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Abstract

We propose a fictitious domain method where the mesh is cut by the boundary. The
primal solution is computed only up to the boundary; the solution itself is defined
also by nodes outside the domain, but the weak finite element form only involves
those parts of the elements that are located inside the domain. The multipliers are
defined as being element–wise constant on the whole (including the extension) of the
cut elements in the mesh defining the primal variable. Inf-sup stability is obtained
by penalizing the jump of the multiplier over element faces. We consider the case
of a polygonal domain with possibly curved boundaries. The method has optimal
convergence properties.

Key words: interior penalty, fictitious domain, finite element.

1 Introduction

Problems in fluid mechanics often include moving bodies on which boundary
conditions must be applied, or geometries that are obtained from measure-
ments or CAD manufactured. In both these cases meshing of the various
objects can become excessivly time consuming and often a penalty method
or a fictitious domain method is applied. Unfortunately the volume penalty
method, which is simple to implement, is suboptimal, due to the fact that the
interface cuts the elements destroying the approximation properties see [10].
The fictitious domain method on the other hand requires a careful construc-
tion of the multiplier space. Indeed stability considerations impose that the
mesh-size of the multiplier space is at least three times the mesh size of the
space for the primal variable, see Girault and Glowinski [7]. Once again when



the geometry is complex this becomes leads to a nontrivial boundary meshing
problem.

In this paper we propose a very simple solution to this problem in the spirit
of Burman and Hansbo [5]. Indeed we define the Lagrange multipliers as the
space of functions that are piecewise constant on each of the elements in-
tersected by the boundary of the domain. Stability is then recovered by the
introduction of a coarsening operator on the discrete space. Drawing from the
ideas of [5] we propose to penalize the jump of the Lagrange multiplier over
element faces. This approach has several advantages:

• The primal and the dual variable may be defined on the same computational
mesh.

• The penalty is (weakly) consistent and easy to compute since the multiplier
is distributed in the interface zone.

• The problem of curved boundaries reduces to a quadrature problem.

Indeed the only remaining difficulty of implementation is the actual integration
on the boundary and on parts of elements cut by the boundary. This difficulty
however is expected to arise in any optimal order fictitious domain method.

Similar ideas have recently been proposed in the framework of the extended fi-
nite element method. In [11] the authors propose a Lagrange multiplier method
with an inconsistent penalty term and in [2] using inf-sup stable finite element
spaces. Another stabilized approach within the XFEM framework was pre-
sented in [9], where a stabilization of the type suggested by Barbosa and
Hughes [1] was advocated.

In a companion paper [4], we analyze another approach using Nitsche’s method
[12] to enforce the Dirichlet boundary conditions, using an interelement penalty
on the normal gradient in the interface zone. That method is related to the
multiplier method. However, the method proposed herein has some advan-
tages. Firstly it only introduces a single stabilization term on the Lagrange
multiplier, secondly when the domain has corners several multiplier degrees
of freedom may be defined in the corner cells, giving more freedom for the
approximation of the discontinuous fluxes. In the following, we shall use the
notation a . b as a shorthand for a ≤ Cb, where C is a constant independent
of the meshsize and of the boundary position.

2



2 Model problem

Let Ω be a convex polygonal bounded domain in R
2. The Poisson equation

that we propose as a model problem is given by

−∆u = f in Ω,

u = g on Γ,
(1)

where Γ denotes the boundary of the domain Ω, with outward pointing normal
nΓ; f ∈ L2(Ω) and g ∈ H

3

2 (Γ) are given. Under these assumptions (1) has a
unique solution u ∈ H1(Ω) ∩ H2(Ω) satisfying ‖u‖2,Ω . ‖f‖0,Ω.

The usual L2-scalar product on the domain Ω will be denoted by (·, ·)Ω and
on the boundary 〈·, ·〉Γ. We also introduce the discrete norms

‖λ‖2
1

2
,h,Γ = 〈h−1λ, λ〉Γ and ‖λ‖2

− 1

2
,h,Γ = 〈hλ, λ〉Γ,

where h = h(x) > 0 is a strictly positive weight function. Recall that there
holds

〈λ, µ〉Γ ≤ ‖λ‖− 1

2
,h,Γ‖µ‖ 1

2
,h,Γ. (2)

We have the following weak formulation: find u ∈ H1
0 (Ω) such that

(∇u,∇v)Ω = (f, v) − (∇ũ,∇v), ∀v ∈ H1
0 (Ω), (3)

where ũ ∈ H1(Ω) with ũ|Γ = g.

3 The finite element formulation

We introduce a quasiuniform triangulation Th, without hanging nodes, but
we do not assume that the mesh Th is fitted to the boundary of Ω, only that
Ω ⊂ Th and K ∩ Ω 6= 0, for all K ∈ Th.

We will use the following notation for mesh related quantities. Let hK be the
diameter of K and h = maxK∈Th

hK .

We make the following assumptions regarding the mesh and the interface.

• A1: We assume that the triangulation is non-degenerate, i.e.,

hK/ρK ≤ C ∀K ∈ Th

where hK is the diameter of K and ρK is the diameter of the largest ball
contained in K.
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• A2: We assume that Γ intersects each element boundary ∂K at most twice
and each (open) edge at most once.

• A3: Let ΓK,h be the straight line segment connecting the points of intersec-
tion between Γ and ∂K. We assume that ΓK is a function of length on ΓK,h;
in local coordinates

ΓK,h = {(ξ, η) : 0 < ξ < |ΓK,h|, η = 0}

and

ΓK = {(ξ, η) : 0 < ξ < |ΓK,h|, η = δ(ξ)}.

The assumptions A2 and A3 are always fulfilled on sufficiently fine meshes,
since ∂Ω has a bounded number of corners. These assumptions essentially
demand that the boundary is well resolved by the mesh.

We have the finite element space

V h = {v ∈ C0(Th) : v|K ∈ P 1(K), ∀K ∈ Th}.

We assume that the boundary Γ consists of NΓ (possibly curved) sides, {Γi,h}
NΓ

i=1,
separated by corners. By Gh,i := {K ∈ Th : K ∩ Γi 6= ∅} we denote the set of
elements that are intersected by the interface Γi. The set of all elements cut
by the boundary will be denoted by Gh = ∪nΓ

i=1Gh,i. For an element K ∈ Gh,
let ΓK := Γ ∩ K be the part of Γ in K. The set of faces intersected by the
boundary Γ will be denoted by FG, whereas the set of faces in Gh,i intersected
by the boundary Γi will be denoted by Fi. We define a Lagrange multiplier
space for each side Γi by assigning a constant function to each element in Gh,i.

W i
h := {vh : dom(vh) = Gh,i; vh|K ∈ P0(K); ∀K ∈ Gh,i}.

Let Wh := V h × ΠNΓ

i=1W
i
h and λh = {λi

h} such that for each i, λi
h ∈ W i

h. The
finite element discretisation then takes the form: find (uh, λh) ∈ Wh such that

A[(uh, λh), (vh, µh)] + J(λh, µh) = F (vh) ∀(vh, µh) ∈ Wh (4)

where

A[(uh, λh), (vh, µh)] := ah(uh, vh) + b(λh, vh) − b(µh, uh),

ah(uh, vh) := (∇uh,∇vh)Ω,

b(λh, vh) :=
NΓ
∑

i=1

〈λi
h, vh〉Γi

,

F (vh) := (f, vh)Ω +
NΓ
∑

i=1

〈g, µi
h〉Γi

,
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and

J(λh, µh) :=
NΓ
∑

i=1

ji(λ
i
h, µ

i
h),

where
ji(λ

i
h, µ

i
h) :=

∑

F∈Fi

〈γh[λi
h], [µ

i
h]〉F .

We first state some basic properties regarding the consistency of the formula-
tion and the continuity of the bilinear form (A + J)[(·, ·), (·, ·)].

Lemma 1 (Galerkin orthogonality) Let u be the solution of (1), uh the

solution of (4), and define λ|Γ := −nΓ · ∇u. Then there holds

A[(u − uh, λ − λh), (vh, µh)] = J(λh, µh).

PROOF. First note that by multiplying (1) by vh and integrating by parts
over Ω we have

(∇u,∇vh)Ω − 〈nΓ · ∇u, vh〉Γ = (f, vh)Ω. (5)

The result now follows by combining (5) and (4) and noting that since g ∈

H
1

2 (Γ) we also have 〈u, vh〉Γ = 〈g, vh〉Γ.

For the subsequent analysis, we will use the triple norm

|||(u, λ)|||2l := ‖∇u‖2 + ‖λ‖2
− 1

2
,h,Γ + ‖u‖2

1

2
,h,Γ + lJ(λ, λ), l = 0, 1.

This norm is well-defined for u ∈ H1(Ω), λ|Γi
=: λi ∈ L2(Γi), when l = 0

and for (u, λ) ∈ Wh when l = 1. By applying the standard Cauchy-Schwarz
inequality and (2) we have the following result.

Lemma 2 Let η ∈ H1(Ω), ν|Γi
=: νi ∈ L2(Γi). Then

A[(η, ν), (vh, µh)] ≤ |||(η, ν)|||0 |||(vh, µh)|||0.

4 Approximation properties

We need to show that our approximating spaces Vh and W i
h has optimal ap-

proximation properties in norms suitable for the analysis. This follows from
some minor modifications of the analysis in [8].

Let TΓ,i be the subset of triangles of T such that

TΓ,i := {T ∈ Th : T ∩ Gh,i 6= ∅}.

5



That is all the elements cut by the boundary and the elements sharing a face
or a vertex with them. The union of all these mesh partitions will be denoted
by

TΓ := ∪NΓ

i=1TΓ,i.

This is a subset of the mesh of width approximately 2h. For each i, let
us now regroup the elements in TΓ,i in ni patches, {P i

k}
ni

k=1, cutting up the
boundary zone in macroelements. Each patch contains a “sufficient” (but
uniformly bounded) number of basis functions to construct a patch function
0 ≤ ϕi

k ≤ 1 associated to each P i
k that is zero on the interior patch boundary

(i.e. ∂P i
k \ ∂Th), and on triangles that are members in more than one TΓ,i (i.e.

containing a corner of the domain or neighbouring to such a triangle) and
takes the value 1 on at least one face cut by the interface. The P i

k can be
constructed so that, with hP := diam(P i

k),

• ∃c1, c2 > 0 such that c1h ≤ hP ≤ c2h.

• ∃c1, c2 > 0 c1h ≤
∫

Γ∩Pi
k

ϕi
k ds ≤ c2h.

• ∃c1, c2 > 0 c1h
−1 ≤ ∇ϕi

k ≤ c2h
−1.

Using these patches we define a space of piecewise constant functions on each
boundary Γi

X i
h = {xh : xh|Pi

k
∈ P0(P

i
k)}.

We define an H2-extension E∗u of u on Th and the associated (Clément type)
interpolation operator I∗ : H1(Ω) → Vh, defined by I∗u = ChE

∗u, with Ch :
H1(Th) → Vh the standard Clément interpolant. Then there holds, for all
v ∈ H1(Ω), ‖I∗v‖1,Th

. ‖v‖1,Ω. Following [8], we readily prove that for all
u ∈ H2(Ω)

‖∇(u − I∗u)‖Ω ≤ ‖∇(E∗u − I∗u)‖Th
≤ Ch|u|2,Ω (6)

where the constant C is independent of the position where the interface cuts
the mesh. To prove approximation for the Lagrange multiplier we first immerse
the mesh Th in a larger subdomain ΩT , e.g., a cube such that dist(∂ΩT , Γi) =
O(1) and diam(Ω) = O(1), for all i. For each Γi consider the problem: Find

wλi
∈ H1

0 (ΩT ), µ ∈ H− 1

2 (Γi) such that

(∇wλi
,∇v)ΩT

+ (µ, v)Γi
= 0

(wλi
, y)Γi

= (λi, y)Γi

for all v ∈ H1
0 (ΩT ), y ∈ H− 1

2 (Γi). Since λ ∈ H
1

2 (Γi) this problem is well-
posed by the Babuska-Neças-Brezzi condition for saddle point problems (see
[6, Theorem 2.34, page 100]), and we have the a priori estimate

‖wλi
‖1,ΩT

+ ‖µ‖− 1

2
,Γi

. ‖λi‖ 1

2
,Γi

.
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For each Gh,i define the local projection on piecewise constants π0,iwλi
such

that
∫

K
π0,iwλi

|K dx =
∫

K
wλi

dx

for all K ∈ Gh,i. Then the following approximation results hold

Lemma 3 Let λi ∈ H
1

2 (Γi) then

‖λi − π0,iwλi
‖− 1

2
,h,Γi

. h‖λ‖ 1

2
,Γi

(7)

and

ji(π0,iwλi
, π0,iwλi

)
1

2 . h‖λ‖ 1

2
,Γi

. (8)

PROOF. Consider one element K in Gh,i. Using that wλi
= λi on ΓI and by

the trace inequality

‖v‖2
L2(Γi)

. h−1 ‖v‖2
L2(K) + h ‖∇v‖2

L2(K) , ∀v ∈ H1(K), (9)

we have

‖λi − π0,iwλi
‖− 1

2
,h,Γi

= ‖wλi
− π0,iwλi

‖− 1

2
,h,Γi

.





∑

K∈Gh,i

‖wλi
− π0,iwλi

‖2
0,K + h2‖∇wλi

‖2
K





1

2

.

The claim follows since ‖wλi
− π0,iwλi

‖0,K . h‖∇wλi
‖K .

Since wλi
∈ H1(Th) there holds ji(wλi

, wλi
) = 0. It then follows in a similar

fashion as above that

ji(π0wλi
, π0wλi

) = ji(π0wλi
− wλi

, π0wλi
− wλi

)

.





∑

K∈Gh,i

‖wλi
− π0,iwλi

‖2
0,K + h2‖∇wλi

‖2
K





1

2

.





∑

K∈Gh,i

h2‖∇wλi
‖2

K





1

2

.

Collecting the result (6), Lemma 3, and the trace theorem (cf., e.g., [3]), we
have proven the following approximation result.

Lemma 4 There holds:

|||(u − I∗u, λ − π0wλ)|||0 + J(π0wλ, π0wλ) . h|u|H2(Ω).

7



4.1 Inf-sup stability

The key result here is the following simple discrete approximation result on
the patches P i

k

Lemma 5

inf
ch∈Xi

h

∑

Pi
k

‖h
1

2 (λi
h − ch)‖

2
Pi

k
∩Γ . ji(λ

i
h, λ

i
h)

PROOF. The proof follows by mapping P i
k ∩Γ to the unit interval. We note

that the jump of the Lagrange multiplier over element edges is a norm on
the space of piecewise constants with average value zero on the interval. We
conclude by scaling back to physical space and using mesh regularity to trade
integrations along the interface for integrations along element faces in the
penalty term.

Theorem 6 The following inf-sup condition holds for the Lagrange-multiplier

method: For all (uh, λh) there holds

c|||(uh, λh)|||1 ≤ sup
(vh,µh)∈Wh

A[(uh, λh), (vh, µh)] + J(λh, µh)

|||(vh, µh)|||1
.

PROOF. First test with vh = uh and µh = λh in (4) to obtain

‖∇uh‖
2 + J(λh, λh) = A[(uh, λh), (uh, λh)] + J(λh, λh).

Next, take vh = 0 and µh = µ∗
h such that µ∗

h|K = −h−1
P π0uh for K ⊂ P i

k where
π̃0uh ∈ X i

h is the patchwise projection defined by

π̃0,iuh|Pi
k

=
1

|Γi ∩ P i
k|

∫

Γi∩Pi
k

uhds

where we recall that P i
k denotes the patches introduced earlier. It follows from

(4) that

∑

i

‖h
− 1

2

P π0uh‖
2
Γi

+ J(λh, µ
∗
h) = A[(uh, λh), (0, µ

∗
h)] + J(λh, µ

∗
h).

Since the P i
k all have size comparable to h we may deduce that

J(µ∗
h, µ

∗
h) .

∑

i

‖h− 1

2 π0uh‖
2
Γi

(10)
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by first applying trace inequalities on each K and then an inverse trace in-
equality on each of the P i

k. Similarly,

c1

∑

i

‖h
− 1

2

P π0uh‖
2
Γi

≤
∑

i

‖h− 1

2 π0uh‖
2
Γi

.

We now use that

J(λh, µ
∗
h) ≤ J(λh, λh)

1

2 J(µ∗
h, µ

∗
h)

1

2 ≤
1

ǫ
J(λh, λh) +

ǫ

4
J(µ∗

h, µ
∗
h)

for ǫ ∈ R
+ to deduce that

(c1 − Cǫ)
∑

i

‖h− 1

2 π0uh‖
2
Γi
−

1

ǫ
J(λh, λh) ≤ A[(uh, vh), (0, µ

∗
h)] + J(λh, µ

∗
h).

Since

‖h− 1

2 uh‖
2
Γi

. ‖h− 1

2 π0uh‖
2 + ‖∇uh‖

2
TΓ,i∩Ω

we conclude that

C1

∑

i

‖h− 1

2 uh‖
2
Γi
−

1

ǫ
J(λh, λh) − C2‖∇uh‖

2
Ω ≤ A[(uh, vh), (0, µ

∗
h)].

for some constants C1 and C2, choosing ǫ small enough. Finally, to control
λh we use the properties of the P i

k and the corresponding ϕi
k to construct a

function such that

I ξh|Ω\TΓ
= 0;

II
∫

Γ∩Pi
k

ξhds =
∫

Γ∩Pi
k

hPλi
hds;

III ξh|Kc
= 0 if Kc denotes a triangle containing a corner of the domain.

It follows from standard trace and inverse inequalities that

|||ξh||| ≤
∑

i

(

‖h−1ξh‖TΓ,i
+ ‖∇ξh‖TΓ,i

)

. ‖∇ξh‖TΓ
. (11)

Since ξh by construction is zero on the inner boundary of TΓ we have

‖∇ξh‖TΓi
. ‖h− 1

2 ξh‖Γi
. ‖h

1

2 λi
h‖0,Γi

. (12)

By property II, we can write

〈λi
h, ξh〉Γi

= 〈π0λ
i
h, ξh〉Γi

+ 〈λi
h − π0λ

i
h, ξh〉Γi

= ‖h
1

2

Pπ0λ
i
h‖

2
Γi

+ 〈λi
h − π0λ

i
h, ξh〉Γi

,

≥ c1‖h
1

2 π0λ
i
h‖

2
Γi

+ 〈λi
h − π0λ

i
h, ξh〉Γi

,

9



We note that

|〈λi
h − π0λ

i
h, ξh〉Γi

| ≤ ‖λi
h − π0λ

i
h‖− 1

2
,h,Γi

‖ξh‖ 1

2
,h,Γi

(cf. (2)),
∑

i

‖λi
h − π0λ

i
h‖

2
− 1

2
,h,Γi

. J(λh, λh)

(by Lemma 5), and

‖ξh‖ 1

2
,h,Γi

. ‖h
1

2 λi
h‖0,Γi

(cf. (12)). We thus have

ah(uh, ξh) + 〈λh, ξh〉Γ ≥ −
1

ǫ
‖∇uh‖

2
Ω −

ǫ

4
‖∇ξh‖

2
TΓ

+
∑

i

(‖h
1

2 π0λ
i
h‖

2
Γi

+ 〈λi
h − π0λ

i
h, ξh〉Γi

)

≥
(

1 −
cǫ

2

)

∑

i

‖h
1

2 λi
h‖

2 −
1

ǫ
‖∇uh‖

2
Ω −

C

ǫ
J(λh, λh).

It now follows that by a judicious choice of coefficients a1 and a2 we have

|||(uh, λh)|||1 ≤ A[(uh, λh), (uh + a1ξh, λh + a2µ
∗
h)].

The claim then follows after proving the stability estimate

|||(wh, νh)|||1 . |||(uh, λh)|||1

where wh = uh+a1ξh and νh = λh+a2µ
∗
h. This is a consequence of the triangle

inequality and the estimates (11), (12) and (10).

5 A priori error estimates

Since u ∈ H2(Ω) there holds that λ|Γi
= −nΓi

· ∇u ∈ H
1

2 (Γi).

Theorem 7 Let (uh, λh) be the solution of the system (4). Then for all (vh, νh) ∈
Wh

|||(u− uh, λ − λh)|||0 + J(λh, λh)
1

2 . |||(u− vh, λ − νh)|||0 + J(νh, νh)
1

2

PROOF. By the triangle inequality,

|||(u− uh, λ − λh)|||0 + J(λh, λh)
1

2 ≤ |||(u − vh, λ − νh)|||0

+|||(uh − vh, λh − νh)|||0

+J(λh − νh, λh − νh)
1

2 + J(νh, νh)
1

2 ,
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and we only need to consider the discrete quantities eh,u = vh − uh and eh,λ =
νh − λh. It follows from Theorem 6 that

c|||(eh,u, eh,λ)|||1 ≤ sup
(vh,µh)∈Wh

A[(eh,u, eh,λ), (vh, µh)] + J(eh,λ, µh)

|||(vh, µh)|||1
.

By Lemma 1 it now follows that

c|||(eh,u, eh,λ)|||1 ≤ sup
(vh,µh)∈Wh

A[(u − vh, λ − νh), (vh, µh)] + J(νh, µh)

|||(vh, µh)|||1
.

We may conclude using the continuity of Lemma 2 and the Cauchy-Schwarz
inequality J(νh, µh) ≤ J(νh, νh)

1

2 J(µh, µh)
1

2 .

Corollary 8 The following energy norm error estimate holds:

|||(u− uh, λ − λh)|||0 + J(λh, λh)
1

2 . h|u|H2(Ω).

PROOF. Immediate by choosing vh = I∗u and νh = π0wλ in Theorem 7 and
applying the approximation result Lemma 4.

For error estimates in L2–norm, we have the following result.

Lemma 9 There holds

‖u − uh‖L2(Ω) . h2|u|H2(Ω).

PROOF. Consider the dual problem

−∆z = u − uh in Ω

z = 0 on ∂Ω.
(13)

Under the assumptions on Ω we have

‖z‖H2(Ω) . ‖u − uh‖Ω. (14)

We will use the notation λz := −nΓ · ∇z on the boundary Γ. Multiplying the
first equation of equation (13) by u − uh and integrating over Ω yields

‖u − uh‖Ω = (∇(u − uh),∇z) + 〈u − uh, λz〉Γ .

We now apply the Galerkin orthogonality (1) with vh = I∗z and µh = π0wλz

to get

‖u − uh‖
2
Ω = A[(u − uh, λ − λh), (z − I∗z, λz − π0wλz

)] − J(λh, π0wλz
).
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Proceeding by the continuity of Lemma 2 and the Cauchy-Schwarz inequality
applied to J(·, ·) leads to

‖u − uh‖
2
Ω ≤ |||(u− uh, λ − λh)|||0 |||(z − I∗z, λz − π0wλz

)|||0

+J(λh, λh)
1

2 J(π0wλz
, π0wλz

)
1

2 .

We now apply the approximation property of Lemma 4, the trace theorem for
λz, and the stability (14).

‖u − uh‖
2
Ω .

(

|||(u− uh, λ − λh)|||0 + J(λh, λh)
1/2

)

h|z|H2(Ω)

.
(

|||(u− uh, λ − λh)|||0 + J(λh, λh)
1/2

)

h‖u − uh‖Ω.

We conclude by applying Lemma 8.

6 Numerical results

6.1 A problem with smooth solution

We consider a radially symmetric solution on a disc with radius r0 = 0.5. With
r the length of the radius vector, we use f = r to obtain the exact solution
u = u = (r3

0 − r3)/9. The stabilization parameter was set to γ = 10. In
Fig. 1 we show the obtained convergence rates in L2(Ω)− and H1(Ω)−norms,
which are optimal. An elevation of the solution is given in Fig. 2, and the
error interpolated on the mesh is shown in Fig. 3. We note that the largest
contribution to the error occurs at the boundary, as expected. Finally, in Fig.
4 we show the effect of choosing γ = 0. The solution is then unstable due to
violation of the inf-sup condition. Note that the interface is not symmetrically
placed in the mesh.

6.2 A problem with non-smooth solution

For our second example we choose Ω to be an L-shaped domain

Ω := {[−1, 1] × [−1, 1]} \ {[0, 1] × [−1, 0]} (15)

with exact solution

u(r, θ) := r2/3 sin(2θ/3),

where (r, θ) denote the polar coordinates. The fictitious boundary is put at
x ∈ [0, 1], y = 0; the problem is solved on half the domain using a symmetry
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line (Neumann bounday conditions) at x = −y. Dirichlet data are enforced
at x = 1 and at y = 1. For this kind of domain, r2/3 is a typical singularity,
located in the origin.

For this problem, there holds

u ∈ H1(Ω), u /∈ H2(Ω),

therefore we cannot expect linear convergence in the energy norm or quadratic
convergence in the L2-norm. It is possible to show that u ∈ H5/3−ǫ(Ω), ∀ǫ >
0, therefore the convergence rate 2/3 − ǫ in the H1

0 -norm, is optimal. The
theoretical convergence rate agrees with the numerical convergence rate ≈
0.66, as shown in Figure 5. In Fig. 6, and the error interpolated on the mesh
is shown in Fig. 7. We note that the largest contribution to the error occurs
at close to the singularity.
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[11] N. Moës, E. Béchet, and M. Tourbier. Imposing Dirichlet boundary conditions
in the extended finite element method. International Journal for Numerical

Methods in Engineering, 67:1641–1669, 2006.
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Fig. 3. Elevation of the smooth (interpolated) error
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Fig. 4. Unstable solution for γ = 0
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