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Abstract. A globally convergent numerical method for a multidimensional
Coefficient Inverse Problem for a hyperbolic equation is presented. It is shown
that this technique provides a good starting point for the so-called finite element
adaptive method (adaptivity). This leads to a natural two-stage numerical
procedure, which synthesizes both these methods. A new method for obtaining a
posteriori error estimates for the adaptivity technique is demonstrated on a specific
example of a hyperbolic Coefficient Inverse Problem.
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1. Introduction

This paper is a continuation of the previous publication of the authors [5|, where a
new globally convergent numerical method for a Coefficient Inverse Problem (CIP) for
a hyperbolic PDE was developed. In this first part of our work analytical studies are
presented and the second part [8] discusses numerical experiments. Since the globally
convergent numerical method was described in [5], we focus our analytical effort here
on the adaptivity technique. We present a new idea of obtaining a posteriori error
estimates both for the Lagrangian and for the regularized coefficient. Although this
idea can probably be presented in a rather abstract form, we intentionally do not
do this here preferring its demonstration for a specific CIP. Still, we outline a more
general framework in the end of this first part. It is likely that that this framework
might be extended to the parameter identification problem.

The CIP of this publication can be applied to inverse scattering of acoustical
and electromagnetic waves. Compared with [5|, the main new element here is a
synthesis of the method of [5] with the locally convergent so-called Finite Element
Adaptive method, which we call “adaptivity” for brevity. The adaptivity technique
for inverse problems was previously developed in [4, 9, 10, 11]. The underlying reason
of this synthesis is that the estimate of the difference between the correct solution
and the computed one in the global convergence theorem of [5| depends on a small
positive parameter n. This parameter incorporates both the error in the boundary
data and errors generated by some approximations of the numerical procedure of [5].
The error in the boundary data models the error in measurements and is, therefore,
unavoidable. At the same time, two other approximation errors cannot be made zero
and they are not parts of previously developed locally convergent techniques. On the
other hand, since 7 is small, then the global convergence theorem [5| guarantees that
the solution obtained by the technique of |5| provides a good approximation for the
correct solution of the CIP. Therefore, this solution can be used as a good starting
point for a subsequent enhancement via a locally convergent numerical method. It
was shown in previous publications [4, 9, 10, 11] that the adaptivity is capable
to provide good quality images if a good first approximation for the solution is
available. The latter leads to a logical conclusion that a synthesis of the adaptivity
with the globally convergent method of [5] should be used. As a result, a natural
two-stage numerical procedure is developed here. On the first stage, the globally
convergent method of [5] provides a good approximation for the correct solution.
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And on the second stage, this approximation is taken as the starting point for the
adaptivity technique, which provides an enhancement, i.e., a better approximation
for the correct solution.

In addition to this two-stage procedure, there are five (5) new elements of this
paper compared with [5]. We now list three of them. Two others are related to
the adaptivity and are outlined below in this section. (1) The globally convergent
algorithm is different from one in [5] in the sense that now “inner” iterations with
respect to terms in certain quasilinear elliptic equations are used until they converge.
Whereas previously a priori chosen number of iterations was used. (2) The stopping
rule for the globally convergent part differs from one of [5|. Namely, we now evaluate
certain Ly norms at the boundary rather than inside of the domain of interest. (3)
2-D numerical examples are different from ones of [5].

We call a numerical method for a CIP globally convergent if: (1) a theorem
is proven, which ensures that this method leads to a good approximation for the
correct solution of that CIP, regardless on the availability of a priori given good first
guess for that solution, and (2) this theorem is confirmed by numerical experiments.
On the other hand, convergence of a locally convergent numerical method to the
correct solution can be guaranteed only if the starting point is located in a small
neighbourhood of this solution. The method of |5] relies on the structure of
the underlying PDE operator instead of conventional least squares minimization
techniques. This helps to avoid the phenomenon of local minima.

The adaptivity minimizes least squares objective functionals on a sequence of
adaptively refined meshes until images are stabilized. On each mesh the minimization
is performed via the quasi-Newton method. Convergence of Newton-like methods
for general ill-posed problems was proven in [3]. At the same time, our numerical
experiments demonstrate that just a straightforward application of the quasi-Newton
method, which works on the same mesh as the globally convergent part did, does not
improve the result obtained on the globally convergent stage. On the other hand,
further adaptive mesh refinements indeed enhance the solution. Therefore it is
important to use the adaptivity in our two-stage numerical procedure. In this paper
we present a new analytical framework for the adaptivity, which is a modification of
the framework of previous publications [9, 10, 11].

One of the main ideas of the adaptivity is that for each mesh a posteriori error
analysis shows subdomains where the biggest error of the computed solution is.
Thus, an important point is that the mesh is refined locally in such subdomains.
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An alternative is to use a very fine mesh in the entire domain. However, the latter
would lead to a substantial increase of both computing time and memory. Note
that subdomains, where mesh is refined, are found without a priori knowledge of
the solution. Instead one needs to know only an upper bound for the solution. In
the case of forward problems these upper bounds are obtained from classic a priori
estimates of solutions. In the case of CIPs upper estimates are assumed to be known
in advance, which is according to the Tikhonov concept for ill-posed problems |23, 25|.

A posteriori error analysis addresses the main question of the adaptivity: where
to refine the mesh?. This analysis provides upper estimates for differences between
computed and exact solutions locally, in subdomains of the original domain. Such
an analysis is a classic tool in applications of the adaptivity to forward problems for
PDEs, see, e.g. [1, 16]. In the case of a forward problem, the main factor enabling to
conduct a posteriori error analysis is the well-posedness of this problem. However,
the ill-posed nature of CIPs changes the situation radically. In fact, the ill-posedness
represents the major obstacle for an estimate of the difference between computed and
exact coefficients. For this reason, the accuracy of the Lagrangian (depending on that
coefficient) is usually estimated instead of one of the target coefficient |4, 9, 10, 11].

In this paper we develop a new idea for the derivation of a new a posteriori
error estimate for the Lagrangian. This estimate is both stronger and more effective
than one in [9, 10, 11]. The meaning of this estimate is that it indicates that one
can ignore certain integral terms in the Frechet derivative of the Lagrangian when
deciding where to refine the mesh. While these integral terms were also ignored in
numerical experiments in [9, 10, 11] due to computational observations, an analytical
explanation was not provided in these references. At the same time, it is more
desirable to obtain a posteriori error estimate for the target coefficient rather than
for the Lagrangian only. In [11] a heuristic estimate of such sort was obtained under
the assumption of the existence of a solution of a certain problem for the Hessian.
This existence was demonstrated numerically in [11].

In this paper we obtain the above mentioned a posteriori error estimate
rigorously. We now specify this statement. The Lagrange functional is a modified
classic Tikhonov regularization functional, see, e.g. [14, 23, 25| for the latter. Hence,
similarly with [14, 23, 25|, we call a minimizer of the Lagrangian for our CIP as
the “regularized coefficient”. Thus, given a value of the regularization parameter,
we estimate the difference between the regularized coefficient and its approximation
obtained on a certain finite element mesh. We assume in our derivation the existence



A globally convergent numerical method and the adaptivity technique 5}

of the solution of a certain problem for the Hessian. The proof of a corresponding
existence theorem is a quite challenging problem, which is outside of the scope of this
publication. The resulting a posteriori estimate differs from one of the Lagrangian
only by a constant multiplier. This means that via refining mesh “for the Lagrangian”,
we actually obtain a better accuracy for the regularized coefficient.

It would be better of course to provide a posteriori estimate of the difference
between computed and exact (rather than regularized) coefficients. It is well known,
however that even an estimate of the distance between regularized and exact solutions
of a CIP is a very challenging and still unsolved (in many cases) problem. Indeed, this
problem requires a derivation of an upper estimate of the modulus of the continuity,
on a compact set, of the operator, which is inverse to the operator of the CIP, see
(2.6) in §1 of Chapter 2 of |23]. Thus, the problem of an estimate of the distance
between computed and exact solutions is not considered here. Still, it follows from
Theorem 2 on p. 65 of [25] that one can often guarantee that the regularized solution
is close to the exact one, although without an explicit estimate. Hence, assuming that
this is the case, our a posteriori error estimate can be considered as an approximate
estimate of the distance between computed and exact coefficients.

The first part of our work is organized as follows. In section 2 we briefly describe
the globally convergent method, see [5| for details. In section 3 we present a modified
framework for the adaptivity technique and prove a posteriori error estimates. A
preprint with this publication is available online [7]. One can also find there a
preliminary preprint |6] where more numerical results are available.

2. Brief description of the globally convergent numerical method of [5]

As the forward problem, we consider the Cauchy problem for a hyperbolic PDE
c(r)uy = Auin R* x (0,00), (1)
u(x,0) =0,u(x,0) =0 (v — xp) . (2)
Since equation (1) governs a wide range of applications, including e.g., propagation
of acoustic and electromagnetic waves, then the same is true for the CIP we consider.
In the acoustical case 1/4/c(x) is the sound speed. In the 2-D case of EM waves
propagation in a non-magnetic medium, the dimensionless coefficient ¢(z) = ¢,(x),

where ¢,(x) is the relative dielectric function of the medium, see [12]|, where this
equation was derived from Maxwell’s equations in the 2-D case. Let d; and dy be
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two positive constants and 2 C R? be a convex bounded domain with the boundary
00 € C3. We assume that the coefficient ¢ (x) of equation (1) is such that

c(z) € [dy,2ds],dy < dy,c(z) = 2d; for © € R\, (3)
c(z) € C* (R?). (4)

We consider the following

Inverse Problem. Suppose that the coefficient ¢ (x) satisfies (3) and (4), where
the positive numbers d; and ds are given. Assume that the function ¢ (z) is unknown
in the domain €. Determine the function ¢ (x) for x € Q, assuming that the following
function g (z,t) is known for a single source position zy ¢

u(z,t) =g (z,t),¥(x,t) € 02 x (0,00). (5)

A priori knowledge of constants di,ds corresponds well with the Tikhonov
concept about the availability of a priori information for an ill-posed problem [25].
In applications the assumption c¢(z) = 2d; for z € R3\ means that the target
coefficient ¢ (x) has a known constant value outside of the medium of interest (.
Another argument here is that one should bound the coefficient ¢ (z) from the below
by a positive number to ensure that the operator in (1) is a hyperbolic one on
all iterations of our method. Since we do not impose any “smallness” conditions
on numbers d; and dp, our numerical method is not a locally convergent one.
The function g (z,t) models time dependent measurements of the wave field at the
boundary of the domain of interest. In practice measurements are performed at a
number of detectors, of course. In this case the function g (z,t) can be obtained via
one of standard interpolation procedures, a discussion of which is outside the scope
of this publication. In the case of a finite time interval, on which measurements
are performed, one should assume that this interval is large enough and thus, the
t-integral of the Laplace transform over this interval is approximately the same as
one over (0,00).

The question of uniqueness of this Inverse Problem is a well known long standing
open problem. Tt is addressed positively only if the function 6 (z — x) above is
replaced with a such a function f(z) € C* (R®) that f(x) # 0,Vx € Q. An example
of this function is

f(z) = Coem 5 / f(@)de =1, (6)
R3



A globally convergent numerical method and the adaptivity technique 7

where £ > 0 is a small positive number. Corresponding uniqueness theorems are
proved via the method of Carleman estimates [19, 20|. In principle, one can replace
the § (x — x¢) — function with a § (x — xy) — like smooth function, which is not zero
in Q0. The resulting function w will be close to the function w in a certain sense, and
the above mentioned uniqueness result would be applicable then. An extension of
our numerical method to this case is outside the scope of the current publication. It
is an opinion of the authors that because of applications, it makes sense to develop
numerical methods, assuming that the question of uniqueness of the above inverse
problem is addressed positively.
Consider the Laplace transform of the functions u,

e}

w(zx,s) = /u(a:, t)e ®dt, for s > s = const. > 0, (7)

0

where s is a certain number. It is sufficient to choose s such that the integral (7)
would converge together with corresponding (x, t)-derivatives. We call the parameter
s pseudo frequency. Note that we do not use the inverse Laplace transform in our
method, since approximations for the unknown coefficient are obtained in the pseudo
frequency domain. Since by the maximum principle w(x,s) > 0, then we can
consider the function ¢(x,s) = 9s(s 2lnw(x,s)). This function satisfies a certain
nonlinear integral differential equation with Volterra integrals with respect to s,
where integration is carried out from s to s, where s is the value of the pseudo
frequency at which these integrals are truncated. In that equation the so- called
tail function is also involved. This function complements that truncation, it is
unknown and it is small because of a certain asymptotic behaviour at s — oo.
Therefore that equation contains two unknown functions ¢ and the tail. The reason
why we can approximate both of them is that we treat them differently: while the
function ¢ is approximated via inner iterations, the tail function is approximated
via outer iterations. Consider a partition of the interval into small subintervals with
the length of h. Approximate the function ¢ as a piecewise constant function g,
with respect to s on each of these small intervals (s,,s,_1]. Next, the equation
for ¢, is multiplied by the Carleman Weight Function CWF = et*(s=%n-1)  where
1 is a large parameter. Then the resulting equation is integrated with respect to
S € (Sn, Sn—1]. As a result, a finite sequence of Dirichlet boundary value problems
for nonlinear elliptic PDEs for functions g, is obtained, where Dirichlet boundary
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conditions are known. This system is solved sequentially. As soon as the function
¢n is approximated, an approximation ¢, for the unknown coefficient ¢ is found and
the next update for the tail function is also found. The first approximation for
the tail is either zero or the one which corresponds to the solution of the above
Cauchy problem for ¢ = 2d;. Let o be a small parameter characterizing the level
of the error in the data, and € be a certain small regularization parameter which is
introduced to improve the stability property of solving the above Dirichlet boundary
value problems. Let & > 0 be a small number such that certain norm of the tail is
less than . Denote n = 2(h + 0 + €+ &£). Then 7 is small. The global convergence
theorem of [5] claims that |¢, — ¢*|, < Cn, where | - |, is a Holder norm, ¢* is the
exact solution of our CIP satisfying (1), (2) and C' > 0 is a constant. Thus, the
globally convergent part provides a good approximation for the exact solution.

3. The Adaptivity

3.1. State and adjoint problems

To use the adaptivity technique, we formulate our CIP inverse problem as an
optimization problem, where we seek the unknown coefficient ¢(z), which gives
the solution of the boundary value problem (1), (2) for the function u(z,t) with
the best least squares fit to the time domain observations g (x,t), see (5). Denote
Qr = Q2 x (0,T7),S7 = 9Q x (0,T). In this section C = C (Qr) denotes different
positive constants depending only on the domain @, in (15) C' depends only on €.
Our goal now is to find the function ¢(z) which minimizes the Tikhonov functional

Blu.c) =5 [(ulsy = gl 0P, O dodt + 3 [ dn, (9

St Q

where v € (0,1) is a small regularization parameter, c¢q is an initial guess for
the unknown coefficient ¢ and the function (., (¢) is introduced in order to ensure
compatibility conditions in the so-called “adjoint problem” (below). This function
has the following properties at t =T

0,t€ (T —e/2,T)
¢, €C°0,T],¢, () = 1,t € (0,7 —¢y),
between 0 and 1,t € (T — &1, T —€1/2)
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Here £, € (0,7) is a sufficiently small number. The existence of such functions is
known from The Real Analysis course. In principle, the regularization theory requires
that the norm of the penalty term in (8) should be stronger than the Lj (€2) norm
[14, 23, 25|. However, the stronger norm condition is sufficient but not necessary.
Thus, we use the simpler Lo (€2) norm here, because our computational experience
shows that this is sufficient for our CIP. Another justification of this is that all
norms are equivalent in finite dimensional spaces, with which we actually work in
our computations.

Since c(z) = 1 in R3\ £, then given the function g(z,t) in (5), one can
uniquely determine the function u(x,t) for (z,t) € (R*\ Q) x (0,7 as the solution
of the boundary value problem for equation (1) with initial conditions (2) and
with the boundary condition (5). Hence, one can uniquely determine the function
p(x,t) = Oyu |g,. . Thus, in this section we consider initial boundary value problems
only in the domain Q7. In particular, the function u of (1), (2) is the solution of the
following so-called “state problem”

Cly — Au = 0, (I7t) S QT7
U(ZE,O) - ut(xvo) =0, (9)
Ot |s, = p (2,1).

In this section we consider the following condition imposed on the function ¢(x)
ceC(Q)NH"(Q),¢ € Lo (Q),i=1,2,3; c(x) € [d1,2d5] in Q. (10)

Note that first two relations of (10) are always in place if the function c(z) is
represented via a linear combination of standard piecewise linear finite elements. In
addition, in order to guarantee that solutions of state and adjoint problems belongs
to H?(Qr), we assume that there exist such functions P,G and cut-off function a
that

P.Ge H? (Qr),0nP |s,=p(z,t), P (2,0) = P(x,0) =0,0,G |s;,= g (x,t), (11)

a € C®(Q),alao=1,0ma |so= 0. (12)

For example, if @ = {|z| < R}, then a(z) = [(|z| = R)*+ 1] x (Jz|), where the
function y is such that x (2) € C*[0,R],x(2) = 1 for z € [R/2,R],x (2) = 0 for
z € [0, R/4], and x € [0,1] for z € [R/4, R/2]. Although functions & (z) might also
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be constructed for a more general domain, we are not doing this here for brevity. The
existence of functions P, G satisfying (11) cannot be guaranteed for the case of the
fundamental solution (1), (2). To guarantee (11), one could replace, for example the
§ (z — o) function in (2) with a function f. (z) € C* (R3), similar with the function
f-(z) in (6) with the only difference that f.(z) = 0 in Q. Then the existence of
functions P, G satisfying (11) can be guaranteed at least for the case when functions
p, g are given without a random error. The question of an extension of the above
globally convergent numerical method on the case of such replacement of the initial
condition is outside of the scope of the current publication. Overall, the question
of the existence of functions P, G satisfying (11) is one of discrepancies between our
theory and computational practice, see part I [8] for more discrepancies.

Using (10), conditions (11) for P and applying slight modifications of proofs of
either Theorems 4.1 and 5.1 of Chapter 4 of [22] or of Theorem 5 of section 7.2 of
[17], we obtain that there exists unique solution v € H? (Qr) of the problem (9).
Furthermore,

Ou€ Lo (0,T; H%(Q)) ,k=0,1,2, (13)
where H° (Q) := Ly (Q) . In addition, the following integral identity holds

/ (—c(z) wry + VuVr) dedt — /prdadt =0,Vre H (Qr),r (z,T) =0. (14)
Qr St
We note that (14) is also the definition of the weak H' (Q7) —solution of the problem

(9). The existence and uniqueness of this solution is guaranteed if the function P
satisfies a weaker smoothness condition P € H* (Qr), see Theorem 5.1 of Chapter

4 of [22].
Denote
H; (Qr) ={f € H*(Qr) : f(2,0) = fi(x,0) = 0},
H,(Qr) ={f € H(Qr) : f(x,0) =0},
Hy(Qr) = {f € H*(Qr) : f(2,T) = fi(2,T) = 0},
Hy(Qr) = {f € H'(Qr) : f(z,T) = 0},
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where all functions are real valued. Hence, U C U C U"! as sets, U is dense in U
and U is dense in U'. To formulate the FEM for boundary value problems below, we
introduce finite element spaces Wy C H, (Qr) and W7 C H (Qr). These spaces
consist of standard piecewise linear finite elements in space and time satisfying initial
conditions u (z,0) = 0 for u € W* and ¢ (x,T) = 0 for ¢ € W/”. We also introduce
the space Vj, C Ly () of standard piecewise linear finite elements for the target
coefficient ¢(z) and denote U, = W x W) x V},. Obviously Uy, C U as a set. So, we
consider Uy, as a discrete analogue of the space U. It is convenient for us to introduce
in U, the same norm as one in U?, o]l == ll®ll1- We work with piecewise linear
finite elements in our analytical derivations because we work with them in numerical
experiments. Considerations of other types of finite elements are outside of the scope
of this publication. We assume below that the mesh in the domain (2 is regular.

We now formulate some error estimates for interpolants in the format, which
is convenient for our derivations below. Let h and 7 be maximal grid step sizes
of piecewise linear finite elements with respect to x and t respectively. For any
function f belonging to either H?(Qr) or to H' (Q), let f! be its interpolant
via corresponding finite elements associated with the space U,. Let the function
f € C(Q) NnH"(Q) and its partial derivatives f,, € Lo (Q2). Let the function p
satisfies conditions (13). Then

If - fIHc(ﬁ) <OVl o h (15)

Hp_pIHHl(QT) S CHPHHQ(QT) (h+7—) . (16)
Estimate (15) follows from the formula 76.3 in [15]. Estimate (16) follows from
Theorem 3.2.1 in [13] and embedding theorem of H?(2) in C () since Q € R? (the
same is true for R?). The mesh regularity assumption is not necessary for (15), unlike
(16).
Let the function ¢ € H2 (Qr) . To solve the problem of the minimization of the
functional (8), we introduce the Lagrangian

L(v) = E(u,c) — /c(x)utgptda:dt + /Vquodxdt - /pgodadt,v = (u,p,c). (17)
Qr Qr St
By (9) and (14) the sum of integral terms in (17) equals zero. Thus, L(v) = E(u, c).

In other words, the addition of these terms to E(u, c¢), does not change the Tikhonov
functional. The reason of considering the Lagrangian instead of E(u,c) is that it is
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easier (in certain sense) to find a stationary point of L(v) compared with E(u, c). To
minimize the Lagrangian, we need to calculate its Frechet derivative and to set it to
zero. Note that the function u depends on the coefficient c. In addition, below we will
impose a constraint on the function ¢ requiring it to be the solution of the so-called
“adjoint problem” (20). The latter means that ¢ also depends on c. Hence, in order
to calculate the Frechet derivative rigorously, one should assume that variations
of functions v and ¢ depend on variations of the coefficient ¢ and calculate the
Frechet derivative of L (¢) := L(v(c)). To do this, one needs, therefore, to consider
Frechet derivatives of u, ¢ with respect to ¢ in respectively defined functional spaces.
However, this way, although completely rigorous, is anticipated to be quite space
consuming, and we are not aware about previous publications where this way would
be fully carried out for a CIP, although see [18| for an inverse problem of determining
a boundary condition of a parabolic PDE; the latter is linear, unlike our CIP. We
will consider the rigorous way in a forthcoming publication. At this point, however,
following previous publications |2, 4, 9, 10, 11|, we adopt a simpler heuristic the
so-called "one shot" approach. Namely, we assume that in (12) functions u, ¢, ¢
can be varied independently on each other. Furthermore, whenever we discuss
Frechet derivatives of L, we always mean mutually independent variations of all
three components of the vector function v. However, as soon as this derivative is
calculated, we assume that solutions u and ¢ of state (9) and adjoint (20) problems
do depend on the coefficient ¢. The computational experience of both current and
previous publications [4, 9, 10, 11| shows that this is sufficient.
Thus, we search for a stationary point of the functional L(v),v € U satisfying

L'(v) (v) =0, Yo=(u,p,¢) elU (18)

where L'(v)(-) is the Frechet derivative of L at the point v under the above
assumption of mutual independence of functions u, ¢, c. To find L'(v) (), consider
L(v+7)— L(v) Vo € U and single out the linear, with respect to @, part of this
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expression. Hence, we obtain from (17) and (18)

T

L'(v) (v) :/ v (c—co) — /utgptdt cdx

Q 0

+ / (—cup, + VuVp) dedt — / pododt
Q1 St

+ / (—cpiuy + VoVa) dedt — /CEI (9 —u|s,) udodt
Q1 St
=0,vo = (u,,¢) € U.

(19)

The term in the second line of (19) equals zero because of (9) and (14). To ensure
that the term in the third line of (19) is zero, we assume first that there exists a
function G satisfying (11). Next we set that the function ¢ is the solution of the
following adjoint problem

conw — Do =0, (x,t) € Qr,
()O(I7T) = QOt(I,T) - 07 (20)
O ‘ST = (o (t) (g —u) (1), (z,t) € Sr.

Consider the function @ (z,t) = ¢ (z,t) — (., (t) [G(x,t) — a(x)u(x,t)] . Then

c®y — AD = [QCEIV&V’LL — 2cadyCeuy — (c@f — A) (CslG)] ,

(21)
(2, T) = y(,T) =0, 9,® |g,= 0.

Hence, there exists unique solution ® € H? (Qr) of the problem (21) and ® satisfies
condition (13). Therefore, there exists unique solution ¢ of the problem (20), and
(13) holds for the function ¢. The adjoint problem (20) should be solved backwards in
time. For any function ¢ satisfying (10) denote u (¢) and ¢ (¢) solutions of problems
(9) and (20) respectively, both functions satisfy (13). Finally, to ensure that the first
line of (19) equals zero, we set

T
v(c—co) — / upy dt = 0,2 € Q. (22)
0
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Hence, it follows from (22) that in order to find the stationary point of the
Lagrangian, we need to arrange an iterative procedure to approximate such a
function ¢ (z), which would satisfy condition (10) and would be a solution of equation
(22), where functions u and ¢ are solutions of state (9) and adjoint (20) problems
respectively. The following lemma follows immediately from (14).

Lemma 3.1. Consider an arbitrary function c(x) satisfying condition (10)
and assume that conditions (11) and (12) hold. Let functions u, € H*(Qr) be
solutions of state (9) and adjoint (20) problems and v = (u(c),p (c),c) (i.e., v is
not necesseraly a minimizer of the Lagrangian). Then

T

L'(v) (v) = / v (c—c) — /utgotdt ¢dx, Vv = (u,7p,¢) € U.

Q 0

3.2. A posteriori error estimate for the Lagrangian

Let the function ¢* (x) satisfying (3), (4) be the exact solution of our CIP, ¢g* (x,t) be
the corresponding function (5), and u (¢*) be the solution of the Cauchy problem (1),
(2) with ¢ := ¢*. Hence, ¢* — u* |s,= 0, meaning that the corresponding solution of
the adjoint problem (20) ¢ (¢*) = 0. Denote v* = (u (¢*), 0, ¢*) € U. Since the second
stage of our two-stage procedure, the adaptivity, is a locally convergent numerical
method, which takes a good approximation obtained on globally convergent first
stage as a starting point, we work in this section in a small neighbourhood of the
exact solution v*. So, since U C U as a set, we work in section 3 in the set V5 C U,

Vi={0el: |50y <4}, (23)

where § € (0,1) is a sufficiently small number. In particular, § can be linked with
the parameter 1 of the global convergence theorem of |5], although we are not doing
this here for brevity. Suppose that there exists a minimizer v = (u(c), ¢ (¢),c) €
U N (Vs\9Vs) of the Lagrangian L (17) satisfying (18) (and therefore (19)), and
the function ¢ satisfies condition (10). Note that because of an error in the data
g in (5), it is not necessary that v = v*. Assume that there exists a minimizer
vp = (up(cn),on(en),cn) € Uy N (V(;\(?V(;) of L on the discrete subspace U,
where the function ¢, satisfies condition (10). Here and below uy (¢;) € W} and
on, (cp) € W) are finite element solutions of problems (9) and (20), respectively, with
¢ := ¢, and under the assumption that boundary functions p, g,u |g, in (9) and
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(20) are the same as ones for functions u (c), ¢ (¢). The case when these boundary
functions are approximated via finite elements can be considered along the same
lines, and we are not doing this here for brevity. Hence, v, is a solution of the
following problem

L' (vy) (0) = 0,7 € Uy, (24)

We now obtain a posteriori error estimate for the error in the Lagrangian. We have
1
L) = L (vp) = /L/ (Ov+(1—0)v)d0 = ' (vp) (w—w) + R, (25)
0

where the remainder term R is the second order of smallness with respect to 6. We
ignore R, and the computational experience of both current and previous publications
[9, 10, 11] shows that ignoring R does not have a visible impact on numerical results.
Let vf = (ul, o, cI) be the interpolant of the vector function v by finite elements of
U,. We have

v—vp = (v =)+ (v —20!). (26)

Use the Galerkin orthogonality principle. Namely, by (24) and (26)
L' (v) (v —vp) = L (vg) (0" —vp) + L' (vp) (v — ") = L (vy,) (v — 07). (27)

Hence (25) implies that the following approximate error estimate for the Lagrangian
holds
L(v) — L(vy) =~ L' (vp) (v — v'). (28)

In (28) v — v! appear as interpolation errors. Hence, (15, 16) imply that one can

estimate v — v

in terms of derivatives of v and the maximal grid step sizes h in space
and 7 in time, and this would specify the estimate (28).

If both state and adjoint problems are solved exactly, then Lemma 3.1 ensures
that only the first line in the right hand side of (19) should be considered in a
posteriori error analysis for the Lagrangian, and two other lines equal zero. In
practice, however these two lines are not necessarily zeros because state and adjoint
problems are solved by the FEM approximately. Hence, they should be taken into
account in a posteriori error estimates. Consider first an “ideal” case when state and
adjoint problems are solved exactly for the coefficient belonging to the discrete space

V},. Consider the space U= H! (Qr)x Hé (Qr) x V4. Consider a vector function yy, :=
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(u(cn), ¢ (cn),cn) €UN (Vs\9Vs), where functions u (c;) == u (cp, z,t) € H* (Qr)
and ¢ (c,) == ¢ (cp, x,t) € H* (Qr) are exact solutions of state (9) and adjoint (20)
problems respectively with the function ¢ := ¢, satisfying (10). By (14), (19) and
Lemma 3.1

I (yn) (7) = / Y (en — co) — / (o) pulen)) (e 0| e,

Q

yeU.

ol

Vo = (u, g,

Thus, we obtain

Theorem 3.1. Assume that conditions (11) and (12) hold. Let the vector
function v = (u(c),¢(c),c) €UN (75\875) satisfies (18) and the vector function
yn = (u(cn),p(cn),cn) € (Vs\IVs) be a minimizer of the Lagrangian L on the

space U. Let functions c,cp, satisfy condition (10). Then the following approximate
a posteriori error estimate is valid

L (v) = Lya)| = |L'(yn) (v = v")]

T
< C Vel oy | ymasfen = el max [ ()] - () ()
(30)

Proof. Since y, is a minimizer on the space U, then L' (y,) () = 0,Vv € U.
Since v/ —v, € U, then L' (y3,) (v" —v,) = 0. Hence, it follows from (14), the definition
of functions u (¢p), ¢ (cp) and (26), (27) that the following analog of (28) is valid
L(v) = L(yn) = L' (yn) (v — v'). By (10) and (15) ||c — CIHC(Q) < Ch HVCHLOO(E) .
The rest of the proof follows from (29)), where ¢ should be replaced with ¢ — ¢!. O

Remark 3.1. The estimate (30) indicates that the error in the Lagrangian can
be decreased by refining the grid locally in those regions, where values of the function

Bh(.fE), .
Bu(e) = |en — col () + / (10vun] - [Buon]) (. ) dt (31)

are close to its maximal value. The latter forms the basis for the adaptivity technique,
see subsection 6.4.

While it was assumed in Theorem 3.1 that state and adjoint problems with
c := ¢y, are solved precisely, in the next theorem we assume that they are solved via
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the FEM with a small error ¢, see, e.g. [10] for some specific error estimates for the
FEM for a second order hyperbolic PDE. It is natural to assume that

[ (en) = un (en)ll gy <& e (en) = on(en)llmgn < e (32)

Theorem 3.2. Let conditions (11), (12) hold. Let vector functions v =
(u(c),p(c),c) eUN (75\375) and v, = (up, (en) ,on (cn),cn) € Uy N (75\375)
satisfy (18) and (24) respectively and coefficients ¢, ¢y, satisfy (10). Let € € (0,1) be
a sufficiently small positive number. Suppose that one can choose mazimal grid step
sizes in space and time h = h (¢) and 7 = 7 (¢) so small that the estimate (32) holds.
Assume also that finite elements in $) are reqular. Then the following approzimate
a posteriori error estimate for the Lagrangian is valid

[L(v) — L(w)| ~ L () (0 — v}
< C Vel ()b [vmgxm — ol max [ (e ()] - () (. t)

+C(1+42ds)e (h+7) [Hu (Dl 2gp) + Il (C)HHQ(QT)] :
(33)

Further, suppose that a priori estimate for the gradient of the unknown
coefficient is HVC”Loo(ﬁ) < Z, where the positive constant Z is given (by

the Tikhonov concept for ill-posed problems).  Then with a constant C; =
Cy (dayda, Z, 1Pl sy > Gl iy - @) > 0

1L(w) — Lwn)| ~ |/ (on) (0 — o)
< CZh {v e = cal 4 ma [ ()| o () (00| (34)
-+ 016 (h + T) .

Proof. Denote for brevity uj, = uy (¢3) , 1% = ¢ (¢) — ¢! (c) . Since the third line
of (19) can be estimated similarly with the second line, we consider only the second
line with w := uy. By (28) we should replace @ with ¢ there. Denote

Ay = / (—cpupthy + Vup, V) dedt — /p¢dadt. (35)
Qr St
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Now, since the function ¢ € H} (Qr), then ¢ (z,T) = 0. By (14)

/ (—enue (cn) s + Vi (c4) V) davdt — / pbdodt = 0. (36)
Qr St

Since the function ¢ (¢) satisfies condition (13), then this implies in turn the estimate

(16) for v = £(c) — ¢ (0). Hence, [0l q,) < C (h+7) 0 ()l gy, - Thus.
subtracting (36) from (35), we obtain

A= [ (et = ulen), o+ 9 (i — () V) dodt,
Qr
4] < (1 2ds) s — ()l gy 1400
< (14203 ¢ [ll s gy < C (14 2d3) € (B +7) [ () g -

This estimate for |Ay| proves (33). To prove (34), we need to obtain upper estimates

(37)

for norms [u ()| g2(g, + ¢ ()]l g2,y - Consider the function w = u(¢) — P. Then
(9) and (11) imply that this function is the solution of the following initial boundary
value problem

cwy = Aw — (c@f - A) P,
w(z,0) =w (x,0) =0,0,w |s,= 0.

By (11) the function (cd} — A) P € H' (Qr). Hence, we obtain similarly with (13)
we H(Qr), |wllg2gp < C1IPl ks, » With a constant Cf = C1 (di, do, Z, Qr) >
0. Hence, [[u(c)|g2(,) < C1- The proof of the estimate |[¢ (c)|y2(g,) < C1 can be
obtained similarly via considering the function ® in (21). O

Remark 3.2. Under a natural assumption € (h + 7) << h (33),(34) indicate
that one can approximately drop the third line in each of these estimates. In other
words, Theorem 3.2 basically says that one can ignore terms in second and third
lines of (19) when conducting a posteriori error analysis of the Lagrangian, provided
that both state and adjoint problems are solved by the FEM with a good accuracy
with ¢ := ¢, although not exactly. The same is true for Theorems 3.3 and 3.4 in
subsection 3.3.

3.3. A posteriori error estimate for the reqularized unknown coefficient

Suppose that there exist two vector functions v = (u(c), ¢ (c),c) € UN (Vs\9Vs)
and vy, = (up (cn),on (cn),en) € Uy N (75\375) satisfying conditions of Theorem
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3.2. Denote ((-,-)) the inner product in U! and [-] the norm generated by this product.
Let L" (v,) (v,w),v,w € U be the second Frechet derivative of the Lagrangian L at
the point vy, i.e. the Hessian. Consider a function ¢ € U and consider a solution
vy, of the following problem, which we call the “Hessian problem”,

—L"(vn) (,0y) = (¢, 7)) VU € Uy,

By € UN (VAIT). (38)

Assume that a solution vy, = (Uy, Py, ¢y) of this problem exists, and the function ¢
satisfies (10). In (38) choose T = v — vy,. Since by (18) L’ (v) (vy) = 0, we obtain

(¥, v —wp)) = —L"(vn) (v — vp, Uy)

o)l — v ty) o (39)
= -1 (U)(Uw) + L (Uh)(?)w) +R=1L (Uh)(vw) + R>

where again R is the remainder term of the second order of smallness with respect
to the parameter ¢ in (23). Thus, ignoring R, we obtain

(¥, v —vn)) = L' (vp)(Dy)- (40)

13 bhl kbl

Because of dropping the term R, actually one should have “~” instead of “=" in
(40), and this is why error estimates below are approximate ones. The formula (40)
is the main factor enabling us to obtain approximate a posteriori error estimate for
the regularized unknown coefficient.

The formulas (38), (39) and (40) where obtained in [11], although only a single
function v was used there, i.e. the follow up analysis with functions ¢, was not a
part of |11].

Theorem 3.3. Let conditions (11) and (12) hold.  Suppose that there
exist two vector functions v = (u(c),¢(c),c) € UnN (Vs\dVs) and v, =
(up (cn),on(cn),cn) € Uy N (75\875) satisfying corresponding conditions of
Theorem 8.2. Let P, : U* — Uy and Qy : Ly () — Vj, be orthogonal projection
operators of spaces U' and Lo (Q) on their respective subspaces U, and Vj. Let
{1/%}2/[:1 C Uy, be an orthonormal basis in the space Uy. Suppose that for each vector
function 1y, there exists a solution Uy, — (Uy,, Py, Cy,) Of the problem (38) with the
function ¢, satisfying condition (10). Then the following approximate a posteriori
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error estimate for the target coefficient is valid

1/2

k=1

M 1/2 M
~ T |2
1Qne = enll ) < [Prv —va] = [Z [((Wr, Prv — vh>>|2] < [Z L (0n) (B, — T3, )| ]
k=1
(41)
In particular, assume that problems (9) and (20) are solved exactly for ¢ := c,. Then

|@ne — ChHLg(Q) <

VIIC x|V, ooy [vmﬁax\ch ~ ol + max / (e (en)] - i (en)]) (1) dt} ,
(42)

where M = dim(Up,).

Consider now the case when problems (9) and (20) with ¢ := ¢, are solved
approzimately by the FEM, i.e., assume that (32) holds. Also, let finite elements in
Q be reqular. Then

|@Qne — Ch||L2(Q) <
T
VT [V oy [ maxlen = ol + e [ (0] o () Gov0) ]
0

+ VMC (1+2ds) e (h+7) [max [l @) s ) + maxlle @) s )]
(43)

Proof. We have w = Pyaw + (I — P,)w,Vw € U'. Since the vector (I — P,)w
is orthogonal to the subspace Uy, then ((¢y,(I — P,)w)) = 0,Yw € Ul k =

1,..., M. Hence, ((¢,v)) = ((Yr, Prv)) + (Y, { — Pr)v)) = ((Y, Prv)). Hence,
(g, v —vp)) = (Y, Pov — vp,)) . Therefore, (40) implies that

(Yrs Pov —wvp)) = L (va) (Vy,,) - (44)

Let ﬁf; be the interpolant of the vector function v,, by finite elements of the space
k

Un. Then by (24) L' (vs) (0f, ) = 0. Hence, using an analog of (26), we obtain
L (’Uh) (/6#%) =L (Uh) (:ka - /6{;%) + L (’Uh) (/615%) =L (Uh) (aﬁk — /’ink) . HGHCG, by
(44)

(6, Pav = on)) = L' (on) (B = ) - (45)
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Since ||Qnc — ch||?;2(9) < [Py —vp)?, then by (45)

M M
~ ~ 2
1Qne = enll 7y < [Pwv —wal® = > (¥, Pov — va))|* = Y | L (vn) (T, — T, |
k=1 k=1

(16)
Thus, (41) follows from (46). Estimate (42) follows immediately from (41) and
Theorem 3.1. Estimate (43) follows from (42), (46) and Theorem 3.2. [J
Remark 3.3. Note that the right hand sides of a posteriori error estimates
(42) and (43) for the regularized unknown coefficient have basically the same form
as ones for the accuracy of the Lagrangian in Theorems 3.1 and 3.2, respectively.
This is convenient for computations. Thus, refining mesh, as in Remark 3.1, one
might improve the accuracy of the reconstruction of both the Lagrangian and the
regularized coefficient. Numerical studies of [11| seem to indicate that required
solutions of the Hessian problem exist. An inconvenient point of estimates (42),
(43) is that one should estimate maximal values depending on functions vy,. To
mitigate this, we impose a little bit more stringent condition in Theorem 3.4.
Theorem 3.4. Assume that (38) in one of conditions of Theorem 3.3 is replaced
with
Uy, €E{0 €U |-y <0 <1}, (47)
which means that in (23) the space U is replaced with the space U with a stronger
norm. Let the rest of conditions of Theorem 3.3 holds. Assume that the exact
unknown coefficient ¢* () satisfies (3), (4) and a priori estimate for its gradient is
ch*Hc(ﬁ) < Z, where the positive constant Z is known (by the Tikhonov concept for

ill-posed problems). Let the function u* (x,t) be the solution of the Cauchy problem
(1), (2) with ¢ := c*in the case when in (2) 6 (x — xo) is replaced with a non-zero
function F (x) € C= (R®) with a compact support and such that F (z) = 0 in Q.
Then with a constant Cy = Cy (dy,ds, Z,Qr, F) > 0 the following estimate is valid

|@ne — ChHLQ(Q) <
T
< VMCZI {1y max e, — ol + max [ (e en)] - ()] (a1 d
Q Q 0

+ \/M02€(h+’7').
(48)
Proof. By (47) |lu (Cy )|l g2(g,y < l[w”ll2(gqy + 0 Since it was observed above
that ¢ (c*) = 0, then (47) leads to || (Cy,)llf2(q,) < 0. Hence, it follows from
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(43) that in order to prove (48), it is sufficient to estimate from the above the
norm ||u*||H2(QT). Since the function F'(x) has a compact support, then, as it was
established in §2 of Chapter 4 of |22], it follows from the finite speed of propagation
property for hyperbolic equations that [[u*| 2., < C2. U

Remark 3.4. Although the number M is large for small A, still Theorems 3.3
and 3.4 show that the error in the regularized coefficient is basically determined by
the value of the gradient with respect to this coefficient. In other words, the mesh
refinement recommended in Remark 3.1 should likely decrease the error not only in
the Lagrangian but in the regularized target coefficient as well, and we observe this
in our computations [8|. In the future we hope to improve these error estimates in
such a way that the number M would not be present in them.

3.4. A general framework for derivation of analogs of theorems 3.1-3.4 for different
types of CIPs

We now outline a general framework of derivations of a posteriori error estimates
like ones in Theorems 3.1-3.4 for CIPs for three main types of PDEs of the second
order: hyperbolic, parabolic and elliptic. Suppose we have a CIP for one of these
three types of PDEs and that we want to apply the adaptivity technique, which is
similar to the one described above. Then we propose the following framework:

Step 1. Write down the Tikhonov functional similar with (8) for hyperbolic
equations, then write the Lagrangian similarly to (17).

Step 2. Derive the Frechet derivative of the Lagrangian, assuming that solutions of
state and adjoint problems are independent on the unknown coefficient.

Step 3. Using the definition of the weak H' solution of the original PDE, make sure
that integral terms, which are not responsible for the unknown coefficient, equal
zero similarly with Lemma 3.1.

Step 4. Similarly with Theorem 3.1 derive a posteriori error estimate for the
Lagrangian, assuming that state and adjoint problems are solved exactly.

Step 5. Assuming that state and adjoint problems are solved approximately by
the FEM, derive an analog of Theorem 3.2. To do so, introduce an obvious
analog of the assumption (32). Next, subtract from corresponding integral terms
of the Lagrangian integral identities which define weak solutions of state and
adjoint problems, similarly with (35), (36), (37). Then using (32), Galerkin
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orthogonality and analogs of interpolation estimates (15), (16), one obtains an
analog of Theorem 3.2, as well as an analog of Remark 3.1. These provide
a recommendation for mesh refinement. In particular, they indicate that the
impact of certain integral terms in the Frechet derivative of the Lagrangian is
not essential compared with the Frechet derivative with respect to the unknown
coefficient.

Step 6. To obtain a posteriori estimate for the regularized coefficient, observe that
formulas (38)-(40) are general ones, which are valid for a general Lagrangian.
Therefore, derivations of analogs of Theorems 3.3, 3.4 from an analog of Theorem
3.2 can be obtained straightforwardly from the above.
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