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A globally 
onvergent numeri
al method and theadaptivity te
hnique for a hyperboli
 
oe�
ientinverse problem. Part I: analyti
al study.Larisa BeilinaDepartment of Mathemati
al S
ien
es, Chalmers University of Te
hnology andGothenburg University, Gothenburg, SE-421196, SwedenE-mail: larisa.beilina�
halmers.seMi
hael V. KlibanovDepartment of Mathemati
s and Statisti
s, University of North Carolina atCharlotte, Charlotte, NC 28223, USAE-mail: mklibanv�un

.eduAbstra
t. A globally 
onvergent numeri
al method for a multidimensionalCoe�
ient Inverse Problem for a hyperboli
 equation is presented. It is shownthat this te
hnique provides a good starting point for the so-
alled �nite elementadaptive method (adaptivity). This leads to a natural two-stage numeri
alpro
edure, whi
h synthesizes both these methods. A new method for obtaining aposteriori error estimates for the adaptivity te
hnique is demonstrated on a spe
i�
example of a hyperboli
 Coe�
ient Inverse Problem.



A globally 
onvergent numeri
al method and the adaptivity te
hnique 21. Introdu
tionThis paper is a 
ontinuation of the previous publi
ation of the authors [5℄, where anew globally 
onvergent numeri
al method for a Coe�
ient Inverse Problem (CIP) fora hyperboli
 PDE was developed. In this �rst part of our work analyti
al studies arepresented and the se
ond part [8℄ dis
usses numeri
al experiments. Sin
e the globally
onvergent numeri
al method was des
ribed in [5℄, we fo
us our analyti
al e�ort hereon the adaptivity te
hnique. We present a new idea of obtaining a posteriori errorestimates both for the Lagrangian and for the regularized 
oe�
ient. Although thisidea 
an probably be presented in a rather abstra
t form, we intentionally do notdo this here preferring its demonstration for a spe
i�
 CIP. Still, we outline a moregeneral framework in the end of this �rst part. It is likely that that this frameworkmight be extended to the parameter identi�
ation problem.The CIP of this publi
ation 
an be applied to inverse s
attering of a
ousti
aland ele
tromagneti
 waves. Compared with [5℄, the main new element here is asynthesis of the method of [5℄ with the lo
ally 
onvergent so-
alled Finite ElementAdaptive method, whi
h we 
all �adaptivity� for brevity. The adaptivity te
hniquefor inverse problems was previously developed in [4, 9, 10, 11℄. The underlying reasonof this synthesis is that the estimate of the di�eren
e between the 
orre
t solutionand the 
omputed one in the global 
onvergen
e theorem of [5℄ depends on a smallpositive parameter η. This parameter in
orporates both the error in the boundarydata and errors generated by some approximations of the numeri
al pro
edure of [5℄.The error in the boundary data models the error in measurements and is, therefore,unavoidable. At the same time, two other approximation errors 
annot be made zeroand they are not parts of previously developed lo
ally 
onvergent te
hniques. On theother hand, sin
e η is small, then the global 
onvergen
e theorem [5℄ guarantees thatthe solution obtained by the te
hnique of [5℄ provides a good approximation for the
orre
t solution of the CIP. Therefore, this solution 
an be used as a good startingpoint for a subsequent enhan
ement via a lo
ally 
onvergent numeri
al method. Itwas shown in previous publi
ations [4, 9, 10, 11℄ that the adaptivity is 
apableto provide good quality images if a good �rst approximation for the solution isavailable. The latter leads to a logi
al 
on
lusion that a synthesis of the adaptivitywith the globally 
onvergent method of [5℄ should be used. As a result, a naturaltwo-stage numeri
al pro
edure is developed here. On the �rst stage, the globally
onvergent method of [5℄ provides a good approximation for the 
orre
t solution.
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hnique 3And on the se
ond stage, this approximation is taken as the starting point for theadaptivity te
hnique, whi
h provides an enhan
ement, i.e., a better approximationfor the 
orre
t solution.In addition to this two-stage pro
edure, there are �ve (5) new elements of thispaper 
ompared with [5℄. We now list three of them. Two others are related tothe adaptivity and are outlined below in this se
tion. (1) The globally 
onvergentalgorithm is di�erent from one in [5℄ in the sense that now �inner� iterations withrespe
t to terms in 
ertain quasilinear ellipti
 equations are used until they 
onverge.Whereas previously a priori 
hosen number of iterations was used. (2) The stoppingrule for the globally 
onvergent part di�ers from one of [5℄. Namely, we now evaluate
ertain L2 norms at the boundary rather than inside of the domain of interest. (3)2-D numeri
al examples are di�erent from ones of [5℄.We 
all a numeri
al method for a CIP globally 
onvergent if: (1) a theoremis proven, whi
h ensures that this method leads to a good approximation for the
orre
t solution of that CIP, regardless on the availability of a priori given good �rstguess for that solution, and (2) this theorem is 
on�rmed by numeri
al experiments.On the other hand, 
onvergen
e of a lo
ally 
onvergent numeri
al method to the
orre
t solution 
an be guaranteed only if the starting point is lo
ated in a smallneighbourhood of this solution. The method of [5℄ relies on the stru
ture ofthe underlying PDE operator instead of 
onventional least squares minimizationte
hniques. This helps to avoid the phenomenon of lo
al minima.The adaptivity minimizes least squares obje
tive fun
tionals on a sequen
e ofadaptively re�ned meshes until images are stabilized. On ea
h mesh the minimizationis performed via the quasi-Newton method. Convergen
e of Newton-like methodsfor general ill-posed problems was proven in [3℄. At the same time, our numeri
alexperiments demonstrate that just a straightforward appli
ation of the quasi-Newtonmethod, whi
h works on the same mesh as the globally 
onvergent part did, does notimprove the result obtained on the globally 
onvergent stage. On the other hand,further adaptive mesh re�nements indeed enhan
e the solution. Therefore it isimportant to use the adaptivity in our two-stage numeri
al pro
edure. In this paperwe present a new analyti
al framework for the adaptivity, whi
h is a modi�
ation ofthe framework of previous publi
ations [9, 10, 11℄.One of the main ideas of the adaptivity is that for ea
h mesh a posteriori erroranalysis shows subdomains where the biggest error of the 
omputed solution is.Thus, an important point is that the mesh is re�ned lo
ally in su
h subdomains.
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al method and the adaptivity te
hnique 4An alternative is to use a very �ne mesh in the entire domain. However, the latterwould lead to a substantial in
rease of both 
omputing time and memory. Notethat subdomains, where mesh is re�ned, are found without a priori knowledge ofthe solution. Instead one needs to know only an upper bound for the solution. Inthe 
ase of forward problems these upper bounds are obtained from 
lassi
 a prioriestimates of solutions. In the 
ase of CIPs upper estimates are assumed to be knownin advan
e, whi
h is a

ording to the Tikhonov 
on
ept for ill-posed problems [23, 25℄.A posteriori error analysis addresses the main question of the adaptivity: whereto re�ne the mesh?. This analysis provides upper estimates for di�eren
es between
omputed and exa
t solutions lo
ally, in subdomains of the original domain. Su
han analysis is a 
lassi
 tool in appli
ations of the adaptivity to forward problems forPDEs, see, e.g. [1, 16℄. In the 
ase of a forward problem, the main fa
tor enabling to
ondu
t a posteriori error analysis is the well-posedness of this problem. However,the ill-posed nature of CIPs 
hanges the situation radi
ally. In fa
t, the ill-posednessrepresents the major obsta
le for an estimate of the di�eren
e between 
omputed andexa
t 
oe�
ients. For this reason, the a

ura
y of the Lagrangian (depending on that
oe�
ient) is usually estimated instead of one of the target 
oe�
ient [4, 9, 10, 11℄.In this paper we develop a new idea for the derivation of a new a posteriorierror estimate for the Lagrangian. This estimate is both stronger and more e�e
tivethan one in [9, 10, 11℄. The meaning of this estimate is that it indi
ates that one
an ignore 
ertain integral terms in the Fre
het derivative of the Lagrangian whende
iding where to re�ne the mesh. While these integral terms were also ignored innumeri
al experiments in [9, 10, 11℄ due to 
omputational observations, an analyti
alexplanation was not provided in these referen
es. At the same time, it is moredesirable to obtain a posteriori error estimate for the target 
oe�
ient rather thanfor the Lagrangian only. In [11℄ a heuristi
 estimate of su
h sort was obtained underthe assumption of the existen
e of a solution of a 
ertain problem for the Hessian.This existen
e was demonstrated numeri
ally in [11℄.In this paper we obtain the above mentioned a posteriori error estimaterigorously. We now spe
ify this statement. The Lagrange fun
tional is a modi�ed
lassi
 Tikhonov regularization fun
tional, see, e.g. [14, 23, 25℄ for the latter. Hen
e,similarly with [14, 23, 25℄, we 
all a minimizer of the Lagrangian for our CIP asthe �regularized 
oe�
ient�. Thus, given a value of the regularization parameter,we estimate the di�eren
e between the regularized 
oe�
ient and its approximationobtained on a 
ertain �nite element mesh. We assume in our derivation the existen
e
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hnique 5of the solution of a 
ertain problem for the Hessian. The proof of a 
orrespondingexisten
e theorem is a quite 
hallenging problem, whi
h is outside of the s
ope of thispubli
ation. The resulting a posteriori estimate di�ers from one of the Lagrangianonly by a 
onstant multiplier. This means that via re�ning mesh �for the Lagrangian�,we a
tually obtain a better a

ura
y for the regularized 
oe�
ient.It would be better of 
ourse to provide a posteriori estimate of the di�eren
ebetween 
omputed and exa
t (rather than regularized) 
oe�
ients. It is well known,however that even an estimate of the distan
e between regularized and exa
t solutionsof a CIP is a very 
hallenging and still unsolved (in many 
ases) problem. Indeed, thisproblem requires a derivation of an upper estimate of the modulus of the 
ontinuity,on a 
ompa
t set, of the operator, whi
h is inverse to the operator of the CIP, see(2.6) in §1 of Chapter 2 of [23℄. Thus, the problem of an estimate of the distan
ebetween 
omputed and exa
t solutions is not 
onsidered here. Still, it follows fromTheorem 2 on p. 65 of [25℄ that one 
an often guarantee that the regularized solutionis 
lose to the exa
t one, although without an expli
it estimate. Hen
e, assuming thatthis is the 
ase, our a posteriori error estimate 
an be 
onsidered as an approximateestimate of the distan
e between 
omputed and exa
t 
oe�
ients.The �rst part of our work is organized as follows. In se
tion 2 we brie�y des
ribethe globally 
onvergent method, see [5℄ for details. In se
tion 3 we present a modi�edframework for the adaptivity te
hnique and prove a posteriori error estimates. Apreprint with this publi
ation is available online [7℄. One 
an also �nd there apreliminary preprint [6℄ where more numeri
al results are available.2. Brief des
ription of the globally 
onvergent numeri
al method of [5℄As the forward problem, we 
onsider the Cau
hy problem for a hyperboli
 PDE
c (x) utt = ∆u in R3 × (0,∞) , (1)
u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)Sin
e equation (1) governs a wide range of appli
ations, in
luding e.g., propagationof a
ousti
 and ele
tromagneti
 waves, then the same is true for the CIP we 
onsider.In the a
ousti
al 
ase 1/

√
c(x) is the sound speed. In the 2-D 
ase of EM wavespropagation in a non-magneti
 medium, the dimensionless 
oe�
ient c(x) = εr(x),where εr(x) is the relative diele
tri
 fun
tion of the medium, see [12℄, where thisequation was derived from Maxwell's equations in the 2-D 
ase. Let d1 and d2 be
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hnique 6two positive 
onstants and Ω ⊂ R3 be a 
onvex bounded domain with the boundary
∂Ω ∈ C3. We assume that the 
oe�
ient c (x) of equation (1) is su
h that

c (x) ∈ [d1, 2d2] , d1 < d2, c (x) = 2d1 for x ∈ R3�Ω, (3)
c (x) ∈ C2

(
R3

)
. (4)We 
onsider the followingInverse Problem. Suppose that the 
oe�
ient c (x) satis�es (3) and (4), wherethe positive numbers d1 and d2 are given. Assume that the fun
tion c (x) is unknownin the domain Ω. Determine the fun
tion c (x) for x ∈ Ω, assuming that the followingfun
tion g (x, t) is known for a single sour
e position x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (5)A priori knowledge of 
onstants d1, d2 
orresponds well with the Tikhonov
on
ept about the availability of a priori information for an ill-posed problem [25℄.In appli
ations the assumption c (x) = 2d1 for x ∈ R3�Ω means that the target
oe�
ient c (x) has a known 
onstant value outside of the medium of interest Ω.Another argument here is that one should bound the 
oe�
ient c (x) from the belowby a positive number to ensure that the operator in (1) is a hyperboli
 one onall iterations of our method. Sin
e we do not impose any �smallness� 
onditionson numbers d1 and d2, our numeri
al method is not a lo
ally 
onvergent one.The fun
tion g (x, t) models time dependent measurements of the wave �eld at theboundary of the domain of interest. In pra
ti
e measurements are performed at anumber of dete
tors, of 
ourse. In this 
ase the fun
tion g (x, t) 
an be obtained viaone of standard interpolation pro
edures, a dis
ussion of whi
h is outside the s
opeof this publi
ation. In the 
ase of a �nite time interval, on whi
h measurementsare performed, one should assume that this interval is large enough and thus, the
t-integral of the Lapla
e transform over this interval is approximately the same asone over (0,∞) .The question of uniqueness of this Inverse Problem is a well known long standingopen problem. It is addressed positively only if the fun
tion δ (x− x0) above isrepla
ed with a su
h a fun
tion f(x) ∈ C∞ (R3) that f(x) 6= 0, ∀x ∈ Ω. An exampleof this fun
tion is

fε(x) = Cεe
−

|x−x0|
2

ε2 ,

∫

R3

fε (x) dx = 1, (6)
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hnique 7where ε > 0 is a small positive number. Corresponding uniqueness theorems areproved via the method of Carleman estimates [19, 20℄. In prin
iple, one 
an repla
ethe δ (x− x0)− fun
tion with a δ (x− x0)− like smooth fun
tion, whi
h is not zeroin Ω. The resulting fun
tion w̃ will be 
lose to the fun
tion w in a 
ertain sense, andthe above mentioned uniqueness result would be appli
able then. An extension ofour numeri
al method to this 
ase is outside the s
ope of the 
urrent publi
ation. Itis an opinion of the authors that be
ause of appli
ations, it makes sense to developnumeri
al methods, assuming that the question of uniqueness of the above inverseproblem is addressed positively.Consider the Lapla
e transform of the fun
tions u,
w(x, s) =

∞∫

0

u(x, t)e−stdt, for s > s = const. > 0, (7)where s is a 
ertain number. It is su�
ient to 
hoose s su
h that the integral (7)would 
onverge together with 
orresponding (x, t)-derivatives. We 
all the parameter
s pseudo frequen
y. Note that we do not use the inverse Lapla
e transform in ourmethod, sin
e approximations for the unknown 
oe�
ient are obtained in the pseudofrequen
y domain. Sin
e by the maximum prin
iple w(x, s) > 0, then we 
an
onsider the fun
tion q(x, s) = ∂s(s

−2lnw(x, s)). This fun
tion satis�es a 
ertainnonlinear integral di�erential equation with Volterra integrals with respe
t to s,where integration is 
arried out from s to s̄, where s̄ is the value of the pseudofrequen
y at whi
h these integrals are trun
ated. In that equation the so- 
alledtail fun
tion is also involved. This fun
tion 
omplements that trun
ation, it isunknown and it is small be
ause of a 
ertain asymptoti
 behaviour at s̄ → ∞.Therefore that equation 
ontains two unknown fun
tions q and the tail. The reasonwhy we 
an approximate both of them is that we treat them di�erently: while thefun
tion q is approximated via inner iterations, the tail fun
tion is approximatedvia outer iterations. Consider a partition of the interval into small subintervals withthe length of h. Approximate the fun
tion q as a pie
ewise 
onstant fun
tion qnwith respe
t to s on ea
h of these small intervals (sn, sn−1]. Next, the equationfor qn is multiplied by the Carleman Weight Fun
tion CWF = eµ(s−sn−1), where
µ is a large parameter. Then the resulting equation is integrated with respe
t to
s ∈ (sn, sn−1]. As a result, a �nite sequen
e of Diri
hlet boundary value problemsfor nonlinear ellipti
 PDEs for fun
tions qn is obtained, where Diri
hlet boundary
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onditions are known. This system is solved sequentially. As soon as the fun
tion
qn is approximated, an approximation cn for the unknown 
oe�
ient c is found andthe next update for the tail fun
tion is also found. The �rst approximation forthe tail is either zero or the one whi
h 
orresponds to the solution of the aboveCau
hy problem for c = 2d1. Let σ be a small parameter 
hara
terizing the levelof the error in the data, and ǫ be a 
ertain small regularization parameter whi
h isintrodu
ed to improve the stability property of solving the above Diri
hlet boundaryvalue problems. Let ξ > 0 be a small number su
h that 
ertain norm of the tail isless than ξ. Denote η = 2(h + σ + ǫ + ξ). Then η is small. The global 
onvergen
etheorem of [5℄ 
laims that |cn − c∗|α ≤ Cη, where | · |α is a Hölder norm, c∗ is theexa
t solution of our CIP satisfying (1), (2) and C > 0 is a 
onstant. Thus, theglobally 
onvergent part provides a good approximation for the exa
t solution.3. The Adaptivity3.1. State and adjoint problemsTo use the adaptivity te
hnique, we formulate our CIP inverse problem as anoptimization problem, where we seek the unknown 
oe�
ient c(x), whi
h givesthe solution of the boundary value problem (1), (2) for the fun
tion u(x, t) withthe best least squares �t to the time domain observations g (x, t) , see (5). Denote
QT = Ω × (0, T ) , ST = ∂Ω × (0, T ) . In this se
tion C = C (QT ) denotes di�erentpositive 
onstants depending only on the domain QT , in (15) C depends only on Ω.Our goal now is to �nd the fun
tion c(x) whi
h minimizes the Tikhonov fun
tional

E(u, c) =
1

2

∫

ST

(u |ST
− g(x, t))2ζε1 (t) dσdt+

1

2
γ

∫

Ω

(c− c0)
2 dx, (8)where γ ∈ (0, 1) is a small regularization parameter, c0 is an initial guess forthe unknown 
oe�
ient c and the fun
tion ζε1 (t) is introdu
ed in order to ensure
ompatibility 
onditions in the so-
alled �adjoint problem� (below). This fun
tionhas the following properties at t = T

ζε1 ∈ C3 [0, T ] , ζε1 (t) =





0, t ∈ (T − ε1/2, T )

1, t ∈ (0, T − ε1) ,between 0 and 1, t ∈ (T − ε1, T − ε1/2)




.
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hnique 9Here ε1 ∈ (0, T ) is a su�
iently small number. The existen
e of su
h fun
tions isknown from The Real Analysis 
ourse. In prin
iple, the regularization theory requiresthat the norm of the penalty term in (8) should be stronger than the L2 (Ω) norm[14, 23, 25℄. However, the stronger norm 
ondition is su�
ient but not ne
essary.Thus, we use the simpler L2 (Ω) norm here, be
ause our 
omputational experien
eshows that this is su�
ient for our CIP. Another justi�
ation of this is that allnorms are equivalent in �nite dimensional spa
es, with whi
h we a
tually work inour 
omputations.Sin
e c (x) = 1 in R3�Ω, then given the fun
tion g(x, t) in (5), one 
anuniquely determine the fun
tion u(x, t) for (x, t) ∈ (R3�Ω) × (0, T ) as the solutionof the boundary value problem for equation (1) with initial 
onditions (2) andwith the boundary 
ondition (5). Hen
e, one 
an uniquely determine the fun
tion
p (x, t) = ∂nu |ST

. Thus, in this se
tion we 
onsider initial boundary value problemsonly in the domain QT . In parti
ular, the fun
tion u of (1), (2) is the solution of thefollowing so-
alled �state problem�
cutt −△u = 0, (x, t) ∈ QT ,

u(x, 0) = ut(x, 0) = 0,

∂nu |ST
= p (x, t) .

(9)In this se
tion we 
onsider the following 
ondition imposed on the fun
tion c(x)
c ∈ C

(
Ω

)
∩H1 (Ω) , cxi

∈ L∞ (Ω) , i = 1, 2, 3; c(x) ∈ [d1, 2d2] in Ω. (10)Note that �rst two relations of (10) are always in pla
e if the fun
tion c (x) isrepresented via a linear 
ombination of standard pie
ewise linear �nite elements. Inaddition, in order to guarantee that solutions of state and adjoint problems belongsto H2(QT ), we assume that there exist su
h fun
tions P,G and 
ut-o� fun
tion athat
P,G ∈ H3 (QT ) , ∂nP |ST

= p (x, t) , P (x, 0) = Pt(x, 0) = 0, ∂nG |ST
= g (x, t) , (11)

a ∈ C∞
(
Ω

)
, a |∂Ω= 1, ∂na |∂Ω= 0. (12)For example, if Ω = {|x| < R} , then a (x) =

[
(|x| −R)2 + 1

]
χ (|x|) , where thefun
tion χ is su
h that χ (z) ∈ C∞ [0, R] , χ (z) = 1 for z ∈ [R/2, R] , χ (z) = 0 for

z ∈ [0, R/4], and χ ∈ [0, 1] for z ∈ [R/4, R/2]. Although fun
tions σ (x) might also
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onstru
ted for a more general domain, we are not doing this here for brevity. Theexisten
e of fun
tions P,G satisfying (11) 
annot be guaranteed for the 
ase of thefundamental solution (1), (2). To guarantee (11), one 
ould repla
e, for example the
δ (x− x0) fun
tion in (2) with a fun
tion f̃ε (x) ∈ C∞ (R3) , similar with the fun
tion
fε(x) in (6) with the only di�eren
e that f̃ε (x) = 0 in Ω. Then the existen
e offun
tions P,G satisfying (11) 
an be guaranteed at least for the 
ase when fun
tions
p, g are given without a random error. The question of an extension of the aboveglobally 
onvergent numeri
al method on the 
ase of su
h repla
ement of the initial
ondition is outside of the s
ope of the 
urrent publi
ation. Overall, the questionof the existen
e of fun
tions P,G satisfying (11) is one of dis
repan
ies between ourtheory and 
omputational pra
ti
e, see part II [8℄ for more dis
repan
ies.Using (10), 
onditions (11) for P and applying slight modi�
ations of proofs ofeither Theorems 4.1 and 5.1 of Chapter 4 of [22℄ or of Theorem 5 of se
tion 7.2 of[17℄, we obtain that there exists unique solution u ∈ H2 (QT ) of the problem (9).Furthermore,

∂kt u ∈ L∞

(
0, T ;H2−k (Ω)

)
, k = 0, 1, 2, (13)where H0 (Ω) := L2 (Ω) . In addition, the following integral identity holds

∫

QT

(−c (x) utrt + ∇u∇r) dxdt−
∫

ST

prdσdt = 0, ∀r ∈ H1 (QT ) , r (x, T ) = 0. (14)We note that (14) is also the de�nition of the weak H1 (QT )−solution of the problem(9). The existen
e and uniqueness of this solution is guaranteed if the fun
tion Psatis�es a weaker smoothness 
ondition P ∈ H2 (QT ) , see Theorem 5.1 of Chapter4 of [22℄.Denote
H2
u (QT ) = {f ∈ H2(QT ) : f(x, 0) = ft(x, 0) = 0},

H1
u(QT ) = {f ∈ H1(QT ) : f(x, 0) = 0},

H2
ϕ(QT ) = {f ∈ H2(QT ) : f(x, T ) = ft(x, T ) = 0},

H1
ϕ(QT ) = {f ∈ H1(QT ) : f(x, T ) = 0},

U = H2
u(QT ) ×H2

ϕ(QT ) × C(Ω),

Ū = H1
u(QT ) ×H1

ϕ(QT ) × C
(
Ω

)
,

Ū1 = L2 (QT ) × L2 (QT ) × L2 (Ω) ,
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tions are real valued. Hen
e, U ⊂ Ū ⊂ Ū1 as sets, U is dense in Ūand Ū is dense in Ū1. To formulate the FEM for boundary value problems below, weintrodu
e �nite element spa
es W u
h ⊂ H1

u (QT ) and W ϕ
h ⊂ H1

ϕ (QT ). These spa
es
onsist of standard pie
ewise linear �nite elements in spa
e and time satisfying initial
onditions u (x, 0) = 0 for u ∈ W u
h and ϕ (x, T ) = 0 for ϕ ∈ W ϕ

h . We also introdu
ethe spa
e Vh ⊂ L2 (Ω) of standard pie
ewise linear �nite elements for the target
oe�
ient c(x) and denote Uh = W u
h ×W ϕ

h × Vh. Obviously Uh ⊂ Ū as a set. So, we
onsider Uh as a dis
rete analogue of the spa
e Ū . It is 
onvenient for us to introdu
ein Uh the same norm as one in Ū1, ‖•‖Uh
:= ‖•‖Ū1 . We work with pie
ewise linear�nite elements in our analyti
al derivations be
ause we work with them in numeri
alexperiments. Considerations of other types of �nite elements are outside of the s
opeof this publi
ation. We assume below that the mesh in the domain Ω is regular.We now formulate some error estimates for interpolants in the format, whi
his 
onvenient for our derivations below. Let h and τ be maximal grid step sizesof pie
ewise linear �nite elements with respe
t to x and t respe
tively. For anyfun
tion f belonging to either H2 (QT ) or to H1 (Ω) , let f I be its interpolantvia 
orresponding �nite elements asso
iated with the spa
e Uh. Let the fun
tion

f ∈ C
(
Ω

)
∩ H1 (Ω) and its partial derivatives fxi

∈ L∞ (Ω) . Let the fun
tion psatis�es 
onditions (13). Then
∥∥f − f I

∥∥
C(Ω) ≤ C ‖∇f‖L∞(Ω) h, (15)

∥∥p− pI
∥∥
H1(QT )

≤ C ‖p‖H2(QT ) (h+ τ) . (16)Estimate (15) follows from the formula 76.3 in [15℄. Estimate (16) follows fromTheorem 3.2.1 in [13℄ and embedding theorem of H2 (Ω) in C (
Ω

) sin
e Ω ∈ R3 (thesame is true for R2). The mesh regularity assumption is not ne
essary for (15), unlike(16).Let the fun
tion ϕ ∈ H2
ϕ (QT ) . To solve the problem of the minimization of thefun
tional (8), we introdu
e the Lagrangian

L(v) = E(u, c) −
∫

QT

c(x)utϕtdxdt+

∫

QT

∇u∇ϕdxdt−
∫

ST

pϕdσdt, v = (u, ϕ, c) . (17)By (9) and (14) the sum of integral terms in (17) equals zero. Thus, L(v) = E(u, c).In other words, the addition of these terms to E(u, c), does not 
hange the Tikhonovfun
tional. The reason of 
onsidering the Lagrangian instead of E(u, c) is that it is
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hnique 12easier (in 
ertain sense) to �nd a stationary point of L(v) 
ompared with E(u, c). Tominimize the Lagrangian, we need to 
al
ulate its Fre
het derivative and to set it tozero. Note that the fun
tion u depends on the 
oe�
ient c. In addition, below we willimpose a 
onstraint on the fun
tion ϕ requiring it to be the solution of the so-
alled�adjoint problem� (20). The latter means that ϕ also depends on c. Hen
e, in orderto 
al
ulate the Fre
het derivative rigorously, one should assume that variationsof fun
tions u and ϕ depend on variations of the 
oe�
ient c and 
al
ulate theFre
het derivative of L̃ (c) := L(v (c)). To do this, one needs, therefore, to 
onsiderFre
het derivatives of u, ϕ with respe
t to c in respe
tively de�ned fun
tional spa
es.However, this way, although 
ompletely rigorous, is anti
ipated to be quite spa
e
onsuming, and we are not aware about previous publi
ations where this way wouldbe fully 
arried out for a CIP, although see [18℄ for an inverse problem of determininga boundary 
ondition of a paraboli
 PDE; the latter is linear, unlike our CIP. Wewill 
onsider the rigorous way in a forth
oming publi
ation. At this point, however,following previous publi
ations [2, 4, 9, 10, 11℄, we adopt a simpler heuristi
 theso-
alled "one shot" approa
h. Namely, we assume that in (12) fun
tions u, ϕ, c
an be varied independently on ea
h other. Furthermore, whenever we dis
ussFre
het derivatives of L, we always mean mutually independent variations of allthree 
omponents of the ve
tor fun
tion v. However, as soon as this derivative is
al
ulated, we assume that solutions u and ϕ of state (9) and adjoint (20) problemsdo depend on the 
oe�
ient c. The 
omputational experien
e of both 
urrent andprevious publi
ations [4, 9, 10, 11℄ shows that this is su�
ient.Thus, we sear
h for a stationary point of the fun
tional L(v), v ∈ U satisfying
L′(v) (v) = 0, ∀v = (u, ϕ, c) ∈ Ū (18)where L′(v)(·) is the Fre
het derivative of L at the point v under the aboveassumption of mutual independen
e of fun
tions u, ϕ, c. To �nd L′(v) (v) , 
onsider

L (v + v) − L (v) ∀v ∈ Ū and single out the linear, with respe
t to v, part of this
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e, we obtain from (17) and (18)
L′(v) (v) =

∫

Ω


γ (c− c0) −

T∫

0

utϕtdt


 cdx

+




∫

QT

(−cutϕt + ∇u∇ϕ) dxdt−
∫

ST

pϕdσdt





+




∫

QT

(−cϕtut + ∇ϕ∇u) dxdt−
∫

ST

ζε1 (g − u |ST
) udσdt





= 0, ∀v = (u, ϕ, c) ∈ Ū .

(19)
The term in the se
ond line of (19) equals zero be
ause of (9) and (14). To ensurethat the term in the third line of (19) is zero, we assume �rst that there exists afun
tion G satisfying (11). Next we set that the fun
tion ϕ is the solution of thefollowing adjoint problem

cϕtt −△ϕ = 0, (x, t) ∈ QT ,

ϕ(x, T ) = ϕt(x, T ) = 0,

∂nϕ |ST
= ζε1 (t) (g − u) (x, t) , (x, t) ∈ ST .

(20)Consider the fun
tion Φ (x, t) = ϕ (x, t) − ζε1 (t) [G(x, t) − a(x)u(x, t)] . Then
cΦtt − ∆Φ =

[
2ζε1∇a∇u− 2ca∂tζε1ut −

(
c∂2

t − ∆
)
(ζε1G)

]
,

Φ(x, T ) = Φt(x, T ) = 0, ∂nΦ |ST
= 0.

(21)Hen
e, there exists unique solution Φ ∈ H2 (QT ) of the problem (21) and Φ satis�es
ondition (13). Therefore, there exists unique solution ϕ of the problem (20), and(13) holds for the fun
tion ϕ. The adjoint problem (20) should be solved ba
kwards intime. For any fun
tion c satisfying (10) denote u (c) and ϕ (c) solutions of problems(9) and (20) respe
tively, both fun
tions satisfy (13). Finally, to ensure that the �rstline of (19) equals zero, we set
γ(c− c0) −

∫ T

0

utϕt dt = 0, x ∈ Ω. (22)
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e, it follows from (22) that in order to �nd the stationary point of theLagrangian, we need to arrange an iterative pro
edure to approximate su
h afun
tion c (x), whi
h would satisfy 
ondition (10) and would be a solution of equation(22), where fun
tions u and ϕ are solutions of state (9) and adjoint (20) problemsrespe
tively. The following lemma follows immediately from (14).Lemma 3.1. Consider an arbitrary fun
tion c(x) satisfying 
ondition (10)and assume that 
onditions (11) and (12) hold. Let fun
tions u, ϕ ∈ H2 (QT ) besolutions of state (9) and adjoint (20) problems and v = (u (c) , ϕ (c) , c) (i.e., v isnot ne
esseraly a minimizer of the Lagrangian). Then
L′(v) (v) =

∫

Ω


γ (c− c0) −

T∫

0

utϕtdt


 cdx, ∀v = (u, ϕ, c) ∈ Ū .3.2. A posteriori error estimate for the LagrangianLet the fun
tion c∗ (x) satisfying (3), (4) be the exa
t solution of our CIP, g∗ (x, t) bethe 
orresponding fun
tion (5), and u (c∗) be the solution of the Cau
hy problem (1),(2) with c := c∗. Hen
e, g∗ − u∗ |ST

= 0, meaning that the 
orresponding solution ofthe adjoint problem (20) ϕ (c∗) = 0. Denote v∗ = (u (c∗) , 0, c∗) ∈ U. Sin
e the se
ondstage of our two-stage pro
edure, the adaptivity, is a lo
ally 
onvergent numeri
almethod, whi
h takes a good approximation obtained on globally 
onvergent �rststage as a starting point, we work in this se
tion in a small neighbourhood of theexa
t solution v∗. So, sin
e U ⊂ Ū as a set, we work in se
tion 3 in the set Vδ ⊂ Ū ,

Vδ =
{
v̂ ∈ Ū : ‖v̂ − v∗‖Ū < δ

}
, (23)where δ ∈ (0, 1) is a su�
iently small number. In parti
ular, δ 
an be linked withthe parameter η of the global 
onvergen
e theorem of [5℄, although we are not doingthis here for brevity. Suppose that there exists a minimizer v = (u (c) , ϕ (c) , c) ∈

U ∩
(
V δ�∂V δ

) of the Lagrangian L (17) satisfying (18) (and therefore (19)), andthe fun
tion c satis�es 
ondition (10). Note that be
ause of an error in the data
g in (5), it is not ne
essary that v = v∗. Assume that there exists a minimizer
vh = (uh (ch) , ϕh (ch) , ch) ∈ Uh ∩

(
V δ�∂V δ

) of L on the dis
rete subspa
e Uhwhere the fun
tion ch satis�es 
ondition (10). Here and below uh (ch) ∈ W u
h and

ϕh (ch) ∈W ϕ
h are �nite element solutions of problems (9) and (20), respe
tively, with

c := ch and under the assumption that boundary fun
tions p, g, u |ST
in (9) and
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hnique 15(20) are the same as ones for fun
tions u (c) , ϕ (c) . The 
ase when these boundaryfun
tions are approximated via �nite elements 
an be 
onsidered along the samelines, and we are not doing this here for brevity. Hen
e, vh is a solution of thefollowing problem
L′ (vh) (v) = 0, ∀v ∈ Uh. (24)We now obtain a posteriori error estimate for the error in the Lagrangian. We have

L (v) − L (vh) =

1∫

0

L′ (θv + (1 − θ) vh) dθ = L′ (vh) (v − vh) +R, (25)where the remainder term R is the se
ond order of smallness with respe
t to δ. WeignoreR, and the 
omputational experien
e of both 
urrent and previous publi
ations[9, 10, 11℄ shows that ignoring R does not have a visible impa
t on numeri
al results.Let vI =
(
uI , ϕI , cI

) be the interpolant of the ve
tor fun
tion v by �nite elements of
Uh. We have

v − vh = (vI − vh) + (v − vI). (26)Use the Galerkin orthogonality prin
iple. Namely, by (24) and (26)
L′ (vh) (v − vh) = L′ (vh) (vI − vh) + L′ (vh) (v − vI) = L′ (vh) (v − vI). (27)Hen
e (25) implies that the following approximate error estimate for the Lagrangianholds

L(v) − L(vh) ≈ L′(vh)(v − vI). (28)In (28) v − vI appear as interpolation errors. Hen
e, (15, 16) imply that one 
anestimate v−vI in terms of derivatives of v and the maximal grid step sizes h in spa
eand τ in time, and this would spe
ify the estimate (28).If both state and adjoint problems are solved exa
tly, then Lemma 3.1 ensuresthat only the �rst line in the right hand side of (19) should be 
onsidered in aposteriori error analysis for the Lagrangian, and two other lines equal zero. Inpra
ti
e, however these two lines are not ne
essarily zeros be
ause state and adjointproblems are solved by the FEM approximately. Hen
e, they should be taken intoa

ount in a posteriori error estimates. Consider �rst an �ideal� 
ase when state andadjoint problems are solved exa
tly for the 
oe�
ient belonging to the dis
rete spa
e
Vh. Consider the spa
e Ũ = H1

u (QT )×H1
ϕ (QT )×Vh. Consider a ve
tor fun
tion yh :=
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(u (ch) , ϕ (ch) , ch) ∈ Ũ ∩

(
V δ�∂V δ

), where fun
tions u (ch) := u (ch, x, t) ∈ H2 (QT )and ϕ (ch) := ϕ (ch, x, t) ∈ H2 (QT ) are exa
t solutions of state (9) and adjoint (20)problems respe
tively with the fun
tion c := ch satisfying (10). By (14), (19) andLemma 3.1
L′ (yh) (v) =

∫

Ω


γ (ch − c0) −

T∫

0

(ut (ch)ϕt (ch)) (x, t) dt


 cdx,

∀v = (u, ϕ, c) ∈ Ũ .

(29)Thus, we obtainTheorem 3.1. Assume that 
onditions (11) and (12) hold. Let the ve
torfun
tion v = (u (c) , ϕ (c) , c) ∈ U ∩
(
V δ�∂V δ

) satis�es (18) and the ve
tor fun
tion
yh = (u (ch) , ϕ (ch) , ch) ∈

(
V δ�∂V δ

) be a minimizer of the Lagrangian L on thespa
e Ũ . Let fun
tions c, ch satisfy 
ondition (10). Then the following approximatea posteriori error estimate is valid
|L (v) − L(yh)| ≈ |L′(yh)(v − vI)|

≤ C ‖∇c‖L∞(Ω) h

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]
.(30)Proof. Sin
e yh is a minimizer on the spa
e Ũ , then L′ (yh) (v) = 0, ∀v ∈ Ũ .Sin
e vI−vh ∈ Ũ , then L′ (yh) (vI−vh) = 0. Hen
e, it follows from (14), the de�nitionof fun
tions u (ch) , ϕ (ch) and (26), (27) that the following analog of (28) is valid

L (v) − L (yh) ≈ L′ (yh) (v − vI). By (10) and (15) ∥∥c− cI
∥∥
C(Ω) ≤ Ch ‖∇c‖L∞(Ω) .The rest of the proof follows from (29)), where c should be repla
ed with c− cI . �Remark 3.1. The estimate (30) indi
ates that the error in the Lagrangian 
anbe de
reased by re�ning the grid lo
ally in those regions, where values of the fun
tion

Bh(x),

Bh(x) = γ |ch − c0| (x) +

∫ T

0

(|∂tuh| · |∂tϕh|) (x, t) dt (31)are 
lose to its maximal value. The latter forms the basis for the adaptivity te
hnique,see subse
tion 6.4.While it was assumed in Theorem 3.1 that state and adjoint problems with
c := ch are solved pre
isely, in the next theorem we assume that they are solved via
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hnique 17the FEM with a small error ε, see, e.g. [10℄ for some spe
i�
 error estimates for theFEM for a se
ond order hyperboli
 PDE. It is natural to assume that
‖u (ch) − uh (ch)‖H1(QT ) ≤ ε, ‖ϕ (ch) − ϕh (ch)‖H1(QT ) ≤ ε. (32)Theorem 3.2. Let 
onditions (11), (12) hold. Let ve
tor fun
tions v =

(u (c) , ϕ (c) , c) ∈ U ∩
(
V δ�∂V δ

) and vh = (uh (ch) , ϕh (ch) , ch) ∈ Uh ∩
(
V δ�∂V δ

)satisfy (18) and (24) respe
tively and 
oe�
ients c, ch satisfy (10). Let ε ∈ (0, 1) bea su�
iently small positive number. Suppose that one 
an 
hoose maximal grid stepsizes in spa
e and time h = h (ε) and τ = τ (ε) so small that the estimate (32) holds.Assume also that �nite elements in Ω are regular. Then the following approximatea posteriori error estimate for the Lagrangian is valid
|L(v) − L(vh)| ≈ |L′(vh)(v − vIh)|

≤ C ‖∇c‖L∞(Ω) h

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]

+ C (1 + 2d2) ε (h + τ)
[
‖u (c)‖H2(QT ) + ‖ϕ (c)‖H2(QT )

]
. (33)Further, suppose that a priori estimate for the gradient of the unknown
oe�
ient is ‖∇c‖L∞(Ω) ≤ Z, where the positive 
onstant Z is given (bythe Tikhonov 
on
ept for ill-posed problems). Then with a 
onstant C1 =

C1

(
d1, d2, Z, ‖P‖H3(QT ) , ‖G‖H3(QT ) , QT

)
> 0

|L(v) − L(vh)| ≈
∣∣L′(vh)(v − vI)

∣∣

≤ CZh

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]

+ C1ε (h+ τ) .

(34)Proof. Denote for brevity uh = uh (ch) , ψ = ϕ (c)− ϕI (c) . Sin
e the third lineof (19) 
an be estimated similarly with the se
ond line, we 
onsider only the se
ondline with u := uh. By (28) we should repla
e ϕ with ψ there. Denote
Ah =

∫

QT

(−chuhtψt + ∇uh∇ψ) dxdt−
∫

ST

pψdσdt. (35)
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e the fun
tion ψ ∈ H1
ϕ (QT ) , then ψ (x, T ) = 0. By (14)

∫

QT

(−chut (ch)ψt + ∇u (ch)∇ψ) dxdt−
∫

ST

pψdσdt = 0. (36)Sin
e the fun
tion ϕ (c) satis�es 
ondition (13), then this implies in turn the estimate(16) for ψ = ϕ (c) − ϕI (c). Hen
e, ‖ψ‖H1(QT ) ≤ C (h+ τ) ‖ϕ (c)‖H2(QT ) . Thus,subtra
ting (36) from (35), we obtain
Ah =

∫

QT

(−ch (uh − u (ch))t ψt + ∇ (uh − u (ch))∇ψ) dxdt,

|Ah| ≤ (1 + 2d2) ‖uh − u (ch)‖H1(QT ) ‖ψ‖H1(QT )

≤ (1 + 2d2) ε ‖ψ‖H1(QT ) ≤ C (1 + 2d2) ε (h+ τ) ‖ϕ (c)‖H2(QT ) .

(37)This estimate for |Ah| proves (33). To prove (34), we need to obtain upper estimatesfor norms ‖u (c)‖H2(QT ) , ‖ϕ (c)‖H2(QT ) . Consider the fun
tion w = u (c) − P. Then(9) and (11) imply that this fun
tion is the solution of the following initial boundaryvalue problem
cwtt = ∆w −

(
c∂2

t − ∆
)
P,

w (x, 0) = wt (x, 0) = 0, ∂nw |ST
= 0.By (11) the fun
tion (c∂2

t − ∆)P ∈ H1 (QT ) . Hen
e, we obtain similarly with (13)
w ∈ H2 (QT ) , ‖w‖H2(QT ) ≤ C ′

1 ‖P‖H3(QT ) , with a 
onstant C ′

1 = C ′

1 (d1, d2, Z,QT ) >

0. Hen
e, ‖u (c)‖H2(QT ) ≤ C1. The proof of the estimate ‖ϕ (c)‖H2(QT ) ≤ C1 
an beobtained similarly via 
onsidering the fun
tion Φ in (21). �Remark 3.2. Under a natural assumption ε (h + τ) << h (33),(34) indi
atethat one 
an approximately drop the third line in ea
h of these estimates. In otherwords, Theorem 3.2 basi
ally says that one 
an ignore terms in se
ond and thirdlines of (19) when 
ondu
ting a posteriori error analysis of the Lagrangian, providedthat both state and adjoint problems are solved by the FEM with a good a

ura
ywith c := ch, although not exa
tly. The same is true for Theorems 3.3 and 3.4 insubse
tion 3.3.3.3. A posteriori error estimate for the regularized unknown 
oe�
ientSuppose that there exist two ve
tor fun
tions v = (u (c) , ϕ (c) , c) ∈ U ∩
(
V δ�∂V δ

)and vh = (uh (ch) , ϕh (ch) , ch) ∈ Uh ∩
(
V δ�∂V δ

) satisfying 
onditions of Theorem
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hnique 193.2. Denote ((·, ·)) the inner produ
t in Ū1 and [·] the norm generated by this produ
t.Let L′′ (vh) (v̄, w) , v̄, w ∈ Ū be the se
ond Fre
het derivative of the Lagrangian L atthe point vh, i.e. the Hessian. Consider a fun
tion ψ ∈ Ū and 
onsider a solution
ṽψ of the following problem, whi
h we 
all the �Hessian problem�,

−L′′(vh) (v, ṽψ) = ((ψ, v)) ∀v ∈ Uh,

ṽψ ∈ U ∩
(
V δ�∂V δ

)
.

(38)Assume that a solution ṽψ = (ũψ, ϕ̃ψ, c̃ψ) of this problem exists, and the fun
tion c̃ψsatis�es (10). In (38) 
hoose v = v − vh. Sin
e by (18) L′ (v) (ṽψ) = 0, we obtain
((ψ, v − vh)) = −L′′(vh)(v − vh, ṽψ)

= −L′(v)(ṽψ) + L′(vh)(ṽψ) +R = L′(vh)(ṽψ) +R,
(39)where again R is the remainder term of the se
ond order of smallness with respe
tto the parameter δ in (23). Thus, ignoring R, we obtain

((ψ, v − vh)) = L′(vh)(ṽψ). (40)Be
ause of dropping the term R, a
tually one should have �≈� instead of �=� in(40), and this is why error estimates below are approximate ones. The formula (40)is the main fa
tor enabling us to obtain approximate a posteriori error estimate forthe regularized unknown 
oe�
ient.The formulas (38), (39) and (40) where obtained in [11℄, although only a singlefun
tion ψ was used there, i.e. the follow up analysis with fun
tions ψk was not apart of [11℄.Theorem 3.3. Let 
onditions (11) and (12) hold. Suppose that thereexist two ve
tor fun
tions v = (u (c) , ϕ (c) , c) ∈ U ∩
(
V δ�∂V δ

) and vh =

(uh (ch) , ϕh (ch) , ch) ∈ Uh ∩
(
V δ�∂V δ

) satisfying 
orresponding 
onditions ofTheorem 3.2. Let Ph : Ū1 → Uh and Qh : L2 (Ω) → Vh be orthogonal proje
tionoperators of spa
es Ū1 and L2 (Ω) on their respe
tive subspa
es Uh and Vh. Let
{ψk}Mk=1 ⊂ Uh be an orthonormal basis in the spa
e Uh. Suppose that for ea
h ve
torfun
tion ψk there exists a solution ṽψk

= (ũψk
, ϕ̃ψk

, c̃ψk
) of the problem (38) with thefun
tion c̃ψk

satisfying 
ondition (10). Then the following approximate a posteriori
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oe�
ient is valid
‖Qhc− ch‖L2(Ω) ≤ [Phv − vh] =

[
M∑

k=1

|((ψk, Phv − vh))|2
]1/2

≤
[

M∑

k=1

∣∣L′(vh)(ṽψk
− ṽIψk

)
∣∣2

]1/2

.(41)In parti
ular, assume that problems (9) and (20) are solved exa
tly for c := ch. Then
‖Qhc− ch‖L2(Ω) ≤
√
MC max

k
‖∇c̃ψk

‖C(Ω) h

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]
,(42)where M = dim(Uh).Consider now the 
ase when problems (9) and (20) with c := ch are solvedapproximately by the FEM, i.e., assume that (32) holds. Also, let �nite elements in

Ω be regular. Then
‖Qhc− ch‖L2(Ω) ≤
√
MCmax

k
‖∇c̃ψk

‖C(Ω) h

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]

+
√
MC (1 + 2d2) ε (h+ τ)

[
max
k

‖u (c̃ψk
)‖H2(QT ) + max

k
‖ϕ (c̃ψk

)‖H2(QT )

]
. (43)Proof. We have w = Phw + (I − Ph)w, ∀w ∈ Ū1. Sin
e the ve
tor (I − Ph)wis orthogonal to the subspa
e Uh, then ((ψk, (I − Ph)w)) = 0, ∀w ∈ Ū1, k =

1, ...,M. Hen
e, ((ψk, v)) = ((ψk, Phv)) + ((ψk, (I − Ph) v)) = ((ψk, Phv)) . Hen
e,
((ψk, v − vh)) = ((ψk, Phv − vh)) . Therefore, (40) implies that

((ψk, Phv − vh)) = L′ (vh) (ṽψk
) . (44)Let ṽIψk

be the interpolant of the ve
tor fun
tion ṽψk
by �nite elements of the spa
e

Uh. Then by (24) L′ (vh)
(
ṽIψk

)
= 0. Hen
e, using an analog of (26), we obtain

L′ (vh) (ṽψk
) = L′ (vh)

(
ṽψk

− ṽIψk

)
+ L′ (vh)

(
ṽIψk

)
= L′ (vh)

(
ṽψk

− ṽIψk

)
. Hen
e, by(44)

((ψk, Phv − vh)) = L′ (vh)
(
ṽψk

− ṽIψk

)
. (45)
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e ‖Qhc− ch‖2
L2(Ω) ≤ [Phv − vh]

2 , then by (45)
‖Qhc− ch‖2

L2(Ω) ≤ [Phv − vh]
2 =

M∑

k=1

|((ψk, Phv − vh))|2 =

M∑

k=1

∣∣L′ (vh)
(
ṽψk

− ṽIψk

)∣∣2(46)Thus, (41) follows from (46). Estimate (42) follows immediately from (41) andTheorem 3.1. Estimate (43) follows from (42), (46) and Theorem 3.2. �Remark 3.3. Note that the right hand sides of a posteriori error estimates(42) and (43) for the regularized unknown 
oe�
ient have basi
ally the same formas ones for the a

ura
y of the Lagrangian in Theorems 3.1 and 3.2, respe
tively.This is 
onvenient for 
omputations. Thus, re�ning mesh, as in Remark 3.1, onemight improve the a

ura
y of the re
onstru
tion of both the Lagrangian and theregularized 
oe�
ient. Numeri
al studies of [11℄ seem to indi
ate that requiredsolutions of the Hessian problem exist. An in
onvenient point of estimates (42),(43) is that one should estimate maximal values depending on fun
tions ṽψk
. Tomitigate this, we impose a little bit more stringent 
ondition in Theorem 3.4.Theorem 3.4. Assume that (38) in one of 
onditions of Theorem 3.3 is repla
edwith

ṽψk
∈ {v̂ ∈ U : ‖v̂ − v∗‖U < δ < 1} , (47)whi
h means that in (23) the spa
e Ū is repla
ed with the spa
e U with a strongernorm. Let the rest of 
onditions of Theorem 3.3 holds. Assume that the exa
tunknown 
oe�
ient c∗ (x) satis�es (3), (4) and a priori estimate for its gradient is

‖∇c∗‖C(Ω) ≤ Z, where the positive 
onstant Z is known (by the Tikhonov 
on
ept forill-posed problems). Let the fun
tion u∗ (x, t) be the solution of the Cau
hy problem(1), (2) with c := c∗in the 
ase when in (2) δ (x− x0) is repla
ed with a non-zerofun
tion F (x) ∈ C∞ (R3) with a 
ompa
t support and su
h that F (x) = 0 in Ω.Then with a 
onstant C2 = C2 (d1, d2, Z,QT , F ) > 0 the following estimate is valid
‖Qhc− ch‖L2(Ω) ≤

≤
√
MCZh

[
γmax

Ω
|ch − c0| + max

Ω

∫ T

0

(|ut (ch)| · |ϕt (ch)|) (x, t) dt

]

+
√
MC2ε (h+ τ) . (48)Proof. By (47) ‖u (c̃ψk

)‖H2(QT ) ≤ ‖u∗‖H2(QT ) + δ. Sin
e it was observed abovethat ϕ (c∗) = 0, then (47) leads to ‖ϕ (c̃ψk
)‖H2(QT ) ≤ δ. Hen
e, it follows from
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hnique 22(43) that in order to prove (48), it is su�
ient to estimate from the above thenorm ‖u∗‖H2(QT ). Sin
e the fun
tion F (x) has a 
ompa
t support, then, as it wasestablished in §2 of Chapter 4 of [22℄, it follows from the �nite speed of propagationproperty for hyperboli
 equations that ‖u∗‖H2(QT ) ≤ C2. �Remark 3.4. Although the number M is large for small h, still Theorems 3.3and 3.4 show that the error in the regularized 
oe�
ient is basi
ally determined bythe value of the gradient with respe
t to this 
oe�
ient. In other words, the meshre�nement re
ommended in Remark 3.1 should likely de
rease the error not only inthe Lagrangian but in the regularized target 
oe�
ient as well, and we observe thisin our 
omputations [8℄. In the future we hope to improve these error estimates insu
h a way that the number M would not be present in them.3.4. A general framework for derivation of analogs of theorems 3.1-3.4 for di�erenttypes of CIPsWe now outline a general framework of derivations of a posteriori error estimateslike ones in Theorems 3.1-3.4 for CIPs for three main types of PDEs of the se
ondorder: hyperboli
, paraboli
 and ellipti
. Suppose we have a CIP for one of thesethree types of PDEs and that we want to apply the adaptivity te
hnique, whi
h issimilar to the one des
ribed above. Then we propose the following framework:Step 1. Write down the Tikhonov fun
tional similar with (8) for hyperboli
equations, then write the Lagrangian similarly to (17).Step 2. Derive the Fre
het derivative of the Lagrangian, assuming that solutions ofstate and adjoint problems are independent on the unknown 
oe�
ient.Step 3. Using the de�nition of the weak H1 solution of the original PDE, make surethat integral terms, whi
h are not responsible for the unknown 
oe�
ient, equalzero similarly with Lemma 3.1.Step 4. Similarly with Theorem 3.1 derive a posteriori error estimate for theLagrangian, assuming that state and adjoint problems are solved exa
tly.Step 5. Assuming that state and adjoint problems are solved approximately bythe FEM, derive an analog of Theorem 3.2. To do so, introdu
e an obviousanalog of the assumption (32). Next, subtra
t from 
orresponding integral termsof the Lagrangian integral identities whi
h de�ne weak solutions of state andadjoint problems, similarly with (35), (36), (37). Then using (32), Galerkin
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hnique 23orthogonality and analogs of interpolation estimates (15), (16), one obtains ananalog of Theorem 3.2, as well as an analog of Remark 3.1. These providea re
ommendation for mesh re�nement. In parti
ular, they indi
ate that theimpa
t of 
ertain integral terms in the Fre
het derivative of the Lagrangian isnot essential 
ompared with the Fre
het derivative with respe
t to the unknown
oe�
ient.Step 6. To obtain a posteriori estimate for the regularized 
oe�
ient, observe thatformulas (38)-(40) are general ones, whi
h are valid for a general Lagrangian.Therefore, derivations of analogs of Theorems 3.3, 3.4 from an analog of Theorem3.2 
an be obtained straightforwardly from the above.A
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