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Abstract

The focus of this paper is on the estimation of the crossing intensities of responses

for second order dynamical systems, subjected to stationary, non-Gaussian exter-

nal loadings. A new model for random loadings – the Laplace driven moving av-

erage (LMA) – is used. The model is non-Gaussian, strictly stationary, can model

any spectrum and has additional flexibility to model the skewness and kurtosis of

the marginal distribution. The system response can be expressed as a second-order

combination of the LMA processes. A numerical technique for estimating the level

crossing intensities for such processes is developed. The proposed method is a hybrid

method which combines the saddle-point approximation with limited Monte Carlo

simulations. The performance and the accuracy of the proposed method is illustrated

through a set of numerical examples.

Key words: quadratic responses, Laplace distribution, moving average, Rice’s

formula, Gamma process, non-Gaussian process
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1 Introduction

Failures in randomly vibrating systems occur primarily in two different modes

- gradual deterioration of the material properties resulting in fatigue type fail-

ure and/or due to overloading, when the structure response exceeds specified

threshold levels for the first time. Quantification of the risk associated with

a structural system requires probabilistic characterization of the structure re-

sponse. The probability of first passage type of failures can be estimated from

the statistics of the extreme structure response. On the other hand, predict-

ing the risk against fatigue type of failures require the probability distribution

of the amplitudes of the response cycles corresponding to various ranges. In

either case, the corresponding statistic is related to the intensity of the up-

crossing of levels. For smooth stationary processes, the up-crossing intensity,

µ(u), of level u, is given by Rice’s formula [1,2], expressed as

µ(u) =
∫ ∞

0
z fY (0),Ẏ (0)(u, z) dz, (1)

where, fY (0),Ẏ (0)(u, z) is the joint probability density function (j-pdf) of the

response Y (0) and its instantaneous time derivative Ẏ (0). The applicability of

Eq. (1) lies in the availability of the information on the j-pdf fY (0),Ẏ (0)(u, z).

This is however rarely available.

Exact information about the j-pdf, fY (0),Ẏ (0)(u, z), is available when the re-

sponse is stationary and Gaussian. This is usually applicable when stationary

∗ Corresponding author. Email: gupta.sayan@gmail.com Phone: +91 44 2257 4055.

Fax: +91 44 2257 4052.
Email addresses: thomas.galtier@gmail.com (Thomas Galtier),

sayan@itm.ac.in (Sayan Gupta), rychlik@chalmers.se (Igor Rychlik).

2



Gaussian loads act on systems with very weak nonlinearities, enabling ap-

proximating such systems as time invariant linear systems. This simplification

implies that the response is also stationary and Gaussian. The corresponding

up-crossing intensity can thus be evaluated using Eq. (1), leading to

µ(u) = fz e−
1
2

(u−E[Y (0)])2

V(Y (0)) , (2)

where, fz = 1
2π

√
V(Ẏ (0))/V(Y (0)) and V(·), E[·], indicate the variance and the

expected value, respectively.

The probability distribution of the extreme response in a fixed period T , viz.

MT = max0≤t≤T Y (t), can be conservatively estimated by means of the in-

equality

P(MT > u) ≤ P (Y (0) > u) + T µ(u), (3)

see e.g. [3]. (For stationary Gaussian responses the stronger result that P(MT >

u)/(Tµ(u)) → 1 as u tends to infinity is true, see [4].) Hence, for a long time

the study of random loads has been dominated by Gaussian processes, i.e.,

the dynamics of the system were linearized while external loads were modeled

by means of Gaussian processes.

However, there are situations where a simple linearization of weakly nonlin-

ear, time invariant systems lead to approximations that are too crude. Such

systems are often represented by means of Volterra functional expansion that

is truncated after the second order term. More precisely, we assume that with

input force X(t), the response Y (t) can be written as a sum

Y (t) = Y1(t) + Y2(t), (4)

where,

Y1(t) =
∫ ∞

−∞
h1(s) X(t− s) ds (5)
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and

Y2(t) =
1

2

∫ ∞

−∞

∫ ∞

−∞
h2(s1, s2) X(t− s1) X(t− s2) ds1 ds2. (6)

Here, it can be assumed that X(t) is a smooth Gaussian process, given by

X(t) =
∫ ∞

−∞
f(t− x) dB(x), (7)

where, B(x) is a Brownian motion while f(x) is a suitably chosen kernel. The

pdf of responses and crossing properties of processes defined by Eq. (4), with

Gaussian forcing, have been studied by many authors; see, for e.g., [5–8] and

the more recent studies [9–13].

However, many real loads, e.g. ocean waves in shallow water or during heavy

storms, show considerable non-Gaussian features, such as, a skewed marginal

distribution with heavy tails. These waves are sometimes modeled by Volterra

series expansions with Gaussian input, i.e., a process of the same type as

Y (t) in Eq. (4). Statistical analysis of extremes of Y (t) when the forcing is

quadratic is a difficult task. One approach would be to employ Monte Carlo

simulations. However, to estimate the crossing intensities of very high levels,

which in turn imply rare events, would require large number of simulation

runs making Monte Carlo simulations prohibitively expensive.

An alternative approach to modeling non-Gaussian forcing is to use a class of

transformed Gaussian processes [14]. These processes take their starting point

in a Gaussian process, Z(t), and a continuous and increasing function g(·).
Then one forms a non-Gaussian process, X(t), according to the transforma-

tion X(t) = g(Z(t)). In this way, the process X(t) can have a non-Gaussian

marginal distribution. Different strategies to choose the function g(·) have

been proposed and studied in [15–18]. The drawback of this class of models is

the inability to exactly model the spectral density function.

4



In this paper, we consider another class of processes, the so called Laplace

moving averages (LMA), to model the forcing. These models are character-

ized by mean, spectrum (as in the Gaussian case) and two more parameters

for skewness and kurtosis of the marginal distribution [19]. In this way, LMA

processes offer an alternative to the transformed Gaussian models that is pre-

serving the correct spectrum. Both simulating from the model and passing

through linear filters are straightforward as the linear filtering does not lead

outside of this class. In this paper we shall study crossings of response Y (t),

as defined in Eq. (4), with X(t) assumed to be a LMA process.

The paper is organized as follows. First, in Section 2, we introduce the LMA

process and review some simple properties of this model. In Section 3, we de-

fine the response process, Eq. (4), with LMA forcing and develop the necessary

equations. In Section 4, we present a method based on the saddle-point ap-

proximation to compute the crossing intensity of Y (t), given by µY (u), when

the joint moment generating function of the response and its instantaneous

time derivative is available. Subsequently, some numerical examples are pre-

sented in Section 5 to highlight the applicability of the developments proposed

in this paper and discussions on the accuracy of the estimates are presented.

The salient features of the study carried out in this paper is highlighted in the

concluding section.
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2 The LMA process

2.1 The Laplace driven moving average model

The model we propose for loads is a continuous time moving average which

may be written as

X(t) =
∫ ∞

−∞
f(t− x) dΛ(x), (8)

where, f(x) is a kernel function and Λ(x) is a stochastic process with inde-

pendent and stationary increments having a generalized asymmetric Laplace

distribution. The process Λ(x) is referred to as Laplace motion and the result-

ing process X(t) is called the Laplace driven moving average (LMA). Thus

X(t) may be thought of as a convolution of f(·) with the increments of the

process Λ(x). A process generated in this way is stationary and ergodic. In

the special case where Λ(x) is chosen to be a Brownian motion, then X(t)

becomes a Gaussian process; otherwise, in general it is non-Gaussian.

The generalized Laplace distribution is compactly defined by its characteristic

function. More precisely, a random variable Z is said to have a generalized

asymmetric Laplace distribution if its characteristic function is given by its

characteristic function

φZ(v) = E[eivZ ] =
eivθ

(1− iµv + σ2v2

2
)

1
ν

. (9)

Here, θ, µ ∈ R and ν, σ > 0 are parameters of the Laplace distribution and

i =
√−1. If µ = 0 the distribution is symmetric; otherwise it is asymmet-

ric. An extensive overview of Laplace distributions is available in [20]. The

generalized asymmetric Laplace distribution can be used to construct a pro-

cess with independent and stationary increments – the previously mentioned
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Laplace motion. The Laplace motion Λ(x) is a process that starts at zero and

whose distribution at x is given by

φΛ(x)(v) = E[eivΛ(x)] =
eivζx

(1− iµv + σ2v2

2
)

x
ν

, (10)

where, ζ is a parameter representing the drift of the process. The Laplace mo-

tion can be extended to the whole real line by basically taking two independent

copies of it and mirroring one of them in the origin. The extended process can

then be used to define the moving average in Eq. (8). Since the increments of

the Laplace motion are allowed to have an asymmetric distribution (µ 6= 0),

it turns out that the corresponding moving average process will also have a

non-symmetric marginal distribution. In fact, the marginal distribution of the

Laplace driven MA has the following characteristic function

φX(t)(v) = exp

(∫ ∞

−∞
iζvf(x)− 1

ν
log

(
1− iµvf(x) +

σ2f 2(x)v2

2

)
dx

)
, (11)

where log(·) is the complex logarithm function.

For the Laplace driven MA defined in Eq. (8), one can show that the mean

and the two-sided spectral density S(ω) are given by

E[X(t)] =
(
ζ +

µ

ν

) ∫ ∞

−∞
f(x) dx, S(ω) =

σ2 + µ2

ν

1

2π
|Ff(ω)|2. (12)

Here, F denotes the Fourier transform. This means that by choosing different

kernels one can, in principle, model any spectrum. In the following, we shall

assume that
∫

f(x)2 dx = 1 and hence

V(X(t)) =
σ2 + µ2

ν
. (13)

However, after having chosen the kernel f(·) and fitting the mean and variance,

there are still two free parameters, out of the four original ones. These “two

degrees of freedom” can be used e.g. to fit skewness s and excess kurtosis κ (if
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κ > 3) of the marginal distribution of Y (t). By using the expression for the

characteristic function in Eq. (11), these are given by

s = µν1/2 2µ2 + 3σ2

(µ2 + σ2)3/2

∫ ∞

−∞
f 3(x) dx, (14)

κ = 3ν

(
2− σ4

(µ2 + σ2)2

) ∫ ∞

−∞
f 4(x) dx. (15)

This ability to fit both spectrum and the marginal skewness and kurtosis can

be very useful when modeling second order processes. Note that for a Gaussian

process both skewness and excess kurtosis equal zero, i.e., s = κ = 0. In

fact, a Gaussian process can be obtained from the Laplace driven MA as

a limiting case as s = 0 and κ → 0, e.g. by letting µ = 0 and ν → 0

in such a way that V(X(0)) in Eq. (13), is constant; see [20] (page 183) for

more detailed discussion. Consequently, in the following, we consider Gaussian

moving averages as a special case of Laplace moving averages.

2.2 Simulation of the Laplace driven MA

The Laplace driven moving average can be simulated in several different ways.

The simplest and most straightforward one is to first simulate the increments

of the Laplace motion over an equally spaced grid and then convolve it with the

kernel f(·). In full generality, following [20], the asymmetric Laplace motion

Λ(x), with drift ζ, can be represented as

Λ(x) = ζ x + µΓ(x) + σB(Γ(x)). (16)

Here, Γ(x) is a gamma-process characterized by independent and homogeneous

dx-increments having a gamma distribution with shape parameter dx/ν and

scale parameter 1 while B(x) is Brownian motion. Using this representation a
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simple algorithm for simulating the Laplace driven moving average with kernel

f(·) is given by:

(1) Pick m, and dx so that f(·) is well approximated by its values on

−m dx < . . . < −dx < 0 < dx < · · · < m dx.

(2) Pick n À 2m + 1 so the k = n − 2m values of Y will be generated at

0 < dx < 2 · dx < · · · < (k − 1) · dx.

(3) Simulate n identical and independently distributed (i.i.d.) Γ(dx/ν, 1) ran-

dom variables and store them in a vector G = [Gj].

(4) Simulate n i.i.d. zero mean standard normal random variables and store

them in a vector Z.

(5) Compute X = ζ
∫

f(x) dx + µf ∗ G + σf ∗ (
√

G · Z), where
√

G · Z =

[
√

Gj · Zj], ∗ denotes convolution and the integral
∫

f(x) dx is computed

by some numerical method.

The advantage with the above simulation procedure is that it is very fast and

efficient and that it works for long simulations and for most values of the

parameters. The disadvantage is that one looses some resolution where the

jumps in the Gamma process occur, due to taking an equally spaced grid.

3 Quadratic response process with LMA forcing

In this section, we employ a methodology developed in [5] to represent quadratic

response processes with LMA forcing. The formulation closely follows the ap-

proach in [8], where asymptotical properties of the up-crossing intensity, µ(u),

was studied for stationary process Y (t), as defined in Eq. (4), when X(t) is a
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stationary Gaussian process. Here, we consider the more general case where

X(t) is modeled as a LMA process, see Eq. (8). Combining Eqs. (4) and (8),

the response process Y (t) = Y1(t) + Y2(t), can be rewritten as

Y1(t) =
∫ ∞

−∞
q(t− x) dΛ(x) (17)

and

Y2(t) =
1

2

∫ ∞

−∞

∫ ∞

−∞
Q(t− x1, t− x2) dΛ(x1) dΛ(x2). (18)

Here,

q(t) =
∫ ∞

−∞
h1(s)f(t− s) ds, (19)

and

Q(t, s) =
∫ ∞

−∞

∫ ∞

−∞
h2(s1, s2)f(t− s1)f(s− s2) ds1 ds2. (20)

For most real life engineering applications, the kernel Q(·, ·) is symmetrical.

Further, we assume that the kernels q(·), Q(·, ·) are square integrable and hence

vanishes at infinity. Thus, by choosing T sufficiently large, we may approximate

the kernels by letting Q(s, t) = 0 and q(s) = 0 for |s| > T and |t| > T . Under

such assumptions, the Kac-Siegert technique based on the representation of

the truncated kernel Q(·, ·) through its eigenfunctions φi(x) and eigenvalues λi,

can be employed. Let the eigenfunctions and eigenvalues of the kernel Q(·, ·)
be defined by

∫ T

−T
Q(t, s)φi(s) ds = λiφi(t). (21)

For a symmetrical kernel Q(·, ·), the eigenfunctions corresponding to the dif-

ferent eigenvalues are orthogonal. By further normalization, we assume that

φi(·) are orthonormal with eigenvalues λi. Suppose that the eigenfunctions

are ordered according to |λi| ≥ |λi+1|. Both eigenvalues and eigenfunctions
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are real, λi → 0 as i →∞, and

∫ T

−T

∫ T

−T

∣∣∣∣∣Q(s1, s2)−
n∑

i=1

λiφi(s1)φi(s2)

∣∣∣∣∣
2

ds1 ds2 → 0 as n →∞ (22)

see [21]. Further, for simplicity of presentation, we assume that

∫ T

−T

∫ T

−T
Q(s, t)q(s)q(t) dt ds < ∞, (23)

and hence q(·) can be expanded in a series using the orthonormal eigenfunc-

tions φi(·), viz.

q(s) =
∞∑

i=1

ai φi(s), ai =
∫ T

−T
φi(s) q(s) ds. (24)

Then, in quadratic mean, the response in Eq. (4) can be rewritten as

Y (t) =
∞∑

i=1

ai Wi(t) +
λi

2
W 2

i (t), (25)

where,

Wi(t) =
∫ T

−T
φi(t− x) dΛ(x) (26)

are LMA processes.

Often only a few of the eigenvalues λi are significantly nonzero. Assuming that

the number of such eigenvalues is n− 1, Eq. (25) can be rewritten as

Y (t) =
n−1∑

i=1

(ai Wi(t) +
λi

2
W 2

i (t)) +
∞∑

i=n

ai Wi(t). (27)

To formally consider the truncation of Eq. (27), we redefine the eigenfunctions

for i ≥ n, such that,

φn(s) =
∞∑

j=n

ajφj(s), φi(s) = 0, ∀ i > n. (28)

Obviously an = 1 while ai = 0 for i > n. We also define λi = 0, for all i ≥ n.
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Thus, the response Y (t) in Eq. (4) can be approximated by

Y (t) =
n∑

i=1

ai Wi(t) +
λi

2
W 2

i (t) (29)

and the instantaneous time derivative process by

Ẏ (t) =
n∑

i=1

ai Ẇi(t) + λi Ẇi(t)Wi(t). (30)

Note that Eqs. (29-30) are functions of the vectors of LMA processes W(t) =

{Wi(t)}n
i=1 and Ẇ(t) = {Ẇi(t)}n

i=1. A procedure for estimating the up-crossing

intensity for Y (t) in Eq. (29) is discussed in the following section.

4 Estimation of the up-crossing intensity µ(u)

The up-crossing intensity µ(u) of Y (t) can be computed using Eq. (1) if the

j-pdf of Y (0) and Ẏ (0) is available. This however is not easy when Y (t) is as

defined in Eq. (29). The elements in vectors W(t) and Ẇ(t) all have gener-

alized Laplace distributions whose marginal pdfs are usually defined through

their characteristic functions. Also, since the elemental processes Wi(t) and

Ẇi(t) have mutual dependence, the computation of the joint characteristic

function of Y (0) and Ẏ (0) is a difficult task. In the special case when Y (t) is

an LMA-process, i.e., Y (t) = Y1(t) = W1(t), (see Eq. (4) and when n = 1 in

Eq. (29)), it can be shown that the characteristic function can be expressed

in an explicit manner; see later in Eq. (39). In addition, as the moment gener-

ated function exists, the saddle point method can be used for estimating the

crossing intensity of the LMA-processes [22]. The details of the saddle point

algorithm is available in the literature and for the sake of conciseness, is not

repeated here; the reader is directed to references [9,10,13] for further details.
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In this paper, we extend the above method and develop a similar procedure for

estimating µ(u) for the general quadratic response process, Y (t), as defined in

Eq. (4), but with LMA-forcing. It must be noted that for general quadratic

processes, Y (t), not only the characteristic functions are hard to compute but

also the moment generating functions may not exist. Consequently, the appli-

cation of the saddle point method, or even methods employing characteristic

functions, are not straightforward. Obviously one could use Monte Carlo (MC)

approaches to simulate Y (t) or to estimate the joint density of (Y (0), Ẏ (0))

needed to compute µ(u) using Eq. (1). However, the MC approach is not an

efficient way for computing µ(u) for high levels u, as the sample size, and in

turn, the computational costs could be prohibitively large.

Here, an alternative “hybrid” method is presented. The proposed method is

a combination of Monte Carlo simulations and the saddle point estimate. It

uses the fact that conditionally on the Gamma process, W(t) and Ẇ(t) are

normally distributed. Consequently, the computation of conditional moment

generating function is straightforward, and is given by

M(s, t|γ) = E
[
esY (0)+tẎ (0)|Γ(·) = γ(·)

]
, (31)

see Section 5.2. Now, the up-crossing intensity µ(u) can be expressed as the

expectation of NY (u), i.e., the number of up-crossings of level u by the pro-

cess Y (t) in duration T = 1. Thus, one can find the conditional up-crossing

intensity of the process Y (t) when conditioned on the Gamma processes and

subsequently, the unconditional up-crossing intensity can be obtained as the

first moment across the ensemble of Gamma processes. Mathematically, this

can be written as

µ(u) = E[NY (u)] = E [E [NY (u)|Γ(·) = γ(·)]] . (32)
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The up-crossing intensity µ(u) can be estimated by computing the conditional

moment generating function in Eq. (31) and using the saddle point method

to estimate E [NY (u)|Γ(·) = γ(·)]. Subsequently, Monte Carlo simulations can

be employed to estimate the unconditioned up-crossing intensity.

The saddle point algorithm is particularly efficient when the moment generat-

ing function, M(s, t), is symmetrical in t, i.e., M(s, t) = M(s,−t). Note that

the numerical algorithm presented in [9,10,13] is restricted to the symmetrical

case. Unfortunately, the conditional moment generating function M(s, t|γ) in

Eq. (31) is not, in general, symmetrical. For the asymmetrical M(s, t), the

algorithm is much slower and further development of the method is needed

before one can use it for a complex problem. As will be demonstrated in the

following subsection, one can bypass this problem for time reversible processes.

The sufficient condition for the time reversibility of the response process is that

the kernels q(t) and Q(s, t) in Eqs. (19-20) are symmetrical, which is what has

been assumed in this paper.

4.1 Approximation of the up-crossing intensity µ(u)

Assuming that Y (t) is a time reversible process, Y (t) and Y (−t) have the

same expected number of up-crossings of any level u. Consequently,

Ỹ (t) = K · Y (t) + (1−K) · Y (−t), (33)

where, K is independent of the Y -process and takes values 0 or 1 with proba-

bility 1/2. Additionally, Ỹ (t) has the same up-crossing intensity as the process

Y (t). In the special case when Y (t) is given by Eq. (4) with LMA-forcing, the

up-crossing intensity can be expressed as

14



µ(u) = E[NY (u)] = E[NỸ (u)] = E [E [NỸ (u)|Γ(·) = γ(·)]] . (34)

Let the conditional crossing intensity be defined as

µ(u|γ) = E [NỸ (u)|Γ(·) = γ(·)] . (35)

Then, by simulating a sequence of Gamma processes, γi(·), i = 1, . . . , N , the

unconditional crossing intensity, µ(u), can be estimated by averaging µ(u|γi),

viz.

µ(u) ≈ 1

N

N∑

i=1

µ(u|γi), (36)

where, N is the number of sequence of Gamma process simulated.

The problem that needs to be addressed next is to develop a strategy for com-

puting the conditional level crossing intensity µ(u|γi). Since the conditional

moment generating function for Ỹ (t) in Eq. (33), can be expressed as

MỸ (s, t|Γ(·) = γ(·)) =
1

2
MY (s, t|γ) +

1

2
MY (s,−t|γ), (37)

it is obvious that MỸ (s, t|Γ(·) = γ(·)) is symmetrical. This enables one to use

the saddle point algorithms discussed in [9,10,13] to estimate the conditional

up-crossing intensity µ(u|γi).

Clearly, the method to estimate the up-crossing intensity µ(u) proposed here

is a hybrid method which combines Monte Carlo simulations of realizations

of Gamma processes and the saddle point approximation of up-crossing inten-

sity. The advantage of this approach is that one can approximate crossings

of extremely high levels (required when computing the extremes of responses

with 100 years return period) which is otherwise difficult if one employs Monte

Carlo simulations only. The unresolved issue of the accuracy of the proposed

hybrid method will be examined in the following section.
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5 Computing the up-crossing intensity and discussions

First, we consider a LMA process, i.e., when Y (t) = Y1(t) for which the

(unconditional) saddle point method can be used. For such cases, the saddle

point method is very accurate, see [22], and the computed estimate can be

used to benchmark the accuracy of the proposed method. This will allow us

to study how large N in Eq. (36) should be in order to reach desired accuracy.

Next, we study the crossings of a simple quadratic response Y (t) = Y1(t) +

λY1(t)
2/2. The up-crossing intensity can be computed when up-crossing in-

tensity of the linear response Y1(t) is known. Since the intensity can be very

accurately computed by means of the saddle point method, one can now study

the convergence of Eq. (36) with reference to the quadratic process.

Finally, we consider an example of Y (t) of full complexity and estimate the

up-crossing intensity. Here, 12 eigenvalues λi differ significantly from zero. The

computed crossing intensity is compared with the Monte Carlo estimate. The

details of these numerical examples are elaborated in the following subsections.

5.1 Saddle point approximation of crossings intensity for LMA

processes

We consider the crossings of a linear response process, given by

Y (t) =
∫

q(t− x) dΛ(x), (38)
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with symmetrical kernel q(·). The corresponding moment generated function

is given by [19]

M(s, t) = exp
(
ζ

∫ ∞

−∞
sq(x) + tq̇(x) dx

)

· exp

(
−1

ν

∫ ∞

−∞
log

(
1− µ(sq(x) + tq̇(x))− σ2

2
(sq(x) + tq̇(x))2

)
dx

)
. (39)

Since M(s, t) = M(s,−t), one can use the efficient algorithm of the saddle

point method discussed in [9,10,13].

In order to simplify the presentation we introduce the following notations;

µs
N(u) is the estimate of µ(u) = E[N(u)] computed by means of the hy-

brid saddle-point method and Eqs. (36-37) and µs(u) denotes the estimate

of E[N(u)] by means of saddle-point method and M(s, t) defined in Eq. (39).

Here N(u) is defined as the observed number of up-crossings of level u divided

by the length of the “observation” time. In all the examples, N(u) has units

Hz.

We first focus on the computation of the conditional moment generated func-

tion M(s, t|γ). Let us consider two LMA processes defined by a common

Laplace motion. More precisely, for two kernels f1(·), f2(·) and the Laplace

motion Λ(x), define

X1(t) =
∫

f1(t− x)dΛ(x), X2(t) =
∫

f2(t− x)dΛ(x). (40)

Here, Λ(x) is defined as in Eq.(16). Now, conditionally that Γ(·) = γ(·), the
Laplace motion can be written as

λ(x) = ζ x + µγ(x) + σB (γ (x)) (41)

and hence the conditional LMA processes, X1(t) and X2(t), can be represented
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as

X1(t) =
∫

f1(t− x)dλ(x), X2(t) =
∫

f2(t− x)dλ(x), (42)

respectively. Obviously for any t, (here we take t = 0), the joint pdf of X1(0)

and X2(0), is Gaussian with means and covariances mi, σij, i, j = 1, 2, given

by

mi = ζ
∫

fi(x)dx + µ
∫

fi(x)dγ(x), σij = σ2
∫

fi(x)fj(x)dγ(x). (43)

Using Eq. (43), with f1(x) = q(x) and f2(x) = q̇(x), leads to

M(s, t|γ) = E
[
esY (0)+tẎ (0)|Γ(·) = γ(·)

]

= exp
(
s m1 + tm2 + 0.5s2 σ11 + 0.5t2 σ22 + s t σ12

)
. (44)

Example 1: In this example, 30 minutes of measured stress in a ship un-

der stationary severe sea conditions is modeled as a LMA process. A part of

the stress is shown in Figure 1(a). One can clearly see the existence of high

frequency oscillations, likely due to whippings, which get superimposed with

the wave induced stress. Figure 1(b) illustrates an estimated spectrum, S(ω),

having two peaks. The kernel q(x) is computed from the spectrum S(ω) and

is illustrated in Figure 2(a). Note that the kernel is not uniquely defined by

the spectrum; hence we impose the condition that the kernel is symmetrical.

We next need to identify the parameters of the LMA process. The variance

of the stress time history is obtained by integrating the spectrum, S(ω) with

respect to ω. Additionally, we assume that stress time history to be mean zero.

In order to identify the remaining parameters of the LMA process, we compute

the skewness and excess kurtosis which are 0.13 and 0.21 respectively. These

values indicate that the stress process is slightly non-Gaussian.
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Fig. 1. Example 1: (a) A part of the measured stress. (b) An estimate of the spectral

density for the measured stress.
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Fig. 2. Example 1: (a) Estimated kernel function q(x). (b) Observed crossing in-

tensity N(u) in the measured stress - solid line; simulated crossing intensity in 100

times longer signal than measured (50 hours) - solid line with dots; the saddle-point

approximation µs(u) of E[N(u)] - dashed dotted line

Figure 2(b) illustrates the crossing intensity N(u) for the measured stress

(solid irregular line). In prediction of extremes, the crossings intensity needs

to be extrapolated to much higher levels. Here, the LMA model is used for

the extrapolation. The crossings of LMA are estimated by means of µs(u),

i.e., the saddle point method, where the moment generated function, M(s, t),
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has been defined in Eq. (39). The function µs(u) is shown in the plot as a

dashed dotted line. The agreement between N(u) and µs(u) is seen to be very

good, except at the highest observed values of N(u). These discrepancies can

be attributed to extremely large whipping effects, which consists of several

crossings of high levels. This effect is averaged in µs(u).

In order to verify this claim, we simulated the LMA process for a much longer

duration (50 hour period) and computed the crossing intensities. The resulting

crossing intensity, N(u), is superimposed in Figure 2(b) by solid line with

dots. We observe that the estimated crossing intensities follows closely those

computed using the saddle point method. This confirms the accuracy of the

saddle point method.
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Fig. 3. Example 1: (a) Crossing intensities µs
N (s, t) computed using the proposed

hybrid method: Sample size for simulated gamma processes γi; N = 1e2: doted line;

N = 1e3: dashed dotted line; N = 1e4: dashed line; Crossing intensity µs(u): solid

line. (b) Corresponding relative errors µs
N (u)/µs(u).

The primary objectives of this example are:

(a) to study the applicability of the approximation µs
N(u) (computed by
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means of the saddle-point method and formulas Eq. (37-36)) and to pre-

dict the return values, i.e., levels uT such that E[N+(uT )] = 1/T , and

(b) to examine how fast µs
N(u) converges to E[N+(uT )], which here is esti-

mated by µs(u).

These are slightly different problems since in (a), one is interested in the

horizontal distance between µs
N(u) and µs(u), when plotted against levels u,

while in (b), one examines the vertical distance between the functions. The

conclusions of these studies are illustrated by means of Figure 3(a)-3(b). In

Figure 3(a), we observe that even for as low N = 1e2, one gets relatively small

errors (about 10%) in predictions of uT . However, the vertical convergence is

slower and one needs about N = 1e4 simulations of γi to get satisfactory dis-

tance between the two lines; see Figure 3(b), where the fractions µs
N(u)/µs

∞(u)

for N = 1e2, 1e3, 1e4, are presented. The algorithm is relatively fast and one

can use high values of N to obtain satisfactory accuracy levels.

5.2 Computation of M(s, t) for the quadratic response.

The general quadratic response is only notationaly more complex and we will

proceed in a similar way as for the LMA process discussed in Example 1. First,

we need to find the conditional moment generating function

M(s, t|γ) = E
[
esY (0)+tẎ (0)|Γ(·) = γ(·)

]
, (45)

which can be written by an explicit formula, see Eq. (48) derived below. Then

one can simulate a sequence of gamma processes, γi(·), i = 1, . . . , N , and as

before approximate M(s, t) by means of Eq. (37).

Let Λ be a diagonal matrix with the diagonal elements being denoted by λi,
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i = 1, . . . , n, and the rest of the elements being zero. Using matrix notation,

the response process can be written as

Y (t) = aW(t)T +
1

2
W(t)ΛW(t)T

=
n∑

j=1

ajWj(t) +
1

2

n∑

j=1

λjW
2
j (t), (46)

where, a = (a1, . . . , an) (an = 1, λn = 0). As discussed earlier, conditionally on

Γ(·) = γ(·), the vectors W = W(0) and Ẇ = Ẇ(0) are normally distributed

with means m, ṁ and covariance matrices Σ11, Σ12 and Σ22, where, for 1 ≤
i, j ≤ n,

σ11(i, j) = σ2
∫

φi(x)φj(x)dγ(x),

σ12(i, j) = σ2
∫

φi(x)φ̇j(x)dγ(x),

σ22(i, j) = σ2
∫

φ̇i(x)φ̇j(x)dγ(x),

m(i) = ζ
∫

φi(x)dx + µ
∫

φi(x)dγ(x),

ṁ(i) = ζ
∫

φ̇i(x)dx + µ
∫

φ̇i(x)dγ(x). (47)

Once the matrices Σij and vectors m and ṁ are computed, it is a straight-

forward task to compute M(s, t|γ), see [9], which is given by

M(s, t|γ) =
1√

det(Σ)
exp

(
ms + ṁt +

1

2
t2 m̃Vm̃ +

1

2
tTΣ−1t

)
. (48)

Here,

Σ=Σ−1
11 − sΛ− t

(
ΛΣ21Σ

−1
11 + Σ−1

11 Σ12Λ
)
,

t= s m̃ + t ṁΛ + t m̃Σ−1
11 Σ12 + t2m̃ VΛ, m̃ = a + mΛ,

m = amT +
1

2
mΛmT , ṁ = aṁT + ṁΛmT . (49)
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Remark: It can be shown that Example 1 is obtained as a special case when

n = 1, with φ1(s) = q(s) and λi = 0 while a1 = 1 in Eq. (46). Under these

conditions, using simple algebraic manipulations, it can be shown that the

conditional moment generated function is equal to the expression in Eq. (44).

Example 2: In this example, we focus on checking the accuracy of the esti-

mates of the level crossing intensity, µs
N(u), using the proposed hybrid method,

for quadratic response Y (t) in Eq. (46) for the special case when n = 2 and

φn = 0, i.e.,

Y (t) = Y1(t) + λY 2
1 (t)/2 = λ (Y1(t) + 1/λ)2/2− 1/(2λ). (50)

Considering the case n = 2 provides certain advantages which can be ex-

ploited to benchmark the accuracy of the estimates, µs
N(u), using the proposed

method. Using Eqs. (33) and (50), it can be shown that the crossing intensity

µY (u) = E[NY (u)] can be expressed as

µY (u) = µY1

(
−1/λ +

√
2u/λ + 1/λ2

)
+ µY1

(
−1/λ−

√
2u/λ + 1/λ2

)
. (51)

As can be seen from Eq. (51), the accuracy of the estimate µY (u) depends

on the estimate of the crossing intensity µY1 . This however, poses no problem

as this can be very accurately obtained using the direct saddle-point method.

Thus, replacing µY1 in Eq. (51) by the saddle-point estimate, µs
Y1
, the expres-

sion in Eq. (51) can be used to benchmark the accuracy of the level crossing

estimate, µs
N(u), obtained using the proposed hybrid method.

As in Example 1, Y1(t) is a stress time history of duration 30 minutes mea-

sured in a particular location of a ship impinged by ocean waves during the

course of its journey; see Figure 1(a). We use the LMA process described in

Example 1, to model Y1(t). For the quadratic response, we choose λ = 0.01.
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This value is chosen so that that the contribution of linear and quadratic

parts to Y1 are similar; note that standard deviation of Y1(t) is about 47 MPa.

An estimate of the crossing intensity µY (u) is obtained using Eq. (51) and is

shown in Figure 4(a). The accuracy of the crossing intensities for the corre-

sponding levels, µs
N(u), obtained using the proposed method are determined

by comparing with these values.
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Fig. 4. Example 2: (a) Crossing intensities µs
N (u) computed using the proposed

hybrid method: Sample size for simulated gamma processes γi; N = 1e2: dotted

line;, N = 1e3: dashed dotted line; N = 1e4: dashed line; µs(u): solid line. (b)

Corresponding relative errors µs
N (u)/µs(u).

In order to compute µs
N(u), one needs the expression for the conditional

moment generating function M(s, t|γ). This is given in Eqs. (48-49), with

Σ11 = σ11, a = 1, Σ22 = σ22, Σ12 = σ12. All parameters have the same values

as in Example 1. A comparison of the crossing intensity estimates, µs
N , using

the proposed hybrid method is illustrated in Figure 4(a). As in Example 1, we

consider the three cases where N = 1e2, 1e3 and 1e4, where N is the number

of gamma process simulations in the proposed hybrid method. A comparison

of the relative errors is shown in Figure 4(b). As in Example 1, we observe
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that the estimates are in fairly good agreement with the accuracy expectedly

improving for larger values of N .

Example 3: In this example, we consider a more general quadratic response

process, such that the number of terms n in Eq. (46) are more than one. We

consider the response process Y (t) = Y1(t) + Y2(t) defined in Eqs. (17-18),

where q(s) = exp(−s2/50)/
√

25π, −25 ≤ s ≤ 25, and

Q(t, s) = 0.01 exp(−(s− t)2/50). (52)

The parameters in Laplace motion, Λ(x), is chosen in such a way that the linear

response, Y1(t) =
∫ T
−T q(t − s) dΛ(s), has mean zero, variance one, skewness

0.5 and kurtosis 4.5. For the kernel Q(t, s), the first 12 eigenvalues were found

to be significantly non-zero. To determine the number of such eigenvalues,

the first 100 eigenvalues were found and ordered according to their absolute

values, and their corresponding ratios with respect to their total summation

were calculated. It was assumed that the series could be truncated when the

sum of the absolute value of the eigenvalues exceeded 99.9% of the total sum.

This led to n = 12 for this example.

Based on experience from Examples 1 and 2, we expect that N = 1000 simula-

tions of γi are needed for arriving at a reasonably accurate estimate of µs
N(u)

using the proposed hybrid method. In the absence of any closed form ana-

lytical solutions for the crossing intensities of the quadratic response process,

we compare the estimates obtained using the proposed hybrid method with

those obtained from Monte Carlo simulations. For Monte Carlo simulations,

simulating a large number of response processes and checking for their cross-

ing intensities would be computationally very expensive and time consuming.
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Instead, we adopt the following MC procedure:

(a) 1× 107 independent samples of pairs (Y (0), Ẏ (0)) were first simulated.

(b) Subsequently, an approximation for the joint pdf fY (0),Ẏ (0) was statisti-

cally determined.

(c) Finally, an estimate of the up-crossing intensity is obtained by numeri-

cally integrating Rice’s formula in Eq. (1).
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Fig. 5. Example 3: The dashed lines (3 in number) indicate the crossing intensities

µs
N (u) using the proposed hybrid method, with sample size for simulated gamma

processes γi is N = 1000; the corresponding irregular solid line is MC estimate;

The thicker solid line is the saddle point estimate µs(u) with Gaussian forcing; the

corresponding irregular solid line is the corresponding MC estimate.

Figure 5 illustrates the comparison of the level crossing estimates obtained

using the proposed hybrid method, when N = 1000 and those obtained using

Monte Carlo simulations. The three dashed lines are independent estimates of

µs
N(u), and we observe that the variability between them is small, confirming

the assumption that assuming N = 1000 leads to estimates that are reasonably

free from statistical fluctuations. The irregular solid line is obtained from

Monte Carlo simulations and a fairly good agreement between the crossing
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intensities is observed. Though the required computation time in the Monte

Carlo method is of the same order as in the proposed hybrid method, it is

clear from Figure 5 that the estimates from the proposed method are more

accurate for higher levels.

We next focus on examining the errors induced in estimating up-crossing inten-

sities for high levels when the non-Gaussian features of the response processes

are neglected. Consequently, the up-crossing intensity of the response with

Gaussian loading, viz.

YG(t) =
∫ T

−T
q(t− s) dB(s) +

∫ T

−T

∫ T

−T
Q(t− s1, t− s2) dB(s1) dB(s2), (53)

is also computed. Note that for the kernel q(·), the variance of the linear

response remains unchanged, i.e., is equal one, while skewness and kurtosis are

respectively zero and 3. The corresponding crossing intensities are computed

using the same algorithm as for the proposed hybrid method, but for N = 1, as

the response process is unconditionally Gaussian and no simulation of gamma

processes are required. The results are illustrated in the same plot; see Figure 5,

as the thicker solid line. For completeness, the corresponding level crossing

intensities were also computed using the Monte Carlo technique used in this

example. These estimates are shown in Figure 5 as the irregular thick line.

Based on these observations, one can conclude the following:

(i) One can see the extremal responses for YG(t) are much smaller than the

one under LMA forcing, even though in both cases mean and variance are

equal. For example, if one assumed that the two forcing are stationary and

last for 100 years, then the 100 years response, defined as the level crossing

intensity approximately equal to 3×10−10 can be examined from Figure 5.

We observe that while for the Gaussian forcing the level is approximately
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10, the corresponding level for the skewed non-Gaussian loading is 23,

a difference of more than 100%. It is quite obvious that neglecting the

non-Gaussian features of the response leads to an underestimation of the

level crossing intensities. This highlights the importance of modeling the

non-Gaussian features of the response, especially in the context of risk

analysis against high levels (rare events).

(ii) The close agreement between the level crossing estimates for the response

YG(t) using the saddle-point method (whose performance has already

been examined in details in other studies) and the Monte Carlo simulation

approach used in this example provide confidence on the accuracy of the

level crossing estimates obtained using the proposed MC approach.
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Fig. 6. Example 3: The thin solid lines (30 in number) are the crossing intensities

µs
N (u) using the proposed hybrid method, with sample size for simulated gamma

processes γi is N = 100; the corresponding irregular solid line is MC estimate;

The thicker solid line is the saddle point estimate µs(u) with Gaussian forcing; the

corresponding irregular solid line is the corresponding MC estimate.

Finally, one may ask about the accuracy of the estimates, µs
N(u), computed for

smaller number N of simulated γi processes. In order to answer this question,

the crossing intensities were estimated using the proposed hybrid method with
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N = 100 gamma process simulations. 30 independent estimates of µs
N(u) were

calculated and are represented as thin solid lines in Figure 6. From the figure,

one can see that the variability of µs
100(u) is quite large indicating that N = 100

is probably too small a sample size for the statistical fluctuations to die down.

6 Concluding Remarks

The problem of estimating the crossing intensities of the response process

of second order dynamical systems, subjected to non-Gaussian loadings has

been studied. The loads are assumed to be strictly stationary and are modeled

as LMA processes. This enables retaining the non-Gaussian features, such as

skewness and kurtosis, of the marginal distributions. For second order dynami-

cal systems, the response is expressed as a quadratic combination of the LMA

processes and are non-Gaussian. Direct application of Rice’s formula is not

possible as the joint pdf of the response and its instantaneous time derivative

is not available. A numerical method is developed so that approximations for

the crossing intensities can be computed with fairly reasonable accuracy. Three

numerical examples have been presented to illustrate the proposed method.

The salient features emerging from this study are:

(1) The proposed method is a hybrid method that combines the analyti-

cal saddle-point approximation and the Monte Carlo approach. Conse-

quently, the proposed method is much faster than Monte Carlo simula-

tions.

(2) The accuracy levels of the proposed hybrid method depend on the number

of samples of Gamma process simulations and is expectedly better for

larger sample size. For the examples considered in this paper, a sample
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size of 1000 is found to lead to estimates of fairly good accuracies.

(3) Neglecting the non-Gaussian effects of the loading can severely underesti-

mate the crossing intensities of the response, particularly for high levels.

This, in turn, implies overestimating the safety and reliability of a system

subjected to rare loadings, leading to unsafe designs.

(4) The proposed method is applicable for systems with symmetric second

order kernels. Fortunately, most physical second order dynamical systems

ensure symmetric second order kernels. Therefore, this is not a severe

restriction.
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