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Robust multi-objective optimization based on a user

perspective
Christoffer Cromvik* Peter Lindrothf
Abstract

Solving practical optimization problems that are sensitive to small changes in the vari-
ables or model parameters require special attention regarding the robustness of solutions. We
present a new definition of robustness for multi-objective optimization problems. The defi-
nition is based on an approximation of the underlying utility function for a single decision
maker. We further demonstrate an efficient computational procedure to evaluate robustness.
This procedure is applied to two numerical examples: one is an analytic test problem while one
is a real-world problem in antenna design. The results show that the robustness varies over
the Pareto front and that it can be improved if the decision maker is willing to sacrifice some
optimality.

Keywords: Multi-objective optimization, Robustness, Multi-criteria decision making

1 Introduction

Many applications of optimization comprises several more or less conflicting objectives, such as
cost /quality, expected return/risk etc. These are to be optimized simultaneously and the aim is to
find the most appropriate balance between all the objectives. Mathematically, such a problem is
denoted a multi-objective optimization problem (MOOP) and is formulated as that to

HIILIIE%IZB (fl (X)7 s 7fk(x)) - (1)

Here, x € R™ denotes a vector of decision variables, X C R"™ is the feasible decision space, and each
fi: X =R i=1,...,k, is an objective function to be minimized. Since minimization of a vector
in general is not well defined, the notion of optimality for multi-objective problems is somewhat
different compared to single-objective problems. Optimality is here based on dominance, and the
following definition is used.

Definition 1.1 (Pareto Optimality) A feasible solution X € X is called Pareto optimal if there
exists no vector x € X such that f;(x) < fi(x), i = 1,...,k, with at least one inequality holding
strictly. The set of all Pareto optimal solutions is denoted P C X.

The possibly most intuitive method for solving a MOOP, i.e., to find P or at least a good
approximation of P, is to solve a sequence of standard optimization problems of the following type

k
mi;lier)réize z; w; fi(x), (2)
1=

*Corresponding author. Department of Mathematical Sciences, Chalmers University of Technology, and Depart-
ment of Mathematical Sciences, University of Gothenburg, SE-412 96 Gothenburg, Sweden. Tel.: +46-31-7723515,
Fax: +46-31-161973, christoffer.cromvik@chalmers.se

TVolvo 3P, Chassis & Vehicle Dynamics, Chassis Strategies & Vehicle Analysis, SE-405 08 Gothenburg, Sweden.
Department of Mathematical Sciences, Chalmers University of Technology, and Department of Mathematical Sci-
ences, University of Gothenburg, SE-412 96 Gothenburg, Sweden. Tel.: +46-31-3231063, peter.lindroth@volvo.com



where the multiple objectives are transformed to different single objective problems by varying the
weight vector w € {v € RF | Zle v; = 1, v; > 0 Vi}. This solution strategy suffers from serious
limitations, such that it is only possible to find the subset of P which is mapped onto the convex
part of the Pareto front (Miettinen, 1998), and also that the mapping between w and the optimal
values to (2), i.e., R¥ 3 w — minyex Zle w; fi(x) € R*, is non-linear and strongly depending on
the properties of the actual functions involved (Das and Dennis Jr, 1997). To avoid finding weakly
Pareto optimal solutions (where the strict inequality requirement in Definition 1.1 is dropped), the
weights are required to be strictly positive. Despite of its limitations, the weighting strategy is
fundamental, and is used as a basis for the definition of robustness presented in this paper.

1.1 Robustness in single- and multi-objective optimization

An optimal solution which is sensitive to perturbations in the data is often not useful in a practical
application. A natural approach to deal with this situation is to incorporate the uncertainty into
the model. This approach is used in Stochastic Programming (SP) (cf. Kall and Wallace (1994);
Birge and Louveaux (1997)) and Robust Optimization (RO) (cf. Ben-Tal and Nemirovski (2002)).
In SP, the objective function is typically the expected value over all uncertain parameters, which
implies that an optimal solution is good on average. In RO, feasibility is required for all outcomes
of the uncertain parameters, which produces a “conservative” optimal solution. Although most
RO theory is restricted to convex problems with an explicit objective function, there are some
recent development of RO methods also for non-convex as well as simulation-based problems (cf.
Bertsimas et al. (2008, 2009)). Das (2000) views robustness as an objective in itself, and sets the
goal to generate solutions that optimize both the unperturbed objective value and the expected
objective value in a bi-objective optimization fashion.

There are, however, situations where it is not suitable or even possible to remodel the problem,
but where there is an interest in assessing the robustness of an optimal solution in a post-process.
This opens up the question of how robustness is evaluated. Considering a single-objective problem,
we can use the sensitivity of the objective value at an optimal solution as a measure of robustness,
but for multi-objective problems this is less straightforward. For such problems we have to quantify
the uncertain responses in the objective space; see Figure 1.

fi

Figure 1: Uncertainties in x (such as implementation precision) and in f = (f1,..., f) (e.g. in
model parameters) lead to uncertain responses in the objective space.

Among the many papers published on robust optimization, only few concerns multi-objective
optimization. One has to distinguish between robust multi-objective optimization for which robust-
ness is one objective and performance is the other (cf. Jin and Sendhoff (2003); Das (2000)), and
our interpretation of robust multi-objective optimization where the wish is to find robust solutions
to a multi-objective optimization problem. For the latter, Deb and Gupta (2005a,b, 2006) have



made a direct extension of SP by using averaged values of the objective functions to define a robust
Pareto front.

1.2 Outline

In Section 2, we construct one utility function for each decision maker which measures the objectives.
We present a family of utility functions that spans the full range of “hidden objectives”’, and we also
present a few properties of these functions and define two measures of robustness based on them.
In Section 3, we discuss the computation of the robustness measures. Depending on the problem
in terms of constraints and differentiability, we suggest two approaches to compute approximations
of the measures. Section 4 deals with the search for robust solutions. Instead of just assessing the
robustness of the Pareto solutions, we state an optimization problem with the goal to find robust,
near-optimal solutions. In Section 5 we present two numerical examples. The first uses a known
multi-objective test problem and the second considers a real-world problem instance in antenna
design. Finally, in Section 6, we summarize the article and suggest some future work.

2 Robustness based on a utility function

To quantify the change in the objective space due to uncertainties in the decision space and in the
objective itself, we use the notion of a hidden objective in a multi-objective problem. The hidden
objective is tailored for each decision maker and captures his/her preferences. The robustness of
a solution is then measured by this objective. With this approach, the computation of robustness
must be considered as a post-process, since the preferences of the decision maker depend on the
Pareto front.

The idea is to present a set of candidate solutions that are robust and constitute a reasonable
approximation of the Pareto front. This implies that robustness can be treated as an objective
itself, which is natural in a multi-objective setting.

2.1 Hidden objectives in multi-objective optimization

As mentioned previously, a multi-objective problem can often be viewed as a hidden single-objective
optimization problem, where hidden means that the objective function is not explicitly known. A
decision maker seeks one final solution which is optimal to him/her in the sense of balancing the
different criteria. The reason for using a multi-objective formulation is to push forward the decisions
until more knowledge is revealed about the characteristics and the limitations of the problem at
hand. This single-objective optimization problem can be formulated as that to

mlLIIG%IZB u (fl (X)7 s fr (X)) ) (3)

where u : R¥ — R is the hidden single objective. The observation of this formulation is the core
of the ideas developed in this paper. Form here on, we refer to the hidden objective as the utility
function, and use a convention that a smaller utility value is better than a larger.

Definition 2.1 (Rationality) A utility function u : R* — R is rational if for x,y € R?, f(x) <
f(y) implies that (uof)(x) < (uof)(y). A decision maker is rational if his/her associated utility
function is rational.

Rationality means that if a point y is dominated by a point x, then x must be appreciated as at
least as good as y.

With the above definition of rationality, the following proposition shows how rational utility
functions can be characterized.



Proposition 2.2 The utility function u is rational if and only if u(f1,..., fr) is monotonically
increasing with each f;, i=1,...,k.

Proof. If u is monotonically increasing in every argument it holds that u (f(x)) < u (f(y)) whenever
f(x) < f(y), i.e., u is rational. Suppose now that u is rational, but not monotonically increasing,
ie,If e Rk, j e {1,...,k} and € > O such that w(f1,..., fj,---s fx) > u(f1,---s fj+&5eeus fr)-

But v is rational and hence since (fi,...,f;,---,fx) < (fi,---, fj +€,-.., fr) it holds that
w(fi,oo s fijyeeonfi) <ul(fr,..., fj +¢€,..., fr). This is a contradiction, whence u must be mono-
tonically increasing. O

We also make the following assumption on the function values of the Pareto solutions.

Assumption A
The objective values are scaled such that £f(P) C (0, 1]*.

If the range of f over X is bounded, it is always possible to scale the objectives such that Assumption
A holds true.

2.2 The utility function

We assume that the utility function has the following form:
k
u(f) = wif?, (4)
i=1

where w € Ri are weights and a > 1 is a parameter related to curvature. We also define a family
of utility functions.

Definition 2.3 A family of attainable wtility functions U is defined as

k
U= {Zwif,-“
=1

We associate a utility function to each candidate vector X € X, i.e., to any solution that a decision
maker is interested in. If X € P, then w and « are chosen such that « is as small as possible and
x € argmin{u o f(x) | [|Vs(uof)(x)|1 =1}.

In the following, we present a few properties of the family of utility functions (5). The main
goal is to show that the family is rational, and also complete with respect to certain Pareto optimal
points in a sense to be defined below. These are points that can be reached using a utility function
in the family ¢/, and we will use the notion of proper Pareto optimality to identify them.

We first define completeness for a general family of utility functions.

wi>0,i:1,...,k;a€[1,oo)}. (5)

Definition 2.4 (Completeness) A family of utility functions U is complete with respect to a set
P C P if for every x* € P there exists a u € U such that

x* € arg)r{réi§u(f1(x), o fr(x)).

That is, in a complete family, for each x* € P C P there is at least one utility function that
evaluates x* as a best one. A good family of utility functions is both rational and complete with
respect to a set which is a close approximation to P. We will show that the family (5) is a good
one.

Proposition 2.5 The family of utility functions defined by (4) is rational.



Proof. Since w > 0¥ and a > 1, all u € U are monotonically increasing in all their arguments; the
result follows then immediately from Prop. 2.2. O

Geoffrion (1968) introduced the notion of proper Pareto optimality to exclude some Pareto
optimal solutions that are insensible to reasonable decision makers.

Definition 2.6 (Proper Pareto optimality) A feasible solution x € X to (1) is called proper
Pareto optimal in the sense of Geoffrion if it is Pareto optimal in (1) and if there exists a number
M > 0 such that for each i € {1,...,k} and each x € X satisfying fi(x) < fi(X), there ezists a
JeA{L,...,k}\{3i} such that f;(X) < f;(x) and

fi(%) = fi(x)
fi(x) = fi(%)

We denote the set of all proper Pareto vectors in the sense of Geoffrion by P.

< M. (6)

A vector x is properly Pareto optimal in the sense of Geoffrion if it has finite trade-offs between
the objectives. We make a somewhat different definition of proper Pareto optimality based on the
family of utility functions (5).

Definition 2.7 (Firmly proper Pareto optimality) A feasible solution to (1) is called firmly
proper Pareto optimal if it is the minimizer of (3) for some wutility function u in the family U
defined in (5). We denote the set of all firmly proper Pareto vectors by P'.

Figure 2 illustrates some firmly proper, proper and non-proper Pareto optimal solutions. The
definition of firmly proper Pareto optimal points implies that the family of utility functions is
complete with respect to these points. The question now is which points are firmly proper.

The two following propositions show that firmly proper Pareto optimal solutions are indeed
Pareto optimal, and that these solutions are also proper in the sense of Geoffrion.

Proposition 2.8 Under Assumption A, each firmly proper Pareto optimal solution is a Pareto
optimal solution, i.e., P' C P.

Proof. Suppose that x € X\P. Then, 3y € X such that f;(y) < fi(x), i =1,...,k, with f;(y) <
f;(x) for some index j. It follows that u (f(y)) = Ele w; fi(y)® < Zle w; fi(x)* = u (f(x)) since
w; >0, fj(y) < fj(x), @ > 1, and f(y) > 0*. Thus x ¢ P’ and the proposition follows. O

Proposition 2.9 Under Assumption A, each firmly proper Pareto optimal solution to (1) is a
proper Pareto optimal solution, i.e., P' CP.

Proof. Let x* € P'. Prop. 2.8 implies that x* € P. Suppose that x* does not fulfill (6). Then for
every M > 0, there exists an 4 and an x € X with f;(x) < f;(x*) such that % > M for
all j € {1,...,k}\ {i} with f;(x*) < f;(x).

Let us first consider a problem with two objectives, f; and f;. Let (w;,w;) and a be the

parameters for a utility function with minimum at x*, and let f;(x*) > f;(x) — £&0-Si) - for
every M > 0. Then we have that

u (fi(x*), f3(x*)) = w; fi(x*)* + w; f;(x*)*
> lim wifi() + y (f500 - LG0)°

= w; fi(x*)* + w; f(x)"
> w; fi(x)* +w; fi(x)*
= u (fi(x), f;(x)) -



Hence x* is not optimal in (3), i.e., x* ¢ P’. This leads to a contradiction.

Let us consider k objectives. For all x, we can partition the objectives into three sets, I (z) =
{i | i3 < filc)}, Bo(@) = {5 | £ > f;(x)} and Ts(@) = fe | fo(x) = fo(x*)}. Tn the
inequality chain above, only the indices in I, are potentially harmful. But each j € I» is above
shown to result in a non-strict inequality, and also corresponding to an index resulting in a strict
inequality. Therefore, altogether we get u(f1(x*),..., fe(x*)) > u(fi(x),..., fe(x)), which is the
contradiction sought. O

fol G 1

\4
fi

Figure 2: An illustration of the Pareto optimal set for a problem with two objectives. All points
except the four marked are proper Pareto optimal points. Points 1 and 2 are not proper, and point
3 is not even Pareto optimal. Point 4 is proper but not firmly proper. Note that point 4 has points
arbitrary close on both sides with different values of the trade-offs; this point can therefore be seen
as insensible.

We will next identify which points on the Pareto front that are firmly proper. It turns out that
for convex multi-objective problems, i.e., with all f; convex and X convex, it is sufficient with a =1
and w € R in (4) to make the family (2.3) complete with respect to P’. Since we require that the
weights are strictly positive, there may be a few non-proper solutions; however, almost all Pareto
optimal points to convex problems are firmly proper.

In the following proposition and corollary we show that also certain non-convex multi-objective
problems have Pareto fronts consisting of only firmly proper Pareto points. The proposition is
similar to what is shown in (Li, 1996); however, we assume that the objectives are scaled such that
f(P) C (0,1]%. This enables another line of arguments, leading to a significantly shorter proof.

Proposition 2.10 (Convexification) Consider the problem (1) under the Assumption A. Let the
Pareto front £(P) be parameterized by fr = ¢(f1,---, fv—1), and let x* € P. Assume that the local
trade-offs on the Pareto front between the pairs of objectives are continuous at £f(x*), and assume
that ¢ is twice continuously differentiable. Then, for a sufficiently large p € [0, 00), the Pareto front
of the problem minyxex (f1(X)?,..., fr(X)P) is conver at x*.

Proof. Let f = {f1,..., fr_1} and h(f) = ¢(f)P. We will show that V?fp)zh is positive semi-definite
at f(x*).
From the chain rule, we have that

Oh 6h 1

o)~ 0fipfr



and that

Ph _Fh 1 p-1 on
O T ORGP ok
o’h  0’h 1
0f;0f;i  Of;0f; prf_lff_l
We denote the exponent of a vector to be component wise, and introduce D = diag(fP~')~! and
E = DP~1, With these, we have that
1
Vf-ph = EDVf-h, (7&)
1 2 p—1 .
V(f-p)zh = FDVfghD — TD dlag(th)DE (7b)
Now, since
oh _1 09 0%h —o, 00 4 _,0%¢
— =pP ' — and == =pp—1)"(=—)° +pdP " —=,
T - T 2R
we get

Vih = plp— 1)¢" *Ved(Ved)" +ps ' Viad.

Finally, by inserting the above expression into (7) we get

-1, o1,
Vianh = =" 2DVeg(Ved)" D + 97~ DV gD

- (’9;721)2#11) diag(Vz)DE.

The first term is positive semidefinite, and since Vg¢ < 0, the last term is also positive semidefinite.
When p — oo, the second term goes to zero faster than the first term, wherefore the result is proved.
O

Corollary 2.11 Let the Pareto front be parameterized by fr = &(f1,-.., fr—1), and let x* € P.
Assume that the local trade-offs on the Pareto front between all pairs of objectives are continuous
at £(x*), and assume that ¢ is twice continuously differentiable. Then each proper Pareto optimal
point is a firmly proper Pareto optimal point, and therefore P = P'.

Proof. It is well known (cf. Ehrgott (2005), Thm. 3.11) that all proper Pareto optimal points to
convex multi-objective optimization problems can be found using the standard weighting method
with non-negative weights. The result follows from Proposition 2.9. O

The corollary implies that all points on sufficiently smooth Pareto fronts are firmly proper, i.e.,
for problems with such Pareto fronts, our family of utility functions is complete with respect to the
whole of P.

To conclude this section, we have shown that the family U/ of utility functions is rational and
complete with respect to almost all Pareto solutions arising from convex problems and all Pareto
fronts that are smooth enough.

2.3 The robustness index

We present two definitions of robustness for a given decision vector: absolute robustness and relative
robustness. Both measures are based on the utility function (4), and for both of them, a smaller
value means a more robust point.



Definition 2.12 (Absolute robustness index) Let X € R™ be the point whose robustness is to
be measured, and let n € Q C R™ be a stochastic variable with mean 1. Suppose that u(-) is the
utility function associated with X. The absolute robustness index of X is defined as

RA(X) = E[(uof)(%,m) — (uo f)(%,m)]-

Definition 2.13 (Relative robustness index) Let X € R" be the point whose robustness is to
be measured, and let n € @ C R™ be a stochastic variable with mean 1. Suppose that u(-) is the
utility function associated with X and that x*(n) € X Nargmin(uof)(x,n). The relative robustness
index of X is defined as

R(x) = E[(u o f)(%,n) — (u o £)(x*(n),n)]-

Remark 2.14 Due to Jensen’s inequality (cf. Fristedt and Gray (1997), Prop. 12), if (uo f)(x, )
is convex, the absolute robustness is non-negative,

RA(X) 2 (uo £)(%,En]) — (uof)(X,10) = 0.

In contrast to absolute robustness, relative robustness is not necessarily affected by large changes
in the objective space due to different outcomes of 1, since it measures the relative loss to an optimal
solution for each m; see Figure 3.

Which robustness index should be used may be a matter of choice for a decision maker, but
practice may motivate the use of one before the other. For example, using relative robustness
requires a minimization for each 1 which limits its practical use on some problems. In Section 3,
we present procedures for computing approximations of the robustness indices.

fa|

Figure 3: Two Pareto fronts for two realizations of the uncertainty parameter 1. There is a quality
loss since the chosen candidate X is not optimal for the outcome ;. This quality loss is measured
in the relative robustness index.

3 Computation of the utility function and the robustness in-
dex

In this section we present practical approaches for computing the utility function and the robustness
indices. We start by noting that the computation of robustness is a post-process since it requires a
sufficient resolution of the Pareto front. We state this as an assumption:

Assumption B

The Pareto front is computed to a sufficient accuracy and resolution.



Algorithm 1 Calculate robustness index

Input: Candidate X, Pareto front f£(P).
1. Approximate the Pareto front by a quadratic implicit curve around X.
2. Compute the utility function u for the candidate such that equations (8) and (9) are fulfilled.
3. Compute R or R4 according to the descriptions in subsections 3.1 and 3.2.

The computation of the robustness indices for a specific solution, which we call the candidate,
is organized in a series of steps, where the main points are stated in Algorithm 1.

We assume that the Pareto front £(P) is described by a level set of an implicit function z(f(P)) =
0. By the definition of the utility function wu, it is minimized by the candidate X. This implies the
following two conditions which are also illustrated in Figure 4:

Viu =¥z, ®)
K(u) > K(2), (9)

where v € Ry, and «(-) is a measure of curvature. We make a quadratic fit @) of the Pareto front
based on the Pareto points within a ball of radius 7 > 0. In particular, given a candidate X and the

Pareto points in the vicinity, x/ for j = 1,...,p, we solve the following linear least-squares problem
P k ] ) 9
minimize > (e + bifiod) 1)’
j=11i=1
subject to Zcifi(ic)2 +bifi(%X) =1,
i=1
and set

Q(f) = 1" diag(c) f +b"f — 1.

This yields an estimate of the normal and curvature of the front. Since |0Q/8f;| > 0 and @ is
twice continuously differentiable, by the implicit function theorem, there exists a twice continuously
differentiable ¢ such that fr = ¢(f1,-.., fr—1). This means that all points on ) are firmly proper
according to Proposition 2.10. So even though the Pareto front may not be sufficiently smooth,
we are always able to reach all points on the approximate front, and there always exists an a such
that equations (8) and (9) hold. We use normal curvature in equation (9) and we define it, along

a vector d, to be
d"Hd
=l (10)
lld|>

where H is the Jacobian of the normal N € R¥ to the surface,

AN, ON,
Ox1 ot BTy
H= : o (11)
ON} ON
8z1 tte 8$k

We note that in three dimensions, the principal curvatures are the two nonzero eigenvalues to the
matrix H (Araujo and Jorge, 2004). Equations (9) and (10) should hold for all directions d € R¥,
although in practice, we only consider a finite set of directions. For the quadratic implicit surface
Q(f), equation (11) reduces to (cf. Hughes (2003); Araujo and Jorge (2004))

V?th B (vaVfQT)V?fo
IV Qll IVeQIP
A utility function which fulfills equations (8) and (9) can be found by iteratively setting the cur-

vature parameter « > 1 with corresponding weights w > 0 such that equation (8) is satisfied.
Equation (9) will then be satisfied for a sufficiently high value of a.

H =

(12)



fi

Figure 4: An illustration of the requirements (8) and (9) on the utility function wu.

Given a candidate with a corresponding utility function, the next step is to compute R or
R4. This is described in the following subsections. For unconstrained problems with analytic
objective functions, we present an approximate closed-form expression for relative robustness. For
constrained problems, we show how a Monte-Carlo method can be used. Both methods are used in
the numerical experiments in Section 5.

3.1 Unconstrained problem

In addition to assumptions A and B, which we assume holds for f(x,7,), we assume the following:

Assumption C
(C1) The functions f;(-,) >0,i=1,...,k, are twice continuously differentiable.
(C2) The feasible set is X = R™.

Under these assumptions, we can formulate a closed-form expression for an approximation of relative
robustness. The approximation is based on the second-order Taylor expansion U of the utility
function u. With 4(x,n) := u(f(x,n)), we have

U(x,n) = 4(X,mo) + Vai(X,m0)" (x — X) + Vyi(X,m9)" (1 — 1)
+ (X - X)TV§W12()’(, 770)(77 - 770) + %(X - )_C)Tvim{)’(i7 nO)(X - )_()
+ %(TI - nO)Tv%na(ia TIO)(TI - 770)5

Since the candidate X is defined to minimize the utility function, the Hessian of u is positive semi-
definite. If it is positive definite, and thus non-singular, we get an expression for the optimal
solution x*(n) € argminyex U(x,n) as a (linear) function of the uncertainty parameter 7:

x*(n) =% — Vixﬁ(i7 770)_1 [Vzﬁ(iarlo) + Vinﬁ(ic, 10)" (M — 770)] .

Inserting this into the definition of robustness (2.13) leads to a closed-form expression for the
approximate relative robustness index:

RY(x) := E[a(x,n) — a(x*(n),n)] = E [;V,4" V3,4~V (13)

~ ~

+VmaTv§mu_1v?’]zﬁT(7] - 770) + %(/’7 - no)Tv%zavizu_lv?)maT(n - 770)] -

10



Introducing A as the covariance matrix of 1, and noting that V,4(X,n,) = 0 since X is the
minimizer, the expression (13) reduces to

RY(x) = Ltr (AV},aV3, 47"V, a7) . (14)

This expression only requires the solution of one linear equation with n unknowns and a few matrix-
matrix multiplications, and is thus relatively fast to compute.

3.2 Constrained problem

If any of the functions f; are non-differentiable, if the problem includes constraints or if analytic
expressions of the functions f; are not available, the closed-form expression (14) does not apply.
The robustness indices can however be computed using a Monte-Carlo method with randomized
sampling. The idea is to draw N i.i.d. samples n;, i = 1,..., N, of n and replace the expected
value by the sample mean. We only consider the absolute robustness index, since the relative index
would require one minimization computation for each sample. The Monte-Carlo estimate is given
by

0= 5 3 [u(e(m0) — u(etm)].

4 Search for robust solutions

In Section 3, we assume (Assumption B) that the Pareto front is pre-computed, and the practical
computational procedures presented refer to candidates on the front. In reality, however, we may
forsake optimality of a solution if robustness can be gained. The idea is to move away from a
Pareto optimal solution X on the front and search for robust solutions in its neighborhood. Let
7 > 0 be the radius of the ball around f(x) used for the quadratic approximation @ of the front,
and let € > 0. We use the utility function u to define the neighborhood. For absolute robustness
we formulate the optimization problem to

minimize R4(x),
X

(15)
1£(x)) — £l < 7,

The solution to (15) is the most robust point with at most a decrease of ¢ in utility compared to x
and which is sufficiently close to X in the objective space such that the local approximation of the
Pareto front remains valid.

For relative robustness, we have to take into account that inner (non-Pareto) solutions will have
a lower utility value for each realization than the optimal solution. Letting Au(x) = u(x,nq) —
u(X,1n,) denote the loss in utility at the unperturbed state, we formulate the optimization problem

to

minimize R(x) + Au(x),

subject to u (f(x)) —u (f(%)) < ¢,
If(x)) — fX)|| <

11



5 Numerical Experiments

The ideas developed in this article have been applied to both the analytical test functions used
in the article by Deb and Gupta (2005a) and on functions derived from real-world numerical data
used for antenna optimization (Jakobsson et al., 2008a; Stjernman et al., 2009).

The reader should note that the test functions in the first numerical example are designed to
illustrate different principal cases when introducing uncertainty in multi-objective problems, and
not designed to imitate practical applications. Our intention with this example is to show how our
definition of robustness compares to published results.

The theory developed in this article places no theoretical restriction on the number of objec-
tives. However—for illustrational reasons—in the numerical examples we only consider bi-objective
problems.

5.1 Analytical functions

Deb and Gupta (2005a) considers uncertainty in the decision space and formulates a program
where each objective function is replaced by its respective average computed over a ball around the
intended decision variable, i.e.,

1

eff
i X)= g
I = Bl Jyespen)

fily)dy.

The radius of the ball is given by the parameter § > 0 which is varied in the numerical tests.
A larger value of § smoothens out the functions and makes sharp global optima less attractive. By
using this framework, a “robust” Pareto optimal front is always found, but there is no distinction
between the points on this front with respect to robustness. Furthermore, there is no continuous
grading of robustness of the points that are not in the robust Pareto set. Deb and Gupta also
present an alternative robustness model where they enforce robustness of the resulting solutions
using a constraint. The requirement is that the norm of the difference between the (unperturbed)
function value and the averaged (or, the worst case) function value must be kept smaller than a
certain threshold value. From our point of view, this formulation also suffers from the weakness
that it just classifies solutions as robust Pareto optimal or not. It is also possible that large parts of
the objective space will not contain any robust solutions if the effect of uncertainty is large. From
now on, we will concentrate on Deb and Gupta’s first formulation.

Since we derive robustness for the unperturbed front and Deb and Gupta presents a robust
front, possibly consisting of completely different solutions, it is difficult to directly compare the
respective results. We will, however, show that they are in line in principle.

We present numerical results for one test problem, DEBGUP3, which is one of 4 bi-objective
problems from (Deb and Gupta, 2005a). The problem is to

minimize (fi(x), f2(x)) =

5
(3:1, (2 _ 08 (3%52)" _ e*(”o_.géssf) (1- /1) z; 5037,2) ,
=

subject to 0<z; <1, i=1,2, (DEBGUP3)
—1<2;<1, i=3,4,5.

The uncertainty appears in the decision space, such that x is replaced by x+n and 7 is drawn from
a uniform distribution, n € U([—1,1]%). A close study of the functions reveals that the unperturbed
problem with 7 = 0 has one local and one global Pareto optimal front, where a local Pareto front
consists of points that are locally Pareto optimal. The fronts are shown in Figure 5(a). Figure 5(b)
presents the relative robustness index (Def. 2.13) for the corresponding points. We have chosen to
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ignore the bounds when computing relative robustness which enabled the use of the closed-form
expression (14). The implication of ignoring the bounds may be that the value of R is overestimated,
i.e., the robustness is underestimated.

h —Global front —Global front
“ — — —Local front — — —Local front
'

\

0.8

04f ~--

12 0 0.2 0.4 0.6 0.8 1

(a) Function values. (b) Robustness indices.

Figure 5: The global and the local Pareto fronts for the problem DEBGUP3. The robustness indices
are shown for the corresponding points, parameterized by the values of the first objective.

Note that the robustness varies both along each single front, and also between the two fronts.
The local front is more robust than the global one as is expected from the results in (Deb and
Gupta, 2005a). Here, we can distinguish a difference between using the robustness index and using
averaged objectives. Depending on the size of the radius J, the robust front will equal either the
local front, the global front, or a combination of these. It is possible to construct problems where
the global front equals the robust Pareto front, but having a local Pareto front arbitrarily close
and which has much better robustness indices according to our definition. The size of § highly
determines which solutions are presented to a decision maker, whereas the idea in this paper is
to partly push forward the decision of how much robustness is desired to the decision maker, and
therefore present solutions of different robustness values. The robustness index may also show
that robustness may vary along the Pareto front. With more complex objective functions found
in real-world applications, we anticipate that there may be more dramatic changes in robustness
between close solutions on the Pareto front. In such cases, the decision maker may prefer a solution
slightly off his/her ideal (optimal) solution if the robustness properties are better. This situation
is presented in the following subsection.

5.2 A real-world example

Designing antennas typically involves a number of conflicting requirements. These may be based on
spatial size, so called S-parameters related to electromagnetic properties, functions of the directivity
of the antenna, band width, input impedance, or other characteristics of the antenna. In a joint
project between the Fraunhofer-Chalmers Centre and the Antenna Research Centre at Ericsson
AB a multi-objective optimization approach is taken on the antenna design problem, as described
in (Jakobsson et al., 2008a; Stjernman et al., 2009). We have chosen to study this problem using
a subset of the proposed objectives. The decision variables are the positions and geometrical
dimensions of the antenna, and the objectives chosen are the maximum return loss (|S11|) over the
frequency band [750,850] MHz and the area of the hull of the antenna. An approximate Pareto
front is shown in Figure 6, where it is clearly shown that the two objectives are conflicting. The
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objective functions are expensive to evaluate since they are outcomes of long-running computer
simulations. For this reason, a surrogate modeling technique (Jin et al., 2001) is used, where
approximate functions are constructed using the function values computed at a number of sample
points. Jakobsson et al. (2008a,b) have developed a new technique based on interpolation with
rational radial basis functions to handle the sharp function behaviors around the resonance levels.
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Figure 6: An approximate Pareto front (with the objectives scaled) to the problem found using the
NSGA-II algorithm (Deb et al., 2000) with 200 generations and a population size of 48.

The two objectives are interesting for a robustness study. Near resonance, small variations of the
decision variables yield large differences in the function values. This is the case for many practical
problems where resonance phenomena are part of the problem characteristics. We have noticed
that the surrogate models are quite sensitive to the choice of sample points (and this choice is not
obvious) and have constructed our numerical study based on this fact.

Originally, the decision space has been sampled at 2000 distinct point chosen using an ad-
hoc design—of-experiments strategy, and the surrogate models (or, response surfaces) have been
constructed using the rational RBF technique on the function evaluations at these points. In our
experiments, we have randomly selected 500 out of the 2000 points and constructed new response
surfaces using only these. The uncertainty characteristics depend on which of the 2000 points that
are chosen, reflecting the fact that it is not clear from the start which sample points to choose.
Obviously, a robust solution is a solution for which the randomness does not have a large effect
according to our definition of robustness. In Figure 7, the (absolute) robustness index is shown
for the points on the Pareto front to the original problem, where the objective functions are the
response surfaces constructed using all 2000 data points. The index varies substantially along the
front, and for some Pareto points, there are other points on the front that are close in the objective
space but with a very different robustness index. This opens up the possibility for a decision maker
to choose a point which lies close to his or her ideal point with respect to the function values, but
which are much more robust. Doing so will, on average, improve the utility. But since the front is
only valid for the unperturbed problem, a decision maker could also be searching for a non-Pareto
optimal solution since such a point can be even more robust. In Figure 8, we illustrate such a
search. For each (unperturbed) Pareto optimal point, we search for optimal points according to
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Figure 7: Absolute robustness for the points on the Pareto front, parameterized by the first objec-
tive.

the model (15) with the parameter values ¢ = 0.01 and 7 = 0.1. We use the global optimization
algorithm DIRECT (Jones, 2009), implemented in TOMLAB (T). We have also implemented a simple
local search strategy to complement the algorithm. In the left figure, the points obtained are shown
together with the original (approximate) Pareto front. The right figure shows a histogram of the size
of the improvements in robustness when—for each unperturbed point—picking the corresponding
robust alternative. One obvious conclusion is that for most Pareto optimal points, there are robust
solutions that are close with respect to the value of the utility but with a significantly better
robustness index. This fact can be used by a decision maker, who gets an option to choose between
robustness and “optimality” for the unperturbed problem.

To further illustrate the framework, we consider the following scenario: Suppose we have pre-
sented a Pareto front corresponding to the unperturbed problem to a decision maker, and that
he/she has located a candidate solution. Since the problem contains uncertain parameters, the
decision maker is also interested in the robustness of this solution. We now solve problem (15) for
varying values on the parameter €. This will produce solutions that are more robust, but with lower
utility values. These candidates are then presented to the decision maker, who gets the option to
consider how much he or she values robustness considering how much utility is lost. In the spirit of
multi-objective optimization, the decision of robustness versus optimality is thus left to the decision
maker. Figure 9 shows the results for a specific candidate. In a), the robustness index is shown as
a function of the utility for the alternative solutions. In b), the unperturbed Pareto front is shown
along with level curves of the utility function for the specific candidate. The results show that the
decision maker can substantially improve the robustness if he or she is willing to sacrifice some
utility.

6 Summary and conclusions
We have presented a new definition of robustness for multi-objective problems based on the idea
that each decision maker has a hidden single objective function defining which of the Pareto optimal

points he/she desires. This hidden objective is characterized with a family of utility functions; we
present two robustness indices measuring the relative and absolute expected loss in the utility
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function due to uncertainties. We have shown that the family of utility functions has certain nice
properties such as rationality and completeness. We also presented procedures for computing the
robustness indices and applied them to two numerical examples: an analytic test problem from (Deb
and Gupta, 2005a), and an in antenna optimization from (Jakobsson et al., 2008a; Stjernman et al.,
2009).

The formulation of robustness by Deb and Gupta (2005a) for multi-objective optimization, which
consists of replacing the objectives by their respective expected values, is very natural and direct,
and is suitable for many applications. In line with the main idea of multi-objective optimization,
our approach has the advantage that the decisions are pushed further into the future when more
information about the problem has been revealed. Also, our method gives a continuous measure of
robustness and it does that to all points; it does not only say if a point is a robust Pareto optimal
point or not.

In future work, our methodology should be applied to more numerical examples, and also to
problem instances with more than two objectives. The inclusion of constraints for relative robustness
should be developed further. It would also be interesting to apply other types of robustness measures
based on utility functions.
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Figure 8: In a), robust points are added to the (approximate) Pareto front. In b), the relative
improvements in the robustness index for the points found are shown.
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Figure 9: Figure a) shows the utility function values and robustness index values for the alternative
solutions. The robustness index is normalized by the original candidate. Figure b) shows the
unperturbed function values for the candidates and level curves of the utility function. In both
figures, the ring (0) corresponds to the unperturbed Pareto point originally chosen by the decision
maker and the plus signs (+) correspond to the alternative points.
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