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Approximating the Pareto Optimal Set using a Reduced Set of
Objective Functions

Peter Lindroth* Michael Patriksson' Ann-Brith Strémberg?

Abstract

Real-world applications of multi-objective optimization often involve numerous objective functions.
But while such problems are in general computationally very hard, it is often not necessary to find
the Pareto optimal set exactly. A significantly smaller computational burden thus motivates the loss
of precision if the size of the latter can be estimated. We describe a method for an optimal reduction
of the set of objectives yielding a smaller problem whose Pareto optimal set is as similar as possible,
w.r.t. Hausdorff distance, to the original Pareto optimal set. Using a new characterization of Pareto
optimality, we derive a program whose solution represents an optimal reduction. We also propose an
approximate, and computationally less demanding, formulation which utilizes correlations between
the objectives and separates into two parts. The method is illustrated with a graphical example.
Numerical results from an industrial instance concerning the configuration of heavy-duty trucks are
also reported, demonstrating the usefulness of the method developed. The results show that multi-
objective problems can be simplified with an induced error which can be measured.

Keywords: Multiple objective programming, many-objective optimization, Pareto optimality, objective space
reduction, engineering optimization

1 Introduction and Pareto optimality

Engineering design problems typically involve the handling of a number of more or less conflicting criteria.
Such a problem can mathematically be formulated as a multi-objective optimization problem with the
standard notation

min {1(0), .., fu()} (1)

where x € R™ denotes a vector of decision variables, X C R"™ is the set of feasible decision vectors
(or the decision space), and each f; : X — R is an objective function to be minimized. The vector of
objective functions is denoted f = {f1,..., fr} and we define £ = {1,...,k}. The objective space, Z, is
defined as being the image of the decision space, i.e., Z = f(X) = {z = f(x) | x € X}. If the objective
functions are at least partially in conflict, i.e., there is no feasible decision vector minimizing all objectives
simultaneously, then the optimal solution to (1) is not well-defined since there exists no natural complete
ordering of vectors. However, there exists a set of decision vectors in which the best solution by rational
judgments must be contained regardless of the relative importance of each single objective, namely the
Pareto optimal set. In the sequel, we will refer to the problem (1) as the original problem.

DEFINITION 1.1 (PARETO OPTIMALITY) Consider the problem (1). A vector x* € X is defined as Pareto
optimal if there exists no vector x € X such that f;(x) < fi(x*), i € K, and f;(x) < f;(x*) for at least
one j € K. An objective vector z* = f(x*) is called Pareto optimal if the corresponding vector x* is
Pareto optimal. The set of Pareto optimal decision vectors x* € X is denoted by P C X.

DEFINITION 1.2 (DOMINATION) A wvector x € X is said to dominate a vectory € X if f;(x) < fi(y), i €
K, and f;(x) < fj(y) for at least one j € K.

The set of Pareto optimal objective vectors is bounded from below by the ideal vector, z'9°®!, and from
above by the nadir vector, z"4" defined as follows:
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DEFINITION 1.3 (IDEAL AND NADIR VECTORS) The ideal vector z9®® € R¥ and the nadir vector z"®11* €
RF consist of the component-wise minimum and mazimum, respectively, of each objective over the Pareto
optimal set, i.e.,

ideal __ : : nadir __
A= (i AG o pi R 00). e = (s 100 s S (0).
DEFINITION 1.4 (WEAK PARETO OPTIMALITY) Consider the problem (1). A vector x* € X is defined
as weakly Pareto optimal if there exists no other vector x € X such that f;(x) < fi(x*), i € K. An
objective vector z* = f(x*) is called weakly Pareto optimal if the corresponding vector x* is weakly Pareto
optimal. The set of weakly Pareto optimal vectors is denoted by Py .

We now consider instances of the problem (1) with a discrete and bounded feasible set, X = {x/ | j € N},
N ={1,..., N}. For such problems, we give an equivalent formulation of Pareto optimality which appears
to be new. We start by introducing this characterization, which is more explicit than Definition 1.1 and
is in some cases better suited for modeling practical optimization problems.

PROPOSITION 1.5 (PARETO SYSTEM) Let N > 1 be an arbitrary integer, X = {x*,... ,xN}, and M > 1.
Then a vector x* € X is Pareto optimal in (1) if and only if the system

[i(x") < fi(x?) + M(1 — ), jeN,iek, (2a)
Dierchi(x*) < Picx fi(x) + M (1 — ugy), JEN, (2b)
Yiefopucti; = 1, JEN, (2¢)
ui; € {0,1}, JeEN,ie {0} UK. (2d)

18 consistent.

PROOF. The Definition 1.1 of Pareto optimality can be restated as follows: for x* € X to be Pareto
optimal, it is required that there is no x € X such that fi(x) < fi(x*), i € K, and ), fi(x) <
> ick Ji(x*) hold. Equivalently, for each x € X, no more than k out of these k + 1 constraints may be
fulfilled for x* € X to be Pareto optimal, or, by expressing the complement, for each j € N, at least one
out of the k + 1 constraints f;(x7) > f;(x*), i € K, and >, fi(x?) > >, fi(x*) must be fulfilled.
The latter is equivalent to the system (2) being consistent. |

REMARK 1.6 Pareto optimality can be replaced by weak Pareto optimality in Proposition 1.5 if the strict
inequalities (2a) are replaced by (non-strict) inequalities and the inequalities (2b) are removed.

By solving (1), we mean to find the set P C X. As the number k of objectives increases the task of
finding (a good approximation of) P becomes increasingly difficult (cf. [8]; cf. also [3] which claims the
opposite for some special problems). For the instances of (1) of our interest the number & of objectives
is large. Therefore our approach to solve these problems is based on the selection of a smaller set of
objective functions. We next present an overview of such approaches.

1.1 Previous work

The notion of redundant (or non-essential) objectives was introduced by Gal and Leberling [12], referring
to objective functions whose removal from the problem formulation would not affect the Pareto optimal
set. It is proved that for linear multi-objective programs (i.e., with all f; linear and X polyhedral) an
objective whose cost vector is a positive linear combination of some other cost vectors is redundant. From
an application point of view, however, it is noted in [11] that dropping redundant functions often will affect
the final solution(s) obtained from standard multi-criteria decision making methods. In [17] it is stated
that for non-linear problems, and especially in connection with so called interactive solution methods, it
is more suitable to define redundancy based on “conflicts” between objectives; here, “no conflict” between
a pair of objectives means that all feasible decision vectors (x € X) are sorted equally by the two
objectives. Agrell [1] proposes a different definition of conflict, requiring the sortings to be equivalent
only over the efficient set. More definitions of conflict can be found in [4]. Measures of interdependency
are defined in [5]. Equal or opposite sorting over the decision space is required for two objectives to be
interdependent. Deb and Saxena [8] propose a method for reducing the set of objectives based on the



Principal Component Analysis (PCA) technique; roughly speaking, the objectives in a reduced problem
are the ones that retain as much variation as possible over the original objective space Z.

The above-mentioned works aim at a reformulation of the problem (1) such that the Pareto optimal
set is retained. However, after a reduction of redundant objectives their number may still be too large.
We introduce a measure of “partial redundancy” among objectives. Based on this measure we construct
models with significally less than k objectives, having a lower computational complexity, and for which
the Pareto optimal sets are similar to that of (1).

In [4] a method for reducing the set of objectives is presented. The aim is to drop objectives such
that for all x,y € X, x dominates y in the reduced problem if and only if x dominates y in the original
problem. The method is extended to allow some changes in the dominance structure, leading to a change
in the Pareto optimal set. The aim of this method is similar to ours. However, their focus lies on the
dominance structure in the entire decision space X rather than on the minimization of the differences
between the respective Pareto optimal sets.

The concept of partial weighting was introduced by Koski and Silvennoinen [14]. It can be seen
as a generalization of the traditional scalarization technique [17] for solving multi-objective optimization
problems: some of the objectives are replaced by their weighted sum. How the objectives should be group-
ed is however not clearly proposed. It is shown that the Pareto optimal set for the reduced problem, P?, is
a subset of P, but the authors do not analyze or characterize the vectors of P that are lost. We contribute
with both a method for the selection of objectives for the reduced problem and characterizations of the
Pareto optimal vectors in the original and reduced problems.

1.2 Motivation

The main contribution of this work is a practical method for simplifying a multi-objective optimization
problem without losing too much information. In the literature, usually very strong assumptions are made
when reducing the number of objective functions; it is often required that the Pareto optimal set is retained
after the reduction. Practical engineering design problems usually include many objective functions and
it may be well motivated to sacrifice some precision of the Pareto optimal set if the associated problem
becomes significantly smaller and some measure of the error made is produced. We aim at finding a smaller
representation—in terms of numbers of objectives—of (1) such that the respective Pareto optimal sets
are as similar as possible. Our method can be used to preprocess optimization problems with many
objectives and many feasible decision vectors. By studying a subset of the decision vectors, small enough
to enable an exhaustive search for the Pareto optimal set, our method reduces the problem such that the
difference between the respective Pareto optimal sets are held at a minimum. The reduced number of
objectives can then be evaluated with respect to the complete set of decision vectors.

1.3 Outline

In Section 2 we investigate some relations between Pareto optimal sets when modifying the set of objective
functions and propose distance measures between these. By showing that the Pareto optimal set shrinks
when applying certain reduction rules we motivate the introduction of a dominance tolerance parameter.
We also introduce a centrality parameter, aiming at focusing the approximation on the most important
part of the resulting set. The number of objective functions and the value of the centrality parameter are
fixed in the model, whence the variables defining the objectives in the reduced problem and the tolerance
parameter constitute the decision variables for which we search optimal values.

In Section 3 we utilize Proposition 1.5 to define a binary linear program (an ideal model) whose
solution represents an optimally reduced problem. The complexity of this model is far too high for a
problem of practical industrial size to be solved in reasonable time. Therefore, in Section 4 we consider
an approximation of the ideal model that can be solved efficiently.

In Section 5 and 6 the approximate model is applied to an illustrating example and to a realistic
model, inspired by industrial applications, concerning configurations of heavy-duty trucks.

2 Reducing the set of objective functions

In this section we study how the Pareto optimal set varies with the set of objective functions. We propose
a quality measure for the Pareto optimal set of the reduced problem and introduce a parameter for which



we search a value with the purpose of retaining the similarity between the central regions (cf. Section 2.3)
of the respective Pareto optimal sets.

Reducing a multi-objective optimization problem by dropping objectives may induce an error, i.e.,
difference between the Pareto optimal set of the original problem and that of the reduced problem. In [6],
a review of quality measures for an approximate Pareto optimal set (here denoted 75) is presented. These
are mostly used to evaluate metaheuristics. The authors note that there exist no standard measures.
Further, most proposals aim at evaluating the performance of proposed heuristics for which the size of P
is significantly smaller than the size of P. A good approximation normally means that P is well spread
over P and that the points in P are also near-optimal, meaning that each point in P is close to some
point in P. One measure, introduced in [7] and also used in [20], is defined by the metric

Dist2(P) = max {mir} e(x, y)} ) (3)
x€P \yep

where the function ¢ : R™ x R™ — R, measures the closeness of a pair of points. This means that
Dist2 is the largest deviation of a point in P from its nearest point in P. We wish to find out how well
PP (the Pareto optimal set of the reduced problem) approximates P, but also the opposite: how well P
approximates P?. Therefore we extend the measure Dist2 to the well-known Hausdorff distance measure,
which measures how distant two non-empty compacts sets are in a certain metric. With d(-,-) denoting
the distance metric, the Hausdorff distance, between the closed, discrete, and non-empty sets E and F,
is defined as

dy(E, F) = max {max min d(u, v); max min d(v, u)} . (4)

ucE veF veF uek

Given the multi-objective optimization problem (1), the question of how many objective functions that
are required to characterize P is raised in [9]. For strictly quasi-convex objectives it is shown that for
n = 2, three objectives are sufficient. However, without assuming convexity, or even continuity, of the
objective functions it is clear that, in principle, one objective function is enough, e.g., the indicator

function
1, ifx¢P,
§x) = {o, it x € P.

Since our method is intended to be applied to a subset of the complete decision space—hoping that
the reduced set of functions are good representatives also in the complete decision space—the indicator
function is not a wise choice.

In machine learning language [18], the wish is to find a hypothesis (a set of new objective functions)
that fits the entire data (the complete set of decision vectors) well, i.e., leads to approximately the
same Pareto optimal set, and not just fits the data measured (the smaller subset of the set of decision
vectors). For this reason, hypotheses that over-fit the data must be avoided, meaning that there exists an
alternative hypothesis that explains the measured data worse but explains the entire data better. In our
application, the set of all hypotheses are all functions g : X — R”, where r < k is the number of objectives
in the reduced problem. In this set of functions we want to find the function g that approximates the
Pareto optimal set the best over the entire set of data. We have chosen to limit the set of hypotheses
to those for which the objective functions of the reduced problem are linear combinations of the original
ones. This leads to a fairly simple hypothesis that still seems reasonable. Furthermore, we have restricted
the weights of the linear combinations to be uniform so that any set of two or more objectives may be
replaced by their mean only. Thus, we end up with a procedure similar to that introduced in [14]: a
partial weighting of the original objectives.

2.1 The feasible choices of objectives for the reduced problem

Let the power set, i.e., the set of all subsets, of K be denoted by 2X = {K1,..., Ko }. Our aim is to
find a subset of 2* with at most r elements, represented by {si,...,s.} C K = {1,...,2*}, and defining
which collections of original objective functions to aggregate into objectives in the reduced problem.
In other words, the aim is to reduce the set {f1,..., fi} of objective functions to {gs,,...,gs,}, where
r<kgs = IK—lj\ ZiEKsj fi, and where the set K, indicates which of the original objectives that are

included in the objective g,; in the reduced problem. We also require that each objective function f; is
included among the terms of some linear combination of functions gs;, i.e., Uj_; K,; = K. We introduce



the binary variables

1, if collection p of objectives is chosen,
6;0 = .
0, otherwise,

lay
—

ot
~

1, if objective f; is contained in collection A
aipz{’ ) /i b, 1€, pek.

0, otherwise,

The feasible choices of collections, for a prescribed maximal number r of objectives in the reduced problem,
are then defined by all vectors 3 fulfilling

AB > 1%,
Br1*" <, (6)
Be{0,1}%,

1™ denoting the n-vector of ones. R
In the following, we will instead of the previous notation P denote the Pareto optimal set of the
reduced problem defined by 3 as PP.

2.2 Relations between objectives and Pareto optimal sets

We next investigate how the set of Pareto optimal decision vectors varies with the set of objective
functions. Dropping an objective function (illicit according to our rules) will reduce the set of weakly
Pareto optimal points for problems (1) with convex objective functions; this is a consequence of, e.g.,
Corollary 1 in [15]. It is true also for general problems, guaranteed by the following proposition.

PROPOSITION 2.1 Consider problem (1). Let K’ = {j € K|B; = 1} indicate a subset of the objective

functions. Let Py, C X (P2 C X) be the set of weakly Pareto optimal vectors corresponding to the set
K (KP). Then, P2 C P,.

PROOF. Suppose that y* € P2. This implies that fy € X such that f;(y) < fi(y*), i € K”. Since
KP C K, By € X such that f;(y) < fi(y*), i € K, and thus, y* € P,. |

REMARK 2.2 Note that the analogous statement to Proposition 2.1 where weak Pareto optimality is re-
placed by Pareto optimality is false. Consider (1) withk =n = 2,{f1(x), f2(x)} over X, with f1(x) = 1,
fa(x) = z2, and X = {(1,2);(2,1); (3,1)}. Then P ={(1,2);(2,1)}. By dropping f1 (i.e., for 8 = (0,1))
we obtain PP = {(2,1);(3,1)}  P.

The following proposition (proved in [14]) guarantees, however, that the set of Pareto optimal solutions is
reduced or kept constant when a subset of the objective functions is replaced by their positively weighted
sum. We conclude that if constructing a reduced problem by replacing certain subsets of objective
functions with their respective weighted means, then P% C P holds.

PROPOSITION 2.3 Consider problem (1). Let KP indicate the reduced set of objective functions where the
first two objectives are replaced by a positively weighted sum, i.e., {w1 f1 + wafa, f3,..., f}, wi,wa > 0.
Let P C X (PP C X) be the set of Pareto optimal vectors corresponding to K (K?). Then, PP C P.

2.3 Centrality

Reducing the set of objective functions through partial weighting typically leads to the loss of extreme
Pareto optimal solutions, i.e., solutions with a very good value in one objective but arbitrarily poor values
in others. These are probably not attractive anyway when a final solution is picked from the set of Pareto
optimal solutions. In order to obtain a set P? that differs the least from P for the solutions that are
likely to be chosen as final solutions, a centrality parameter p € [0,1] is defined, and the vectors x € E,
where E is any subset of X (e.g. P or PP), are partitioned into a p-central and a non-p-central part.



DEFINITION 2.4 (p-CENTRALITY) Consider the multi-objective optimization problem (1). The p-central
part EP C E of a set E C X is defined as

Ef ={x€E | fi(x) < (1—p)2ir 4 pzideal e L}, (7)
PROPOSITION 2.5 For any subset E C X it holds that Ef = E N X7.

In words, the p-central part of the Pareto optimal set, P? = PN X7, consists of the Pareto optimal vectors
that have no objective function value relative to the span of that objective over P, closer than p to any
component of the nadir vector. As special cases we have for aset E C X, E” = {x € E | f(x) < z"adir}
and B! = {x € E | f(x) < z'%} (= () if the objectives are partially in conflict). Figure 1 illustrates the
concept of centrality.

f2

h

Figure 1: An illustration of p-centrality in the objective space for two objective functions. Here, p ~ 0.2
and F is a general subset of X.

2.4 Dominance tolerance

We want to approximate the Pareto optimal set as well as is possible using the principles described above.
Therefore, a tolerance parameter 7 > 0 is introduced with the aim of enlarging the Pareto optimal set of
the reduced problem, so that the resulting set differ the least from the Pareto optimal set corresponding
to the original set of objectives. We define the 7-Pareto optimal set, P,, as follows.

DEFINITION 2.6 (7-PARETO OPTIMALITY) Consider the problem (1). For 7 > 0, a vector x* € X is
defined as T-Pareto optimal if there exists no vector x € X such that f;(x) + 7 < fi(x*), i € K, and
fi(x) + 71 < f;(x*) for at least one j € K. An objective vector z* = f(x*) is called T-Pareto optimal if
the corresponding vector x* is T-Pareto optimal. The set of 7-Pareto optimal decision vectors is denoted
by Pr C X.

By construction, P C Pz C P holds for all 7 > 7 > 0. Moreover, we write Pf for (7’6)

2.5 Summarizing our goal

We now summarize our goal: Given the problem (1), the number r < k of objective functions in the
reduced problem and the value p € [0, 1] of the centrality parameter, we wish to find the optimal set of
collections represented by {s1,...,s,} C IC, and the value of the tolerance parameter 7 > 0, such that
the Hausdorff distance! dg (f(P?), f(P2*)) is minimized (see Figure 2). The problem is mathematically

LWe write P2* for (P2)r.



stated as

minimize (8,7) := dg (F(P?), f(PPP)),

B, T
subject to AB > 1%,
g1 <, (8)
ge {01},
7> 0.
X
FE

&

O+
eS|

+
+
O #
O
dp

&
0O

ODoO

Figure 2: An illustration of the Hausdorff distance in the Euclidean metric between the two discrete sets
FCXand FCX.

3 The ideal model

Starting from the characterization of Pareto optimality in Proposition 1.5, we construct the “ideal” model
for solving the problem (8) as a binary linear program.

3.1 An explicit formulation of Pareto optimality

Clearly, P2 depends on the choices of 3 and 7. Thus, a well-posed optimization problem requires an
explicit formulation of Pareto optimality. Such a formulation is provided through Proposition 1.5. In the
following subsections we develop explicit constraints that separate 7-Pareto optimal and non-7-Pareto
optimal vectors. We start with a formulation of the general problem (1) which is, in Section 3.2, applied
to the reduced problem.

Using the system (2), we construct a consistent system of inequalities which is used to partition the
set X into a Pareto optimal and a non-Pareto optimal set. Consistency of (2a), (2b) and (2d) is required
and binary variables w,, £ € N, are introduced indicating whether also (2¢) holds for a specific vector
x’. We let the vectors x/ and x’ be two specific vectors in X and define the decision variables

1, if fi(x%) < fi(x?),

Ugip = ,leN,iek,
it {O, otherwise, J

1, if 3. (xf) < S, (~d
que:{ o D Silx) < Duie i), JLEN,
0, otherwise,
i / i e i 1 ..

vy = 1, Tf x{ does. not dor;unate x* (i.e., if Eie{o}ulc Ugje > 1), iCEN,
0, if x/ dominates x°,
1) if €€P~..’-f zl\v’,

wy = 1 Xé (i.e., if vje 7) e
0, ifxt¢P,



Using these variable declarations we formulate, for each £ € N, the following system of inequalities:

~Mujje < fi(xY) — filx?) < M(1 — uije), jEN, i€k, (9a)
—Mugje < Zie,cfi(xz) - Zie/cfi(xj) < M (1 — uoje), jEN, (9b)
vje < X ieqopuctiize < (k4 1)vje, JEN, (9¢)
Nwe < 375 pvje <we+ N —1, (9d)
uije, vje, we € {0,1}, jeN,ie{0}UK. (9¢)

We have the following result:

PROPOSITION 3.1 For the problem (1), the system (9) of inequalities partitions the vectors x* € X, £ €
N, into a Pareto optimal and a non-Pareto optimal set, which are distinguished by the values of the
variables wy, £ € N.

REMARK 3.2 The strict inequalities in (9a) can be replaced by (non-strict) inequalities if the constant
¢ =min {|f;(x?) — fi(xH i€, L eN, |fi(x?) — fi(xh| > 0} >0,

is added on the left-hand side of each inequality. Analogous definitions can be used to eliminate the strict
inequalities in (9b), (10a), (11a), (11b), (15a), and (19a).

REMARK 3.3 If the goal is to find the Pareto optimal set P C X, half of the inequalities in (9) can be
replaced by an objective function, according to

maximize Y renWe,
subject to fi(xh) = filxd) < M(1 = uge), G LEN, i€k, (10a)
Siexfi(x") = X filx)) < M1 —ugje),  jLEN, (10b)
vit < Yicoyurctige, 5L EN, (10c)
Nwe <37 iearvies teN, (10d)
wije, Vi, we € {0,1}, jLeN,ie{0}UK. (10e)

3.2 An explicit formulation of Pareto optimality for the reduced problem

There are 2% possible objectives in the reduced problem; the ones chosen are indicated by the values of
Bp, P E K = {1,...,2*}. However, we are interested in 7-Pareto optimality for the reduced problem,
wherefore {f1,..., fr} in (9) cannot be directly replaced with {51¢1,...,Borgox }. The reason is that if
some objective function h; maps all x € X to the same value, then for any x* € X and 7 > 0 there exists
no x € X such that h;(x) + 7 < hi(x*); thus all x € X will be 7-Pareto-optimal. This will be the case
for every objective function g, corresponding to 8, = 0 (since if so, Spg, = 0). Therefore the system (9)
must be modified so that all inequalities involving terms of an objective g, such that 8, = 0 become
redundant. We redefine the u,v and w variables according to

Upje = 1, if gp(Xe.) < gp(Xj) + 7, and collection p is chosen, GLEN pe I@,
0, otherwise,
. p )
U()j[ = 17 if Zpelﬁ Bpgp(x ) S EPEK(BPQP(X]) + T)) j7£ c N,
0, otherwise,
H 1 0 /s . . .
vy = 1, %f xj. does nlot T—dOHZ. x° (i.e., if ZpE{O}U’C Upje > 1), IEN,
0, if x? 7-dominates x*,
17 if Ze,Pﬁ ,f ‘:1V‘,
wy = %XZ 7 (Le., if vz 7) Ce N
0, if x‘¢ Po,



Letting 3,, p € K, define the ob jectives for the reduced system, the following system for £ € A, possesses
a solution with wy = 1 if and only if x* € PZ:

—Mupje < M(1—5p) + Bpgp(xé) - [ﬁpgp(xj) + T] < 2M (1 — upje), JEN, pe ’67 (11a)
—Mugje < 3,k Bpgp(X°) = 3 ek [Bpgp(x7) + 7] < M(1 = ugje), JEN, (11b)
vje < Zpe{o}u/&upﬂ < (r+ vy, jeEN, (11c)
Nwe <37 5epvie Swe+ N —1, (11d)
Upje, Vje, we € {0,1}, jeN,pe{0lUK. (1le)

The main difference between the systems (9) and (11) is the parameter 7 which is introduced to define
the 7-Pareto optimal set. Note also the difference between the inequalities (9a) and (11a), where terms
are added to make sure that up,j; = 0 whenever 3, = 0. Also, the constant k£ + 1 from (9c) is in (11c)
replaced by r + 1. From the arguments above we have the following result.

PROPOSITION 3.4 Let the set {g1,...,gox} consist of the potential objective functions for a reduced ver-
sion of (1) and let B € {0, 1}2k indicate which (at most r) of the objectives are chosen. Then a feasible
solution to (11) partitions the vectors x* € X, £ € N into a T-Pareto optimal and a non-r-Pareto optimal
set.

3.3 An explicit formulation of centrality

The objective function dg (f(P?),f(P2*)) to minimize over the decision variables 8 and 7 depends on
the centrality parameter p. Therefore, centrality according to Definition 2.4 must also be characterized
explicitly using constraints. In the following subsections we derive a system of linear inequalities which
partitions the set X into a p-central and a non-p-central part. Provided that dim(P) = k, using the
replacement el
i(x) — zidea
i) o= T2
(2 K3

i€k, (12)
it follows that £(X) C R% and f(x) € [0,1]*, x € P. Proposition 3.5 then guarantees the existence of a
linear inequality system characterizing p-centrality.

PROPOSITION 3.5 In (1), assume that f; : X — R, i € K, let X = {x',...,xV}, and let p € [0,1] and
M > 1. Let P C X be indicated by the binary variables wy = 1 if and only if x* € P. Then, x* € X is
p-central if and only if for each i € K, m € N there exists a j € N such that

fix) < (L= p)w; fix?) + pfi(x™) + M(1 — wp,). (13)

PROOF. First, observe that the definition (7) of centrality can be rewritten as follows: For a vector
x’ € X to be p-central, a necessary and sufficient condition is that for each i € K, the inequality
filx®) < (1=p) max fi(x))+p min_ f;(x™), (14)
Jrw;=1 m: Wy, =1
holds. Let 7 € argmaxjcn{fi(x?) | w; = 1} and 7 € argmingen{fi(x™) | wm = 1}. Note that
{j | w; = 1} is non-empty since the set X is closed and bounded and therefore must contain Pareto

optimal vectors. Now, the equivalence between (13) and (14) follows by the next arguments, in which
the terms involving x? and the terms involving x™ are studied separately.

< If (14) holds for j then (13) holds for at least one j € A. If (14) holds for 7 then (13) holds for all
m € N, since for all m such that w,, = 1, f;(x™) > f;(x™) and also it holds whenever w,, = 0.

= If (13) holds for some j € N, it must hold for j since for all j, f;(x?) > w;f;(x?). The right-hand
side of (13) is smallest for m = m, since M > 1 and w,, = 1 for at least one index m € N. If the
inequality holds for all m € A, it holds for m and thus (14) holds. i

A characterization similar to that in Proposition 3.5 can be formulated without the assumption of non-
negativity of f; (through addition of more large constants); however, the scaling (12) may also be a
numerically wise choice.



We introduce the four sets of binary variables

3 L~ _ . j (~™ _
bijmg—{l’ if fi(x") < (1— p)w; fi(x?) + pfi(x™) + M(1 - wy,), mLEN. ick.

0, otherwise,

1, if bijme > N, . )

Cije = ! ZmEN jmé = j,ZéJ\/,ZEIC,
0, otherwise,

ey = LA ey e 2 1, LeN,iek,
0, otherwise,
1, ifx‘e Xr (ie,if>, i > k),

g = b X E X (o i e e 2 F) rew,
0, ifx*¢ X~

and formulate, for each ¢ € N, the following inequality system, which has a solution with a, = 1 if and
only if x* € X is p-central (i.e., if and only if x* € X7):

—2Mbijme < fi(x)) = (1 = p)w; fi(x7) + pfi(x™) + M(1 —wy)),  jmeN, i€k, (15a)
M(1 = bijme) > fi(x") — (1= p)w; fi(x)) + pfi(x™) + M(1 —wy,)), jmeN, iek, (15b)
Neije <30 nenbigme < cije + N — 1, jeEN,iek, (15¢)

it < D jentije < Ne, iek, (15d)

kag < icxeie <ap+k—1, (15e)

bijme, Cijes €ie, ag € {0,1}, jmeN, iek. (15f)

PROPOSITION 3.6 For the problem (1) with objective functions f; : X — Ry, i € K, the vectors x* €
X, L e N, are partitioned into a p-central (X?) and a non-p-central (X \ X?) part by the system (15) of
inequalities. |

Combining the systems (9) and (15) and introducing the binary variables

1, ifxtepr
_ ) ’ Le N,
n {0, if x¢ ¢ Pr,
and the constraints
we +ap—1 <20 < wp + ay, LenN, (16a)
ne € {07 1}) le N7 (16b)

finally yields a system with feasible solutions that fulfil 1, = 1 for £ € A/ such that x* € P? (x’ is Pareto
optimal and p-central) and 1, = 0 for £ € N such that x* € X \ P*.

3.4 The explicit formulation of centrality applied to the reduced problem

We next turn back to the model with a reduced set of objectives. Our aim is then to decide which vectors
x € X that are p-central with respect to the (unknown) set of objectives {gs,, ..., gs,.}. Let us denote this
set by X C X. The Definition 2.4 of centrality implies that we can set up the centrality inequalities for
the (known) set of objectives {f81¢1, ..., Baxgaxr }, since for all p with 3, = 0 the corresponding inequality
in (7) is fulfilled. However, it is not possible to use analogous variable definitions, since this would lead
to non-linear constraints corresponding to (15a). Instead, we rewrite the inequality (13) as:

FPeN:  fi(xH<A—p)fi(x?) = M1 —w;) +pfi(x™) + M1 —wy), i€k, meN. (17)
Replacing f; by 3,9,, then there exists a j € N such that

ﬁpgp(xe) < (1 - p)ﬁpgp(xj) - M(l - wj) + pﬁpgp(xm) + M(l - an)v pe I€7 meN. (18)
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Analogously to Section 3.3, we use the following variable declarations for p € I@, and j,m,f € N (the
first definition is modified in order to avoid the non-linearity):

1,

bpjme = {0
1,

Cpjt = 0

if ﬁpgp(xe) < (1_P)Bp9p(xj) = M(1—wj) + pBpgp(x™) + M(1—wm),

otherwise,

lf EmEN bpjmé 2 N7
otherwise,

if EjeNij[ 2 17

otherwise,

L,

e =
pl 0,
L,

Ay =
4 0,

For the set of objectives {#1¢1, . . .
as:

if x! € XP (Le., 1Y g epe > 29),
if x* ¢ XBr,

, Bak goi } the p-centrality system corresponding to (15) is then expressed

~2Mbyjme < Bpgp(x") = (1=9)Bpgp(x) = M (1=w;) +pBpgp(x™) + M (1~ wpn)),

jmleN, peK, (19a)
M(1=bpjme) > Bpgp(x") = (1= p)Bpgp(x’) = M (1= w;) + pBpgp(x™) + M (1 -w,,)),
jsm,leN, pek, (19b)
Nepje <30 enbpjme < cpje + N — 1, jleN, pek, (19¢)
epe < D ientpie < Nepg, (eN, pek, (19d)
2%a, < > peitpt < ar+ 2k —1, LeN, (19e)
bpjmes Cpje, €pe, e € {0,1}, jom,leN,pek. (19f)

As in the previous section, we combine the systems (11) and (19) and introduce the binary variables

1, ifxtephr
— ) T Y Z €N,
" {o, if x! ¢ PO,
and the constraints
wy +ag—1 <20 < wp + ay, LeN, (20a)
ne € {0,1}, leN, (20b)

to form a consistent system such that 1, = 1 if and only if x* € X is p-central and 7-Pareto optimal in
the reduced problem (i.e., if x* € P2*), £ € N.

3.5 Formulating the ideal model

Using the explicit formulation of Pareto optimality together with p-centrality, the ideal formulation of
the problem (8) can now be stated. Assume that the number of p-central Pareto optimal points in the
original problem (1) is @ and define @ = {1,...,Q}. Then, without any loss of generality we assume that
Pr = {xl, N ,xQ}. The pairwise distances in the objective space between all pairs of points x? € P*
and x* € X are denoted by dy = ||f(x?) — f(x%)||, ¢ € Q, ¢ € N. Introducing an auxiliary variable
6 € R, the objective in (8) can then be formulated as

minimize 6,

subject to 6 > min dy, q€ Q, (21)
LEN:
ne=1
0> min dy, LeN:n =1,
qeQ

11



where the variables 7, implicitly depend on the decision variables 3 and 7. The problem (21) can be
expressed as

minimize 6,
subject to 6 > imj\r} {(A=no)M +dg}, q€Q, (22)
€

0>minidy — (1 —n) M 14
72215{ ql ( 776) }a €N,

where M > max {dy | ¢ € Q, { € N'}. The min-operators are then replaced using the binary variables

1, if0>(1—mn)M+dg,

Ygt = (. ) et qgeQ, leN,
0, otherwise,
1, f0>dy—(1—n)M,

quz ! _‘qé ( 77[) qu,ZGN,
0, otherwise,

and, finally, the ideal model (8) is formulated as the binary linear program

minimize 6,

subject to (1 —n)M +dy —0 <2M(1 —yu), g€ Q, LEN, (23a)
—(I=m)M+dy —0 <M1 —2z24), q€Q LEN, (23b)
2eenYat 2 1, q€Q, (23c)

Scoat > 1, (EN, (23d)

Yqt, 2q¢ € {0,1}, qge 9, LeN, (23e)

> 0, (23f)

.
3 satisfies

(6), (23g)

(u,v,w,B,7) satisfies (11), (23h)
(b,c,e,a) satisfies (19), (23i)
(w,a,n) satisfies (20). (23j)

The program (23) has in the order of N32* binary variables and constraints, where the magnitude is
settled by the explicit formulation of centrality. This program cannot be solved in reasonable time for
practical values of N and k.

What we have done until now is to reformulate our goal into an exact model based on an explicit
characterization of Pareto optimality. Now when we know how this looks like, and from where the
complexity arises, we can study efficient approximations of the exact model. Therefore, in the next
section we formulate an approximate model that separates the optimization over the decision variables
B and 7, resulting in a sequence of two fairly easily solved problems.

4 The approximate model

The underlying characteristic of the ideal model (23) that yields the high complexity is that the op-
timization is made simultaneously over 3 and 7. To accomplish this, 7-Pareto optimality as well as
p-centrality must enter the model via constraints, as presented in Section 3. This leads to an explosion of
binary variables and constraints. In an approximate model to be presented we separate the optimization
over the variables B and 7. The only constraints from the ideal model that are kept intact are (6),
which describe the collection of objectives. The rest of the constraints—including the large sets of con-
straints (11) and (19)—will no longer be necessary (and neither will the variables introduced in these
systems). Instead a certain objective function is used in a first problem (cf. (26) on page 14) which is
aimed at evaluating and deciding on a good collection of objectives described by 8 without making use
of the tolerance parameter 7. Then simple polynomial algorithms are used to find the (0-)Pareto optimal
p-central part of X for the reduced problem and after that a second problem (cf. (27) on page 14) is
solved to find the optimal value of 7 given the already chosen value of 3.

Obviously, a solution found using the approximate model might not be optimal in (23), since decisions
are made before all information is known, i.e., 3 is selected before it is known exactly how 7 will affect
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the Pareto optimal set. Also, there is no measure of optimality provided for the approximate solution.
However, the mechanism for selecting 3 is sensible, and the complexity of the problem formulation
decreases enormously. This motivates the use of the approximate formulation.

4.1 Correlation between objectives

The correlation coefficient of two objective functions f; and f; over a set of decision vectors X =
{x!,...,xN} is defined as

Afivf' = = € _]-a]-a Z?]€,C7 24
p(fis f5) N [—1,1] (24)
where )
5= 3 20 (R0 = & 3 506m) (6669 = & 3 £i6em). ek
LeN meN meN
The value of the pairwise correlation coefficients between two objective functions gives a measure of
how similar the functions evaluate the set X = {x!,...,xV}. If the correlation is perfect, i.e., p(f;, f;) =

1, then the Pareto optimal set P would be unchanged if the pair of objectives was replaced by its mean;
one of the objectives in the pair would actually be redundant?. Using this reasoning we identify an almost
redundant objective function as a function having a high correlation with some other objective function.
With this as a starting point we will in Section 4.2 derive the first problem to solve in the approximate
model.

The objective when deciding on the optimal value of B is to maximize the least correlation coeffi-
cient between each original objective function f; € {fi,..., fx} and its most similar (with respect to
correlation) objective function in the reduced set of objectives {gs,,.-.,gs.}. A rough illustration of this
objective is given in Figure 3 by representing { fi, ..., fx} by vectors and with small/large angles between
positively /negatively correlated f;’s. The objective is then to find at most r sets K, j = 1,...,r, in
the power set of K, each corresponding to a collection of objectives f;, i € K, such that the maximum
distance between a vector in the collection and the mean of these vectors is at minimum.

Ap
>

//

Figure 3: An abstract illustration of original objective functions (black), optimally aggregated (with
r = 2) objective functions (gray), and of the “correlation error”, Ap, for this aggregation.

4.2 Finding the optimal collections

In the ideal model, 2 denotes the power set of K in which each element represents a set of original
objectives that may be dropped from the system and replaced by their weighted mean. To reduce
the computational complexity of the model, we introduce a threshold, «, and only allow collections of
original objectives such that the correlation between any two objectives in the collection is at least «.
For o € [—1, 1] we define the restricted set of collection candidates as

Ko = {éel@|ﬁ(fi,fj)2a, Vz’,jng}, (25)
where K, € 2K, ¢ € K. As previously we want to reduce the set of original objectives {f1,..., fx} to the
smaller set {gs,,...,gs,}, where g, = |K—1‘ > ick. fi» 55 € K% Analogously to Section 2 the decision

o iy
ZNote that p(f;, fj) = 1 is not a necessary condition for P to remain intact; e.g., if f;(z) = =z is redundant in a

multi-objective optimization problem, then so is fj(z) = 22, but in general p(f;, fx) # p(fj, fx) for k & {3,5}.
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vector B € {0,1}/*°l indicates which functions gs; to choose and the incidence matrix A € BE 1K1 defines
which original objectives f; belong to each collection g5, of functions.

Let ¢, := minjek, p(gp, fi), and introduce an auxiliary variable z € R and a scalar M > 2. The
problem of choosing the best set of at most r collections is formulated as the binary linear program

maximize z,
z,B
such that z<tp+(1—-0p)M, peK“,
AB > 1F, (26)
BT <,
e {0,130,
where r < k. For @ = —1 this problem, which is a set covering problem [19] with additional complicating

constraints, has 2* binary variables. However, the number of variables can be substantially reduced by
employing a larger value of a, whence the complexity of (26) will not be a serious issue.
An observation to be made is given in Proposition 4.1, whose result is quite obvious from Figure 3.

PROPOSITION 4.1 Let the set of optimal solutions to (26) be denoted by B. Then for some (2*,3%) € B,
exactly r objectives are used, i.e, ZpEIC"‘ By =r.

PROOF. Let s = 0 and suppose that (z°,8°) is optimal in (26) with >° . 8, < r. We have that
r < k < |K%| since, for all a € [0, 1], it holds that ¢ € K¢, for each i € K corresponding to an original
objective f;. Without loss of generality, let the k first elements in the set K% correspond to the sets
K, = {{}, ¢ € K. Then, ¢y = 1, £ = 1,...,k, and there exists an element ¢ € K such that the
objective f, is not selected as an objective for the reduced problem, which implies that 37 = 0. Letting
Btt = g5 for p € K\ {q} and Bi™' = 1, it follows that (z5t1, 851 € B, where 257! = 2%, and that
Zpeica B;H _ EpEK:(’ By + 1. Let s = s + 1 and repeat until Zpe,ca B, = r. The result follows. |

4.3 Finding the optimal dominance tolerance

Solving (26) yields an optimal solution (2*, 3"), which defines the objectives to use in the reduced problem.
Observe that “optimal” here means with respect to the approximate model (26) and that (z*,3%) may
be non-optimal with respect to (23). By pairwise comparisons between all the points in X, the Pareto
optimal set with respect to the selected objectives, PP, is then extracted. Further, by checking the
p-centrality characterization from Definition 2.4 for all vectors x € P?” the p-central part PP>» C PP is
extracted. The idea is then—starting from 7706 *—to increase the value of the tolerance parameter 7 from
zero and find the value 7* for which the Hausdorff distance between f(P?) and f(P2°*) is minimized.
The second problem is thus to

minimize dg (f(P”), f(Pf*”’)), (27)
such that 7> 0.

The solution process of the approximate model is illustrated in Figure 4.

X
p e

{fla"'?fk?}

Figure 4: The solution procedure for the approximate model including inputs and outputs of the problems
(26) and (27).

pr
pBip

Solve

(27)

Solve

(26) = /" = [ ]:> = 7(8%)

Changing the value of 7 changes the Pareto set that p-centrality relates to in Definition 2.4. This
implies a difficulty since the value of 7 will not be known until after (27) has been solved. The p-centrality
partitioning could be done in each iteration of the solution procedure for (27), defined in Algorithm 4.1,
but to receive an easily solved optimization problem over 7 (presented below) we make the following
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approximation: Fix the set to relate to for p-centrality by approximating P2 " by P in the p-centrality
partitioning, i.e., use (cf. Definition 2.4)

PO {x ep? ‘ gp(x) < (1 — p)max g,(y) + pming,(y), Vp € K¢ } . (28)
yEP yEP

From Section 2 it is clear that P?~ C P. It is also clear from Definition 2.4 that P? C P. We also
conclude that PP>» C P, since PP» = PP N XP C PN XP = PP, where the first equality relies on the
approximation (28), since the set X* depends on the objective functions. These relations are illustrated
in Figure 5 for the objective space.

Figure 5: Originating from a subset of P”, the problem (27) enlarges the inner set by increasing the value
of 7.

We define the function ¢, (7) as the maximum distance from a point in P” to its nearest point in P2 P
and ¢o(7) as the maximum distance from a point in P2 to its nearest point in P?, i.e.,

or(7) = max { iy d(£6), ) }. (29)
6a(r) = max { min d(£(y),£(x) } (30)

Then, the problem (8) can, for a fixed value 3 = 3", be rewritten as that to minimize §(3% 7) over 7 > 0,
where

5(B%7) = du(£(P?), £(PP°r)) = max {¢1(7), ¢2(7)} . (31)

Since increasing the value of 7 will increase the size of P2**, ¢1(7) is a monotonically decreasing lower
semi-continuous function. Analogously, ¢2(7) describes a monotonically increasing upper semi-continuous
function. The sets P? and Pf*’p are discrete whence the functions ¢y (7) and ¢2(7) are piecewise constant.
Thus, 6(8% 1) is a piecewise constant quasi-convex [2]| function of 7. Figure 6 illustrates the functions
¢1(7), ¢d2(7) (thus also the function §(3%,7) = max{d1(7), #2(7)}), and the monotonically increasing
upper semi-continuous function

O(7) = ¢a2(T) = d1(7). (32)

We are interested in finding
e Ty := arg min 5(B% 7). (33)

If ¢1(0) < ¢2(0) then 7* = 0. For the case when ¢1(0) > ¢2(0) we define, for € > 0,
Ti(e) ={7 20| ¢(7 +¢) 2 0,6(r) <0} and Ta(e) ={r > 0] ¢(r) > 0,9(r —¢) <0} (34)

Then, either T4 () C Tj, Ta(e) C Ts, or both hold, as illustrated in Figure 7.
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0.41

;
(a) ¢1(7) and ¢2(7) (b) ¢(7)

Figure 6: Typical appearances of the functions: (a) ¢1(7) and ¢2(7) defined in (29) and (30), respectively
(and §(B%,7) defined in (31)); (b) ¢(7) defined in (32). For visibility reasons, the graphs of all the
functions have been closed.

é1(7) #1(7) ¢1(7) $2(7)
1 ¢2(7) 3 $2(7) | S
Ts: '—‘ Ts: - Ts: |
Ti(e): *o : o : — o
(a) T2(e) € Ts (b) Ti(e) C Tss (c) T1(e) CT5 2 T(e)

Figure 7: Illustration of the sets Ts, T1(¢), and Ts(g) for three different cases.

For a sufficiently small value of ¢ > 0 it then suffices to find 7 € Ti(e) and 72 € Ti(e), and then
choose 7* € {71, 72} such that 7 € Ts. This is done using a simple bisection technique on ¢(7), for which
an algorithm in pseudo-code is given in Algorithm 4.1. In principle, since X is a discrete set of points,
there exists a value of £ > 0 that guarantees an optimal solution to (27) using Algorithm 4.1. This value
is, however, a priori unknown.

The main output from the algorithm is 7*, the (approximate) optimal value of the tolerance parameter
7 (given the already chosen value of 3% from Section 4.2). Other outputs are the resulting Hausdorff
distance 6 (3%, 7*(8")) and error'®, which denotes the maximum error in §(3% 7) due to a possibly too
large value of € > 0.

Instead of solving over 7 for just one value of 3 = 3%, it is possible to create a pool of candidate
B’s (e.g. by solving the program (26) repeatedly, and in each iteration add a constraint that cuts away
the previous solution) and compute 7*(3) for each value of 3 in the pool. By comparing 6(3,7*(3))
for all B’s in the pool, the pair (8,7) that yields the lowest value of §(3,7) can be selected as an
approximate solution to the main reduction problem (8). By increasing the pool, the objective function
value decreases monotonically and—for a sufficiently large pool—an optimal solution to (8) will eventually
be found, provided that € > 0 is large enough.

5 An illustrating example

The results derived in the previous section are here illustrated for an application of the approximate
model to a small example before—in Section 6—it is applied to a larger industrial problem. The example
indicates that “similar” objectives may be aggregated with only a minor loss of precision of P, whereas
the loss will be large if “non-similar” objectives are forced to be aggregated. However, it also indicates
that the utilization of the tolerance parameter 7 can substantially repair the damages from unsuitable
aggregations. The model has been implemented in MATLAB [16] in combination with AMPL [10] and the
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Algorithm 4.1 Pseudo-code for the T-optimization algorithm.
input phil, phi2, phi, epsilon
pick tau_l =0
pick tau_2 big enough s.t. phi(tau_2) > 0
until tau_2 - tau_l < epsilon {
let tau_3 = (tau_l + tau_2)/2
if phi(tau_3) < 0 {
let tau_l = tau_3 }
elseif phi(tau_3) > 0 {
let tau_2 = tau_3 }
else {
output tau_star = tau_3
delta_star = phil(tau_star)
error~ub = 0 }

}
output tau_star in argmin_{tau_1,tau_2} max(phil(tau),phi2(tau))
output delta_star = max(phil(tau_star),phi2(tau_star))
output error~ub = phi(tau_2) - phi(tau_1)

CPlex solver [13] for solving problem (I).
The example instance of (1) is defined by

Ax) = (21 =6 +4(z2—4)%,  fa(x) =% (11 -4 + 7 (22 +5)7,

fa(x) =4 (21 =57+ § (22 = 5)%,  fs(x) := (21 +3)° + (22 + 3)%,

f3(x) =4(z1 — )2 +4(z2+3)%, X = {21 x a2 | 2; € {~10,-9.75,—9.5,...,10}, i = 1,2}
Figure 8 shows level curves of the objective functions and (the convex hull of) the Pareto optimal subset
P C X. The pairwise correlations, defined in (24), of the objective functions fi,..., f5 are shown in
Table 1.

fi fo IE fa fs

f 1 0.74 0.13 0.11 -0.28

fo 1 063 0.69 -0.35

fa 1 097 015

» fi 1 0.09
-10 -5 %1 5 10 f5 1

Figure 8: Level curves of the five objective functions Table 1: Correlation coefficients for the objective
and the Pareto optimal subset P C X. functions in the example.

Solving the approximate model for the example problem and with the number of objectives in the
reduced problem restricted to 4, 3, 2, and 1, respectively, leads to the results shown in Figures 9(a)—(d).
These figures show the level curves of the respective aggregated objective functions, and the resulting
(convex hulls of the) Pareto optimal sets for the respective reduced problems, with and without a tolerance
7 > 0, as compared to the original P?. We employed the value p = 0.15. Note that the Hausdorff distance
is measured in the 5-dimensional objective space.

Figures 9(a)—(d) clearly indicate that as long as only objectives with large pairwise correlations are
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(a) r =4, dy = 0.11, 7* = 0.00068  (b) r =3, dy = 0.19, 7* = 0.0037

10 10
o =P
o pBe

P2

N
8 0
-5
-10 -10
-10 -5 0 5 -10 -5 0 5 10
1 1
(¢) r=2, dyg =0.39, 7* =0.15 (d) r=1, dg =041, 7 = 0.26

Figure 9: Illustration of results for different numbers of objective functions in the reduced problem.

aggregated, the loss of precision of the Pareto optimal set will be small. Also, by allowing a tolerance
7 > 0, the similarities between the original and reduced Pareto optimal set can be retained.

6 An industrial application

The approximate model developed in Section 4 has been applied to an industrial problem regarding
the configuration of heavy-duty trucks. Models and data have been supplied by Volvo 3P, which is the
business unit responsible for among other things product development for the trucks brands in the Volvo
Group. Typically, trucks are very customer adapted depending on differences in the environments in
which the trucks are to be used and for what transport missions. For this reason, the trucks are highly
modularized, which results in an enormous number of possible configurations. The background to the
problem approached is that there is no wish to produce a truck with a configuration that is worse than
some other configuration in all possible quality measures. However, different customers may appreciate
the quality measures differently. Thus, the target for the truck company should be to offer the customers
a number of configurations that are in some sense well distributed over the Pareto optimal set of trucks.
The first step is to identify this Pareto optimal set.

Here, a simple linear multi-body system model of a truck has been programmed in MATLAB [16]. The
model is illustrated in Figure 10. The complete decision (or, configuration) space X’ consists of all possible
combinations of a number of cabs, front axle installations, rear axle installations, and superstructures.
In this example | X'| = 1296.

From the outputs of the model, 12 quality measures (i.e., objective functions in the multi-objective
optimization problem) have been defined, concerning, e.g., durability, driver environment, load comfort,
and exposition of road wear.

Solving the original multi-objective optimization problem (1), where {fi,..., fi2} represent the 12
quality measures and X consists (\)f the 1296 feasible configurations, showed that the proportion of origi-

nally Pareto optimal solutions is ;,‘ ~ 0.19. The pairwise correlations between the objectives are shown
in Table 2, where it is clear that some of the objectives are positively correlated, some are negatively
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Figure 10: The truck model used. A configuration is defined by the positions lx and [z, the spring
constants k, the damping constants ¢, the masses m and the moments of inertia J. Inputs to the model
are road excitations zy and outputs are displacements, velocities, accelerations and forces in the degrees
of freedom x, z, and .

correlated, and some are rather independent of each other.

fi fo f3 fa f5 fo Jr fs fo fio fi fi2
fi 1 -0.24 0.29 -0.06 0.19 0.78 -0.15 0.25 -0.31 0.39 -0.08 -0.21
f 1 063 -040 0.19 -0.17 0.22 0.37 0.13 -0.45 -0.22 0.09
f3 1 0.06 0.77 0.39 0.11 0.61 -0.18 -0.19 -0.29 -0.10
fa 1 0.68 -0.03 0.13 0.05 0.15 0.14 0.18 0.11
fs 1 0.28 0.18 0.49 -0.03 -0.04 -0.09 0.01
fe 1 -024 022 -0.45 0.39 -0.07 -0.28
fr 1 044 0.80 0.08 0.50 0.81
fs 1 0.06 -0.39 -0.32 0.19
fo 1 022 073 081
fio 1 076 0.21
i 1 058
fiz2 1

Table 2: Correlation coefficients for the objective functions in the industrial application.

For the definition of 7-Pareto optimality to make sense it is important that the objective functions are
of approximately the same magnitude. As introduced in Section 3.3, the objective functions are scaled
and each f;(x) replaced by the expression in (12), so that f;(x) € [0,1],7 € K, x € P.

In the numerical experiments—when nothing else is specified—the parameter set employed is r = 6,
p=0.15, « = 0, a Euclidean distance measure, and £ = 1074,

To simulate a real application of the method developed, X’ is randomly partitioned into two sets, X
and X" such that | X| ~ |X™®f|. The set X is used to find the values of 3 and 7 that defines the reduced
problem. X' is a reference set, to which the reduced problem is applied and for which the quality of
the resulting p-central and 7-Pareto optimal set P2 is measured. Through this procedure the risk of
over-fitting the data (cf. Section 2) is reduced. In Table 3 the results for different values of r are shown.
It presents the Hausdorff distances dgy (P?, Pf:’p) (as defined in (4)) and the mean distance over all points
in PP and 737[_3:,;) to their respective nearest points in Pf:p and P?, respectively, defined as

dinean (PP, PLP) = > > {y;l?gn ||f(X')—f(Y)II;igg})llf(X)—f(Y')||}~ (35)

|Pp| |P 7p|x€73/’ /E'pﬁ*
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The distances are computed with respect to both X (i.e., the quantities dg and dmpean) and X (i.e.,
the quantities d‘ﬁf and df, ). Also the optimal tolerance value, 7*, and the optimal objective value, z*,

in problem (26) are presented. All values in the table are averages over 10 runs.

T dH dmean dl}? dlr'r?éan T z"
11 0.18 0.002 0.29 0.005 0 0.95
10 0.23 0.004 0.38 0.009 0 0.93

9 026 0.011 0.44 0.015 0 0.93

8§ 036 0.021 0.47 0.022 0 0.92

7 046 0.034 076 0.068 0.008 0.91

6 046 0.041 0.75 0.103 0.016 0.89

5 0.56 0.068 1.05 0.170 0.033 0.77

4 053 0.08 098 0.207 0.078 0.69

3 058 0.113 093 0.216 0.105 0.55

2 056 0.106 0.83 0.213 0.190 0.44

1 052 0.09 075 0.152 0.236 0.18

Table 3: Numerical results for varying numbers r of aggregated objectives.

There is no sharp breakpoint from which the error increases dramatically when r is decreased, thus
it is hard to draw any general conclusions on how many objective functions that are required for a
reasonably small error. Also, it is not possible to draw any clear conclusions on how the errors will
turn out based on the correlation matrix. To enable a better interpretation of the numbers in Table 3,
we present in Table 4—in the first two columns—the objective values (non-scaled) for the pair (%x,¥) of
solutions defining the Hausdorff distance (cf. (4) and Figure 11), according to

X,y) € in |[f(x) — £(y)[[; in [|f(x) - f : 36
(%,¥) argn}ggX{gé%ygj?},pll (x) = £(y)ll yé?)%x,{gglll (x) (Y)II} (36)

for a particular run resulting in the distance ||f(%) — f(¥)|| = 0.585.

Figure 11: Illustration of the active pair of points (x,y) defining the Hausdorff distance.

The third column presents the difference between the largest and the smallest value of each function
over the configuration space, defined as Span;, = maxxex fi(x) — mingex fi(x). The fourth column

presents the difference between function values for the pair (%, y) relative to Span;, defined as Diff(x,y); =
fi ()~ fi(y)]

Span;
Table 4 shows that the difference between a point X in the p-central part of the original Pareto optimal

set and a point y in the p-central part of the 7-Pareto optimal set of the reduced problem may be quite
large. For the pair (%, y) such that [|f(%) — f(3)|| = 0.585, the relative differences between the points are
over 20% for three of the objectives. We define

(X,y) €arg  min 1£(x) = £()I] = dmean(P?, PL2") (37)

xePP, yEPf:’p

to be the pair whose distance is closest to the mean distance. Table 5 indicates that even though the
maximum difference may be large, the differences for a pair (X,y), are small. For the pair (X,y) in
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i fix)  fi(y) Span; Diff(x,y)i i fi(x)  fi(y) Span; Diff(x,y);
1 1.905 1.990 0.69 0.12 1 1.893 1.896 0.69 0.01
2 2.251 2.380 0.58 0.22 2 2.275 2.257 0.58 0.03
3 1.280 1.338 0.79 0.07 3 1.338 1.302 0.79 0.04
4 2.721 2.783 1.15 0.05 4 2.741 2.750 1.15 0.01
5 1.447 1.546 1.29 0.08 5 1.416 1.392 1.29 0.02
6 1.632 1.662 0.88 0.03 6 1.556 1.530 0.88 0.03
7 -15550 -15550 1000 0.00 7 -15550 -15550 1000 0.00
8 27460 27440 3940 0.01 8 27620 27647 3940 0.01
9 189.8 191.3 43.8 0.04 9 191.2 190.9 43.8 0.01
10 738.6 822.9 303 0.28 10 732.6 739.6 303 0.02
11 1.061 1.100 0.39 0.10 11 1.057 1.068 0.39 0.03
12 2.486 3.267 3.42 0.23 12 2.427 2.539 3.42 0.03

Table 4: Difference between the pair (X,y) defining Table 5: Difference between the pair (X,y) whose
the maximum Hausdorff distance dg = 0.585. distance is closest to the mean distance dmean =
0.093.

Table 5 the relative difference is only a few percent for each of the objectives and with a maximum value
of 4% and a mean value of 2%.
Table 6 shows how the value of the centrality parameter p affects the results. As expected, the distances

p dH dmean dlﬁf d;?(fean T

0 0.53 0.044 0.69 0.051 0.017
0.05 049 0.050 0.89 0.131 0.022
0.10 0.48 0.047 0.81 0.117 0.021
0.15 046 0.041 0.75 0.103 0.016
0.20 037 0.034 0.65 0.092 0.015
0.25 0.34 0.028 0.77 0.147 0.014
0.30 0.22 0.018 0.78 0.195 0.007

Table 6: Numerical results when varying the centrality parameter p, for r = 6.

tend to decrease with an increased value of the centrality parameter, since more extreme Pareto optimal
solutions are then filtered out, which the reduced problem does not catch. However, the pros of using
a larger value of p must be balanced against the cons: a large value of p means that a smaller part of
the Pareto optimal set is assumed to be interesting. Table 6 also shows that the values of the distance
measures for the reference set X" do not decrease as nicely as for the set X. A plausible explanation
for this is that for larger values of p, |P”| is smaller, which increases the risk of over-fitting the decision
variables when deciding on the reduced problem.

7 Conclusions

The motivation behind this work is the fact that industrial multi-objective optimization problems often
are computationally hard to solve. Therefore, one must sometimes be content with a good approximation
of P. We have created two mathematical models for reducing the original problem by decreasing the car-
dinality of the set of objective functions using aggregations and such that the precision loss is minimized.
The first model, leading to an exact solution given the stated problem, is based on an explicit character-
ization of Pareto optimality. However, the complexity of this model is far too high for applications to a
practical case. The second model represents an approximation of this problem through a separation of
the optimization into two sequential problems in such a way that the complexity is substantially reduced.

The second model has been applied to an industrial application which shows that it is possible to
reduce the number of objectives in an optimization problem while getting measures of the sizes of the
errors thereby induced. We have not found any clear a priori indicators on how many objectives are
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required for reasonably small errors as in terms of, e.g., the correlation matrix for the objective functions.
It is hard to measure a priori how much could be earned in reduction of the problem size for a certain
level of the error. Since the error seems to increase rather smoothly, we suggest that the model should be
applied to different numbers of objectives in the reduced problem before deciding on a suitable reduction.
The decision maker (or, the problem owner) should decide on how large error is tolerable for the specific
application and how much the problem-specific improvement in computation time by the reduction is
worth. The numerical experiments also show that even if the Hausdorff distance between the respective
Pareto optimal sets of the original and reduced problem is large, the distance between an average pair of
points in these sets might be small.

To summarize, we have developed a method for problem reduction that can be applied to any multi-
objective optimization problem. The approximation focuses on the most interesting part of the decision
space, i.e., the solutions that are (near-)Pareto optimal. The outcome of the reduction is both a simplified
problem formulation to use instead of the original one and a measure of the error thereby induced.
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