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SUMMARY

The Reynolds model is a reduced Stokes model, valid for narrow lubrication regions. In order to be
able to handle locally non-narrow regions such as pits or grooves, often displaying rapid geometrical
variations, there is a need to be able to transit to the more accurate Stokes model. A fundamental
problem is how to couple the two models in a numerical simulation, preferably allowing for different
meshes in the different domains. In this paper, we present a weak coupling method for Reynolds and
Stokes models for lubrication computations, including the possibility of cavitation in the different
regions. The paper concludes with a numerical example.

key words: Reynolds problem, Stokes problem, interface coupling, cavitation, variational inequality,

finite element method

1. INTRODUCTION

In approximating thin fluid films typically appearing in lubrication, simplifying assumptions
(discussed below) introduced by Reynolds in the 19:th century [6] are typically introduced in
order to remove the dimension associated with the thickness of the film. In many situations,
one or more of these assumptions must be dropped in order to make accurate predictions
of the actual flow. If, however, the Reynolds assumptions hold in a substantial part of the
domain of interest, there is a large computational gain in making a model coupling between
the Reynolds model and a more accurate model such as Stokes or Navier–Stokes equations. An
example of such a coupling scheme, between Stokes’ and Reynolds equations, is given by Stay
and Barocas [7], who formulate the Reynolds problem in terms solely of the pressure and apply
stress balance and velocity continuity conditions on the interface. In this paper we take a more
direct approach in that we pose both the Stokes and Reynolds equations on mixed form with
unknowns for velocity and pressure. In the Reynolds case, the velocity variable then represents
the flow rate, i.e., the integral of the physical velocity across the interface thickness. In posing

∗Correspondence to: Bertil Nilsson, Center for Applied Mathematics and Physics, Halmstad University, SE–301
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2 B. NILSSON AND P. HANSBO

this mixed formulation, we obtain a natural coupling method based on convex minimization
with constraints: divergence zero constraints in both the Stokes and Reynolds domains, and
continuity constraints between the mean velocities across the coupling interface.

2. REYNOLDS EQUATION

The first mathematical approach to tribology was undertaken by Leonard Euler with a
geometrical resistance theory of ”dry” friction - the Interlocking Asperity Theory. Euler’s
theory provides us with the two well known terms for static and dynamic friction. The static
friction coefficient is provided by the tangent of the asperity angle, while the dynamic friction
coefficient is reduced by the kinetic term. But the true workhorse for many of years is of course
the Reynolds equation [6]. It has been used successfully to determine the pressure distribution
in the fluid film for a wide range of applications from bearings, seals to sheet metal forming
processes.

In the spirit of Figure 1, where a typical channel is furnished with the x-axis oriented as the
relative surface velocity U and z-axis upwards, he made the following assumptions:

1. Body forces are neglected, i.e. there are no extra fields of forces acting on the fluid.
2. The pressure is constant through the thickness of the film.
3. The curvature of surfaces is large compared with film thickness. Surface velocities need

not be considered as varying in direction.
4. There is no slip at the boundaries.
5. The lubricant is Newtonian, i.e. stress is proportional to rate of shear.
6. The flow is laminar.
7. Fluid inertia is neglected.
8. The viscosity is constant through the film thickness.

Under these assumptions, the flow equations can be deduced as follows. (We include these
derivations in order to clarify the mixed model to be used in the sequel).

2.1. Continuity of flow of a column

Consider a thin column of fluid of height H(x, y) and base dx, dy, Figure 2. Fluid flows from
the left at a rate qx per unit width so the volume flow rate is qxdy into the column. The rate
of flow out per unit width is

qx +
∂qx

∂x
dx, (1)

where ∂qx

∂x
is the rate of change of flow in the x-direction. The actual flow out is

(

qx +
∂qx

∂x
dx

)

dy. (2)

In the y-direction the same argument applies. The flow rate in is qydx and out is

(

qy +
∂qy

∂y
dy

)

dx. (3)
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The vertical flow is rather different. If the floor of the column moves upwards at a velocity
w0 and if the roof moves upward as well at a speed wH the volume of the column changes at
a rate (wH − w0)dxdy. Although the base and roof are moving, at the instant considered the
height is H , though a fraction of time later it will of course have altered.

An alternative possibility is that the floor and/or roof are porous, and fluid is flowing in
at a velocity w0 or out of the column at a velocity wH . The fluid velocity can be considered
constant over the very small base area dxdy hence the increase of volume is at a rate w0dxdy
and fluid leaves at a rate wHdxdy.

For continuity of flow, the fluid being of constant density, the rate flowing in must equal the
rate flowing out. These can all be added up. Flowing into the column

qxdy + qydx + w0dxdy, (4)

and flowing out
(

qx +
∂qx

∂x
dx

)

dy +

(

qy +
∂qy

∂y
dy

)

dx + wHdxdy. (5)

These two are equal, equating them and canceling,

∂qx

∂x
dxdy +

∂qy

∂y
dydx + (wH − w0)dxdy = 0. (6)

Now dxdy is arbitrary and non zero, hence can be canceled giving the continuity of flow of a
column as

∂qx

∂x
+

∂qy

∂y
+ (wH − w0) = 0. (7)

If the top and bottom surfaces are impermeable, wH − w0 is the rate of change of height of
the column according to time and may be written ∂H

∂t
. Having obtained the continuity it is

necessary to look at the force balance of an element of the fluid.

2.2. Equilibrium of an element

Take a small element of fluid of sides dx, dy and dz, Figure 3, and consider first the forces in
the x-direction only. On the left of the element there is a pressure p on the face of area dydz
giving a force of pdydz acting to the right. On the opposite face the pressure is

p +
∂p

∂x
dx, (8)

and the corresponding force is
(

p +
∂p

∂x
dx

)

dydz. (9)

There are shear stresses on the top and bottom faces producing forces. On the bottom face
the shear stress τx gives a force τxdxdy acting to the left and on the top face, and acting to
the right, is a force

(

τx +
∂τx

∂z
dz

)

dxdy, (10)

where the shear stress on the top face being τx + ∂τx

∂z
dz. These forces acting to the left and

right must balance each other so

pdydz +

(

τx +
∂τx

∂z
dz

)

dxdy =

(

p +
∂p

∂x
dx

)

dydz + τxdxdy, (11)
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expanding and canceling considering dxdydz an arbitrary non zero volume gives

∂τx

∂z
=

∂p

∂x
. (12)

Now Newton’s viscosity relation states

τx = µ
∂u

∂z
, (13)

where u is the velocity of the fluid in the x-direction, so

∂

∂z

(

µ
∂u

∂z

)

=
∂p

∂x
. (14)

In the y-direction where the velocity of the fluid is v the shear stresses and pressures can be
equated and a similar equation follows

∂τy

∂z
=

∂p

∂y
, where τy = µ

∂v

∂z
,

so
∂

∂z

(

µ
∂v

∂z

)

=
∂p

∂y
. (15)

The pressure gradient in the z-direction is by assumption zero, so ∂p
∂z

= 0. Consider now
equation (14) further. This can be integrated since p is not a function of z, thus

µ
∂u

∂z
=

∂p

∂x
z + C1. (16)

Now both µ and u are functions of z but it is in this context too difficult to consider both
at once so µ is taken as constant with respect to z as stated in assumption 8. It is important
to realize that this is a big assumption and is only made for simplicity. The inclusion of
∂µ
∂z

can modify the equation very considerably in certain circumstances. However, using this
assumption, a further integration can be performed to give

µu =
∂p

∂x

z2

2
+ C1z + C2. (17)

The boundary conditions are simple, according to assumption 4, i.e. no slip at the boundaries
{

u(0) = U0

u(H) = UH

, (18)

so (17) and (18) gives

u =
1

2µ

∂p

∂x
(z2 − zH) + (UH − U0)

z

H
+ U0. (19)

Finally the flow rate qx =
∫ H

0 u dz in the x-direction per unit width of y

qx = −
H3

12µ

∂p

∂x
+ (U0 + UH)

H

2
. (20)
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If the same procedure is followed for y using equation (15) it is easily found that

qy = −
H3

12µ

∂p

∂y
+ (V0 + VH)

H

2
, (21)

where V0 and VH in the y-direction correspond to U0 and UH in the x-direction.
It is now possible to replace (20) and (21) into the continuity equation (7)

∂

∂x

(

H3

µ

∂p

∂x

)

+
∂

∂y

(

H3

µ

∂p

∂y

)

= 6

(

∂

∂x
((U0 + UH)H)+

∂

∂y
((V0 + VH)H) + 2 (wH − w0)

)

.
(22)

This is the full Reynolds equation in terms of the pressure as usually stated, and in particular
as used in [7].

3. A MIXED FORMULATION OF THE REYNOLDS EQUATION

In order to formulate a coupling method between Reynolds equation and more accurate fluid
models, we reintroduce the flow rates from (20)–(21) and pose the problem as that of finding
(q, p) such that

12µ

H3
q + ∇p =

6µ

H2
U ,

∇ · q = 0.

where it has been assumed that the thickness of the film does not change over time and that
U = (U0, UH) = (0, UH) and V = 0. We note in particular that from the way we have derived
this equation, q denotes the integral of velocity over height (rather than the mean velocity).

In weak form, this problem may be written as seeking q ∈ H(div; Ω), where

H(div; Ω) = {v ∈ [L2(Ω)]2 : ‖∇ · v‖L2(Ω) < ∞},

and p ∈ L2(Ω), L2(Ω) being the space of square–integrable functions over Ω, such that
∫

Ω

12µ

H3
q · v dΩ −

∫

Ω

p∇ · v dΩ =

∫

Ω

6µ

H2
U · v dΩ, ∀v ∈ H(div; Ω), (23)

and
∫

Ω

∇ · q w dΩ = 0, ∀w ∈ L2(Ω). (24)

Boundary conditions for this problem are either handled strongly, in the case of conditions on
the normal flow rate, or weakly in the case of conditions on the pressure.

4. THE COUPLED PROBLEM

We are interested in coupling the Reynolds model with the Stokes model across a vertical
interface. The interface from the Reynolds side then appears one–dimensional, while the
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interface on the Stokes side is two–dimensional. Denote by ΩR the Reynolds domain, ΩS the
Stokes domain, by Γ1D the dimensionally reduced interface, and by Γ2D := Γ1D × H the full
2D interface. We have the following problem to solve, not taking cavitation into consideration:

12µ

H3
q + ∇pR =

6µ

H2
U in ΩR ⊂ R

2,

∇ · q = 0 in ΩR,

−µ∆u + ∇pS = 0 in ΩS ⊂ R
3,

∇ · u = 0 in ΩS ,
∫ H

0

σn(u, pS) dz + pR = 0 on Γ1D,

(q −

∫ H

0

u dz) · n = 0 on Γ1D.

(25)

This problem must then be supplemented with boundary conditions on the exterior boundaries,
which depend on the type of model adjacent to the exterior. These are handled in the usual
way in the finite element setting.

We also wish to be able to include cavitation into our numerical model. Cavitation occurs
when the pressure reaches atmospheric pressure, which we for definiteness define as p = 0.
The lubricant cannot support subatmospheric pressure, so an additional condition is p ≥ 0
in ΩR ∪ ΩS . In order to incorporate this condition into the model, it can be written as a
variational inequality (cf. Section 4.1). For this purpose we introduce the space of admissible
pressures

K = {p ∈ L2(Ω) : p ≥ 0},

which is a convex subspace of L2(Ω).

4.1. Finite element formulation

To formulate our discrete method, we suppose that we have regular finite element partitions
T i

h , i ∈ {R, S} of the two subdomains ΩR and ΩS into shape regular simplexes. These two
meshes imply the existence of trace meshes on the interface

Gi
h = {E : E = T ∩ Γ2D, ∀T ∈ T i

h}, i ∈ {R, S}.

From the finite element theory of mixed methods, it is well known that one must carefully select
the combination of approximations for the flow variables and the pressure. In the case of the
Reynolds model, a well known stable element combination is the lowest order Raviart-Thomas
approximation for the flow rate, i.e., qh ∈ V R

h , where

V R
h := {q ∈ H(div; Ω) : q|T ∈ (P0(T ))2 + xP0(T ), ∀T ∈ T R

h }

combined with a pressure space of elementwise constant pressures,

QR
h := {p ∈ L2(Ω) : p|T ∈ P0(T ), ∀T ∈ T R

h }.

In the case of Stokes flow, we choose to use the well known stable Taylor-Hood element
consisting of the velocity space

V S
h := {u ∈ [C0(Ω)]3 : u|T ∈ (P2(T ))3, ∀T ∈ T S

h }
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and pressure space
QS

h := {p ∈ C0(Ω) : p|T ∈ P1(T ), ∀T ∈ T S
h }.

We shall use a Lagrange multiplier method using piecewise constants on the 1D trace
mesh GR

h for the fulfillment of the continuity requirement on the velocities. We seek
(qh, uh, ph

R, ph
S , λh) ∈ V R

h × V S
h × QR

h × QS
h × Ch, where

Ch := {κ ∈ L2(Γ1D) : κ|E ∈ P0(E), ∀E ∈ GR
h },

such that

ah((qh, uh), (vR, vS)) + bh((ph
R, ph

S), (vR, vS)) + ch(λh, (vR, vS)) = fh(vR),

∀(vR, vS) ∈ V R
h × V S

h ,
(26)

bh((ph
R − wR, ph

S − wS), (qh, uh)) ≤ 0, ∀(wR, wS) ∈ (QR
h ∩ K) × (QS

h ∩ K), (27)

and
ch(κ, (qh, uh)) = 0, ∀κ ∈ Ch. (28)

Here

ah((q, u), (vR, vS)) :=

∫

ΩR

12µ

H3
q · vR dΩ +

∫

ΩS

µ∇u : ∇vS dΩ,

bh((wR, wS), (vR, vS)) := −

∫

ΩR

wR∇ · vR dΩ −

∫

ΩS

wS∇ · vS dΩ,

ch(γ, (vR, vS)) :=

∫

Γ2D

γ n · (vR −

∫ H

0

vS dz) ds,

fh(vR) :=

∫

ΩR

6µ

H2
U · vR dΩ.

(29)

It is clear from the formulation that on every one–dimensional element side on GR
h the

(constant) normal component of the flow rate will be set equal to the mean of the Stokes
velocities over the height (multiplied by the height). The problem could thus alternatively be
posed in a discrete space where this side condition is used directly in the definition of the space.
The the well–posedness of the variational inequality (26–27), without the coupling condition,
follows from the general theory presented by Brezzi, Hager, and Raviart [2] (cf. [4, 5] for further
details); for the the stability of the coupling condition in particular, we refer to the closely
related approach of Alonso et al. [1] (dealing with 2D–2D coupling).

4.2. Solution

For solving the nonlinear saddle point problem resulting from the finite element discretization,
we have chosen to use an Uzawa iteration method. In order to find a good initial solution,
we first assemble the finite element matrices emanating from the full model, written using the
unrestricted spaces (that are actually used in the iterations)













KS Bd 0 0 CS

BT
d 0 0 0 0

0 0 Kq Kp CR

0 0 KT
p 0 0

CT
S 0 CT

R 0 0

























uh

ph

S

qh

ph

R

λh













=













0

0

Fq

0

0













, (30)
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where the submatrices are the assembled element matrices according to the integrals found in
(29), i.e. with (vR, vS , wR, wS , κ) ∈ V R

h ×V S
h ×QR

h ×QS
h ×Ch denoting generic basis functions

spanning the relevant spaces, we have

KS =
⊕

T∈T S

h

∫

T

µ∇vS : ∇vS dΩ, Bd = −
⊕

T∈T S

h

∫

T

wS∇ · vS dΩ,

Kq =
⊕

T∈T R

h

∫

T

12µ

H3
vR · vR dΩ, Kp =

⊕

T∈T R

h

∫

T

wR∇ · vR dΩ,

Fq =
⊕

T∈T R

h

∫

T

6µ

H2
U · vR dΩ,

CR =
⊕

E∈GR

h

∫

E

n · vR ds, CS = −
⊕

E∈GR

h

∫

E

∫ H

0

n · vS dz ds, ,

where ⊕ denotes the assembly operator for the finite element matrix construction. The system
(30) is fed repeatedly into a direct linear equation solver. In each round is a simple cavitation
requirement ph

S = max(ph
S , 0) enforced and a modification of the corresponding residuals (out–

of–balance residual forces) carried out. This process is repeated until ph
S ≥ 0 throughout the

domain. The artificial pressure boundary conditions are then released and the model with
current solution state is handed over to Usawa taking cavitation into consideration using a
pressure projection on the run. The Stokes and Reynolds models are solved in parallel as
follows.

A core operation in Uzawa algorithm is to update the pressure field. However, recall that
p = − limκ→∞ κ∇ · u, but ∇ · V S

h does not reside in QS
h , due to the fact that we are using

Taylor-Hood elements, so in step 3 we find a continuous pressure corrector pd ∈ QS
h .

1. Let k = 0 and choose as initial pressure solution kph
S and kph

R

provided by the solution strategy of the linear system (30)
just described.

2. Solve the condensated version of the linear system (30)




KS 0 CS

0 Kq CR

CT
S CT

R 0









kuh

kqh

kλh



 =





−Bd
kph

S

Fq − Kp
kph

R

0



,

for the vector fields kuh and kqh and the Lagrange multipliers kλh.
3. Find a continuous pressure corrector pd ∈ QS

h from the system
∫

ΩS

pdq dΩ = −
∫

ΩS

∇ · uhq dΩ, ∀q ∈ QS
h ⇔ Mdpd = Bd

kuh,

where Md is the lumped mass matrix, which makes the update fast.
4. Update pressure fields

{

k+1ph
S = PΛ(kph

S + ωSpd)
k+1ph

R = PΛ(Fq + ωRKT
p

kqh)

where ωS and ωR are relaxation parameters and the operator
PΛ(ϑ) := max(0, ϑ).

5. If convergence not yet achieved, set k = k + 1 and go back to step 2.

The projection operator PΛ is applied point–wise on the nodal values for the pressure in
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the Stokes case and element–wise in the Reynolds case, which by construction leads to
{ph

R, ph
S} ∈ K.

The typical number of iterations is then 200 for the Usawa algorithm, using well tuned
relaxation for the two models, to converge according to ‖k+1ph

S−
kph

S‖+‖k+1ph
R−kph

R‖ < 10−9

for a particular mesh. For the numerical evaluation of the integrals involved in the coupling
matrices, CR and CS , a 2-point Gauss quadrature scheme is used on the edges of the one-
dimensional trace mesh GR

h and a 3-point Gauss quadrature scheme for companion surface
integrals on the Stokes mesh.

5. NUMERICAL EXAMPLE

In order to investigate the performance of the method proposed, a numerical example will be
presented. Of course, experimental results demonstrating in detail the local behavior of the
pressure and velocity images for the two physical models glued together is hard to achieve.

The object for our study is a single parabolic shaped oil pocket, Figure 4. A central
longitudinal cut through the gap between the sheet metal and work piece comprise our
full symmetrical 3D computational Stokes model. The nominal channel has the dimensions
x × y × z = [−0.5, 0.5] × [0, 0.6] × [0, 0.2] and the particular parabolic oil pocket is shaped
as (x/0.4)2 + (y/0.4)2 + (z/0.1)2 = 1. The narrow lubrication regions modeled by Reynolds
equation is used as transit parts between the Stokes models. We investigate one Stokes part
combined with two Reynolds parts of rectangular shape, the inlet part x× y = [−1.6,−0.5]×
[0, 0.6] and the outlet part x×y = [0.5, 1.6]× [0, 0.6]. The finite element model can be inspected
in Figure 5.

Boundary conditions used for the pressure is p = 0 at inlet x = −1.6 and outlet x = 1.6
parts of the narrow Reynolds regions. Velocity is set to ux = uy = uz = 0 over the floor of
the Stokes channel, oil pocket included. Symmetry along the two cuts y = 0 and y = 0.6 is
accomplished via uy = 0 for the Stokes part and q = 0 for the Reynolds parts. Finally, the
flow is driven by ux = 1, uy = uz = 0 at the ceiling of the Stokes model and over the Reynolds
parts. The lubricant viscosity µ = 1.

For visualization purposes we apply a L2-projection of the Reynolds constant element
pressure field forming a continuous one. In Figure 6 we present pressure contour lines on
the model surface, and in Figures 7 and 8 contour lines for slices in two different directions.
We can clearly identify by inspection the cavitation zone upstream in the pocket and a high
pressure peak at downstream pocket side. An important point is that we do not need to a

priori define the boundary location between the fluid and cavitation phases. The classical
way to approach the cavitation problem in the Reynolds community via continuity boundary
conditions or first computing pR from a pure Reynolds solution, followed by approximating
p ≈ max(0, pR) (known as the half-Sommerfeld condition), is not very accurate compared to
the cavitation model presented here.

From Figure 9 it is obvious that the weak coupling of velocity field between the models
produce a Couette flow profile as expected.

If we define pocket impact to be the ratio of maximal channel height over minimal channel
height Figure 10 indicates that the model at hand yields better lift for oil pocket impacts of
' 1.9 compared to simpler models (included in the figure purely for qualitative comparison).
This is in agreement with our earlier observation described in Hansbo and Nilsson [3, 4]. Note
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that as the oil pocket depth increases, recirculation appears in the pocket; this violates one of
the basic assumptions in Reynolds model. No such limitation afflicts Stokes flow, which is the
strongest argument for employing this more complex model.
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Figure 1. Reynolds channel.

Figure 2. Continuity of flow in a column of height H .
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Figure 3. Equilibrium of an element.

Figure 4. Oil pocket model.
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(a) FE-model from above.

(b) FE-model from below.

Figure 5. Finite element computational model. Outlet and inlet 2D Reynolds parts and 3D Stokes
part in between.

Figure 6. Pressure contour lines on the surface.
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Figure 7. Pressure contour lines on x-slices.
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Figure 8. Pressure contour lines on z-slices.

Figure 9. Couette flow profile at coupling zones.
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Figure 10. Lift for present coupling model. Normalized lift is included for the 2D Stokes and 1D
Reynolds models just for qualitative comparison.


