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A globally onvergent numerial method and theadaptivity tehnique for a hyperboli oe�ientinverse problem. Part II: numerial studies.Larisa BeilinaDepartment of Mathematial Sienes, Chalmers University of Tehnology andGothenburg University, Gothenburg, SE-421196, SwedenE-mail: larisa.beilina�halmers.seMihael V. KlibanovDepartment of Mathematis and Statistis, University of North Carolina atCharlotte, Charlotte, NC 28223, USAE-mail: mklibanv�un.eduAbstrat. In this seond part of the paper numerial experiments are presented.They show that a globally onvergent numerial method provides a good startingpoint for the �nite element adaptive method (adaptivity). This leads to a naturaltwo-stage numerial proedure, whih synthesizes both these methods.



A globally onvergent numerial method and the adaptivity tehnique 21. IntrodutionIn this seond part of the paper numerial experiments are presented. Theydemonstrate the performane of the globally onvergent numerial method inombination with the Finite Element Adaptive tehnique.This is the seond part of our work, see [4℄ for the �rst part, where analytialresults for our numerial method are presented. In this part we present numerialexperiments referring for some analytial details to the �rst part [4℄. In our numerialexperiments we image a medium with small inlusions in it, although we do notassume a priori knowledge of suh a struture. We refer to [1℄ and referenes itedthere for another approah to imaging of small inlusions. There are also someother numerial methods for multidimensional CIPs, whih do not use a good �rstguess for the solution. While the urrent paper works with a single measurementevent, they work for some CIPs with the data resulting from multiple measurements[7, 8, 9, 12, 13, 14℄. These publiations were disussed in [2℄.We now pose forward and inverse problems, for the onveniene of the reader,see details in [4℄. As the forward problem, we onsider the Cauhy problem for ahyperboli PDE,
c (x) utt = ∆u in R3 × (0,∞) , (1)
u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)Sine equation (1) governs a wide range of appliations, inluding e.g., propagationof aousti and eletromagneti waves, then the same is true for the CIP we onsider.Let d1 and d2 be two positive onstants and Ω ⊂ R3 be a onvex bounded domainwith the boundary ∂Ω ∈ C3. We assume that the oe�ient c (x) of equation (1) issuh that
c (x) ∈ [d1, 2d2] , d1 < d2, c (x) = 2d1 for x ∈ R3�Ω, (3)
c (x) ∈ C2

(

R3
)

. (4)We onsider the followingInverse Problem. Suppose that the oe�ient c (x) satis�es (3) and (4), wherethe positive numbers d1 and d2 are given. Assume that the funtion c (x) is unknownin the domain Ω. Determine the funtion c (x) for x ∈ Ω, assuming that the followingfuntion g (x, t) is known for a single soure position x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (5)



A globally onvergent numerial method and the adaptivity tehnique 3The paper is organized as follows. In setion 2 we formulate an adaptivealgorithm whih uses a modi�ed framework for the adaptivity tehnique presentedin the �rst part [4℄. In setion 3 numerial experiments are presented. A preprintwith this publiation is available online [5℄.2. The adaptive algorithmIn this setion we present our adaptive algorithm, whih is derived from Theorems3.1-3.4 and Remark 3.1 of [4℄. Ignoring third lines in estimates (33), (34) and (43),(48) (Remark 3.2) of [4℄, we onlude from (24) and (25) of [4℄ that we should �ndan approximate solution of the following problem on eah mesh
γ (ch − c0) −

T
∫

0

[∂tuh (ch) · ∂tϕh (ch)] (x, t) dt = 0, ch (x) ∈ Vh. (6)We solve the problem (6) via the quasi-Newton method given in [15℄. On the �rststep of the adaptivity we take the same mesh as one whih was used for the globallyonvergent method. The �rst guess c0 := cglob (x) is also taken the one, whih wasobtained on the globally onvergent stage.For eah mesh we ompute iteratively the sequene {cmh } , m = 1, ... ofapproximations of ch as
cm+1
h (x) = cmh (x) − αHmgm(x), (7)where α is the step length omputed via the line-searh algorithm [16℄. Here, Hm isan approximate inverse of the Hessian of the Lagrangian. The approximate inverseof the Hessian is omputed by the usual BFGS update formula:

Hm+1 = (I − dmsmymT )Hm(I − dmymsmT ) + ρsmsmT , m = 1, ...,

ym = gm+1 − gm, dm = 1/(ymT sm), m = 1, ...
(8)In (8) orretions sm are de�ned as sm = cm+1

h − cmh . In our omputations we haveused a speial BFGS update formula with limited storage for the Hessian [15℄ wherewe store a �nite number m1 = m− 1 of orretions for the omputed gradients andparameters in (8). If m = 0, then the quasi-Newton method is the usual gradientmethod with H0 = I. Let uh (cmh ) ∈ W u
h and ϕh (cmh ) ∈ W u

h be FEM solutions of



A globally onvergent numerial method and the adaptivity tehnique 4state (9) and adjoint (20) problems of [4℄, and c1h := c0. The gradient gm(x) in (7) isomputed by (see (6) in[4℄)
gm(x) = γ(cmh − c0) −

∫ T

0

[∂tuh (cmh ) · ∂tϕh (cmh )] (x, t) dt. (9)Although above a posteriori error estimates are approximate ones, our omputationalexperiene shows that they are su�ient. Thus, by Remark 3.1 of [4℄, we use thefollowing adaptivity algorithm in our omputations:Step 0. Choose an initial mesh Kh and an initial time partition J0 of the timeinterval (0, T ]. Start with the initial approximation c0 = cglob, whih wasomputed in the globally onvergent algorithm, and ompute the sequene of cmhin the following steps:Step 1. Compute solutions uh (cmh ) ∈W u
h and ϕh (cmh ) ∈W u

h of state (9) and adjoint(20) problems of [4℄, respetively on Kh and Jk.Step 2. Update the oe�ient c := cm+1
h on Kh and Jk using (7).Step 3. Stop omputing ch on the above quasi-Newton method if either the normof the gradient gm of the Lagrangian with respet to the oe�ient in (9) is

||gm||L2(Ω) < θ or norms ||gm||L2(Ω) are stabilized. Otherwise set m := m + 1and go to step 1. Here, θ is the tolerane in quasi-Newton updates. In ouromputations we took θ = 10−5.Step 4. Compute the funtion Bh (x) in (31) of [4℄. Re�ne the mesh at all pointswhere
Bh (x) > βmax

Ω
Bh (x) , (10)where the tolerane number β ∈ (0, 1) is hosen by the user, see setion 3 fordetails.Step 5. Construt a new mesh Kh and a new time partition Jk. On Jk the newtime step τ should be hosen in suh a way that the CFL ondition is satis�ed.Interpolate the initial approximation c0 = cglob, whih was omputed in theglobally onvergent algorithm, from the previous mesh to the new mesh. Returnto step 1 and perform all the steps of the optimization algorithm on the newmesh.



A globally onvergent numerial method and the adaptivity tehnique 5
(a) GFDM (b) G = GFEM ∪GFDM () GFEM = ΩFigure 1. The hybrid mesh (b) is a ombinations of a strutured mesh (a), whereFDM is applied, and a mesh (), where we use FEM, with a thin overlapping ofstrutured elements. The solution of the inverse problem is omputed in the square

Ω and c(x) = 1 for x ∈ G�Ω.3. Numerial Studies3.1. Computations of the forward problemIn this paper we work with the omputationally simulated data. That is, the dataare generated by omputing the forward problem (12) with the given funtion c(x).To solve the forward problem, we use the hybrid FEM/FDM method desribedin [6℄. The omputational domain in all our tests G = GFEM ∪ GFDM is set as
G = [−4.0, 4.0] × [−5.0, 5.0]. This domain is split into a �nite element domain
GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0] and a surrounding domain GFDM with astrutured mesh, see Figure 1. The spae mesh in Ω onsists of triangles and in
GFDM - of squares with the mesh size h̃ = 0.125 in the overlapping regions. At thetop and bottom boundaries of G we use �rst-order absorbing boundary onditions[10℄ whih are exat in this partiular ase sine the plane wave is initialized innormal diretion into G in all our tests. At the lateral boundaries, mirror boundaryonditions allow us to assume an in�nite spae domain in the lateral diretion.The forward problem is omputed in the domain G ⊂ R2 (Figure 1). Theoe�ient c(x) is unknown only in the domain Ω ⊂ G and

c(x) = 1 in G�Ω. (11)The trae of the solution of the forward problem is reorded at the boundary
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t = 0.5 t = 3.7 t = 5.9 t = 6.9

t = 7.5 t = 8.5 t = 9.6 t = 11.2Figure 2. Test 1: Isosurfaes of the simulated exat solution to the forwardproblem (12) at di�erent times with a plane wave initialized at the top boundary.
∂Ω. Next, the oe�ient c(x) is �forgotten�, and our goal is to reonstrut thisoe�ient for x ∈ Ω from the data ϕ (x, s) . The boundary of the domain G is
∂G = ∂G1 ∪ ∂G2 ∪ ∂G3. Here, ∂G1 and ∂G2 are respetively top and bottom sidesof the largest domain of Figure 1 and ∂G3 is the union of left and right sides of this
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t = 2.1 t = 4.3 t = 4.3 t = 4.8

t = 5.9 t = 6.4 t = 9.1 t = 10.7Figure 3. Test 2: Isosurfaes of the simulated exat solution to the forwardproblem (12) with a plane wave initialized at the bottom boundary.domain. In our �rst test the forward problem is
c (x) utt −△u = 0, in G× (0, T ),

u(x, 0) = 0, ut(x, 0) = 0, in G,
∂nu

∣

∣

∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣

∣

∂G1

= −∂tu, on ∂G1 × (t1, T ),

∂nu
∣

∣

∂G2

= −∂tu, on ∂G2 × (0, T ),

∂nu
∣

∣

∂G3

= 0, on ∂G3 × (0, T ),

(12)
where T is the �nal time and f(t) is the plane wave de�ned as

f(t) =
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ t1 :=

2π

s
, T = 17.8t1.



A globally onvergent numerial method and the adaptivity tehnique 8Thus, the plane wave is initialized at the top boundary ∂G1 and propagates intoG for
t ∈ (0, t1]. First order absorbing boundary onditions [10℄ are used on ∂G1 × (t1, T ]and ∂G2 × (0, T ], and the Neumann boundary ondition is used on the bottomboundary ∂G3. In the seond test we onsider the ase when the plane wave isinitialized at the bottom boundary and use the Neumann boundary ondition at thetop boundary. In the integral (7) of [4℄ of the Laplae transform we integrate for
t ∈ (0, T ) .We now list main disrepanies between our theory and omputations. Suhdisrepanies quite often our in omputations of ill-posed problems and seem to beinevitable. It is well known that omputational results are usually less pessimistithan the theory. At the same time, theory usually provides a good guidane foromputations. The �rst disrepany is that we use the initializing plane wave in(12) instead of the point soure in (2). This is beause the point soure was usedonly to better justify the ertain asymptoti behaviour, see [2℄ for our numerialveri�ation of this behaviour for the ase of the above plane wave. The seonddisrepany is that domains G and Ω depited on Figure 1 have pieewise smoothrather than smooth boundaries. In priniple, this might lead to singularities insolutions of both the hyperboli equation (12) and ellipti equations for funtions qnin the above globally onvergent numerial method. However, we have not observedsuh singularities in our omputations. The third disrepany is that due to someonvenienes of our numerial implementation, we use pieewise onstant funtions
ch in our omputations rather than those satisfying (10) in [4℄. The next disrepanyis that we do not use the funtion ζε1

(t) in (8) and (20) of [4℄ beause we haveobserved in omputations of the forward problem (12) that (u |ST
−g) (x, T ) ≈ 0,whih eliminates the need to use this funtion. Finally a disrepany regardingsmoothness requirements was outlined in subsetion 3.1 of [4℄. Regardless on thesedisrepanies, we have observed a good orrespondene between our analytial andnumerial results, see below.3.2. Results of reonstrution by the globally onvergent algorithmWe have performed numerial experiments to reonstrut the medium, whih ishomogeneous with c (x) = 1 exept of two small squares, where c (x) = 4, see Figure1-). However, we have not assumed a priori knowledge of neither the struture ofthis medium nor of the bakground onstant c (x) = 1 outside of those two small



A globally onvergent numerial method and the adaptivity tehnique 9squares, although, following the Tikhonov onept (as mentioned in setion 2), wehave assumed the knowledge of the onstant d1 = 1/2, see (3) and (11). Beause ofthis, the starting value for the tail V1,1 (x, s) was omputed via solving the forwardproblem (12) for c ≡ 1. Let wc≡1 (x, s) be the orresponding funtion w (x, s) at
s = s. Then, we took V1,1 (x, s) = s−2 lnwc≡1 (x, s) , see [2℄ for the details.It was found in [2℄ that the interval [s, s] = [6.7, 7.45] is the optimal one fordomains G,Ω spei�ed above, and so we have used it in our numerial studies. Wehave hosen the step size with respet to the pseudo frequeny h = 0.05. Hene,
N = 15 in our ase. We have hosen two sequenes of regularization parameters
λ := λn and ε = εn for n = 1, ..., N , whih are the same as ones in [2℄. So, valuesof these parameters as well as the value of the regularization oe�ient γ in theadaptivity were:
λn = 20, n = 1, 2;λn = 200, n = 3, 4, 5;λn = 2000, n ≥ 6;

εn = 0, n = 1, 2; εn = 0.001, n = 3, 4, 5; εn = 0.01, n = 6, 7; εn = 0.1 for n ≥ 8; γ = 0.01.One the funtion qn is alulated, we update the funtion c := cn , seesubsetion 7.3 of [2℄ for some numerial details. The resulting omputed funtionis c (x) := cN(x). Comparing with [2℄, in the urrent work we hoose a ompletelydi�erent stopping rule. In alulating iterations with respet to the nonlinear term(setion 4 and Theorem 5.1), we onsider norms F k
n,

F k
n = ||qk

n,1|∂Ω − ψn||L2(∂Ω). (13)We stop our iterations with respet to nonlinear terms wheneither F k
n ≥ F k−1

n or F k
n ≤ ν,where ν = 0.001 is a small tolerane number of our hoie. In other words, we stopiterations, when either norms F k

n start to grow or are too small. Next, we iteratewith respet to the tails (setion 4) and use the same stopping riterion. Namely, westop our iterations with respet to tails when eithereither F n,i ≥ F n,i−1 or F n,i ≤ ν, (14)where F n,i =||qn,i|∂Ω−ψn||L2(∂Ω). So, following setion 4, the number i, on whih theseiterations are stopped, is denoted as i := mn. One the riterion (13)-(14) is satis�ed,
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a) c9,2 b) c10,2 ) c11,2 d) c12,2Figure 4. Test 1.1: spatial distribution of ch after omputing qn,k;n = 9, 10, 11, 12,where n is number of the omputed funtion q.we take the last omputed tail Vn,mn

, set Vn+1,1 := Vn,mn
and run omputationsagain for qn+1. Hene, the number mn of iterations with respet to tails is hosenautomatially �inside� of eah iteration for qn, whih means that mn, the number ofiterations with respet to tails varies with n. So, new riteria (13), (14) means amore �exible stopping rule in the globally onvergent algorithm ompared with [2℄,sine in [2℄ numbers mn where not hosen automatially.In all our tests we have introdued the multipliative random noise in theboundary data, gσ, by adding relative error to omputed data g using the followingexpression

gσ

(

xi, tj
)

= g
(

xi, tj
)

[

1 +
αj(gmax − gmin)σ

100

]

.Here, g (xi, tj) = u (xi, tj) , xi ∈ ∂Ω is a mesh point at the boundary ∂Ω, tj ∈ (0, T )is a mesh point in time, αj is a random number in the interval [−1; 1], gmax and gminare maximal and minimal values of the omputed data g, respetively, and σ = 5% isthe noise level. Computations were performed on 16 parallel proessors in NOTUR2 prodution system at NTNU, Trondheim, Norway (67 IBM p575+ 16-way nodes,1.9GHz dual-ore CPU, 2464 GB memory).Test 1.1We test our numerial method on the reonstrution of the struture givenon Figure 1-). The plane wave f is initialized at the top boundary ∂G1 ofthe omputational domain G, propagates during the time period (0, t1] into G, isabsorbed at the bottom boundary ∂G2 for all times t ∈ (0, T ) and it is also absorbedat the top boundary ∂G1 for times t ∈ (t1, T ), see Figures 2.One an see from Figure 4 that the loation of the right small square is
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a) c10,2 b) c11,1 ) c12,1 d) c13,1Figure 5. Test 2.1: spatial distribution of ch after omputing qn,k;n =

10, 11, 12, 13 where n is number of the omputed funtion q.
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a) Test 1.1 b) Test 2.1Figure 6. The one-dimensional ross-setions of the image of the funtion cn,komputed for orresponding funtions qn,1. On a) for Test 1.1 along the vertialline passing through the middle of the right small square; and on b) for Test 2.1along the vertial line passing through the middle of the left small square.imaged well. It follows from 4 -) that the imaged ontrast in this square is
3.8 : 1 = max c11,2 : 1 at n := N = 11 (see below for this hoie of N). Thus,we have obtained the 5% error (0.2/4) in the imaged ontrast, whih is the sameas the error in the input data. As to the left small square, we got the same 3.8 : 1ontrast in it for c11,2. However, the loation of the left square is shifted downwards,and both imaged squares are on about the same horizontal level. Values of thefuntion c(x) = 1 outside of these squares are imaged aurately.Figure 7-a) shows omputed L2-norms Fn,i. Using this �gure, we analyze resultsof the reonstrution. One an see on Figure 7-a) that the number mn of iterations



A globally onvergent numerial method and the adaptivity tehnique 12
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 

 

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
10

q
11

q
12

q
13

q
14

q
15

1 1.5 2 2.5 3 3.5 4
2

4

6

8

10

12

14
x 10

−3

k

 

 

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
10

q
11

q
12

q
13

q
14

q
15a) Test 1.1 b) Test 2.1Figure 7. Computed L2-norms of the Fn,i = ||qn,i |∂Ω −ψn||L2(∂Ω).with respet to tails indeed varies with n, sinemn is hosen automatially now, usingthe riterion (13)-(14). We observe that the norms Fn,i derease until omputing thefuntion q7. Next, they slightly grow, deay from F9,2 to F10,2 and then these normsstabilize on n = 11, 12. For n = 13, 14, 15 norms Fn,2 grow steeply. Thus, weonlude, that N = 11 and we take c11,2 as our �nal reonstrution result on theglobally onvergent stage.Test 2.1We now test our globally onvergent method on the same struture of Figure 1-). However, the di�erene with the previous test is that we now use the plane wave,whih is initialized at the bottom boundary of omputational domain G, see Fig.2.Figure 5 displays isosurfaes of resulting images of funtions cn,k, n = 10, 11, 12, 13.Figure 6-b) displays the one-dimensional ross-setions of omputed images offuntions cn,k superimposed with the orret one along the vertial line passingthrough the middle of the left small square. One an see from Figure 5 that the

3.8 : 1 = max c11,1 (x) : 1 ontrast for n := N = 11 (see below for this hoie of N) inthe left square is imaged again with 5% error (0.2/4) whih is the same as the noiselevel in the data. As to the right small square, we got the same 3.8 : 1 ontrast as inthe left square. However, the loation of the right small square is shifted upwards.Using Figure 7-b), whih shows omputed L2-norms Fn,i, we analyze results ofthe reonstrution. We observe that omputed norms Fn,i derease with n untilomputing the funtion q7, i.e.., until n = 7 and these numbers grow with the



A globally onvergent numerial method and the adaptivity tehnique 13inrease of n = 8, 9. Next, we observe a steep derease at n = 10 and a stabilizationfor n = 11, 12. For n = 13, 14, 15 norms Fn,i grow steeply. Thus, we onlude, that
N = 12 and we take c12,1 as our �nal reonstrution result on the globally onvergentstage.We observe, that in both Tests 1.1 and 2.1 the loation of the small quare,whih is loated loser to the side from whih the plane wave is launhed, isimaged better than the loation of the seond small square. At the same timethe inlusion/bakground ontrast is imaged well in both small squares, so as thevalue of the oe�ient c(x) = 1 outside of (imaged) small squares. Thus, to enhaneimages of loations, we are prompted to use the adaptivity tehnique.3.3. Synthesis of the globally onvergent algorithm with the adaptivityThe goal of two tests of this subsetion is to demonstrate the performane ofthe synthesis of our globally onvergene algorithm with the adaptivity tehnique.We take the starting point for the adaptivity the image obtained by the globallyonvergent method. Below �Test 1.2� (respetively �Test 2.2�) means that we takethe image obtained in the above Test 1.1 (respetively in Test 1.2), i.e. the funtion
c11,1(x) := cglob(x), as the starting point for our �nite element adaptive algorithm.The boundary data g = u |∂Ω in both tests 1.2 and 2.2 are the same as ones in Test1.1 and 2.1 respetively. In Tests 1.2 and 2.2 Γ denotes the side of the square Ω,opposite to the side from whih the plane wave is launhed and ΓT = Γ × (0, T ) . Insome sense the side ΓT is the most sensitive one to the presene of those two smallsquares.The adaptivity algorithm was desribed in setion 2. Now the question is on howto hoose the tolerane number β in (10). The hoie of β depends on the behaviourof the omputed value of maxΩBh (x) in right hand side of (10). If we hoose β toosmall (for example, β = 0), then we will re�ne mesh in almost the entire domain
Ω, sine, realistially, after the optimization proedure Bh (x) will be non- zero atalmost all mesh points. Unlike this, our goal is to onstrut a new mesh with a fewnodes as possible, while still getting a good enhanement of the solution obtainedon the globally onvergent stage of our two-stage numerial proedure. On the otherhand, the parameter β an not be taken too lose to 1 also, sine in this ase theautomati adaptive algorithm will ome up with a too narrow region, where the meshshould be re�ned. Thus, the hoie of β depends on onrete values of the funtion



A globally onvergent numerial method and the adaptivity tehnique 14opt.it. 4608 elements 5340 elements 6356 elements 10058 elements 14586 elements1 0.0992683 0.097325 0.0961796 0.0866793 0.08801152 0.0988798 0.097322 0.096723 0.0868341 0.08808663 0.0959911 0.096723 0.08765434 0.096658Table 1. Test 1.2: ||u |ΓT
−g||L2(ΓT ) on adaptively re�ned meshes. The numberof stored orretions in the quasi-Newton method is m = 15. Computations wasperformed with the noise level σ = 5% and with the regularization parameter

γ = 0.01.
Bh (x) and should be hosen in numerial experiments. In (10) we take β = 0.1 onthe oarse mesh, β = 0.2 on the one, two and three re�ned meshes, and β = 0.6 forall next re�nements of the initial mesh.On all re�ned meshes we have used a ut-o� parameter Ccut for the reonstrutedoe�ient ch suh that

ch (x) =

{

ch (x) , if |ch (x) − cglob (x) | ≥ Ccut

cglob (x) , elsewhere.We hoose Ccut = 0 for m < 3, Ccut = 0.3 for m ≥ 3 in all tests, where m is thenumber of iterations in quasi-Newton method. Hene, the ut-o� parameter ensuresthat we do not go too far from cglob.In the adaptive algorithm we an use box onstrains for the reonstrutedoe�ient. We obtain these onstraints using the solution obtained in the globallyonvergent part. Namely, in Tests 1.2 and 2.2 minimal and maximal values of thetarget oe�ient in box onstraints are taken using results of Tests 1.1 and 2.1. So,when onduting Tests 1.1 and 2.1, we have used only the knowledge of the number
d1 = 0.5 in (3). Now, sine we know that the solution obtained on the �rst stage isa good approximation for the orret solution (Theorem 5.1 of [2℄) and the maximalvalue of the omputed oe�ient is 3.8, we set d2 = 2 in (3). Thus, in tests 1.2 and2.2 we enfore that the oe�ient c(x) belongs to the set of admissible parameters,
c(x) ∈ CM = {c ∈ C(Ω)|1 ≤ c(x) ≤ 4}.Test 1.2.
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a) 4608 elements b) 5340 elements ) 6356 elements d) 10058 elements e) 14586 elements
f) 4608 elements g) 5340 elements h) 6356 elements i) 10058 elements j) 14586 elementsFigure 8. Test 1.2: Adaptively re�ned omputational meshes on a)-e) and spatialdistribution of the parameter ch with σ = 5%, whih orresponds to these meshes,on f)-j).The plane wave is initialized on the top boundary of the domain G, whih is thelarge retangle of Fig. 7.1b. The starting point for the adaptivity algorithm is thefuntion c11,2 (x) := cglob(x), whih orresponds to Figure 4-). We have performednumerial experiments with introduing σ = 5% of the multipliative random noisein the funtion g (x, t) in an adaptive proedure. First, the funtion cglob(x) was takenon the initial oarse mesh is shown on Figure 8-a) and the quasi-Newton methodis applied on this mesh. Figure 8-f shows that the image was not improved whenthe same mesh was used as one on the globally onvergent stage. Next, the meshwas adaptively re�ned four times using the above desribed proedure (subsetion6.4). Adaptively re�ned meshes shown on Figure 8-a-e). Table 1 presents omputed
L2-norms of ||u |ΓT

−g||L2(ΓT ). We observe that norms at the boundary dereaseas meshes are re�ned. Then they slightly inrease and are �nally stabilized for allre�nements n > 3 of the initial mesh. Thus, using this table, we onlude thaton the three times re�ned mesh we get the �nal solution of our inverse problem,whih orresponds to Figure 8-j) . One an see on Figure 8-j) that we are ableto aurately reonstrut loations of both small squares. At the same time, anaurate inlusion/bakground ontrast obtained on the globally onvergent stageis preserved. This ontrast turns out to be now 4:1=max cf (x) : 1 instead of 3.8:1alulated on the �rst stage, where cf(x) is the �nal imaged oe�ient. The value



A globally onvergent numerial method and the adaptivity tehnique 16opt.it. 4608 elements 5298 elements 7810 elements 11528 elements 19182 elements1 0.0992683 0.0976474 0.0976851 0.089979 0.09771532 0.0988798 0.0974385 0.0901018 0.0974873 0.0959911 0.0901153 0.0975039Table 2. Test 2.2: ||u |ΓT
−g||L2(ΓT ) on adaptively re�ned meshes. The numberof stored orretions in the quasi-Newton method is m = 15. Computations wasperformed with the noise level σ = 5% and with the regularization parameter

γ = 0.01.
a) 4608 elements b) 5298 elements ) 7810 elements d) 11528 elements e) 19182 elements
f) 4608 elements g) 5298 elements h) 7810 elements i) 11528 elements j) 19182 elementsFigure 9. Test 2.2: Adaptively re�ned omputational meshes on a)-e) and spatialdistribution of the parameter ch with σ = 5%, whih orresponds to these meshes,on f)-j).of the oe�ient cf (x) = 1 outside of small squares is also imaged well.We have used the smoothing indiator proedure applied to the reonstrutedoe�ient c(x) on the all adaptively re�ned meshes. As it was stated in subsetion7.3 of [2℄, this proedure onsists in a loal averaging of omputed values of cn,i (x) .The use of the smoothing indiator for the reonstruted oe�ient ch has helped usto obtain more aurate images as well as to get a lesser number of �nite elementsin omputational meshes.Test 2.2Now we test the synthesis of the globally onvergent numerial method with the



A globally onvergent numerial method and the adaptivity tehnique 17adaptivity with the starting point on the oarse mesh taken from the result of Test2.1 and with the plane wave initialized at the bottom boundary of the omputationaldomain G. The initial guess for the adaptive algorithm on the oarse mesh is theomputed oe�ient c12,1(x) presented on Figure 5-). The boundary data g is takenthe same as in Test 2.1.As Test 2.1, we have used four (4) times adaptively re�ned meshes shown onFigure 9-a)-e). Figures 9-a),f) show that when the same mesh is used as one forthe globally onvergent stage, the image quality is not improved, whih oinideswith the observation of Test 2.1. However, adaptively re�ned meshes do improve thequality of the reonstrution, see Figures 9-f)-j). In Table 2 we present omputednorms of ||u |ΓT
−g||L2(ΓT ). We observe that these norms derease as meshes arere�ned. They derease until the third re�nement. On the fourth re�nement theyslightly inrease and then they stabilize. Further mesh re�nements are not neessarysine norms ||u |ST
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