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NOTE ON THE DISTRIBUTION OF EXTREME WAVE CRESTS

ANASTASSIA BAXEVANI, OSKAR HAGBERG, AND IGOR RYCHLIK

Abstract. The sea elevation at a fixed point is modeled by means of a second order model,

which is a smooth algebraic function of a vector valued Gaussian process. Asymptotic

methods, presented first in [1], are used to estimate the mean upcrossing intensity µ+(h).

The intensity is then used to determine the density of crest height in a second order sea.

Numerical examples illustrate the method. The proposed approximation is used to estimate

the design crest height for a specified return period.

Introduction

It is a common practice in oceanography, to model the sea surface elevation at a fixed point

as a Gaussian process which, during a limited period of time (20 min - 3 hours), can also be

considered stationary. The statistical properties of the sea surface elevation under stationary

conditions are called a sea state. The sea state in the case of an underlying Gaussian process

is identified by the power spectral density S, the mean sea level m, called still water level

and usually set to be zero, and the water depth d. In the Gaussian model the individual

cosine wave trains superimpose linearly (add) without interaction and therefore the model

is also called the linear sea model.

However, it is well known that for steep waves in deep water, or as the water depth

decreases, the sea surface profile departs from the Gaussian assumption. Under these con-

ditions the wave profile becomes asymmetric with higher and steeper crests and shallower

and flatter troughs, due to interaction between individual cosine waves. Consequently, the

linear model can lead to underestimation of wave crests which increases in severity as the

wave energy increases.

Adding a quadratic correction term to the linear model results to a more accurate descrip-

tion of the wave asymmetry. The resulting process presented in Appendix I, is non Gaussian

and usually referred to as a second order sea model. A detailed description of the model can

be found in Appendix II. The probabilistic properties of both the linear and second order

model, and hence of the sea states, are uniquely determined by the power spectral density

S (which is identical for both models), the mean water level m and the water depth d. In

the case the second order correction term cannot be neglected, the estimation of the spectral

density S using wave measurements becomes a non-trivial mathematical problem, since the

effect of the quadratic term has to be subtracted from the measured signal before estimating

the spectrum, for a detailed description of the procedure see [3].

In reliability analysis of ocean structures when studying the fatigue damage accumulated

by a material during stationary weather conditions (sea state), the distribution of wave

Key words and phrases. Crest distribution, non-Gaussian sea, Rice’s formula, FORM-, SORM-method.
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crest height, Ac, is required. When the observation period consists of more than one sea

states, the total fatigue damage is defined as the damage accumulated over the different

sea states. Hence, it is sufficient to develop a method for estimating the distribution of Ac

under stationary conditions. Although the exact form of this distribution is not known, in

the case of a Gaussian sea, it is well approximated by means of the Rayleigh distribution. A

discussion on the distribution of Ac is presented in section 1.

The design crest is defined as the wave crest that is exceeded in one year with very low

probability of the order of 10−2 or 10−4. Estimation of the design crest involves knowledge

of the variability of the sea states over long periods of time. This is presented in section

2. Finally, in section 3, we present a numerical illustration of the different approximation

methods in the estimation of the design wave.

1. Crest height distribution

An apparent wave is defined as the part of the sea record between two successive upcross-

ings of the still water level, m. The wave crest height, Ac, is the maximum of the apparent

wave, i.e., is the maximum value the process X(t) attains between two successive upcrossings

of the level m. A discussion on the distribution of different characteristics of apparent waves

can be found in [23].

Knowledge of the distribution of wave crest height, when the wave spectrum and water

depth are known, is essential to a variety of problems. Unfortunately though, there is

still considerable uncertainty concerning the form of the Ac distribution. The long-run

distribution of Ac is defined as the histogram of the observed Ac’s as the observational time

increases and although it is not so difficult to estimate the empirical distribution of Ac

using wave crest measurements, the empirical evidence tends to be confusing since different

instruments provide with different results.

On the other hand, the theoretical derivation of the distribution of Ac is a difficult problem

especially when the non-linearities have to be considered. Despite the difficulties, several

approximations do exist and we present some of them in this section. For simplicity we

assume that the still water level equals zero, i.e. m = 0.

We begin with a general result valid for any stationary random sea model X(t). In [27],

it has been shown that the following relation is valid

(1) P (Ac > h|S) ≤ µ+(h|S)

µ+(0|S)
,

where µ+(h|S) is the upcrossing intensity of the level h during the sea state S and with a

slight abuse of notation we can write P (Ac > h|S) for the dependence of the crest distribution

on the sea state. The intensity µ+(h|S) can be computed using the Rice formula (5). Here

we should note that although this bound is true for all stationary random processes, is

particularly accurate for non clustering upcrossings of high levels h.

1.1. Rayleigh Bound for Gaussian sea (linear case). Consider a sea state S, that is char-

acterized by the significant wave height, hs, and the average wave period, tz. Assume also

that the sea elevation is a Gaussian process with mean value zero. Then it is well known
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that the upcrossing intensity µ+(h|S) can be computed by means of the Rice formula, [26]

to give

(2) µ+(h|S) =
1

tz
e−8( h

hs
)
2

.

Inserting (2) in (1) we obtain the following bound

(3) P (Ac > h|S) ≤ e−8( h
hs

)
2

,

which is very accurate for high levels h. A direct consequence of (3), is the following, rather

conservative, Rayleigh approximation for the wave crest height Ac ≈ hs

4
· R, where R is

distributed as a Rayleigh random variable (P (R > r) = exp(−r2/2)). This approximation

is widely used in the oceanographic literature, and is motivated by means of a heuristic

argument for narrow band processes.

1.2. Approximations of crest height distribution for second order sea. In a second order

sea, the interaction between individual waves is non negligible and the Rayleigh bound

discussed in section 2.1, is often non conservative.

In the last decade, the crest height distribution for second order seas has been the subject

of intensive studies. Both [9] and [24] have developed models for the crest height distribution

using long simulations of the second order sea at a fixed point. The resulting distributions

are parametric, depend on the spectrum S and as reported in [16] and [10] give accurate

approximations in many cases. A review of the different approximation methods can be

found in [25]. An alternative approach using the 5th order Stokes correction and a narrow

band argument, is presented in [6].

1.2.1. Forristall’s approximation. In this presentation of Forristall’s model, we follow the ap-

proach adopted in [16]. Forristall’s model is based on a Monte-Carlo study, using the second

order sea model, (see [9] and references therein) and statistical fitting of the Weibull distri-

bution to the resulting record of wave crests. To be specific, Forristall simulated the ocean

surface at a fixed point using a directional spectrum S(ω, θ) and fitted a two-parameter

Weibull distribution,

(4) P (Ac > h|S) = e−( h
ahs

)
b

,

to the wave crest heights extracted from the simulation record. The fitted distribution

obviously depends on the sea state which is characterized by the spectrum. The parameters

a and b are given in terms of s1, which is a measure of steepness and the Ursel number Ur,

which is a measure of the impact of water depth on the non-linearity of waves.

In the case of a second order long-crested (uni-directional) sea, Forristall postulated that

a = 1/
√

8 + 0.2892 · s1 + 0.106 · Ur,

b = 2 − 2.1597 · s1 + 0.0968 · U2
r ,

where

Ur =
g2λ2

0hs

λ2
1d

3
, s1 =

4

2π g

λ1√
λ0

.
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In the case of a second order sea with a directional spectrum the parameters a and b read

a = 1/
√

8 + 0.2568 · s1 + 0.08 · Ur,

b = 2 − 1.7912 · s1 − 0.5302 · Ur + 0.2824 · U2
r .

Note that for a = 1/
√

8 and b = 2, the Weibull distribution in (4) reduces to the Rayleigh

distribution. Concluding, the Weibull distribution parameters depend on the spectrum S

in a rather complicated fashion, although the two spectral moments λ0, λ1 are sufficient for

computing the distribution.

Forristall’s model is similar to the model proposed by Prevosto, see [25]. Due to somewhat

different parameterizations, the comparison between the two models is not straightforward,

but they appear to give similar results.

1.2.2. Dawson’s approximation. An alternative approximation based on the Rayleigh law and

the 5th order Stokes correction is presented in [6].

P (Ac > h|S) = exp(−8x2 + 8rx3 − 4r2x4 + 14r3x5/3 − 117r4x6/24),

with

x = h/hs

and r =
(

2π
tz

)2

hs/g be the characteristic steepness.

1.2.3. Tails of crest distribution for second order sea. The problem of approximating the tails of

the crest height distribution is actually equivalent to the problem of estimating the upcrossing

intensity, for which as we show next, is sufficient to know the joint density fX(0),Ẋ(0)(h, z).

In the case of a stationary process, the upcrossing intensity µ+(h|S) is computed using

the Rice formula; see [18] for a proof. That is,

(5) µ+(h|S) =

∫ +∞

0

zfX(0),Ẋ(0)(h, z) dz,

where fX(0),Ẋ(0)(h, z) denotes the joint density of X(0), Ẋ(0).

Estimation of the joint density fX(0),Ẋ(0) is rather difficult, since for most of the non

Gaussian processes this density does not have an explicit form. In the case of a second

order process the joint density exists; it is a function of the vector valued Gaussian process

characterized by the sea state S. Several methods have been proposed for computing this

joint density, see [22], [5], [19], [13]. All these methods rely on the fact that the moment

generating function of the joint density has an explicit algebraic expression and hence an

inverse Fourier transform may be used to evaluate the density.

In this work, we are mainly interested in the crest distribution for high levels h. Hence,

the asymptotic method, called the Breitung method, proposed in [1] and further investigated

in [12] and [13] is employed. A related method given in [21], provides with an asymptotic

formula for µ+(h|S) as h → ∞, opposed to the Breitung method which provides with an

asymptotic result only in the extreme cases of either a purely linear or a purely second-order

process. However, as argued in Appendix III the Breitung method probably balances better



NOTE ON THE DISTRIBUTION OF EXTREME WAVE CRESTS 5

the influences of the linear and second-order terms than the asymptotic results derived in

[21].

In Appendix III we show that a good approximation for the upcrossing intensity is the

following,

(6) µ+(h|S) ≈ c(βh) exp(−β2
h/2).

An explicit formula for the constant c(β) can also be found in Appendix III. The increas-

ing function βh is the so-called Hasofer-Linds safety index and is estimated using standard

numerical methods, see Appendix III for a more detailed discussion.

Hence, (1) can be written as

(7) P (Ac > h|S) ≈ c(βh)

µ+(0|S)
exp(−β2

h/2).

The computations of the factor c(β) involve the curvature of the response surface at the

design point, and hence the approximation in (7) is called SORM (Second-Order-Reliability-

Method). For the estimation of the zero-upcrossing intensity µ+(0|S), there are a few options.

We may use Monte-Carlo simulations or the saddle point method or other approximations.

Here, we have decided to adopt an alternative approach. It is our experience, that the wave

intensity in a second order sea does not differ much from the wave intensity in the Gaussian

sea, hence we may set µ+(0|S) ≈ 1/tz. Hence, (7) becomes

(8) P (Ac > h|S) ≈ tzc(βh) exp(−β2
h/2).

For a second order sea, c(β) for positive values of β and h, is close to 1/tz and often

|c(βh)tz−1| < 0.2. By replacing tzc(βh) by 1 we obtain the somewhat simpler approximation

(9) P (Ac > h|S) ≈ exp(−β2
h/2).

This type of approximation was also used in [29]. Since this approximation depends only on

the index βh, it is called the FORM (First-Order-Reliability-Method) approximation.

In the examples presented in section 2.2.4, the differences between the FORM and SORM

approximations are negligible. However, since application of the SORM method is not nu-

merically more intensive, it should be preferred over the FORM method, since it is never

known if there exist a special type of sea state for which c(β) is not close to 1/tz, which

would lead to considerable differences between the two approaches.

Comparison of accuracy of the tail approximations for crest height distribution. We turn now to

a comparison of the tails of the proposed distributions. We assume that the tails of the

distribution computed using the SORM method are the true ones.

We consider four different sea states, two uni-directional and two directional. The fre-

quency spectrum S(ω) used in all different sea states is from the Pierson-Moskowitz family.

We consider two different defining sets of parameters, (hs, tp, γ, σa, σb) = (20, 16.8, 1, 0.07, 0.09)

and (hs, tp, γ, σa, σb) = (24, 18, 1, 0.07, 0.09). The spreading function G(ω, θ), is of the cos 2s-

type with parameter s = 10. The resulting tail distributions are gathered in Fig. 2. The top

plots are computed using the spectrum defined by the first set of parameters and the bottom
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Figure 1. Solid lines are for the FORM and SORM methods, light dashed

line is for the Dawson model, and thick dashed line is for the Forristall model.

plots using the second set of parameters. The first and third plots are for the uni-directional

sea and the second and fourth for the directional one.

The tails of the distributions computed using the FORM and SORM methods (solid lines)

almost coincide. The dashed lighter line is for the Dawson model. This model is based

on the 5th order Stokes correction and as a result the line is bending down. Finally the

thicker dashed line is the distribution computed using the Forristall model. The tails of this

distribution seem to follow reasonably well the solid lines and taking into account that we

are looking far into the tails, i.e., long outside the region at which the Forristall model was

fitted to the data, we may conclude that the Forristall model gives quite accurate results.

2. Design wave

An important parameter regarding safety regulations is the height of the maximum wave

crest over a certain period of time and at a specific location or over some region. For
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example, Norwegian regulations require that the probability of a wave reaching the deck

of an oil rig over a year does not exceed 10−4. Of course, one should also account for the

wave-structure interactions, which may lead to an increase of the wave crest height of the

order 20-30%, for tide and storm surge, which under certain conditions may add a few meters

to the crest height, see [15]. The contribution of most such effects may be estimated with

great accuracy by means of rather simple statistical methods. However, the most important

quantity that has to be estimated correctly is the wave crest height. In this section we

investigate the problem of predicting the response value hcrt, corresponding to an annual

exceedance probability p0, i.e. we wish to solve the following equation

P (max0≤t≤T X(t) > hcrt) = p0

for hcrt. If p0 = 10−4, the level hcrt is called the 10 000 year wave crest.

For small probabilities p0, the critical level hcrt takes large values and therefore at least in

principle standard statistical methods may be employed. The Peaks Over Threshold (POT)

method, requires equidistant measurements (for example, daily) of the maximum crest height

over a large period of time. Such measurements are not available for most of the regions

which makes the POT method difficult to apply. Another approach consists in assuming the

wave crests are independent, so we may write,

(10) P (max0≤t≤T X(t) ≤ h) ≈ P (Ac
1 ≤ h)P (Ac

2 ≤ h) · · ·P (Ac
N ≤ h),

where Ac
i denotes the crest height of the ith wave and N is the average number of waves

during the year. Obviously, the Ac
i ’s are not identically distributed. We turn now to a new

method for estimating the design wave.

2.1. Distribution of design crest - Rice method. Let N+
T (h) be the number of upcrossings

of the level h by the process X(t) during the time period [0, T ]. It is easy to see that for any

fixed time t0 ∈ [0, T ],

P ( max
0≤t≤T

X(t) > h) = P (X(t0) > h) + P (N+
T (h) > 0, X(t0) ≤ h)

and since P (N+
T (h) > 0, X(t0) ≤ h) ≤ P (N+

T (h) > 0) ≤ E[N+
T (h)] we also have that

(11) P ( max
0≤t≤T

X(t) > h) ≤ P (X(t0) > h) + E[N+
T (h)].

If X(t) was stationary during the period T , then P (X(t0) > h) = P (X(0) > h) is negligible

compared to E[N+
T (h)] = Tµ+(h) and hence we can write P (max0≤t≤T X(t) > h) ≤ Tµ+(h).

E[N+
T (h)] and P (X(t) > h).

The Rice formula provides us with the tools to compute

(12) E[N+
T (h)] =

∫ T

0

µ+
t (h) dt =

∫ T

0

∫ +∞

0

zfX(t),Ẋ(t)(h, z) dz dt,

where N+
T (h) is the number of upcrossings of the level h during [0, T ] and µ+

t (h) is the

intensity of upcrossings of the level h by the process X(t). The last equality is obviously

true when the joint density of X(t) and Ẋ(t) exists. The joint density of the process and its

derivative, fX(t),Ẋ(t)(h, z), includes both sources of variability of the sea surface, the variable

sizes of the sea waves during a sea state as well as the evolution of the sea states with time.
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If we denote by St = St(ω, θ) the random sequence of sea states and assume the conditional

density fX(t),Ẋ(t)|St
(h, z), of the process X(t) and its derivative Ẋ(t) on the sea state at time

t, St, is well defined, we may write

(13)

∫ +∞

0

zfX(t),Ẋ(t)(h, z) dz = E[

∫ +∞

0

zfX(t),Ẋ(t)|St
(h, z) dz],

where the expectation is taken over the whole sea state sequence. However since the change

rate of the sea state process is much slower than of the sea elevation, we may locally approx-

imate the density fX(t),Ẋ(t)|St
(h, z) by that of a second order sea. Therefore,

∫ +∞

0

zfX(t),Ẋ(t)|St
(h, z) dz ≈ µ+(h|St),

where µ+(h|St) was defined in (5), and consequently µ+
t (h) ≈ E[µ+(h|St)]. The intensity

µ+(h|St) is estimated using (6).

Even after having estimated µ+(h|St), it is not obvious how to evaluate E[µ+(h|St)]. One

possibility is to model the sea state St in a parametric fashion, say St depends on a vector

of parameters a = (a1, ..., an). Then, the sea state process can be identified to the evolution

of the parameter vector, i.e. the vector valued process a(t) = {a1(t), . . . , an(t)}. Formally

we may write

µ+(h|St) = µ+(h|a1(t), . . . , an(t)).

If additionally assume that the joint probability density of the vector processa(t) exists and

denote it by ft(a1, . . . , an), the following is true,

(14) µ+
t (h) ≈ E[µ+(h|St)] =

∫

µ+(h|a1, . . . , an)ft(a1, . . . , an) da1 . . . dan.

A change in the order of integration in (6) and (14) allows us to write,

E[N+
T (h)] =

∫ T

0

µ+
t (h) dt =(15)

= T

∫

µ+(h|a1, . . . , an)

(

1

T

∫ T

0

ft(a1, . . . , an) dt

)

da1 . . . dan =

= T

∫

µ+(h|a1, . . . , an)f(a1, . . . , an) da1 . . . dan,

where the density

(16) f(a1, . . . , an) =
1

T

∫ T

0

ft(a1, . . . , an) dt

describes the variability of the parameters that define the spectrum St at an arbitrary time

t of the year.

Similarly, for any fixed t, we may write

(17) P (X(t) > h) ≈
∫

P (X(t) > h|a1, . . . , an)ft(a1, . . . , an) da1 . . . dan.
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Since the process X(t) conditionally on the sea state process a1(t), . . . , an(t) is a second order

process the probability (17) can be estimated using the FORM approximation, e.g. formula

(9). Indeed,

(18) P (X(t) > h|a1, . . . , an) ≈ 1 − Φ(βh) ≤
1

βh

√
2π

exp(−β2
h/2).

2.2. 3-hour design wave crest. For comparison reasons we consider the so-called 3-hour

maximum approach, see formula (20) in [15].

In practice a common choice of parameters is a1 = hs and a2 = tp. Hence the joint

density f(a1, a2) defined in (16), is the so called long term density of the significant wave

height and wave period, f(hs, tp). Let Ac
3h be the maximum crest height observed during

a stationary period 3 hours long and under the assumption the wave crest distribution is

uniquely characterized by hs and tp. A common practice is to assume that the wave crests

are independent, see (10),

P (Ac
3h ≤ h|hs, tp) ≈ P (Ac ≤ h|hs, tp)

N , N = 3 · 3600 · µ+(0|hs, tp),

where N is the expected number of waves in a 3 hour period. Now assuming the 3-hour

period was chosen at random

P (Ac
3h ≤ h) =

∫ ∫

P (Ac ≤ h|hs, tp)
Nf(hs, tp) dhs dtp.

An estimate of the design wave crest hcrt is the solution to the equation

1 − P (Ac
3h ≤ hcrt) = p0/2920,

where 2920 is the number of 3 hour periods during the year and p0 = P (max0≤t≤T X(t) >

hcrt).

We will now show that the presented method is asymptotically equivalent to the Rice

method if the probability distribution of the wave crest is close to the bound given in (1).

Indeed, it is clear that for high values of h the following approximation is valid

P (Ac ≤ h|hs, tp)
N ≈ 1 − N(1 − P (Ac ≤ h|hs, tp))

and hence, by combining the last two equations we have the following approximation for

high values of h,

(19) P ( max
0≤t≤T

X(t) > h) ≈ T

∫ ∫

µ+(0|hs, tp)P (Ac > h|hs, tp)f(hs, tp) dhs dtp.

This formula will be used in the sequel to compare tails of P (max0≤t≤T X(t) > h) derived

from the distribution of individual crest heights to the method based on the Rice formula

for the upcrossing intensity µ+(h).

If the probability P (Ac > h|hs, tp) is close to the bound given by (1), the following ap-

proximation is true

(20) P ( max
0≤t≤T

X(t) > h) ≈ T

∫ ∫

µ+(h|hs, tp)f(hs, tp) dhs dtp.
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3. Model application

In this section we will illustrate the computations needed to estimate the crest height of

the design wave, and compare the accuracy of the different methods.

3.1. Sea state parametrization. Let us set the water depth d at 500 meters, which in

practice is equivalent to deep water. In order to fully characterize the sea state we need to

specify the spectral densities encountered at each location. In the case of a Gaussian sea,

the spectrum and hence the sea state is fully characterized by the significant wave height

hs and the average wave period tz. We turn now to the description of a family of spectral

densities that will be used in this example for describing the encountered sea states.

Let S(ω) denote a JONSWAP frequency spectrum. This is a parametric spectrum that is

fully characterized by the following set of parameters:

(α1, α2, α3, α4, α5) = (hs, tp, γ, σa, σb).

The parameter γ is a factor determining the concentration of the spectrum around the peak

frequency, tp, and depends on both hs and tp. The parameters σa and σb, are spectral width

parameters and in this case are set to be σa = 0.07 and σb = 0.09. For the directional

spectrum we need a spreading function G(ω, θ) of the cos 2s-type with parameter s = 10.

Here we should emphasize that this particular choice of parameters is for illustration reasons

only.

If the joint long run density f(hs, tp) is known, the sea state distribution can be determined.

Modeling the joint density of hs, tp has been the subject of elaborated research by several

authors, see e.g. [15] or [20] and references therein. Most often though, we have instead of

f(hs, tp), an estimate of the joint density of hs and tz. Recovering the joint density of hs, tp
although possible is not trivial.

For a JONSWAP spectrum, the peak period can be evaluated by means of the following

relation

(21) tp = tz · (1.30301 − 0.01698 · γ + 0.12102/γ).

In the present example, since our intention is to illustrate the different methods and compare

their accuracy, we will further simplify the sea state model by assuming a regression relation

between the mean period tz and the significant wave height hs. Labeyrie in [17] proposed

the following relation, based on data from the Frigg Field,

(22) tz = E[Tz|Hs = hs] =
√

ahs + b,

with a = 8 and b = 21. Krogstad in [16] proposed another relation between tz and hs derived

from a Haltenbanken buoy data set consisting of about 12 000 data records

(23) tz = 4.27 · h0.37
s .

We shall consider four different spectral densities. In the first two cases the spectrum

is a uni-directional spectrum and as such we employ the JONSWAP spectrum introduced
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previously. We use two different choices for γ. First we set γ = 3.3, and use the relation in

(22) to obtain tp as a function of hs,

tp = 1.2836
√

8hs + 21.

Then, we set γ = 1, which is a special case of JONSWAP spectrum called Pierson-Moskowitz

spectrum, and the relation in (23) to obtain the following relation

tp = 6.008 · h0.37
s .

The other two spectra we use are directional. They are constructed as the product of

the JONSWAP frequency spectrum for γ = 3.3 and γ = 1 with a spreading function of the

cos 2s type. In all four cases, the spectrum is fully characterized by only one parameter, the

significant wave height hs. That is, in order to evaluate the distribution in (15), the only

thing that remains to be estimated is the density f(hs). Note that we do not argue on the

validity of these models, we merely wish to demonstrate the performance of the different

algorithms.

3.2. LONG TERM DISTRIBUTION FOR THE SIGNIFICANT WAVE HEIGHT. The

significant wave height random process Hs(t), is often accurately described by means of log-

normal models, see [2], [4] and references therein.

Estimates of the significant wave height from the TOPEX-Poseidon satellite, over an area

in the North Atlantic called the North Atlantic Route (NAr) collected during the period

from 1992 until 1999, were used in the study presented in [4]. The authors suggest that the

variability of the significant wave height during a fixed time point, should be modeled locally

as

ln(Hs(t)) = β0 + β1 cos(φt) + β2 sin(φt) + σǫ(t),

where ǫ(t) is stationary correlated Gaussian noise with mean zero and variance one, and

φ = 2π/365.2. The parameters β0, β1, β2 and σ are locally estimated and depend on the

geographical location. In [4] , a collection of the model parameter estimates for the different

stationary regions in the North Atlantic, is presented.

In this example we shall use the models from two different areas along the North Atlantic

route, one close to the coast of North America and one close to Europe. The model parameter

estimates in the location close to North America, lying between -54 and -52 degrees in

longitude and between 42 and 46 degrees in latitude, are σ2 = 0.1529, β0 = 0.8674, β1 =

0.3836 and β2 = 0.0635. The location close to Europe that lies between -12.8 and -10 degree

in longitude and between 48 and 52 degrees in latitude, has parameter estimates σ2 = 0.1667,

β0 = 1.0364, β1 = 0.4294 and β2 = 0.0652.

3.3. Estimation of the design wave crest. In this section we compare the design wave

crest hcrt for levels p0 between 10−2 and 10−4, estimated using the Rice approach (20)to

the design crests derived using the method that depends on the crest height distribution

of individual waves (19), where the crest height distributions were approximated using the

methods proposed by Forristall and Dawson and the FORM approximation.

For illustration reasons, we shall compute the design wave height distribution at each

location using the different spectra. For the location close to the coast of America, we shall



12 A. BAXEVANI, O. HAGBERG, AND I. RYCHLIK

use the two spectra derived from the Frigg field data with γ = 3.3. For the other location

close to Europe, we shall use the two spectra derived from the Haltenbanken buoy and the

Pierson-Moskowitz spectrum. The resulting distributions are plotted in Fig. 2. The first

two plots are the distributions for the American location, while the last two plots, for the

European one. The top plots are for the uni-directional (long-crested) seas, while the bottom

plots are for the directional seas. Obviously the 10 000 year crest height for each case is just

the 10−4 quantile.

As expected, the design wave based on the linear model (Rayleigh model) is much smaller

than the predictions based on the second order sea model. Furthermore, for a Gaussian sea

the tails of the crest height distribution when observed at a fixed location, do not depend

on the shape of the spreading function. As a result the distribution for both uni-directional

and directional sea is the same: compare the plots on the top with the plots on the bottom.

The two solid lines are the tails of the distribution computed using the FORM and SORM

methods. We shall consider the tails, computed using the SORM-method as the true tails.

The dashed lines represent approximations of the tails computed using the Forristall and

Dawson models.

Let us consider the two uni-directional spectra, i.e. the first and third plots of Fig. 2.

The FORM-approximation gives slightly lower predictions that the SORM method. For

example the predictions for the 10 000 year crest differ less than half meter, which of course

is of no practical significance. The difference between Forristall’s and Dawson’s models is

more profound, it gets up to a few meters on the third plot. (The bended dashed line is

the approximation using Dawson’s model, while the most conservative dashed tails are the

Forristall’s model.)

We turn now to the directional sea presented on the second and fourth plots. Since the

parameters in Dawson’s model do not depend on the spreading function, the resulting crest

height distribution remains the same as for the uni-directional sea. The Dawson model

overestimates the 10 000 year crest by more than two meters in the location close to the

coast of America. Accidentally, Dawson’s approximation gives a good 10 000 year crest

height prediction for the European location, however the 100 year crest is overestimated by

a few meters. Remarkably both the FORM and Forristall’s tail approximations agree very

well with the most complicated SORM method. We can also notice that the uni-directional

seas produce higher crests than the directional ones, as has already been reported by several

authors.

As a final remark, we would like to mention that for the computations in Forristall’s

and Dawson’s models we have used the following definition of significant wave height, hs =

3.8
√

λ0, as proposed in Dawson and Wallendorf (2003). The standard definition of significant

wave height, hs = 4
√

λ0 leads to an overestimation of the 10 000 year crest height by

approximately 3 meters. Generally, it is not obvious how hs should be defined: hs = 4
√

λ0

(four times standard deviation of the linear Gaussian part), or 4
√

V(X(0)) (four times the

standard deviation of the full model)? Both the SORM and FORM methods are not affected

by the significant wave height definition.
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Figure 2. The solid lines on the far left represent the design wave height

distribution for a linear Gaussian sea. The two solid lines on the right are

the tail distributions computed using the FORM and SORM methods. The two

dashed lines are the approximations of the distribution tails using Forristall’s

and Dawson’s method.

4. Conclusions

We have presented an accurate method (SORM) for approximating the tails of the crest

height distribution. This method was combined with the so called Rice method to give a

methodology that was then used to find the design 100 year wave crest. This approach

appears to give similar results to other methods presented in this paper. However, it is

simpler and is derived without any assumptions of independence of crest heights, which

makes it applicable in a wider range of situations.
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Appendix I

5. Modeling sea surface under stationary conditions

5.1. Second order deterministic sea. In this paper we model the sea surface elevation by

a second order model, see [14] where corrections up to 5th order are given.

We begin with a linear sea model, which postulates that the sea surface is a sum of simple

cosine waves. The linear part Wl, consisting of N cosine waves, is given by

(24) Wl(t,p) =

N
∑

n=−N

An

2
ei(ωnt−xκn cos θn−yκn sin θn) :=

N
∑

n=−N

An

2
wn(t,p),

where for each elementary wave, An denotes its complex amplitude (A−n = A∗
n, the complex

conjugate of An), with A0 = 0. Since the field Wl needs to be real valued, the angular

frequencies need to satisfy ω−n = −ωn. Moreover, κ−n = −κn, where κn is the wave number

corresponding to wave frequency ωn through the dispersion relation (ω2
n = gκn tanh(d κn),

where d stands for the water depth and g for the gravity acceleration). We also assume

that for n > 0, ωn > 0 and the direction of propagation θn satisfies −π < θn ≤ π with

θ−n = θn + π. Hence for n > 0 and An = Rneiφn

An

2
wn(t,p) +

A−n

2
w−n(t,p) = Rn cos(ωnt − xκn cos θn − yκn sin θn + φn),

is the cosine wave with amplitude Rn propagating along the direction θn.

The linear model is then corrected using second order or (quadratic) terms

(25) Wq(t,p) =
N

∑

n=−N

N
∑

m=−N

An

2

Am

2
Enmwn(t,p)wm(t,p),

where the amplitude A, the angular frequency ω, the wave number κ and direction θ satisfy

the same restrictions as in the linear model. The quadratic transfer function (QTF), Enm :=
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E(ωn, ωm) is a real valued linear transformation that satisfies Enm = Emn, Enm = E−n−m

and E−nn = 0, for all positive ωn and ωm.

Hence, the deterministic second order sea profile at time t and fixed point p = (x, y), can

be writhen as

(26) W (t,p) = m + Wl(t,p) + Wq(t,p),

where m is the still water level, and the fields Wl and Wq are as in (24) and (25) respectively.

In the following we assume that m = 0. Note also that since m = 0, A0 = 0 and E−nn = 0

hence 1
T

∫ T

0
W (t,p) dt → 0 as T increases to infinity, i.e. the average sea level is equal to

still water level.

The exact form of the transfer function Enm is given in Appendix I. A simplified form of

the quadratic transfer function can be found for the special case of the uni-directional sea,

i.e. the sea in which all waves travel along the same direction, θn = 0 for n > 0, in deep

water (d = ∞),

Enm =

{

− 1
2g
|ω2

n − ω2
m| if n · m < 0,

1
2g

(ω2
n + ω2

m) otherwise.

Second order sea. Up to now we have considered a purely deterministic model for the sea

surface. A random model is obtained by assuming that the complex valued amplitudes

An, n > 0, are independent and normally distributed random variables, i.e.

(27) An = σn(Un − iVn),

where Un, Vn are independent standard normal variables, and σ2
n is the energy of waves

with angular frequencies ωn and ω−n. From (27) it follows immediately that the linear part,

defined in (24) is a Gaussian field. The resulting field W (t,p) defined in (26) is non-Gaussian

and usually referred to as second-order Gaussian sea.

It is often assumed that the Gaussian field Wl has a directional spectral density S(ω, θ), ω >

0 that is traditionally factorized as

S(ω, θ) = S(ω)G(ω, θ),

where S(ω) is a frequency spectrum, and the so called spreading function G(ω, θ) satisfies
∫ π

−π
G(ω, θ) dθ = 1. For more information on directional spectra, see [16]. A definition of the

second order sea with continuous spectrum and some of its properties that are needed for

the computation of the wave crest height distribution, are given in Appendix II.

In the rest of this paper we assume that the sea surface is observed at a fixed point p

and denote the corresponding second order sea by X(t) = W (t,p). It is easy to see that

E[Wl(t,p)] = E[Wq(t,p)] = 0, and hence E[X(t)] = m.

The following formulas can be found in [25]. The dispersion relation uniquely relates the

wave number and the angular frequency, ωn = gκn tanh(dκn) where d is the water depth.

Let us also denote ωnm = ωn + ωm and κn = κn(cos(θn), sin(θn)). We also make use of the
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following notation

Cnm = ||κn + κm|| tanh(d||κn + κm||),
knm = κn cos(θn)κm cos(θm) + κn sin(θn)κm sin(θm),

Dnm =
2ωnm(g2knm − ω2

nω2
m) + g2(κ2

n2ωm + κ2
mωn) − ωnωm(ω3

n + ω3
m)

2ωnωm(ω2
nm − gCnm)

then

Enm =
1

2g

(

ω2
nm − ωnωm − g2knm

ωnωn

+ 2ωnmDnm

)

6. Appendix II

Suppose that the sea state is characterized by the directional spectrum S(ω, θ) = S(ω)G(ω, θ).

In order to avoid non physical waves the frequency spectrum S(ω) is split into two parts;

S0(ω) = S(ω), for ω < ω− or ω > ω+, and S̃(ω) = S(ω), for ω− ≤ ω ≤ ω+. Denote by

W̃ (t,p) the second order field defined by the truncated spectrum S̃(ω)G(ω, θ), as described

in the following asymptotic procedure:

Let J, K be fixed integers. Consider N = (J + 1)(K + 1) individual waves having angular

frequencies ωjk = ω− + j(ω+ − ω−)/J , propagating along θjk = −π + 2kπ/(K − 1) carrying

energy

σ2
jk = S̃(ωjk)D(ωjk, θjk)

2π(ω+ − ω−)

JK
,

where j = 0, . . . , J , k = 0, . . . , K. For n = 1 + j + k · (J + 1), let

ωn = ωjk, θn = θjk, σ2
n = σ2

jk.

Let us now define a second order sea with N individual cosine waves by

W N(t,p) = W N
l (t,p) + W N

q (t,p),

where W N
l (t,p) and W N

q (t,p) are given in (24) and (25) respectively. The limiting process

W̃ (t,p) = lim
K,J→∞

W N(t,p)

is obtained by letting K, J tend to infinity. Finally the second order sea is defined as the

sum of two independent fields, the Gaussian field W0(t,p) with spectrum S0(ω)G(ω, θ) and

the field W̃ (t,p), i.e.

W (t,p) = W0(t,p) + W̃ (t,p).

In the following we use W N(t,p) as an approximation of W̃ (t,p).

The field W N(t,p) can be written in a matrix form; define

[(U1 − iV1)w1(t,p) . . . (UN − iVN)wn(t,p)]T = X(t,p) + iY(t,p),

and

Q = [qmn], qmn = (Em(−n) + Emn)σmσn,(28)

R = [rmn], rmn = (Em(−n) − Emn)σmσn,

σ = [σn], σn =

√

S(ωn)D(ωn, θn)
2πωc

N
,
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with m, n = 1, . . . , N .

Using the relations in (28) we may write

W (t,p) = W0(t,p) + σ
TX(t,p) +

1

2
X(t,p)TQX(t,p)

+
1

2
Y(t,p)TRY(t,p),

with the field W0 being independent of the fields X and Y.

In this paper we are interested in measurements of the sea surface elevation at a fixed point

p = (0, 0), hence we may write X(t) = W (t,p). We may also denote by X0(t) = W0(t,p)

the Gaussian part of the process X(t).

After some rather lengthy derivations including matrix diagonalization and some matrix

algebra, for details see [19], we may write the process X(t) in the equivalent form

(29) X(t) = m +

2N
∑

j=0

(βjZj(t) + γjZj(t)
2),

where Z(t) = (Z0(t), . . . , Z2N(t)) is a vector-valued stationary Gaussian process, such that

for each t, Zj(t) ∈ N(0, 1) and the variables Zj(t), Zk(t) are independent.

Let us also denote by Ż(t) = (Ż0(t), . . . , Ż2N(t)), the derivative of vector Z(t). Then the

joint density of the vectors Z(t) and Ż(t)) is normal with (Z(t), Ż(t)) ∈ N(0, Σ), where

(30) Σ =

[

I Σ12

ΣT
12 Σ22

]

while I is the identity matrix (note that the matrices Σ12, Σ22 need not be identity matrices).

Note that Z0(t) = X0(t)/β0, where β2
0 = V (X0(0)), is independent of the processes Zj(t),

j = 1, . . . , N . (Obviously γ0 = 0 and
∑

γj = 0.)

The linear part Xl(t) = m +
∑

βjZj(t) is a Gaussian process with a spectrum S(ω) and

variance

V (Xl(t)) =
2N
∑

j=0

β2
j ≈

∫ ∞

0

S(ω) dω = λ0.

Equality for N going to infinity. The quadratic correction term Xq(t) =
∑2N

j=1 γjZj(t)
2 has

mean zero and variance V (Xq) =
∑2N

j=1 2γ2
j . By the independence for fixed t of different

Zj(t) and since Zj(t) and Zj(t)
2 are uncorrelated, the variance of X(t) is the sum of the

variances of the terms in (29):

V (X(t)) =

2N
∑

j=0

β2
j +

2N
∑

j=1

2γ2
j .

Here, we should also mention that for efficiency in the computations the coefficients γj

that are close to zero are omitted. In the examples where directional spectra are used, this

means we have more than 100 non-zero components remaining from the more than 2000 we

started with.

Finally, as we have mentioned before, the spectrum of the second order sea X(t) is not equal

to S(ω). The contribution of the quadratic component has to be removed. Consequently, one
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needs to solve the inverse problem to estimate the linear spectrum S(ω) and the spreading

function G(ω, θ), see [3].

7. Appendix III

The following generalization of Breitung’s approximation can be found in [12].

Theorem 1. Let g : R
n → R be a function such that the surface

S = {x = (x1, . . . , xn); g(x) = 0}

has a point x0 such that ||x0|| = 1 and ||x|| > 1 for all other x ∈ S. By x we denote both

the vector (x1, . . . , xn) and the n × 1 column matrix. Suppose Z(t) is an n-dimensional,

stationary, differentiable, Gaussian vector process, and let Ż(t) denote its derivative. The

correlation of the vector (Z(t),Ż(t)) is denoted by Σ,

(31) Σ =

[

I Σ12

Σ21 Σ22

]

.

For a family of processes g(Z(t)/β), β > 0, under some mild technical assumptions, the

intensity of zero upcrossings is given by

(32) µ+
β (0) =

e−β2/2

2π
(c + O(β−2)), c =

√

xT
0 (Σ22 − Σ21G0Σ12)x0

det (I + P0G0P0)
,

as β tends to infinity, where G0 := 1
|∇g(x0)|

[

∂2g
∂xi∂xj

(x0)
]

i,j=1,2,...,n
and P0 := I − x0x

T
0 .

Since Z(t) is stationary, the same formula is valid for downcrossings.

Remark 2. Formula (32) is in a sense finitely additive, i.e. if there is a finite number

of points with minimal distance to the origin, the asymptotic formula for the upcrossing

intensity of the process g(Z(t)/β) is the sum of the upcrossing intensities estimated using

(32) for each point separately. Breitung’s asymptotic approximation fails in the case of an

infinite number of such points.

Remark 3. Theorem 1 is a generalizations of Breitung’s result in two senses: In contrast

to Theorem 1, Breitung demands the surface S be finite, and Theorem 1 contains the order

of the error term.

Remark 4. Theorem 1 lends itself to a geometric interpretation. Note that g(Z(t)/β) crosses

the zero level if and only if the vector process Z(t) crosses the surface βS. Hence, instead of

saying that the formula is asymptotic “as β tends to infinity” we may say “as the surface S

is inflated”.

We shall now demonstrate how the theorem can be used to approximate the upcrossing

intensity µ+(h) in the case of a second order sea. First we look at two special cases.
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Small significant wave height hs. Then the quadratic correction term in (29) may be ig-

nored. That is, (29) simplifies to X(t) = bTZ(t). Define

g(x) = 1 − 1

||b||b
T x,

and note that, if β = h/||b|| := βh, the process g(Z(t)/β) downcrosses the zero level exactly

when X(t) upcrosses the level h. On the surface g(x) = 0, the point closest to the origin is

x0 = b/||b||, and since all second order derivatives of g are zero, Breitung’s approximation

gives

(33) µ+
β (0) =

1

2π

√
bT Σ22b

||b|| exp

(−β2
h

2

)

, βh = 4h/hs,

which is clearly the exact form of Rice’s formula for a Gaussian process with hs = 4||b|| and

tz = 2π ||b||√
bT Σ22b

.

The significant wave height tending to infinity. The linear term in (29) is negligible. In

this case we may write X(t) = Z(t)T ΓZ(t), where Γ = diag ([γ1, . . . , γn]) is the diagonal

matrix with
∏n

i=1 γi 6= 0. Obviously we may also assume that γ1 ≤ γ2 ≤ · · · ≤ γn and that

γn > 0, since otherwise X(t) ≤ 0 for all t. By defining

(34) g(x) = 1 − 1

γn

xT Γx,

it is readily seen that for β =
√

h/γn := βh the zero downcrossing intensity of the process

g(Z(t)/β) equals the upcrossing intensity of the level h by the process X(t). Consequently,

µ+
β (0) = µ+(h) and Theorem (1) may be used to compute µ+

β (0). Note, however, that there

are two points

x± := ±
[

0 0 . . . 1
]T

of minimal distance to the origin. Hence one has to compute formula (32) for each one of

these points separately (G0 = − 1
γn

Γ for both points), and add the results.

In [12], explicit approximations of the error term are additionally provided. Consequently,

the tails of the crest height distribution are exponentially distributed, i.e.

P (Ac > h) ≈ exp(− h

2γ2
n

)(
c

µ+(0)
+ O(h−1)),

where c is given in Theorem 1, while the zero upcrossing intensity µ+(0) has to be estimated,

for example by means of Monte Carlo methods.

7.1. The general case of a second order sea. Before we proceed any further, we should

emphasize that Theorem 1 for the two cases of purely linear/quadratic sea model gave

asymptotic formulas as the level tends to infinity. The general case is more complicated.

This is not surprising since we have the mix of two different limiting cases. We have to
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construct somewhat artificial asymptotics. The idea is as follows. Fix the level h, assumed

to be large, and let

p(x) := bTx + xT Γx.

Assume that there is only one point xh on the surface

{x ∈ R
n; p(x) = h}

of minimal distance to the origin, and define βh := ||xh||. Let

g(x) := 1 − 1

h

(

βhb
T x + β2

hx
T Γx

)

.

As before, the process g(Z(t)/βh) crosses the level 0 when the process p(Z(t)) crosses the

level h; hence, using Breitung’s method, with x0 = xh/βh, for each level h separately, we

have µ+
βh

(0) equal to the u-upcrossing intensity for the process p(Z(t)). Therefore, it is

reasonable to believe that if βh is large, then the term O(β−2) for β = βh is small. Hence

the approximation is good. However, the problem is that for each value h one defines a new

function g(·), and hence we cannot use the theorem, which is valid for a fixed g, to motivate

that the error term decreases to zero as h tends to infinity.

However, there are good reasons to use Breitung’s approximation in this way instead of

a formula which is truly asymptotic as the level h tends to infinity, especially if the linear

terms dominate over the quadratic for the interesting levels of h. This is since, for h large

enough, the h-crossings of the process will almost exclusively depend on the quadratic part.

Our suggested use of Breitung’s method will give a proper balance between the linear and

the quadratic terms.

We turn now to the computation of Breitung,s approximation

µ+
βh

(0) = exp(−β2
h/2)c(βh)/2π,

given in (1). Note that, opposed to the formulation in Theorem 1, we indicate c′s dependence

of βh. Evaluating the terms gives

∇g(x)T |x=xh/βh
= −

(

βh

h
b +

2β2
h

h
Γx

)

|x=xh/βh
= −βh

h
(b + 2Γxh) ,

G0 =
−2βh

|| (b + 2Γxh)| |
Γ P0 = I − 1

β2
h

xhx
T
h .

Now we can use the following approximation

(35) µ(h) ≈ e−β2

h
/2

2π
c(βh),

where

c(βh) =

√

xT
h (Σ22 − Σ21G0Σ21)xh

det (I + P0G0P0)

Remark 5. The point of minimum norm, xh, can be found by standard optimization meth-

ods, see [8].
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