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Coefficient Inverse Problems for Imaging

Inhomogeneities

Jianguo Xin∗, Larisa Beilina† and Michael V. Klibanov∗

Abstract

How can we differentiate between an underground stone and a land mine? We

discuss a class of methods for solving such problems. This class of methods concerns

globally convergent numerical methods for Coefficient Inverse Problems, unlike conven-

tional locally convergent algorithms. Numerical results are presented modeling imaging

of the spatially distributed dielectric permittivity function in an environment where

antipersonnel land mines are embedded along with stones. While these results are

concerned with the first generation of globally convergent algorithms, images obtained

by the most recent second generation are also presented for a generic case of imaging

of the dielectric permittivity function. The mathematical apparatus is sketched only

very briefly with references to corresponding publications.

1 Introduction

The goal of this publication is to present to the engineering community a new development
in numerical methods for the so-called Coefficient Inverse Problems for Partial Differential
Equations (PDEs). All necessary mathematical details can be found in [6, 4, 5, 27, 28,
43, 44, 45, 46], so we provide only a minimum of such details here. Convergence of the
new algorithms to the correct solution does not depend on the availability of a proper first
guess of the solution. This is both rigorously guaranteed and numerically confirmed. While
works [27, 28, 43, 44, 45, 46] on the so-called ‘convexification’ algorithm represent the first
generation of globally convergent numerical methods, in publications [6, 4, 5] the second
generation of these numerical methods has started.

These new techniques are most suitable for imaging of small abnormalities embedded in
otherwise slowly varying and unknown background. ‘Imaging’ means locating those small
abnormalities and obtaining accurate estimates of their features. Conventional numerical
methods for Coefficient Inverse Problems are based on the small perturbation approach
and converge locally; i.e. they need a good first guess for the solution, and the solution
they find is a small perturbation of this initial guess. While locally convergent numerical
methods usually locate abnormalities well enough, they can rather rarely estimate values of
unknown coefficients within abnormalities accurately. Accurate estimates potentially enable
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one to identify abnormalities, e.g. to differentiate between land mines and stones or between
malignant and benign abnormalities in human organs.

Imaging of small abnormalities is important in many applications. Some examples are in
imaging of the dielectric permittivity function within antipersonnel land mines, imaging of
tumors in human organs, imaging of acoustic abnormalities in underwater, etc. We provide
some numerical examples for the case of land mines as well as for a generic case. For example,
we show that our first generation numerical method can differentiate between a land mine
and a stone (within the framework of our mathematical model).

2 Inverse and Ill-posed Problems

Inverse problems arise in quite many fields of science and engineering, for example, in medical
imaging, image and signal processing, mathematical finance, astronomy, geophysics, remote
sensing, radar imaging, ocean acoustic tomography, nondestructive material testing and sub-
surface prospecting, etc. Solution of inverse problems requires determining unknown features
(parameters) based on observations (data) of their effects. This is in contrast to the classic
direct problems, whose solution involves finding effects based on complete descriptions of
their causes. Direct problems for PDEs are described in many textbooks, see, e.g. [16].
“Can one hear the shape of a drum?” is a famous inverse problem which was posed by the
noted mathematician Mark Kac [22]. Literally, if you have perfect pitch, can you find the
shape of a drum? Mathematically this asks whether a plane region R can be determined
from the natural frequencies of a membrane fixed along the edge of R.

Inverse problems are inherently ill-posed, as opposed to well-posed direct problems. The
mathematical term well-posed problem was defined by the renowned mathematician Jacques
Hadamard [19], who believed that mathematical models of physical phenomena should have
the following three properties:

• A solution exists (existence),

• The solution is unique (uniqueness),

• The solution depends continuously on the given data in a certain reasonable topology
(stability).

Thus a problem is well-posed if a unique solution exists and depends continuously on
the data. Of the three conditions for a well-posed problem the condition of stability is most
often violated. Ill-posed problems may arise because of the unavailability of some boundary
data. Or, they may crop up due to the lack of information of the location of internal
cracks, heterogeneities or singularities. Or, they may appear since we do not simply have
the necessary data [33].

Classification of inverse problems is rather arbitrary. One approach of sorting them is by
the type of information that is being sought in the solution procedure. In particular, we are
interested in the so-called Coefficient Inverse Problems which belong, in a broader sense, to
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the category of the classic parameter estimation problems where an unknown coefficient in a
governing PDE is to be found. In a Coefficient Inverse Problem one is supposed to determine
an unknown spatially distributed coefficient of a PDE from boundary measurements of the
solution of this PDE. Coefficient Inverse Problems are of tremendous practical importance.
The coefficient to be found has direct physical meaning and is usually associated with the
characteristics of the media under consideration [21]. Recovery of the Lamé parameter in
biological tissues [20], reconstruction of the conductivity coefficient in electrical impedance
tomography [12], and shear wave speed recovery in transient elastography [31] are some
concrete examples of coefficient inverse problems.

To obtain a stable numerical method for an inverse problem, a technique called regulariza-
tion is usually needed to introduce mild assumptions on the solution. The classic Tikhonov
regularization [38, 39] is the most popular one, whose key idea is a trade-off between fitting
the data and reducing a norm of the solution. There are several ramifications based upon the
idea of Tikhonov regularization and of particular interest is the quasi-reversibility method
[30, 13, 8, 10]. The key idea of the quasi-reversibility method is that one changes the origi-
nally ill-posed problem into a properly-posed problem by perturbing the governing equations
and perhaps the boundary conditions as well. Then based on the solution of the perturbed
problem one obtains an approximate solution of the formerly ill-posed problem. The appro-
priate perturbation to the governing equations of the ill-posed problem is usually not unique.
Depending upon how one determines this, the solution process of constructing an approx-
imate solution of the ill-posed problem may be quite different [25]. The quasi-reversibility
method shares the same spirit as the method of artificial viscosity in computational fluid dy-
namics. There one adds a viscosity term to the governing equations to stabilize the problem
and then studies the asymptotic behavior of the solution as the perturbation goes to zero
[42].

3 Background

Researchers in the field of Coefficient Inverse Problems have always sought efficient and
globally convergent numerical methods. The meaning of ‘globally’ is twofold. First, the nu-
merical solution converges to a good approximation of the exact solution and is independent
of the initial guess so long as this starting point is in an appropriate bounded set, which
corresponds to the concept of compact set of the Tikhonov principle [40]. Second, a rigorous
convergence analysis can be established for the numerical method that does not depend on
small initial error. Minimization of a least-squares residual functional is commonly used for
a Coefficient Inverse Problem. However, due to ill-posedness and high-nonlinearity, conven-
tional residual least-squares functionals for such problems have multiple local minima and
ravines [27]. Newton [14, 23, 32] and quasi-Newton methods [15, 34, 17] cannot guarantee
convergence to the global minimum. Moreover, due to ill-posedness, there is no guarantee
that the global minimum of such a functional is close to the true solution of the problem
under consideration. This motivates the development of efficient numerical methods that
converge globally and give fairly good approximate solutions for a broad class of Coefficient
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Inverse Problems.

4 Convexification: The First Generation of Globally

Convergent Numerical Methods

4.1 Earlier Work

The development of globally convergent methods for Coefficient Inverse Problems has root in
the so-called convexification methods [26, 27, 28]. Such methods may be regarded as alter-
natives to the methods of global optimization, for instance, simulated annealing or genetic
algorithms. Key ideas of the method were developed first in [26] for the one-dimensional
coefficient inverse problem of electromagnetic frequency sounding of layered marine shallow
water configurations. The method was extended to the multidimensional case in [28] with
application to diffuse optical mammography. The monograph [27] records more details of
the convexification method up to this stage. Global convergence theorems were rigorously
proved in these publications. One version of the convexification algorithm was implemented
for the two-dimensional problem of optical medical imaging where the light propagation
process is governed by the elliptic equation −∆u + a(x)u = δ (x − x0) with the unknown
coefficient a(x), x ∈ R3 and where the source runs along a straight line [35].

The above mentioned convexification algorithms originate with the method of Carleman
estimates for Coefficient Inverse Problems [9, 24, 27]. Prior to the convexification meth-
ods, Carleman estimates were not used for numerics but only for proofs of uniqueness and
stability results. The main idea of the convexification is this. On a generic layer #j, the
Carleman weight function Ψj

λ(z) := exp [−λ (z − zj−1)] for the differential operator d2/dz2

is involved in the convexification procedure [43]. This sequence of weights has two function-
alities: (1) ensuring the strict convexity of a j-dependent sequence of residual least-squares
functionals, and (2) stabilizing the resulting layer stripping procedure. The strict convexity
of these functionals is very important, since it ensures uniqueness of the global minimizer and
absence of local minima. It is also well known that any gradient-like minimization method
converges to this global minimum regardless of the starting point. In other words, the global
convergence is guaranteed. Furthermore, the global convergence theorem guarantees that
given the sequence of those minimizers, one can construct such an approximation to the
unknown coefficient, which is close to the correct coefficient.

4.2 Further Development

Since the convexification algorithm involves quite a few parameters, it is imperative to con-
duct a systematic and comparative analysis on the effect of various parameters. Such study
is valuable for the further development of the globally convergent algorithms and it was done
in [43] with application to imaging of antipersonnel land mines and with four new ingredi-
ents to the algorithm itself. Compared with previous implementations of the convexification
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algorithms, the four novel aspects are: (1) we minimize strictly convex functionals directly
for each generic layer in the coordinate z direction instead of through the solution of an
equivalent equation which is based on the contraction mapping operator, (2) based upon the
preliminary study [41], a local basis which consists of cubic B-splines is applied in the spatial
approximation, thus enabling sharper resolution of the reconstructed material property at
the interface of inhomogeneities, (3) the so-called ‘tails’ in truncated integrals are fitted in
to compensate the missing information, and (4) we approximate the functions that depend
on the pseudo-frequency by Legendre polynomials, thus calculating the integrals involving
pseudo-frequency explicitly rather than numerically.

One major advantage of the direct minimization of the convex functionals over solving
an operator equation is that the time-consuming pre-programming and pre-computational
effort to derive the operator equation is avoided. The numerical results in [43] show that the
incorporation of tails in the convexification procedure substantially decreases the size of the
interval for pseudo-frequency, in contrast to the previous ‘tail-free’ case [28], which requires
a large interval in order to get acceptable accuracy for the recovered unknown coefficient.
Thus, introduction of the tails has dramatically decreased the computational time. Further
and more importantly, we have found that the tails are central and indispensable to the
good accuracy of the convexification algorithm: in absence of the information from the tails,
the quality of the reconstructed material property is rather poor though the location of the
interface of the inhomogeneities has been identified rather well [43]. Thus, we believe that
the incorporation of the tails in [43] is a major advancement to the convexification methods
and further to the globally convergent methods. We mention that the first procedure of
working with tails was proposed in subsection 5.4 of [18]. However, that was done for a
different locally convergent algorithm.

Based on the valuable experience [43], the convexification algorithm has been further
developed in [44], where the spatial x-approximation with cubic B-splines and the pseudo-
frequency approximation with Legendre polynomials have been studied in greater details.
Numerical results [44] have demonstrated that the new improvements in the convexification
algorithm can improve identification of material properties and locations of the mines.

A smoothing technique [45] has been formally introduced to improve the quality of the
reconstructed images based on the solution of the governing equations via the convexifica-
tion algorithm. The idea is simple yet powerful and may be used in the broader area of
image restoration and reconstruction. Since the recovered coefficient does not have enough
smoothness, it is natural to seek a weak solution of the unknown coefficient rather than
the strong one. The Galerkin method has been applied to obtain the weak solution of the
recovered material property [45]. Reconstructed images of good quality have been shown for
several different practical setups of land mines. The convexification algorithm is capable of
imaging the spatially distributed dielectric permittivity function in: (1) the homogeneous
background in absence of any inclusion, (2) homogeneous background with one single mine
embedded, (3) homogeneous background with one mine and one stone embedded, (4) ho-
mogeneous background with two mines at two set of different locations and with two set
of different sizes [45]. In all cases the value of the dielectric permittivity function in the
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background and in inclusions was assumed to be unknown. An explanation for the artifacts
in the reconstructed images has also been proposed based on numerical evidence [45].

To detect and image antipersonnel land mines in the battlefield in real-time, the numerical
algorithm has to run fast, and this has been achieved in [46]. By properly choosing the upper
limit for pseudo-frequency and with quadratic polynomial approximations of the quantities
which depend on the pseudo-frequency, the convexification algorithm is highly efficient. On a
standard workstation with a Linux operating system, the computational time for all realistic
configurations of land mines is less than 10 seconds [46]. Such newly achieved efficiency allow
the algorithm to be applied in real-time to detect and image mine-like targets in the field.

5 Frequency Convexification: The Second Generation

of Globally Convergent Numerical Methods

The second generation of globally convergent numerical methods for Coefficient Inverse Prob-
lems has started recently from works [6, 4, 5]. Instead of using both Dirichlet and Neumann
boundary conditions at a part of the boundary, this new method uses the Dirichlet boundary
data at the entire boundary of a finite domain where the target coefficient is unknown [6].
Another feature with the new development is that the layer-stripping procedure is now with
respect to the pseudo-frequency rather than with respect to the spatial variable of the con-
vexification. Here the pseudo-frequency κ is a parameter proportional to the parameters of
the Laplace transform of the original time dependent PDE. The layer stripping with respect
to the pseudo frequency provides a better stability for the problem, thus enabling one to
stably image larger domains of interest. On each thin κ-layer of the pseudo-frequency, the
boundary value problem with the Dirichlet data for a nonlinear elliptic PDE of the second
order is solved using the finite element method [6]. The Carleman weight function now de-
pends on the pseudo-frequency rather than on the spatial variable. By properly choosing the
parameter in the Carleman weight function, one can reduce the effect of the nonlinear term
in each of these elliptic equations, thus, ending up with solving a linear problem for each
iteration. Tails are also taken into account and are approximated via outer iterations. The
algorithm with the new development [6] resembles the Landweber iteration [29]: on each
step of the iteration, both the direct problem and the inverse problem are solved.

The most recent development in this direction is a synthesis of the globally conver-
gent numerical method of [6] with the locally convergent so-called Finite Element Adaptive
technique (adaptivity) [4, 5], see e.g., the references [1, 2, 3] for the adaptivity for inverse
problems. This synthesis represents a two stage globally convergent numerical procedure.
On the first stage a good first approximation for the unknown coefficient is found by the
globally convergent numerical method of [6]. On the second stage this approximation is
taken as a starting point for further refinement by the adaptivity technique. The adaptivity
consists in applications of the quasi-Newton method on different meshes. First, this method
is applied on the same mesh, on which the globally convergent parts has operated. It was
shown numerically in [4, 5] that this application does not lead to a refinement of the image.
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Next, the true substance of the adaptivity comes in. Namely, a posteriori error analysis of
the computed image shows sub-domains of the original domain where the maximal error of
the solution is. It is important that one does not need to know the solution in advance to
do this error analysis. Instead one needs to know only an upper estimate for the solution.
So, the mesh is refined in those sub-domains and the quasi-Newton method is applied again.
Usually the process stops after 3-4 mesh refinements when the image is stabilized. It was
shown numerically in [4, 5] that reconstructions are improved in this way. An alternative to
local mesh refinement would be to use a very fine finite element mesh in the entire domain
of interest. However, this would impose excessive requirements on capabilities of computers.

6 Computational Results

In this section we briefly sample our results both with the convexification algorithms [43, 44,
45, 46] and with the new development [6, 4, 5]. For all the technical details of the methods,
we refer the reader to the original references.

6.1 Results from the Convexification Algorithms

First we describe a mathematical model for the Coefficient Inverse Problem of detection and
imaging of antipersonnel land mines that are buried under the ground. Some assumptions
and simplifications have been made with our model. At the same time we use realistic ranges
of parameters. First, we work with a two-dimensional model. The irregularity of the ground
surface has been neglected to avoid the complication of gathering the data for the direct
problem. Also, we assume that the dielectric permittivity ε of the medium does not have a
discontinuity at the ground surface where measurements of the back reflected electric signal
are performed. Further, we neglect the electric conductivity of the medium, which can be
justified in the case when the background is a dry soil [18].

Now, suppose a polarized electric field is generated by an above-ground pulse at the point
x0 = (0,−|ξ|) at the initial time t = 0, where ξ 6= 0. The following hyperbolic equation can
be derived from the Maxwell equations [11]

−µε(x)utt + ∆u = 0, (x, t) ∈ R2 × R+, (1)

u (x, 0) = 0, ut (x, 0) = δ (x − x0) , (2)

where x = (x, z), the function u(x, t) is one component of the electric field, the parameter
µ = 4π × 10−7 (Henry/m) is the magnetic permeability in free space, ε = ε0εr(x) is the
dielectric permittivity, ε0 ≈ 8.854 × 10−12 (Farad/m) is the dielectric permittivity of free
space and εr(x) is the dimensionless relative dielectric permittivity of the medium.

In both dry soil and trinitrotoluene (TNT) we have εr ≈ 2.9 [18]. We are interested
in the identification of antipersonnel plastic mines, which is difficult in a practical scenario
since the metal component in them is not large. Hence, we need one parameter inside the
mine which can give us sufficient contrast against the surrounding dry soil. It is well-known
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that a large portion of the volume of any mine is filled with air and εr = 1 for the air. As
the mine does not wholly consist of air, it is reasonable to assume that εr = 1.5 inside the
mine, which is about the average value of the coefficient εr within the mine. Thus, for our
simulation we assume

εr(x) =

{
2.9 outside mines
1.5 inside mines

(3)

The sizes of antipersonnel mines usually vary between 5 cm and 10 cm, and they lay at a
small depth underneath the ground, not exceeding 10 cm. So we model mines as disks of
radius 5 cm which are located in the range z ∈ [0, 9] cm.

If one can quantify the coefficient εr(x), then points whose values are close to 1.5 will
be those inside or close to the mine. Thus, finding an approximation for this coefficient
by solution of the Coefficient Inverse Problem (below) would provide us useful information
about a target which we would ‘suspect’ is a land mine.

To solve the problem in the framework of the convexification method, we consider the
Laplace transform of the function u(x, t)

w(x, s) = L [u(x, t)] :=

∞∫

0

u(x, t)e−stdt.

Because the physical parameters µ and ε0 are very small, by combining them with the
parameter s we rescale these two parameters and introduce a new variable κ := s

√
µε0,

which is termed ‘pseudo-frequency’. Equations (1) and (2) transform into

−∆w + κ2εr(x)w = δ (x − x0) , x ∈ R2, (4)

lim
|x|→∞

w(x, κ) = 0. (5)

Coefficient Inverse Problem (CIP). Consider a rectangle Ω ⊂ R2

Ω := {−A < x < A, z ∈ (0, L)} , A, L > 0.

Suppose the coefficient εr(x) of the equation (4) is unknown in Ω and known in R2�Ω.
Determine the relative dielectric permittivity εr(x) for x ∈ Ω, assuming the following two
functions ϕ (x, κ) and ψ (x, κ) are known for a single source position x0

w (x, 0, κ) = ϕ (x, κ) , wz (x, 0, κ) = ψ (x, κ) , ∀ (x, κ) ∈ (−A,A) × [κ0, κ̄] . (6)

We now need to decide the lower limit κ0 and upper limit κ̄ of pseudo-frequency κ
for our inverse problem. To find an appropriate constant κ̄, we compute solutions of the
forward problem (4), (5) for different values of the parameter κ > 0 and determine such a
value κ := κ̄, beyond which the asymptotic behavior, i.e., exponential decay, of the function
w(x, κ) holds. In this case the function ln [w(x, κ)] should be close to a linear function with
respect to κ. Thus, we identify such values of κ for which

ln [w(x, κ)] = v(x, κ) ≈ c1(x)κ + c0(x) (7)
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for many points x ∈ Ω. The function v(x, κ) looks like a straight line with respect to κ for
κ > κ̄. We solve the forward problem on a large domain Ξ := {−6 ≤ x, z ≤ 6} using the
finite element package - COMSOL MultiphysicsTM version 3.2. A zero Dirichlet boundary
condition is imposed on the boundary ∂Ξ. We use triangular elements with Lagrange cubic
basis. The mesh is quasi-uniform and locally refined near the source location x0 = (0,−0.1)
with 38,944 elements, see Figure 1. The total degrees of freedom are 351,218. We obtain
κ̄ = 10 after rounding to integers. One is free to choose the lower bound κ0. We may take a
smaller value that is close to κ̄, e.g., κ0 = {8, 9}. The influence of the lower limit κ0 on the
resolution of the recovered unknown coefficient εr can be seen below.

Figure 1: Quasi-uniform (left) and locally refined (right) mesh for the forward problem.

To make the problem even harder, we have added in another inclusion, a small stone.
To differentiate between the stone and the dry soil, we accept a notion that the stone is
slightly wet, which might be a result of a past rain. Thus, we take εr ≈ 4 in the stone
[18]. We model the stone as a disk with radius of 5 cm and εr = 4.0 in it. The center of
the stone is located at the point Ps = (−0.4, 0.075), i.e., the same depth 7.5 cm underneath
the ground as the mine, whose center is at the point Pm = (0.4, 0.075). The x-interval for
the inverse problem is Ωx := [−A,A] = [−0.7, 0.7]. The computation is performed with
51 splines with uniform layer size δz = 5 mm. Functions which depend on the pseudo-
frequency are approximated with Legendre polynomials of degree 5. The parameter λ which
is associated with the Carleman weight function is set to 200. The threshold δ to terminate
the steepest descent method takes the value of 0.01. For the effects of various parameters on
the reconstructed material property, we refer the reader to the systematic study [43]. The
main procedure in the convexification algorithm is described as follows.
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Convexification Algorithm

1. Solve the forward problem (4) to obtain initial data ~a
(0)
1 , ~b1, ~c1 and tails ~χ1, ~χ

′
1; j = 1

2. Minimize the objective function F j
λ for the unknown ~aj in layer # j

3. Update the initial data ~a
(0)
j+1,

~bj+1, ~cj+1 and tails ~χj+1, ~χ
′
j+1 for next layer # j + 1;

j + 1 → j

4. Repeat 2., 3., until j = N , the number of total layers

5. Reconstruct the unknown coefficient εr(x) for all layers

At each generic layer z ∈ (zj−1, zj ], the objective function to be minimized has the form

F j
λ (~aj(κ)) =

κ̄∫

κ0

dκ

zj∫

zj−1

Φ2 [p̃j (~aj(κ), z, κ) , κ] Ψ
j
λ (z) dz, (8)

where ~aj is the unknown vector to be found, Φ is the system of nonlinear ordinary integral-
differential equations which result from spatial- and pseudo-frequency approximations, and
p̃j is the function from the layer-stripping procedure and depends on the unknown vector ~aj .
We refer the reader to the publications [43, 44, 45, 46] for more details.

Figure 2 shows the results for our computation. A very good solution accuracy is evident.
There is neither overshoot near the stone nor undershoot near the mine. The stone, the
background medium and the mine have been correctly and sharply identified in terms of
their locations and material property. The difference shows up on both blow-up views. The
performance of the reconstructed εr is a little better with κ0 = 8. This is due to the extra
information with κ integration for κ ∈ [8, 9], which is present when κ0 = 8 and which is lost
in the case κ0 = 9.

6.2 A synthesis of globally convergent numerical method with
adaptivity technique

In this section we describe some results of the globally convergent numerical method in
combination with the adaptivity technique presented in [6, 4, 5].

6.2.1 Computations of the Forward Problem and statement of Inverse Problem

We work with the computationally simulated data which are generated by computing the
forward problem (10) with the given function c(x). To solve the forward problem, we use
the hybrid FEM/FDM method described in [7]. The computational domain in all our two-
dimensional tests is G = GFEM ∪ GFDM and is set as G = [−4.0, 4.0] × [−5.0, 5.0]. This
domain is split into a finite element domain GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0] and

10



−0.6 −0.4 −0.2 0 0.2 0.4 0.6
1.5

2

2.5

3

3.5

4

Relative electric permittivity ε
r
, z = 0.0475

x

κ
0
 = 8

κ
0
 = 9

Exact

−0.45 −0.44 −0.43 −0.42 −0.41 −0.4 −0.39 −0.38 −0.37 −0.36 −0.35

3.9

3.95

4

Relative electric permittivity ε
r
, z = 0.0475

κ
0
 = 8

κ
0
 = 9

Exact

0.34 0.36 0.38 0.4 0.42 0.44 0.46
1.5

1.502

1.504

1.506

1.508

1.51

x

κ
0
 = 8

κ
0
 = 9

Exact

Figure 2: Cross-sectional views of relative electric permittivity εr for the case of stone ⊕
mine against background. Two different values of κ0 are considered. The depth underneath
the ground is z = 4.75 cm. Top: normal-scale view. Middle: blow-up view near the stone.
Bottom: blow-up view near the mine.

a surrounding domain GFDM with a structured mesh, see Figure 3. The computational
domain in all our three-dimensional tests is G = GFEM∪GFDM and is set as G = [−4.0, 4.0]×
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(a) GFDM (b) G = GFEM ∪GFDM (c) GFEM = Ω

Figure 3: The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is
applied, and a mesh (c), where we use FEM, with a thin overlapping of structured elements.
The solution of the inverse problem is computed in the square Ω and c(x) = 1 for x ∈ G�Ω.

[−5.0, 5.0] × [−2.5, 2.0]. This domain is split into a finite element domain GFEM := Ω =
[−3.0, 3.0] × [−3.0, 3.0] × [−2.0, 1.5] and a surrounding domain GFDM with a structured
mesh. The forward problem in two and three dimensional examples is computed in the
domain G ⊂ Rn, n = 2, 3. The coefficient c(x) is unknown only in domain Ω ⊂ G and

c(x) = 1 in G�Ω. (9)

The trace of the solution of the forward problem is recorded at the boundary ∂G. Next, the
coefficient c(x) is “forgotten”, and our goal is to reconstruct this coefficient for x ∈ Ω from
the data ϕ (x, s) . The boundary of the domain G is ∂G = ∂G1 ∪ ∂G2 ∪ ∂G3. Here, ∂G1 and
∂G2 are respectively top and bottom sides of the largest domain of Figure 3 and ∂G3 is the
union of left and right sides of this domain. In our test the forward problem is

c (x)
∂2u

∂t2
−△u = 0, in G× (0, T ),

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0, in G,

∂nu
∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= ∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= ∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ),

(10)

where T is the final time and f(t) is the plane wave defined as

f(t) =
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ t1 :=

2π

s
, T = 17.8t1.
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6.2.2 Description of the globally convergent numerical method of [6]

Let us consider the Cauchy problem for a hyperbolic PDE

c (x) utt = ∆u in R3 × (0,∞) , (11)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (12)

Let d1 and d2 be two positive constants and Ω ⊂ R3 be a convex bounded domain with the
boundary ∂Ω ∈ C3. We assume that the coefficient c (x) of equation (11) is such that

c (x) ∈ [d1, 2d2] , d1 < d2, c (x) = 2d1 for x ∈ R3�Ω, (13)

c (x) ∈ C2
(
R3

)
. (14)

We consider the following
Inverse Problem. Suppose that the coefficient c (x) satisfies (13) and (14), where the

positive numbers d1 and d2 are given. Assume that the function c (x) is unknown in the
domain Ω. Determine the function c (x) for x ∈ Ω, assuming that the following function
g (x, t) is known for a single source position x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (15)

Consider the Laplace transform of the functions u,

w(x, s) =

∞∫

0

u(x, t)e−stdt, for s > s = const. > 0, (16)

where s is a certain number. It is sufficient to choose s such that the integral (16) would
converge together with corresponding (x, t)-derivatives. We call the parameter s pseudo

frequency. Note that we do not use the inverse Laplace transform in our method, since
approximations for the unknown coefficient are obtained in the pseudo frequency domain.
Since by the maximum principle w(x, s) > 0, then we can consider the function q(x, s) =
∂s(s

−2lnw(x, s)). This function satisfies a certain nonlinear integral differential equation
with Volterra integrals with respect to s, where integration is carried out from s to s̄,
where s̄ is the value of the pseudo frequency at which these integrals are truncated. In
that equation the so- called tail function is also involved. This function complements that
truncation, it is unknown and it is small because of a certain asymptotic behaviour at s̄→ ∞.
Therefore that equation contains two unknown functions q and the tail. The reason why
we can approximate both of them is that we treat them differently: while the function q
is approximated via inner iterations, the tail function is approximated via outer iterations.
Consider a partition of the interval into small subintervals with the length of h. Approximate
the function q as a piecewise constant function qn with respect to s on each of these small
intervals (sn, sn−1]. Next, the equation for qn is multiplied by the Carleman Weight Function
CWF = eµ(s−sn−1), where µ is a large parameter. Then the resulting equation is integrated
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with respect to s ∈ (sn, sn−1]. As a result, a finite sequence of Dirichlet boundary value
problems for nonlinear elliptic PDEs for functions qn is obtained, where Dirichlet boundary
conditions are known. This system is solved sequentially. As soon as the function qn is
approximated, an approximation cn for the unknown coefficient c is found and the next
update for the tail function is also found. The first approximation for the tail is either zero
or the one which corresponds to the solution of the above Cauchy problem for c = 2d1. Let σ
be a small parameter characterizing the level of the error in the data, and ǫ be a certain small
regularization parameter which is introduced to improve the stability property of solving the
above Dirichlet boundary value problems. Let ξ > 0 be a small number such that certain
norm of the tail is less than ξ. Denote η = 2(h + σ + ǫ + ξ). Then η is small. The global
convergence theorem of [6] claims that |cn−c∗|α ≤ Cη, where | · |α is a Hölder norm, c∗ is the
exact solution of our CIP satisfying (11), (12) and C > 0 is a constant. Thus, the globally
convergent part provides a good approximation for the exact solution.

6.2.3 The Adaptivity Technique

To use the adaptivity technique, we formulate the inverse problem for the boundary value
problem (10) as an optimization problem, where we seek the unknown coefficient c(x), which
gives the solution of the boundary value problem (10) for the function u(x, t) with the
best least squares fit to the time domain observations g (x, t) , see (15). Denote QT =
Ω× (0, T ) , ST = ∂Ω× (0, T ) . Our goal now is to find the function c(x) which minimizes the
Tikhonov functional

E(u, c) =
1

2

∫

ST

(u |ST
− g(x, t))2dσdt+

1

2
γ

∫

Ω

(c− c0)
2 dx, (17)

where γ is the regularization parameter and c0 is an initial guess for the unknown coefficient
c which was obtained on the globally convergent stage.

Denote

H2
u (QT ) = {f ∈ H2(QT ) : f(x, 0) = ft(x, 0) = 0},

H1
u(QT ) = {f ∈ H1(QT ) : f(x, 0) = 0},

H2
ϕ(QT ) = {f ∈ H2(QT ) : f(x, T ) = ft(x, T ) = 0},

H1
ϕ(QT ) = {f ∈ H1(QT ) : f(x, T ) = 0},

U = H2
u(QT ) ×H2

ϕ(QT ) × C2(Ω),

Ū = H1
u(QT ) ×H1

ϕ(QT ) × L2(Ω),

Ū1 = L2 (QT ) × L2 (QT ) × L2 (Ω) ,

(18)

where all functions are real valued. Hence, U ⊂ Ū ⊂ Ū1 as sets, U is dense in Ū and Ū is
dense in Ū1. Also denote ((·, ·)) the inner product in Ū1 and [·] the norm generated by this
product.
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To solve the problem of the minimization of the functional (17), we introduce the La-
grangian

L(v) = E(u, c) +

∫

QT

ϕ · (cutt − ∆u) dxdt, ∀ϕ ∈ H2
ϕ (QT ) , (19)

where ϕ ∈ H2
ϕ (QT ) is the Lagrange multiplier and v = (u, ϕ, c) ∈ U . Since the function u

solves equation (10) then L(v) = E(u, c). Integration by parts and (19) leads to

L(v) = E(u, c) −
∫

QT

c(x)utϕtdxdt+

∫

QT

∇u∇ϕdxdt−
∫

ST

pϕdσdt. (20)

We search for a stationary point of the functional L(v), v ∈ U satisfying

L′(v) (v) = 0, ∀v̄ = (ū, ϕ̄, c̄) ∈ Ū (21)

where L′(v)(·) is the Frechet derivative of L at the point v. We obtain from (20) and (21)

L′(v) (v) =

∫

Ω

c̄


γ (c− c0) −

T∫

0

utϕtdt


 dx−

∫

QT

c(x) (ϕtut + utϕt) dxdt (22)

+

∫

QT

(∇u∇ϕ+ ∇u∇ϕ) −
∫

ST

pϕdσdt−
∫

ST

(g − u|ST
)udσdt = 0, ∀v̄ = (u, ϕ, c) ∈ Ū .

Integrating by parts in (22) we obtain that if (u, ϕ, c) = v ∈ U is a minimizer of the
Lagrangian L(v) in (20), then

cutt −△u = 0, (x, t) ∈ QT , (23)

u(x, 0) = ut(x, 0) = 0, (24)

∂nu |ST
= p (x, t) ; (25)

cϕtt −△ϕ = 0, (x, t) ∈ QT , (26)

ϕ(x, T ) = ϕt(x, T ) = 0, (27)

∂ϕ

∂n
|ST

= (g − u) (x, t) , (x, t) ∈ ST ; (28)

γ(c− c0) −
∫ T

0

utϕt dt = 0, x ∈ Ω. (29)

The boundary value problem (26)-(28) should be solved backwards in time.
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6.2.4 The adaptive algorithm

In this section we present our adaptive algorithm based on computations of the residuals for
the computed coefficient c. More details about a posteriori error estimate for the unknown
coefficient can be found in [3, 4, 5].

Adaptive algorithm

0. Choose an initial mesh Kh and an initial time partition J0 of the time interval (0, T ].
Start with an initial guess c0 = cglob, which was computed in the above globally con-
vergent algorithm, and compute the sequence of cm in the following steps:

1. Compute the solution um of the forward problem (23)-(25) on Kh and Jk, with c(x) =
cm.

2. Compute the solution ϕm of the adjoint problem (26)-(28) backwards in time on Kh

and Jk.

3. Update the coefficient c := ch on Kh and Jk using the quasi-Newton method

cm+1 = cm − αHmgm.

4. Stop computing c if either the norm of the gradient gm of the Lagrangian with respect
to the coefficient in (29) is ||gm||L2(Ω) < θ or norms ||gn||L2(Ω) are stabilized. Otherwise
set m = m+ 1 and go to step 1. Here, θ is the tolerance in quasi-Newton updates. In
our computations we took θ = 10−5.

5. Compute the residuals, Rc1 , Rc2, where Rc1 (x, t) =
∣∣∂ϕh

∂t

∣∣ ·
∣∣∂uh

∂t

∣∣ , Rc2 = γ|(ch − c0)|,
and refine the mesh at all points where

T∫

0

(
max

Ω
Rc1 (x, t) + max

Ω
Rc2 (x, t)

)
dt > tol. (30)

Here tol is a tolerance chosen by the user.

6. Construct a new mesh Kh and a new time partition Jk. On Jk the new time step τ
should be chosen with respect to the CFL condition. Interpolate the reconstructed
coefficient ch from the previous mesh to the new mesh. Return to the step 1 and
perform all the steps of the optimization algorithm on the new mesh.

6.2.5 Results of reconstruction in 2-d using the globally convergent algorithm

We have performed numerical experiments to reconstruct the medium, which is homogeneous
with c (x) = 1 except of two small squares, where c (x) = 4, see Figure 3-c).
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Figure 4: Two-dimensional example of [4]. The one-dimensional cross-sections of the image
of the function cn,k. On a) along the vertical line passing through the middle of the right
small square computed for corresponding functions qn,1 ; and on b) computed L2-norms of
the Fn,i = ||qn,i |∂Ω −qexact||L2(∂Ω).

It was found in [6] that for domains G,Ω specified in section 7 the interval [s, s] =
[6.7, 7.45] is the optimal one, and so we have used it in our numerical studies. We have
chosen the step size with respect to the pseudo frequency h = 0.05.

Once the function qn is calculated, we update the function c := cn, see subsection 7.3 of
[6] for some numerical details. The resulting computed function is c (x) := cN(x).

Figure 4-a) presents the one-dimensional cross-sections of computed functions cn,k super-
imposed with the correct one along the vertical line passing through the middle of the right
small square. Comparison of images of functions cn,k for different values n and k shows that
the inclusion/background contrasts grow with the grow of n and k.

One can see from Figure 5-b) that the 3.8 : 1 contrast in the right square is imaged for
n := N = 12. However, location of the left square is shifted downwards, and both imaged
squares are on about the same horizontal level. Values of the function c(x) = 1 outside of
these squares are also imaged accurately.

6.2.6 The synthesis of the globally convergent algorithm with the adaptivity

The adaptive algorithm means, that we find the solution of our problem in an iterative
process, where we start with a coarse mesh shown on Figure 5-a), find an approximate
solution by the quasi-Newton method on this mesh. Next, we evaluate residuals regarding
to the computed coefficient and refine the mesh locally at those regions where residuals have
largest values, construct a new mesh and a new time partition, and repeat the computations
again on this new mesh. We stop iterative process when L2-norms of the computed gradient
for the coefficient are stabilized or started to increase for all further refinements of the mesh,
see [4, 5] for full details of our adaptive algorithm.

We test the synthesis of both globally convergent and adaptive methods with the starting
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a) 4608 elements b) 4608 elements c) 23344 elements d) 23344 elements

Figure 5: Two-dimensional example of [4]. On a) we present coarse mesh and on b) spatial
distributation of ch obtained at the first stage of the above globally convergent procedure.
On c) we show finaly adaptively refined computational mesh of the second stage, and on d)
correspondingly distribution of the parameter ch with noise level σ = 0% in data.

opt.it. 4608 elements 5340 elements 8230 elements 14604 elements 23344 elements
1 0.0193568 0.0167242 0.0146001 0.0131787 0.0224184
2 0.0193944 0.0157746 0.0139716 0.0133006 0.0208246
3 0.0133565 0.0208889
4 0.0125237 0.0204343

Table 1: Test 1.2: ||u |ΓT
−g||L2(ΓT ) on adaptively refined meshes. The number of stored

corrections in quasi-Newton method is n = 15. Computations was performed with the noise
level σ = 0% and with the regularization parameter γ = 0.01.

point on the coarse mesh taken from the results of the first stage of our two-stage globally
convergent procedure. More precisely, as the starting point for the coefficient c(x) in the
adaptive algorithm on the coarse mesh we take c12,2, which corresponds to Figure 5-b).
Testing was performed on 4 times adaptively refined meshes and with introducing σ =
0% and σ = 5% of the multiplicative random noise in the function g (x, t) in an adaptive
procedure, see [4]. In Table 1 we present computed L2-norms of ||u |ΓT

−g||L2(ΓT ) in the
quasi-Newton method for adaptively refined meshes. We observe that these norms decrease
as meshes are refined. Then they slightly increase and are finally stabilized for all refinements
n > 3 of the initial mesh. Figures 5-c),d) show that the adaptivity technique enhances the
quality of the reconstruction obtained on the first stage. We conclude that at the second
stage of our two-stage procedure we are able to reconstruct well locations of both small
squares.
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Figure 6: Three-dimensional example of [5]. Measurements of the outcome time dependent
wave field are taken at the boundary of a prism. On a) we present the real image and
on b) spatial distributation of ch obtained by the two stage globally convergent numerical
procedure. Both locations of inclusions and values of the unknown coefficient inside and
outside of them are accurately imaged.

7 Concluding Remarks

The globally convergent methods are still being refined to make the algorithms more stable,
robust and accurate. The methods can be applied to a broad class of Coefficient Inverse
Problems. It is anticipated that more and more applications in science and engineering will
be tackled by these techniques.
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