper reports initial exploration of a method by which return level estimates of

Hs may be obtained from satellite data, compensating for data deficiency by stronger

model assumptions. In the light of the discussion on Section 4 the following further

investigations seems desirable:

(i) More extensive empirical checks on the robustness of the proposal of §3.3 for use

of regional estimates λ̄c when local estimates λ∗
u are not available.

(ii) As discussed in §4.1, methods to attach standard errors to the modified Rice

estimates.

(iii) Further development of diagnostic methods to check whether Gaussian model

assumptions are justified and investigation of the effect of departure from the

assumptions.

(iv) Exploration of the degree of conservatism in estimates in relation to return period

that results from use of the Rice inequality.

(v) Comparison of the modified Rice method and the extended POT method sug-

gested in §4.2(iii).

(vi) Exploration of methods to combine estimates based on satellite data with those

based on standard analyses of buoy, platform or numerical model data. More gen-

erally, exploration of estimation methods that utilize data from multiple sources.

(We note that data from numerical models may not be completely consistent

with directly-observed data from the same location because of model limitations,

particularly at extreme levels. Estimation methods will need to allow for such

systematic effects.)
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Appendix

We here outline the derivation of approximation for E[N(u; z)] in Eq. (12).

Consider again Eq. (11), rewritten as

E[N(u; z)] = c1

∫ 1

0
e−(ln(v)−m(t))2/2σ2

dt.

where c1 = (1/2
√

2π)(γ/σ). If m(t) = m0 + A cos(2πt + φ) and σ2 is small, then,

for high v an approximation can be found using Taylor’s formula, called also Laplace’s

method (Bleistein and Handelsman 1986).

A change of variables to eliminate φ alter limits of integration and using Taylor’s

formula on m(t) (m(0) = m0 + A, m′(0) = 0, m′′(0) = −A(2π)2) along with the series
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expansion of the exponential function, we find

E[N(u; z)] = c1

∫ 1/2

−1/2
exp

{

− 1

2σ2
[ln(v) − m(t)]2

}

dt

≈ c1

∫ 1/2

−1/2
exp

{

− 1

2σ2

[

ln(v) − m0 −
m′′(0)

2
t2
]2
}

dt

= c1

∫ 1/2

−1/2
exp

{

− 1

2σ2

[

(ln(v) − m0 − A)2

−(ln(v) − m0 − A)m′′(0)t2 +
t4

4
[m′′(0)]2

]}

dt

= c1 c2

∫ 1/2

−1/2
exp

{

− 1

2σ2
(A + m0 − ln(v))m′′(0)t2

}

× exp

{

− 1

2σ2
[m′′(0)]2

t4

4

}

dt

= c1 c2

∫ 1/2

−1/2
exp

{

− 1

2σ2
A(2π)2(ln(v) − m0 − A)t2

}

×
(

1 − 2π4A2

σ2
t4 + o(t4)

)

dt

where

c2 = exp

{

− 1

2σ2
(ln(v) − m0 − A)2

}

.

Now, consider high levels v and small σ2. We have that v > u where u = m0 + A +

c σ. Let σ̃2 = σ2/(4Aπ2(ln(v) − m0 − A)), which for typical numerical values in this

application σ2 = 0.2, A = 0.3 and (ln(v) − m0 − A) = 4σ we have σ̃ = 0.1. Hence the

limits in the integration correspond to five σ̃. Furthermore, it can be shown that the

integral
∫

t4 exp(−0.5t2/σ̃2)dt ≈ 7.5σ̃5 and hence is negligible.

Hence, by a change of variables and identification of the standard normal distribution

we arrive at the approximation

E[N(u; z)] ≈ c1c2

√
2π

∫ ∞

−∞

1√
2π

exp

{

− 1

2σ2
A(2π)2(ln(v) − m0 − A)t2

}

dt

= c1c2

√
2π

σ

2π

1
√

A(ln(v) − m0 − A)

∫ ∞

−∞

1√
2π

e−τ2/2 dτ

=
1

4π

E[V ]
√

A(ln(v) − m0 − A)
exp

{

− 1

2σ2
(ln(v) − m0 − A)2

}

.
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