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A globally onvergent numerial method and theadaptivity tehnique for a hyperboli oe�ientinverse problem. Part I: analytial study.Larisa BeilinaDepartment of Mathematial Sienes, Chalmers University of Tehnology andGothenburg University, Gothenburg, SE-421196, SwedenE-mail: larisa.beilina�halmers.seMihael V. KlibanovDepartment of Mathematis and Statistis, University of North Carolina atCharlotte, Charlotte, NC 28223, USAE-mail: mklibanv�un.eduAbstrat. A globally onvergent numerial method for a multidimensionalCoe�ient Inverse Problem for a hyperboli equation is presented. It is shownthat this tehnique provides a good starting point for the so-alled �nite elementadaptive method (adaptivity). This leads to a natural two-stage numerialproedure, whih synthesizes both these methods. A new method for obtaining aposteriori error estimates for the adaptivity tehnique is demonstrated on a spei�example of a hyperboli Coe�ient Inverse Problem.



A globally onvergent numerial method and the adaptivity tehnique 21. IntrodutionThis paper is a ontinuation of the previous publiation of the authors [5℄, where anew globally onvergent numerial method for a Coe�ient Inverse Problem (CIP) fora hyperboli PDE was developed. In this �rst part of our work analytial studies arepresented and the seond part [8℄ disusses numerial experiments. Sine the globallyonvergent numerial method was desribed in [5℄, we fous our analytial e�ort hereon the adaptivity tehnique. We present a new idea of obtaining a posteriori errorestimates both for the Lagrangian and for the regularized oe�ient. Although thisidea an probably be presented in a rather abstrat form, we intentionally do notdo this here preferring its demonstration for a spei� CIP. Still, we outline a moregeneral framework in the end of this �rst part. It is likely that that this frameworkmight be extended to the parameter identi�ation problem.The CIP of this publiation an be applied to inverse sattering of aoustialand eletromagneti waves. Compared with [5℄, the main new element here is asynthesis of the method of [5℄ with the loally onvergent so-alled Finite ElementAdaptive method, whih we all �adaptivity� for brevity. The adaptivity tehniquefor inverse problems was previously developed in [4, 9, 10, 11℄. The underlying reasonof this synthesis is that the estimate of the di�erene between the orret solutionand the omputed one in the global onvergene theorem of [5℄ depends on a smallpositive parameter η. This parameter inorporates both the error in the boundarydata and errors generated by some approximations of the numerial proedure of [5℄.The error in the boundary data models the error in measurements and is, therefore,unavoidable. At the same time, two other approximation errors annot be made zeroand they are not parts of previously developed loally onvergent tehniques. On theother hand, sine η is small, then the global onvergene theorem [5℄ guarantees thatthe solution obtained by the tehnique of [5℄ provides a good approximation for theorret solution of the CIP. Therefore, this solution an be used as a good startingpoint for a subsequent enhanement via a loally onvergent numerial method. Itwas shown in previous publiations [4, 9, 10, 11℄ that the adaptivity is apableto provide good quality images if a good �rst approximation for the solution isavailable. The latter leads to a logial onlusion that a synthesis of the adaptivitywith the globally onvergent method of [5℄ should be used. As a result, a naturaltwo-stage numerial proedure is developed here. On the �rst stage, the globallyonvergent method of [5℄ provides a good approximation for the orret solution.



A globally onvergent numerial method and the adaptivity tehnique 3And on the seond stage, this approximation is taken as the starting point for theadaptivity tehnique, whih provides an enhanement, i.e., a better approximationfor the orret solution.In addition to this two-stage proedure, there are �ve (5) new elements of thispaper ompared with [5℄. We now list three of them. Two others are related tothe adaptivity and are outlined below in this setion. (1) The globally onvergentalgorithm is di�erent from one in [5℄ in the sense that now �inner� iterations withrespet to terms in ertain quasilinear ellipti equations are used until they onverge.Whereas previously a priori hosen number of iterations was used. (2) The stoppingrule for the globally onvergent part di�ers from one of [5℄. Namely, we now evaluateertain L2 norms at the boundary rather than inside of the domain of interest. (3)2-D numerial examples are di�erent from ones of [5℄.We all a numerial method for a CIP globally onvergent if: (1) a theoremis proven, whih ensures that this method leads to a good approximation for theorret solution of that CIP, regardless on the availability of a priori given good �rstguess for that solution, and (2) this theorem is on�rmed by numerial experiments.On the other hand, onvergene of a loally onvergent numerial method to theorret solution an be guaranteed only if the starting point is loated in a smallneighbourhood of this solution. The method of [5℄ relies on the struture ofthe underlying PDE operator instead of onventional least squares minimizationtehniques. This helps to avoid the phenomenon of loal minima.The adaptivity minimizes least squares objetive funtionals on a sequene ofadaptively re�ned meshes until images are stabilized. On eah mesh the minimizationis performed via the quasi-Newton method. Convergene of Newton-like methodsfor general ill-posed problems was proven in [3℄. At the same time, our numerialexperiments demonstrate that just a straightforward appliation of the quasi-Newtonmethod, whih works on the same mesh as the globally onvergent part did, does notimprove the result obtained on the globally onvergent stage. On the other hand,further adaptive mesh re�nements indeed enhane the solution. Therefore it isimportant to use the adaptivity in our two-stage numerial proedure. In this paperwe present a new analytial framework for the adaptivity, whih is a modi�ation ofthe framework of previous publiations [9, 10, 11℄.One of the main ideas of the adaptivity is that for eah mesh a posteriori erroranalysis shows subdomains where the biggest error of the omputed solution is.Thus, an important point is that the mesh is re�ned loally in suh subdomains.



A globally onvergent numerial method and the adaptivity tehnique 4An alternative is to use a very �ne mesh in the entire domain. However, the latterwould lead to a substantial inrease of both omputing time and memory. Notethat subdomains, where mesh is re�ned, are found without a priori knowledge ofthe solution. Instead one needs to know only an upper bound for the solution. Inthe ase of forward problems these upper bounds are obtained from lassi a prioriestimates of solutions. In the ase of CIPs upper estimates are assumed to be knownin advane, whih is aording to the Tikhonov onept for ill-posed problems [23, 25℄.A posteriori error analysis addresses the main question of the adaptivity: whereto re�ne the mesh?. This analysis provides upper estimates for di�erenes betweenomputed and exat solutions loally, in subdomains of the original domain. Suhan analysis is a lassi tool in appliations of the adaptivity to forward problems forPDEs, see, e.g. [1, 16℄. In the ase of a forward problem, the main fator enabling toondut a posteriori error analysis is the well-posedness of this problem. However,the ill-posed nature of CIPs hanges the situation radially. In fat, the ill-posednessrepresents the major obstale for an estimate of the di�erene between omputed andexat oe�ients. For this reason, the auray of the Lagrangian (depending on thatoe�ient) is usually estimated instead of one of the target oe�ient [4, 9, 10, 11℄.In this paper we develop a new idea for the derivation of a new a posteriorierror estimate for the Lagrangian. This estimate is both stronger and more e�etivethan one in [9, 10, 11℄. The meaning of this estimate is that it indiates that onean ignore ertain integral terms in the Frehet derivative of the Lagrangian whendeiding where to re�ne the mesh. While these integral terms were also ignored innumerial experiments in [9, 10, 11℄ due to omputational observations, an analytialexplanation was not provided in these referenes. At the same time, it is moredesirable to obtain a posteriori error estimate for the target oe�ient rather thanfor the Lagrangian only. In [11℄ a heuristi estimate of suh sort was obtained underthe assumption of the existene of a solution of a ertain problem for the Hessian.This existene was demonstrated numerially in [11℄.In this paper we obtain the above mentioned a posteriori error estimaterigorously. We now speify this statement. The Lagrange funtional is a modi�edlassi Tikhonov regularization funtional, see, e.g. [14, 23, 25℄ for the latter. Hene,similarly with [14, 23, 25℄, we all a minimizer of the Lagrangian for our CIP asthe �regularized oe�ient�. Thus, given a value of the regularization parameter,we estimate the di�erene between the regularized oe�ient and its approximationobtained on a ertain �nite element mesh. We assume in our derivation the existene



A globally onvergent numerial method and the adaptivity tehnique 5of the solution of a ertain problem for the Hessian. The proof of a orrespondingexistene theorem is a quite hallenging problem, whih is outside of the sope of thispubliation. The resulting a posteriori estimate di�ers from one of the Lagrangianonly by a onstant multiplier. This means that via re�ning mesh �for the Lagrangian�,we atually obtain a better auray for the regularized oe�ient.It would be better of ourse to provide a posteriori estimate of the di�erenebetween omputed and exat (rather than regularized) oe�ients. It is well known,however that even an estimate of the distane between regularized and exat solutionsof a CIP is a very hallenging and still unsolved (in many ases) problem. Indeed, thisproblem requires a derivation of an upper estimate of the modulus of the ontinuity,on a ompat set, of the operator, whih is inverse to the operator of the CIP, see(2.6) in §1 of Chapter 2 of [23℄. Thus, the problem of an estimate of the distanebetween omputed and exat solutions is not onsidered here. Still, it follows fromTheorem 2 on p. 65 of [25℄ that one an often guarantee that the regularized solutionis lose to the exat one, although without an expliit estimate. Hene, assuming thatthis is the ase, our a posteriori error estimate an be onsidered as an approximateestimate of the distane between omputed and exat oe�ients.The �rst part of our work is organized as follows. In setion 2 we brie�y desribethe globally onvergent method, see [5℄ for details. In setion 3 we present a modi�edframework for the adaptivity tehnique and prove a posteriori error estimates. Apreprint with this publiation is available online [7℄. One an also �nd there apreliminary preprint [6℄ where more numerial results are available.2. Brief desription of the globally onvergent numerial method of [5℄As the forward problem, we onsider the Cauhy problem for a hyperboli PDE
c (x) utt = ∆u in R3 × (0,∞) , (1)
u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)Sine equation (1) governs a wide range of appliations, inluding e.g., propagationof aousti and eletromagneti waves, then the same is true for the CIP we onsider.In the aoustial ase 1/

√
c(x) is the sound speed. In the 2-D ase of EM wavespropagation in a non-magneti medium, the dimensionless oe�ient c(x) = εr(x),where εr(x) is the relative dieletri funtion of the medium, see [12℄, where thisequation was derived from Maxwell's equations in the 2-D ase. Let d1 and d2 be



A globally onvergent numerial method and the adaptivity tehnique 6two positive onstants and Ω ⊂ R3 be a onvex bounded domain with the boundary
∂Ω ∈ C3. We assume that the oe�ient c (x) of equation (1) is suh that

c (x) ∈ [d1, 2d2] , d1 < d2, c (x) = 2d1 for x ∈ R3�Ω, (3)
c (x) ∈ C2

(
R3

)
. (4)We onsider the followingInverse Problem. Suppose that the oe�ient c (x) satis�es (3) and (4), wherethe positive numbers d1 and d2 are given. Assume that the funtion c (x) is unknownin the domain Ω. Determine the funtion c (x) for x ∈ Ω, assuming that the followingfuntion g (x, t) is known for a single soure position x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (5)A priori knowledge of onstants d1, d2 orresponds well with the Tikhonovonept about the availability of a priori information for an ill-posed problem [25℄.In appliations the assumption c (x) = 2d1 for x ∈ R3�Ω means that the targetoe�ient c (x) has a known onstant value outside of the medium of interest Ω.Another argument here is that one should bound the oe�ient c (x) from the belowby a positive number to ensure that the operator in (1) is a hyperboli one onall iterations of our method. Sine we do not impose any �smallness� onditionson numbers d1 and d2, our numerial method is not a loally onvergent one.The funtion g (x, t) models time dependent measurements of the wave �eld at theboundary of the domain of interest. In pratie measurements are performed at anumber of detetors, of ourse. In this ase the funtion g (x, t) an be obtained viaone of standard interpolation proedures, a disussion of whih is outside the sopeof this publiation. In the ase of a �nite time interval, on whih measurementsare performed, one should assume that this interval is large enough and thus, the
t-integral of the Laplae transform over this interval is approximately the same asone over (0,∞) .The question of uniqueness of this Inverse Problem is a well known long standingopen problem. It is addressed positively only if the funtion δ (x− x0) above isreplaed with a suh a funtion f(x) ∈ C∞ (R3) that f(x) 6= 0, ∀x ∈ Ω. An exampleof this funtion is

fε(x) = Cεe
−

|x−x0|
2

ε2 ,

∫

R3

fε (x) dx = 1, (6)



A globally onvergent numerial method and the adaptivity tehnique 7where ε > 0 is a small positive number. Corresponding uniqueness theorems areproved via the method of Carleman estimates [19, 20℄. In priniple, one an replaethe δ (x− x0)− funtion with a δ (x− x0)− like smooth funtion, whih is not zeroin Ω. The resulting funtion w̃ will be lose to the funtion w in a ertain sense, andthe above mentioned uniqueness result would be appliable then. An extension ofour numerial method to this ase is outside the sope of the urrent publiation. Itis an opinion of the authors that beause of appliations, it makes sense to developnumerial methods, assuming that the question of uniqueness of the above inverseproblem is addressed positively.Consider the Laplae transform of the funtions u,
w(x, s) =

∞∫

0

u(x, t)e−stdt, for s > s = const. > 0, (7)where s is a ertain number. It is su�ient to hoose s suh that the integral (7)would onverge together with orresponding (x, t)-derivatives. We all the parameter
s pseudo frequeny. Note that we do not use the inverse Laplae transform in ourmethod, sine approximations for the unknown oe�ient are obtained in the pseudofrequeny domain. Sine by the maximum priniple w(x, s) > 0, then we anonsider the funtion q(x, s) = ∂s(s

−2lnw(x, s)). This funtion satis�es a ertainnonlinear integral di�erential equation with Volterra integrals with respet to s,where integration is arried out from s to s̄, where s̄ is the value of the pseudofrequeny at whih these integrals are trunated. In that equation the so- alledtail funtion is also involved. This funtion omplements that trunation, it isunknown and it is small beause of a ertain asymptoti behaviour at s̄ → ∞.Therefore that equation ontains two unknown funtions q and the tail. The reasonwhy we an approximate both of them is that we treat them di�erently: while thefuntion q is approximated via inner iterations, the tail funtion is approximatedvia outer iterations. Consider a partition of the interval into small subintervals withthe length of h. Approximate the funtion q as a pieewise onstant funtion qnwith respet to s on eah of these small intervals (sn, sn−1]. Next, the equationfor qn is multiplied by the Carleman Weight Funtion CWF = eµ(s−sn−1), where
µ is a large parameter. Then the resulting equation is integrated with respet to
s ∈ (sn, sn−1]. As a result, a �nite sequene of Dirihlet boundary value problemsfor nonlinear ellipti PDEs for funtions qn is obtained, where Dirihlet boundary



A globally onvergent numerial method and the adaptivity tehnique 8onditions are known. This system is solved sequentially. As soon as the funtion
qn is approximated, an approximation cn for the unknown oe�ient c is found andthe next update for the tail funtion is also found. The �rst approximation forthe tail is either zero or the one whih orresponds to the solution of the aboveCauhy problem for c = 2d1. Let σ be a small parameter haraterizing the levelof the error in the data, and ǫ be a ertain small regularization parameter whih isintrodued to improve the stability property of solving the above Dirihlet boundaryvalue problems. Let ξ > 0 be a small number suh that ertain norm of the tail isless than ξ. Denote η = 2(h + σ + ǫ + ξ). Then η is small. The global onvergenetheorem of [5℄ laims that |cn − c∗|α ≤ Cη, where | · |α is a Hölder norm, c∗ is theexat solution of our CIP satisfying (1), (2) and C > 0 is a onstant. Thus, theglobally onvergent part provides a good approximation for the exat solution.3. The Adaptivity3.1. State and adjoint problemsTo use the adaptivity tehnique, we formulate our CIP inverse problem as anoptimization problem, where we seek the unknown oe�ient c(x), whih givesthe solution of the boundary value problem (1), (2) for the funtion u(x, t) withthe best least squares �t to the time domain observations g (x, t) , see (5). Denote
QT = Ω × (0, T ) , ST = ∂Ω × (0, T ) . In this setion C = C (QT ) denotes di�erentpositive onstants depending only on the domain QT , in (15) C depends only on Ω.Our goal now is to �nd the funtion c(x) whih minimizes the Tikhonov funtional

E(u, c) =
1

2

∫

ST

(u |ST
− g(x, t))2ζε1 (t) dσdt+

1

2
γ

∫

Ω

(c− c0)
2 dx, (8)where γ ∈ (0, 1) is a small regularization parameter, c0 is an initial guess forthe unknown oe�ient c and the funtion ζε1 (t) is introdued in order to ensureompatibility onditions in the so-alled �adjoint problem� (below). This funtionhas the following properties at t = T

ζε1 ∈ C3 [0, T ] , ζε1 (t) =





0, t ∈ (T − ε1/2, T )

1, t ∈ (0, T − ε1) ,between 0 and 1, t ∈ (T − ε1, T − ε1/2)




.



A globally onvergent numerial method and the adaptivity tehnique 9Here ε1 ∈ (0, T ) is a su�iently small number. The existene of suh funtions isknown from The Real Analysis ourse. In priniple, the regularization theory requiresthat the norm of the penalty term in (8) should be stronger than the L2 (Ω) norm[14, 23, 25℄. However, the stronger norm ondition is su�ient but not neessary.Thus, we use the simpler L2 (Ω) norm here, beause our omputational experieneshows that this is su�ient for our CIP. Another justi�ation of this is that allnorms are equivalent in �nite dimensional spaes, with whih we atually work inour omputations.Sine c (x) = 1 in R3�Ω, then given the funtion g(x, t) in (5), one anuniquely determine the funtion u(x, t) for (x, t) ∈ (R3�Ω) × (0, T ) as the solutionof the boundary value problem for equation (1) with initial onditions (2) andwith the boundary ondition (5). Hene, one an uniquely determine the funtion
p (x, t) = ∂nu |ST

. Thus, in this setion we onsider initial boundary value problemsonly in the domain QT . In partiular, the funtion u of (1), (2) is the solution of thefollowing so-alled �state problem�
cutt −△u = 0, (x, t) ∈ QT ,

u(x, 0) = ut(x, 0) = 0,

∂nu |ST
= p (x, t) .

(9)In this setion we onsider the following ondition imposed on the funtion c(x)
c ∈ C

(
Ω

)
∩H1 (Ω) , cxi

∈ L∞ (Ω) , i = 1, 2, 3; c(x) ∈ [d1, 2d2] in Ω. (10)Note that �rst two relations of (10) are always in plae if the funtion c (x) isrepresented via a linear ombination of standard pieewise linear �nite elements. Inaddition, in order to guarantee that solutions of state and adjoint problems belongsto H2(QT ), we assume that there exist suh funtions P,G and ut-o� funtion athat
P,G ∈ H3 (QT ) , ∂nP |ST

= p (x, t) , P (x, 0) = Pt(x, 0) = 0, ∂nG |ST
= g (x, t) , (11)

a ∈ C∞
(
Ω

)
, a |∂Ω= 1, ∂na |∂Ω= 0. (12)For example, if Ω = {|x| < R} , then a (x) =

[
(|x| −R)2 + 1

]
χ (|x|) , where thefuntion χ is suh that χ (z) ∈ C∞ [0, R] , χ (z) = 1 for z ∈ [R/2, R] , χ (z) = 0 for

z ∈ [0, R/4], and χ ∈ [0, 1] for z ∈ [R/4, R/2]. Although funtions σ (x) might also



A globally onvergent numerial method and the adaptivity tehnique 10be onstruted for a more general domain, we are not doing this here for brevity. Theexistene of funtions P,G satisfying (11) annot be guaranteed for the ase of thefundamental solution (1), (2). To guarantee (11), one ould replae, for example the
δ (x− x0) funtion in (2) with a funtion f̃ε (x) ∈ C∞ (R3) , similar with the funtion
fε(x) in (6) with the only di�erene that f̃ε (x) = 0 in Ω. Then the existene offuntions P,G satisfying (11) an be guaranteed at least for the ase when funtions
p, g are given without a random error. The question of an extension of the aboveglobally onvergent numerial method on the ase of suh replaement of the initialondition is outside of the sope of the urrent publiation. Overall, the questionof the existene of funtions P,G satisfying (11) is one of disrepanies between ourtheory and omputational pratie, see part II [8℄ for more disrepanies.Using (10), onditions (11) for P and applying slight modi�ations of proofs ofeither Theorems 4.1 and 5.1 of Chapter 4 of [22℄ or of Theorem 5 of setion 7.2 of[17℄, we obtain that there exists unique solution u ∈ H2 (QT ) of the problem (9).Furthermore,

∂kt u ∈ L∞

(
0, T ;H2−k (Ω)

)
, k = 0, 1, 2, (13)where H0 (Ω) := L2 (Ω) . In addition, the following integral identity holds

∫

QT

(−c (x) utrt + ∇u∇r) dxdt−
∫

ST

prdσdt = 0, ∀r ∈ H1 (QT ) , r (x, T ) = 0. (14)We note that (14) is also the de�nition of the weak H1 (QT )−solution of the problem(9). The existene and uniqueness of this solution is guaranteed if the funtion Psatis�es a weaker smoothness ondition P ∈ H2 (QT ) , see Theorem 5.1 of Chapter4 of [22℄.Denote
H2
u (QT ) = {f ∈ H2(QT ) : f(x, 0) = ft(x, 0) = 0},

H1
u(QT ) = {f ∈ H1(QT ) : f(x, 0) = 0},

H2
ϕ(QT ) = {f ∈ H2(QT ) : f(x, T ) = ft(x, T ) = 0},

H1
ϕ(QT ) = {f ∈ H1(QT ) : f(x, T ) = 0},

U = H2
u(QT ) ×H2

ϕ(QT ) × C(Ω),

Ū = H1
u(QT ) ×H1

ϕ(QT ) × C
(
Ω

)
,

Ū1 = L2 (QT ) × L2 (QT ) × L2 (Ω) ,



A globally onvergent numerial method and the adaptivity tehnique 11where all funtions are real valued. Hene, U ⊂ Ū ⊂ Ū1 as sets, U is dense in Ūand Ū is dense in Ū1. To formulate the FEM for boundary value problems below, weintrodue �nite element spaes W u
h ⊂ H1

u (QT ) and W ϕ
h ⊂ H1

ϕ (QT ). These spaesonsist of standard pieewise linear �nite elements in spae and time satisfying initialonditions u (x, 0) = 0 for u ∈ W u
h and ϕ (x, T ) = 0 for ϕ ∈ W ϕ

h . We also introduethe spae Vh ⊂ L2 (Ω) of standard pieewise linear �nite elements for the targetoe�ient c(x) and denote Uh = W u
h ×W ϕ

h × Vh. Obviously Uh ⊂ Ū as a set. So, weonsider Uh as a disrete analogue of the spae Ū . It is onvenient for us to introduein Uh the same norm as one in Ū1, ‖•‖Uh
:= ‖•‖Ū1 . We work with pieewise linear�nite elements in our analytial derivations beause we work with them in numerialexperiments. Considerations of other types of �nite elements are outside of the sopeof this publiation. We assume below that the mesh in the domain Ω is regular.We now formulate some error estimates for interpolants in the format, whihis onvenient for our derivations below. Let h and τ be maximal grid step sizesof pieewise linear �nite elements with respet to x and t respetively. For anyfuntion f belonging to either H2 (QT ) or to H1 (Ω) , let f I be its interpolantvia orresponding �nite elements assoiated with the spae Uh. Let the funtion

f ∈ C
(
Ω

)
∩ H1 (Ω) and its partial derivatives fxi

∈ L∞ (Ω) . Let the funtion psatis�es onditions (13). Then
∥∥f − f I

∥∥
C(Ω) ≤ C ‖∇f‖L∞(Ω) h, (15)

∥∥p− pI
∥∥
H1(QT )

≤ C ‖p‖H2(QT ) (h+ τ) . (16)Estimate (15) follows from the formula 76.3 in [15℄. Estimate (16) follows fromTheorem 3.2.1 in [13℄ and embedding theorem of H2 (Ω) in C (
Ω

) sine Ω ∈ R3 (thesame is true for R2). The mesh regularity assumption is not neessary for (15), unlike(16).Let the funtion ϕ ∈ H2
ϕ (QT ) . To solve the problem of the minimization of thefuntional (8), we introdue the Lagrangian

L(v) = E(u, c) −
∫

QT

c(x)utϕtdxdt+

∫

QT

∇u∇ϕdxdt−
∫

ST

pϕdσdt, v = (u, ϕ, c) . (17)By (9) and (14) the sum of integral terms in (17) equals zero. Thus, L(v) = E(u, c).In other words, the addition of these terms to E(u, c), does not hange the Tikhonovfuntional. The reason of onsidering the Lagrangian instead of E(u, c) is that it is



A globally onvergent numerial method and the adaptivity tehnique 12easier (in ertain sense) to �nd a stationary point of L(v) ompared with E(u, c). Tominimize the Lagrangian, we need to alulate its Frehet derivative and to set it tozero. Note that the funtion u depends on the oe�ient c. In addition, below we willimpose a onstraint on the funtion ϕ requiring it to be the solution of the so-alled�adjoint problem� (20). The latter means that ϕ also depends on c. Hene, in orderto alulate the Frehet derivative rigorously, one should assume that variationsof funtions u and ϕ depend on variations of the oe�ient c and alulate theFrehet derivative of L̃ (c) := L(v (c)). To do this, one needs, therefore, to onsiderFrehet derivatives of u, ϕ with respet to c in respetively de�ned funtional spaes.However, this way, although ompletely rigorous, is antiipated to be quite spaeonsuming, and we are not aware about previous publiations where this way wouldbe fully arried out for a CIP, although see [18℄ for an inverse problem of determininga boundary ondition of a paraboli PDE; the latter is linear, unlike our CIP. Wewill onsider the rigorous way in a forthoming publiation. At this point, however,following previous publiations [2, 4, 9, 10, 11℄, we adopt a simpler heuristi theso-alled "one shot" approah. Namely, we assume that in (12) funtions u, ϕ, can be varied independently on eah other. Furthermore, whenever we disussFrehet derivatives of L, we always mean mutually independent variations of allthree omponents of the vetor funtion v. However, as soon as this derivative isalulated, we assume that solutions u and ϕ of state (9) and adjoint (20) problemsdo depend on the oe�ient c. The omputational experiene of both urrent andprevious publiations [4, 9, 10, 11℄ shows that this is su�ient.Thus, we searh for a stationary point of the funtional L(v), v ∈ U satisfying
L′(v) (v) = 0, ∀v = (u, ϕ, c) ∈ Ū (18)where L′(v)(·) is the Frehet derivative of L at the point v under the aboveassumption of mutual independene of funtions u, ϕ, c. To �nd L′(v) (v) , onsider

L (v + v) − L (v) ∀v ∈ Ū and single out the linear, with respet to v, part of this



A globally onvergent numerial method and the adaptivity tehnique 13expression. Hene, we obtain from (17) and (18)
L′(v) (v) =

∫

Ω


γ (c− c0) −

T∫

0

utϕtdt


 cdx

+




∫

QT

(−cutϕt + ∇u∇ϕ) dxdt−
∫

ST

pϕdσdt





+




∫

QT

(−cϕtut + ∇ϕ∇u) dxdt−
∫

ST

ζε1 (g − u |ST
) udσdt





= 0, ∀v = (u, ϕ, c) ∈ Ū .

(19)
The term in the seond line of (19) equals zero beause of (9) and (14). To ensurethat the term in the third line of (19) is zero, we assume �rst that there exists afuntion G satisfying (11). Next we set that the funtion ϕ is the solution of thefollowing adjoint problem

cϕtt −△ϕ = 0, (x, t) ∈ QT ,

ϕ(x, T ) = ϕt(x, T ) = 0,

∂nϕ |ST
= ζε1 (t) (g − u) (x, t) , (x, t) ∈ ST .

(20)Consider the funtion Φ (x, t) = ϕ (x, t) − ζε1 (t) [G(x, t) − a(x)u(x, t)] . Then
cΦtt − ∆Φ =

[
2ζε1∇a∇u− 2ca∂tζε1ut −

(
c∂2

t − ∆
)
(ζε1G)

]
,

Φ(x, T ) = Φt(x, T ) = 0, ∂nΦ |ST
= 0.

(21)Hene, there exists unique solution Φ ∈ H2 (QT ) of the problem (21) and Φ satis�esondition (13). Therefore, there exists unique solution ϕ of the problem (20), and(13) holds for the funtion ϕ. The adjoint problem (20) should be solved bakwards intime. For any funtion c satisfying (10) denote u (c) and ϕ (c) solutions of problems(9) and (20) respetively, both funtions satisfy (13). Finally, to ensure that the �rstline of (19) equals zero, we set
γ(c− c0) −

∫ T

0

utϕt dt = 0, x ∈ Ω. (22)



A globally onvergent numerial method and the adaptivity tehnique 14Hene, it follows from (22) that in order to �nd the stationary point of theLagrangian, we need to arrange an iterative proedure to approximate suh afuntion c (x), whih would satisfy ondition (10) and would be a solution of equation(22), where funtions u and ϕ are solutions of state (9) and adjoint (20) problemsrespetively. The following lemma follows immediately from (14).Lemma 3.1. Consider an arbitrary funtion c(x) satisfying ondition (10)and assume that onditions (11) and (12) hold. Let funtions u, ϕ ∈ H2 (QT ) besolutions of state (9) and adjoint (20) problems and v = (u (c) , ϕ (c) , c) (i.e., v isnot neesseraly a minimizer of the Lagrangian). Then
L′(v) (v) =

∫

Ω


γ (c− c0) −

T∫

0

utϕtdt


 cdx, ∀v = (u, ϕ, c) ∈ Ū .3.2. A posteriori error estimate for the LagrangianLet the funtion c∗ (x) satisfying (3), (4) be the exat solution of our CIP, g∗ (x, t) bethe orresponding funtion (5), and u (c∗) be the solution of the Cauhy problem (1),(2) with c := c∗. Hene, g∗ − u∗ |ST

= 0, meaning that the orresponding solution ofthe adjoint problem (20) ϕ (c∗) = 0. Denote v∗ = (u (c∗) , 0, c∗) ∈ U. Sine the seondstage of our two-stage proedure, the adaptivity, is a loally onvergent numerialmethod, whih takes a good approximation obtained on globally onvergent �rststage as a starting point, we work in this setion in a small neighbourhood of theexat solution v∗. So, sine U ⊂ Ū as a set, we work in setion 3 in the set Vδ ⊂ Ū ,

Vδ =
{
v̂ ∈ Ū : ‖v̂ − v∗‖Ū < δ

}
, (23)where δ ∈ (0, 1) is a su�iently small number. In partiular, δ an be linked withthe parameter η of the global onvergene theorem of [5℄, although we are not doingthis here for brevity. Suppose that there exists a minimizer v = (u (c) , ϕ (c) , c) ∈

U ∩
(
V δ�∂V δ

) of the Lagrangian L (17) satisfying (18) (and therefore (19)), andthe funtion c satis�es ondition (10). Note that beause of an error in the data
g in (5), it is not neessary that v = v∗. Assume that there exists a minimizer
vh = (uh (ch) , ϕh (ch) , ch) ∈ Uh ∩

(
V δ�∂V δ

) of L on the disrete subspae Uhwhere the funtion ch satis�es ondition (10). Here and below uh (ch) ∈ W u
h and

ϕh (ch) ∈W ϕ
h are �nite element solutions of problems (9) and (20), respetively, with

c := ch and under the assumption that boundary funtions p, g, u |ST
in (9) and



A globally onvergent numerial method and the adaptivity tehnique 15(20) are the same as ones for funtions u (c) , ϕ (c) . The ase when these boundaryfuntions are approximated via �nite elements an be onsidered along the samelines, and we are not doing this here for brevity. Hene, vh is a solution of thefollowing problem
L′ (vh) (v) = 0, ∀v ∈ Uh. (24)We now obtain a posteriori error estimate for the error in the Lagrangian. We have

L (v) − L (vh) =

1∫

0

L′ (θv + (1 − θ) vh) dθ = L′ (vh) (v − vh) +R, (25)where the remainder term R is the seond order of smallness with respet to δ. WeignoreR, and the omputational experiene of both urrent and previous publiations[9, 10, 11℄ shows that ignoring R does not have a visible impat on numerial results.Let vI =
(
uI , ϕI , cI

) be the interpolant of the vetor funtion v by �nite elements of
Uh. We have

v − vh = (vI − vh) + (v − vI). (26)Use the Galerkin orthogonality priniple. Namely, by (24) and (26)
L′ (vh) (v − vh) = L′ (vh) (vI − vh) + L′ (vh) (v − vI) = L′ (vh) (v − vI). (27)Hene (25) implies that the following approximate error estimate for the Lagrangianholds

L(v) − L(vh) ≈ L′(vh)(v − vI). (28)In (28) v − vI appear as interpolation errors. Hene, (15, 16) imply that one anestimate v−vI in terms of derivatives of v and the maximal grid step sizes h in spaeand τ in time, and this would speify the estimate (28).If both state and adjoint problems are solved exatly, then Lemma 3.1 ensuresthat only the �rst line in the right hand side of (19) should be onsidered in aposteriori error analysis for the Lagrangian, and two other lines equal zero. Inpratie, however these two lines are not neessarily zeros beause state and adjointproblems are solved by the FEM approximately. Hene, they should be taken intoaount in a posteriori error estimates. Consider �rst an �ideal� ase when state andadjoint problems are solved exatly for the oe�ient belonging to the disrete spae
Vh. Consider the spae Ũ = H1

u (QT )×H1
ϕ (QT )×Vh. Consider a vetor funtion yh :=
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(u (ch) , ϕ (ch) , ch) ∈ Ũ ∩

(
V δ�∂V δ

), where funtions u (ch) := u (ch, x, t) ∈ H2 (QT )and ϕ (ch) := ϕ (ch, x, t) ∈ H2 (QT ) are exat solutions of state (9) and adjoint (20)problems respetively with the funtion c := ch satisfying (10). By (14), (19) andLemma 3.1
L′ (yh) (v) =

∫

Ω


γ (ch − c0) −

T∫

0

(ut (ch)ϕt (ch)) (x, t) dt


 cdx,

∀v = (u, ϕ, c) ∈ Ũ .

(29)Thus, we obtainTheorem 3.1. Assume that onditions (11) and (12) hold. Let the vetorfuntion v = (u (c) , ϕ (c) , c) ∈ U ∩
(
V δ�∂V δ

) satis�es (18) and the vetor funtion
yh = (u (ch) , ϕ (ch) , ch) ∈

(
V δ�∂V δ

) be a minimizer of the Lagrangian L on thespae Ũ . Let funtions c, ch satisfy ondition (10). Then the following approximatea posteriori error estimate is valid
|L (v) − L(yh)| ≈ |L′(yh)(v − vI)|

≤ C ‖∇c‖L∞(Ω) h

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]
.(30)Proof. Sine yh is a minimizer on the spae Ũ , then L′ (yh) (v) = 0, ∀v ∈ Ũ .Sine vI−vh ∈ Ũ , then L′ (yh) (vI−vh) = 0. Hene, it follows from (14), the de�nitionof funtions u (ch) , ϕ (ch) and (26), (27) that the following analog of (28) is valid

L (v) − L (yh) ≈ L′ (yh) (v − vI). By (10) and (15) ∥∥c− cI
∥∥
C(Ω) ≤ Ch ‖∇c‖L∞(Ω) .The rest of the proof follows from (29)), where c should be replaed with c− cI . �Remark 3.1. The estimate (30) indiates that the error in the Lagrangian anbe dereased by re�ning the grid loally in those regions, where values of the funtion

Bh(x),

Bh(x) = γ |ch − c0| (x) +

∫ T

0

(|∂tuh| · |∂tϕh|) (x, t) dt (31)are lose to its maximal value. The latter forms the basis for the adaptivity tehnique,see subsetion 6.4.While it was assumed in Theorem 3.1 that state and adjoint problems with
c := ch are solved preisely, in the next theorem we assume that they are solved via



A globally onvergent numerial method and the adaptivity tehnique 17the FEM with a small error ε, see, e.g. [10℄ for some spei� error estimates for theFEM for a seond order hyperboli PDE. It is natural to assume that
‖u (ch) − uh (ch)‖H1(QT ) ≤ ε, ‖ϕ (ch) − ϕh (ch)‖H1(QT ) ≤ ε. (32)Theorem 3.2. Let onditions (11), (12) hold. Let vetor funtions v =

(u (c) , ϕ (c) , c) ∈ U ∩
(
V δ�∂V δ

) and vh = (uh (ch) , ϕh (ch) , ch) ∈ Uh ∩
(
V δ�∂V δ

)satisfy (18) and (24) respetively and oe�ients c, ch satisfy (10). Let ε ∈ (0, 1) bea su�iently small positive number. Suppose that one an hoose maximal grid stepsizes in spae and time h = h (ε) and τ = τ (ε) so small that the estimate (32) holds.Assume also that �nite elements in Ω are regular. Then the following approximatea posteriori error estimate for the Lagrangian is valid
|L(v) − L(vh)| ≈ |L′(vh)(v − vIh)|

≤ C ‖∇c‖L∞(Ω) h

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]

+ C (1 + 2d2) ε (h + τ)
[
‖u (c)‖H2(QT ) + ‖ϕ (c)‖H2(QT )

]
. (33)Further, suppose that a priori estimate for the gradient of the unknownoe�ient is ‖∇c‖L∞(Ω) ≤ Z, where the positive onstant Z is given (bythe Tikhonov onept for ill-posed problems). Then with a onstant C1 =

C1

(
d1, d2, Z, ‖P‖H3(QT ) , ‖G‖H3(QT ) , QT

)
> 0

|L(v) − L(vh)| ≈
∣∣L′(vh)(v − vI)

∣∣

≤ CZh

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]

+ C1ε (h+ τ) .

(34)Proof. Denote for brevity uh = uh (ch) , ψ = ϕ (c)− ϕI (c) . Sine the third lineof (19) an be estimated similarly with the seond line, we onsider only the seondline with u := uh. By (28) we should replae ϕ with ψ there. Denote
Ah =

∫

QT

(−chuhtψt + ∇uh∇ψ) dxdt−
∫

ST

pψdσdt. (35)
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ϕ (QT ) , then ψ (x, T ) = 0. By (14)

∫

QT

(−chut (ch)ψt + ∇u (ch)∇ψ) dxdt−
∫

ST

pψdσdt = 0. (36)Sine the funtion ϕ (c) satis�es ondition (13), then this implies in turn the estimate(16) for ψ = ϕ (c) − ϕI (c). Hene, ‖ψ‖H1(QT ) ≤ C (h+ τ) ‖ϕ (c)‖H2(QT ) . Thus,subtrating (36) from (35), we obtain
Ah =

∫

QT

(−ch (uh − u (ch))t ψt + ∇ (uh − u (ch))∇ψ) dxdt,

|Ah| ≤ (1 + 2d2) ‖uh − u (ch)‖H1(QT ) ‖ψ‖H1(QT )

≤ (1 + 2d2) ε ‖ψ‖H1(QT ) ≤ C (1 + 2d2) ε (h+ τ) ‖ϕ (c)‖H2(QT ) .

(37)This estimate for |Ah| proves (33). To prove (34), we need to obtain upper estimatesfor norms ‖u (c)‖H2(QT ) , ‖ϕ (c)‖H2(QT ) . Consider the funtion w = u (c) − P. Then(9) and (11) imply that this funtion is the solution of the following initial boundaryvalue problem
cwtt = ∆w −

(
c∂2

t − ∆
)
P,

w (x, 0) = wt (x, 0) = 0, ∂nw |ST
= 0.By (11) the funtion (c∂2

t − ∆)P ∈ H1 (QT ) . Hene, we obtain similarly with (13)
w ∈ H2 (QT ) , ‖w‖H2(QT ) ≤ C ′

1 ‖P‖H3(QT ) , with a onstant C ′

1 = C ′

1 (d1, d2, Z,QT ) >

0. Hene, ‖u (c)‖H2(QT ) ≤ C1. The proof of the estimate ‖ϕ (c)‖H2(QT ) ≤ C1 an beobtained similarly via onsidering the funtion Φ in (21). �Remark 3.2. Under a natural assumption ε (h + τ) << h (33),(34) indiatethat one an approximately drop the third line in eah of these estimates. In otherwords, Theorem 3.2 basially says that one an ignore terms in seond and thirdlines of (19) when onduting a posteriori error analysis of the Lagrangian, providedthat both state and adjoint problems are solved by the FEM with a good auraywith c := ch, although not exatly. The same is true for Theorems 3.3 and 3.4 insubsetion 3.3.3.3. A posteriori error estimate for the regularized unknown oe�ientSuppose that there exist two vetor funtions v = (u (c) , ϕ (c) , c) ∈ U ∩
(
V δ�∂V δ

)and vh = (uh (ch) , ϕh (ch) , ch) ∈ Uh ∩
(
V δ�∂V δ

) satisfying onditions of Theorem



A globally onvergent numerial method and the adaptivity tehnique 193.2. Denote ((·, ·)) the inner produt in Ū1 and [·] the norm generated by this produt.Let L′′ (vh) (v̄, w) , v̄, w ∈ Ū be the seond Frehet derivative of the Lagrangian L atthe point vh, i.e. the Hessian. Consider a funtion ψ ∈ Ū and onsider a solution
ṽψ of the following problem, whih we all the �Hessian problem�,

−L′′(vh) (v, ṽψ) = ((ψ, v)) ∀v ∈ Uh,

ṽψ ∈ U ∩
(
V δ�∂V δ

)
.

(38)Assume that a solution ṽψ = (ũψ, ϕ̃ψ, c̃ψ) of this problem exists, and the funtion c̃ψsatis�es (10). In (38) hoose v = v − vh. Sine by (18) L′ (v) (ṽψ) = 0, we obtain
((ψ, v − vh)) = −L′′(vh)(v − vh, ṽψ)

= −L′(v)(ṽψ) + L′(vh)(ṽψ) +R = L′(vh)(ṽψ) +R,
(39)where again R is the remainder term of the seond order of smallness with respetto the parameter δ in (23). Thus, ignoring R, we obtain

((ψ, v − vh)) = L′(vh)(ṽψ). (40)Beause of dropping the term R, atually one should have �≈� instead of �=� in(40), and this is why error estimates below are approximate ones. The formula (40)is the main fator enabling us to obtain approximate a posteriori error estimate forthe regularized unknown oe�ient.The formulas (38), (39) and (40) where obtained in [11℄, although only a singlefuntion ψ was used there, i.e. the follow up analysis with funtions ψk was not apart of [11℄.Theorem 3.3. Let onditions (11) and (12) hold. Suppose that thereexist two vetor funtions v = (u (c) , ϕ (c) , c) ∈ U ∩
(
V δ�∂V δ

) and vh =

(uh (ch) , ϕh (ch) , ch) ∈ Uh ∩
(
V δ�∂V δ

) satisfying orresponding onditions ofTheorem 3.2. Let Ph : Ū1 → Uh and Qh : L2 (Ω) → Vh be orthogonal projetionoperators of spaes Ū1 and L2 (Ω) on their respetive subspaes Uh and Vh. Let
{ψk}Mk=1 ⊂ Uh be an orthonormal basis in the spae Uh. Suppose that for eah vetorfuntion ψk there exists a solution ṽψk

= (ũψk
, ϕ̃ψk

, c̃ψk
) of the problem (38) with thefuntion c̃ψk

satisfying ondition (10). Then the following approximate a posteriori
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‖Qhc− ch‖L2(Ω) ≤ [Phv − vh] =

[
M∑

k=1

|((ψk, Phv − vh))|2
]1/2

≤
[

M∑

k=1

∣∣L′(vh)(ṽψk
− ṽIψk

)
∣∣2

]1/2

.(41)In partiular, assume that problems (9) and (20) are solved exatly for c := ch. Then
‖Qhc− ch‖L2(Ω) ≤
√
MC max

k
‖∇c̃ψk

‖C(Ω) h

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]
,(42)where M = dim(Uh).Consider now the ase when problems (9) and (20) with c := ch are solvedapproximately by the FEM, i.e., assume that (32) holds. Also, let �nite elements in

Ω be regular. Then
‖Qhc− ch‖L2(Ω) ≤
√
MCmax

k
‖∇c̃ψk

‖C(Ω) h

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]

+
√
MC (1 + 2d2) ε (h+ τ)

[
max
k

‖u (c̃ψk
)‖H2(QT ) + max

k
‖ϕ (c̃ψk

)‖H2(QT )

]
. (43)Proof. We have w = Phw + (I − Ph)w, ∀w ∈ Ū1. Sine the vetor (I − Ph)wis orthogonal to the subspae Uh, then ((ψk, (I − Ph)w)) = 0, ∀w ∈ Ū1, k =

1, ...,M. Hene, ((ψk, v)) = ((ψk, Phv)) + ((ψk, (I − Ph) v)) = ((ψk, Phv)) . Hene,
((ψk, v − vh)) = ((ψk, Phv − vh)) . Therefore, (40) implies that

((ψk, Phv − vh)) = L′ (vh) (ṽψk
) . (44)Let ṽIψk

be the interpolant of the vetor funtion ṽψk
by �nite elements of the spae

Uh. Then by (24) L′ (vh)
(
ṽIψk

)
= 0. Hene, using an analog of (26), we obtain

L′ (vh) (ṽψk
) = L′ (vh)

(
ṽψk

− ṽIψk

)
+ L′ (vh)

(
ṽIψk

)
= L′ (vh)

(
ṽψk

− ṽIψk

)
. Hene, by(44)

((ψk, Phv − vh)) = L′ (vh)
(
ṽψk

− ṽIψk

)
. (45)
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L2(Ω) ≤ [Phv − vh]

2 , then by (45)
‖Qhc− ch‖2

L2(Ω) ≤ [Phv − vh]
2 =

M∑

k=1

|((ψk, Phv − vh))|2 =

M∑

k=1

∣∣L′ (vh)
(
ṽψk

− ṽIψk

)∣∣2(46)Thus, (41) follows from (46). Estimate (42) follows immediately from (41) andTheorem 3.1. Estimate (43) follows from (42), (46) and Theorem 3.2. �Remark 3.3. Note that the right hand sides of a posteriori error estimates(42) and (43) for the regularized unknown oe�ient have basially the same formas ones for the auray of the Lagrangian in Theorems 3.1 and 3.2, respetively.This is onvenient for omputations. Thus, re�ning mesh, as in Remark 3.1, onemight improve the auray of the reonstrution of both the Lagrangian and theregularized oe�ient. Numerial studies of [11℄ seem to indiate that requiredsolutions of the Hessian problem exist. An inonvenient point of estimates (42),(43) is that one should estimate maximal values depending on funtions ṽψk
. Tomitigate this, we impose a little bit more stringent ondition in Theorem 3.4.Theorem 3.4. Assume that (38) in one of onditions of Theorem 3.3 is replaedwith

ṽψk
∈ {v̂ ∈ U : ‖v̂ − v∗‖U < δ < 1} , (47)whih means that in (23) the spae Ū is replaed with the spae U with a strongernorm. Let the rest of onditions of Theorem 3.3 holds. Assume that the exatunknown oe�ient c∗ (x) satis�es (3), (4) and a priori estimate for its gradient is

‖∇c∗‖C(Ω) ≤ Z, where the positive onstant Z is known (by the Tikhonov onept forill-posed problems). Let the funtion u∗ (x, t) be the solution of the Cauhy problem(1), (2) with c := c∗in the ase when in (2) δ (x− x0) is replaed with a non-zerofuntion F (x) ∈ C∞ (R3) with a ompat support and suh that F (x) = 0 in Ω.Then with a onstant C2 = C2 (d1, d2, Z,QT , F ) > 0 the following estimate is valid
‖Qhc− ch‖L2(Ω) ≤

≤
√
MCZh

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]

+
√
MC2ε (h+ τ) . (48)Proof. By (47) ‖u (c̃ψk

)‖H2(QT ) ≤ ‖u∗‖H2(QT ) + δ. Sine it was observed abovethat ϕ (c∗) = 0, then (47) leads to ‖ϕ (c̃ψk
)‖H2(QT ) ≤ δ. Hene, it follows from



A globally onvergent numerial method and the adaptivity tehnique 22(43) that in order to prove (48), it is su�ient to estimate from the above thenorm ‖u∗‖H2(QT ). Sine the funtion F (x) has a ompat support, then, as it wasestablished in §2 of Chapter 4 of [22℄, it follows from the �nite speed of propagationproperty for hyperboli equations that ‖u∗‖H2(QT ) ≤ C2. �Remark 3.4. Although the number M is large for small h, still Theorems 3.3and 3.4 show that the error in the regularized oe�ient is basially determined bythe value of the gradient with respet to this oe�ient. In other words, the meshre�nement reommended in Remark 3.1 should likely derease the error not only inthe Lagrangian but in the regularized target oe�ient as well, and we observe thisin our omputations [8℄. In the future we hope to improve these error estimates insuh a way that the number M would not be present in them.3.4. A general framework for derivation of analogs of theorems 3.1-3.4 for di�erenttypes of CIPsWe now outline a general framework of derivations of a posteriori error estimateslike ones in Theorems 3.1-3.4 for CIPs for three main types of PDEs of the seondorder: hyperboli, paraboli and ellipti. Suppose we have a CIP for one of thesethree types of PDEs and that we want to apply the adaptivity tehnique, whih issimilar to the one desribed above. Then we propose the following framework:Step 1. Write down the Tikhonov funtional similar with (8) for hyperboliequations, then write the Lagrangian similarly to (17).Step 2. Derive the Frehet derivative of the Lagrangian, assuming that solutions ofstate and adjoint problems are independent on the unknown oe�ient.Step 3. Using the de�nition of the weak H1 solution of the original PDE, make surethat integral terms, whih are not responsible for the unknown oe�ient, equalzero similarly with Lemma 3.1.Step 4. Similarly with Theorem 3.1 derive a posteriori error estimate for theLagrangian, assuming that state and adjoint problems are solved exatly.Step 5. Assuming that state and adjoint problems are solved approximately bythe FEM, derive an analog of Theorem 3.2. To do so, introdue an obviousanalog of the assumption (32). Next, subtrat from orresponding integral termsof the Lagrangian integral identities whih de�ne weak solutions of state andadjoint problems, similarly with (35), (36), (37). Then using (32), Galerkin
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