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Convergence of a mixed discontinuous Galerkin
and finite volume scheme for the 3 dimensional
Vlasov-Poisson—Fokker-Planck system

Mohammad Asadzadeh and Piotr Kowalczyk

Abstract We construct a numerical scheme for the multi-dimensional Vlasov-
Poisson-Fokker-Planck system based on a combined finite volume method for
the Poisson equation in spatial domain and streamline-diffusion/ discontinuous
Galerkin finite element in time, phase-space variables for the Vlasov-Fokker-Planck
part. We derive error estimates with optimal convergence rates.

1 Introduction

In this note we study the approximate solution for the deterministic multi-dimensional
Vlasov—Poisson—Fokker-Planck (VPFP) system described below: Given the pa-
rameters 3 and o and the initial distribution of particle density fy(x,v), (x,v) €
Q. xR CR? xR?, d =1,2,3 we seek the evolution of charged plasma particles
(ions and electrons), at time ¢, with a phase space density f(x,v,t) satisfying

O f+v-Viof =V -V, f —div,(Bvf) — 0A,f =S, in Q x[0,7],
f(x,v,0) = fo(x,v), in Q =R4 xR¢, 1)

—Ap = / SJEvr)dv, inR? x [0,T],
R

where - denotes the scalar product and S is a source. To construct numerical meth-
ods we shall restrict both space and velocity variables x and v to be in bounded
domains Q, and €2,, and provide the equation with a Dirichlet type, inflow bound-
ary conditions. To solve problem (1) the idea is to split the equation system and
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separate Poisson equation from the Vlasov-Fokker-Planck part which are coupled
with the potential ¢. Thus we reformulate the problem (1) as follows: Given the
initial data fo(x,v), (x,v) € Q := Q, x Q, CR¢ xR?%, d = 1,2,3 find the density
function f(x,v,¢) in the Dirichlet initial-boundary value problem for the Vlasov-
Fokker-Planck equation

of+v-Viof =V -V, f —div,(Bvf) —cA,f =S, in Qx[0,T],
(Pl) f(JC,V,O) = f()(.x,V), in 'QX X Qv; (2)
fxv,1) =0, on I; x[0,7),

where G := (v,—V,@), ' G :={(x,v) € I' := dQ|G-n < 0}, is the inflow bound-
ary and the potential @ satisfies the following problem for the Poisson equation:

—AQ =/ fx,v,t)dv, in Q,x[0,7],
Q

(P2) .
[Vip(x,t)| =0, on 9, x[0,T].

3)

Now we can solve problem (P2) replacing f by a given function g. Then inserting
the corresponding solution ¢ in (P1) we obtain an equation for f, viz (2). In this
way we link the solution f to the given data function g, as say f = A[g]. Now
a solution f for the Vlasov-Poisson-Fokker-Planck system is a fixed point of the
operator A, i.e. f = A[f], which is obtained by a procedure using a Schauder fixed
point theorem. For the discrete version this step can, roughly speaking, be repeated
using a Brouwer type fixed point argument, see, e.g. [1] and the reference therein.
Positivity, existence, uniqueness and regularity of the solution for the continuous
problem are given, e.g. [5]. These results rely on the positivity and boundedness
requirement for the second phase-space moment of the initial data: fy € L..(R%) >0
and [ge(1 + |x|* + [v|?) fodxdv < . Further analytic approaches are given , e.g. by
Horst in [11]. For the general mathematical study of equations of this type we refer
to studies by J. L. Lions [14]. and Baouendi and Grisvard [4].

Conventional numerical methods for the Vlasov-Poisson and related equations
have been dominated by the particle methods studied, e.g. by Cottet and Raviart [7];
Ganguly, Lee and Victory [9]; and Wollman, Ozizmir and Narasimhan [16]. Filbet
has studied a 1-dimensional finite volume scheme for the Vlasov-Poisson [8].

Our study of the VPFP system is, mainly, devoted (see also [1]- [3]) to the con-
struction and analysis of finite element schemes. In this note, however, we study
the Poisson part using a finite volume approach. To this end we consider the study
of a three dimensional VPFP model (2, C R3, Q, C R3). As for the discontinuous
Galerkin approximation relevant in the VPFP estimates we also refer to the articles
by Brezzi, Manzini, Marini and Russo for elliptic problem in [6], and Johnson and
Saranen for the Euler and Navier-Stokes equations in [12].

In this note, we give only sketch of the proofs. They can be completed following
the techniques in [15] for finite volume, and [1]- [3] and [12] in the finite element
cases.
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2 The finite Volume Method for Poisson Equation in 3D

The cell-center finite volume (FV) scheme for problem (P2) is given by
—V2p=p, in 2,=(0,1)x(0,1)x(0,1) |[V,0|=0, on 3Q, (4

where p = fgv f(x,v,t) dv. Existence uniqueness and regularity studies for (4) are
extensions of two-dimensional results in [10]: p € H~!(Qy) implies that 3! ¢ €
H} (%), and for p € H%(Qy), with —1 <5 <, r # £1/2, @ € H*2(Qy). The fi-
nite volume scheme can be described as: exploiting divergence from the differential
equation, integrating over disjoint “volumes” and using Gauss divergent theorem
to convert volume-integrals to counter-integrals, and then discretizing to obtain the
approximate solution ¢, with the mesh size 4. Here, the finite volume method is
defined on Cartesian product of non-uniform meshes as Petrov-Galerkin method us-
ing piecewise trilinear trial functions on finite element mesh and piecewise constant
test functions on the dual box mesh. The main result of this section is,

Theorem 1. Then, for 1/2 < s < 2 the, respective, optimal finite volume error esti-
mates for general non-uniform and quasi-uniform meshes are given by

lo — @nllin < CH|Q|gsr1, and  ||@ — @pll < Ch|logh||@|gst1.  (5)

whereas the corresponding finite element estimates can be read from the theorem

Theorem 2. a) For the finite element solution of the Poisson problem (9) with a
qusiuniform triangulation we have the error estimate:

19— @ull1 e < Ch[logh| X [|@llr41,00, 7 <2

b)Ve € (0,1) small, 3C¢ such that ||@ — @y||1 . > Ceh"~¢|logh|, cf [13].

Note that s = 2 in Theorem 1 corresponds to r = 1 in Theorem 2, where the two
L., estimates are coinciding. To derive the finite volume formula we consider the
Cartesian mesh

" ={x:i=01,....,I;, x=0, x-x_i=h; x=1},
I;’IZ{yjIjZO,],...,]; )’OZO; yj_yj—lzkj; yJ:1}7
If::{zn:n:O,l,...,N; 20=0, zp—2z4_1=4y; v =1}

With each (x;,y,2,) We associate the finite volume box:

Oypn = (xi—1/27xi+1/2) X <)’j—1/27yj+1/2) X <Zn—1/27zn+1/2)-

Now we choose central finite volume boxes inside each 27-points stencil element:

Bl
Xi—1/2 =% —hi/2, Xip172 = Xi—hiyny /2, hi = 2 +2k+1
_ =
Yi—1)2=Yj— j/2a }’j+1/2=}’j—k(1’+1)/2a = ﬁ,
n—1/2 =Zﬂ_€ﬂ/27 Zn+1/2=Zn_€(n+])/2; n = n+2n+17
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and define, V T < 1/2, the characteristic function:

= (1) (<, Y] (o, ] e,

For finite volume approximation let p € H*(y), r > —1/2. Extend p to R3 pre-
serving its Sobolev class. Thus, we may define using three dimensional convolu-
tions, ¥;jn * P, which is continuous in R3 and

1 ¢ 1
|(’~)ijn| 0Wjjn ﬁ ds = |60un| (ijn * P) (xi’yj’zn) ©)

Further, recalling that p € L] (€y) we may write

1 a 1 i+1 Y Zn.
99 45— ”2/’“/2/ M o xy2)dxdydz. (T
|@ijn| Joar, Om hik €y Jx, 12 Myicip Yz

Now we let ¥}, be the set of piecewise bilinear functions defined on the box Qy
induced by O, i.e. ;> = {F € “I/;,‘F =0 on J}.

Definition 1. The finite volume approximation of the solution ¢ for the Poisson
equation (9): @, € ¥,? is defined (implicitly) through the following algorithm:

1 0 Oy 1
T 217 - d ( ) irY ] ’ i)Yy EQh'
hikjgn dayn on § = hk E Xijn* P (-xt Yj Zn) (xt Yj le) X
Stability and convergence of this method are generalization of Siili’s [15] results in
two dimensions for the Dirichlet problem. |V,@| = 0 on €, with extended @(e0) =
0 yield ¢ = 0 on d€2;. The first assertion in Theorem 1, may be proved repeating the
arguments in [15] (we skip) for the 3d case in discrete H' (/) and L,(Q”) norms:

1/ 2 where

1/2
Wl = (IWIP+1yis) s and livll= (v, y)

—1J-1N—
Z 21 Z n(pijn‘//ijna and

i=1 j=

_ _ _ 1/2 .
Wi = (1A B +IAT W+ IA7w2) ) with

divided differences Ax_l[/ijn = (‘!/ijn — l//i—l,j,n)/hi, Ay_l//ijn = (l]/,'jn - Wi,j—l,n)/l_cj
and A Wijn = (Wijn— Vi jn—1)/Ln, and the, one-sided discrete L,-norms

AT WIE=(v.¥],  (9,¥])=

||M~

Z Z, ]_< _’l¢ljnllllj’l’

with the similar notations corresponding to the y and z directions.
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3 Streamline diffusion and Discontinuous Galerkin approaches

For a finite element scheme over the phase-space-time domain Q7 :=[0,7] X Q we
start with a phase-space subdivision of 2, into the product of triangular elements 7,
and 1, , as 9, := {T = T, X T, } combined with a partition of the time interval (0,T):
O=f<ti <...<ty=T,andlet I, := (tm,tmy1); m=0,1,...,M — 1. Then the
corresponding partition of Q7 is given by the prism-type triangulation

6n:={K|K:=1tx1Ip, TE€ T}

We seek piecewise polynomial approximations for the solution of problem (1) in a
finite dimensional space

Vii={f€H: flx € Zx(T) X Py(In); VK = T X I, € 61},

with Vj, being continuous in x and v, possibly discontinuous in ¢ across time levels
tm and S = H”Ml;(} H'(Qp); Qn = Q xI,. We shall also use the standard notation

(8= (800, = [ fadravar, il =(s.00"
(F.8n = [ FCrtm)eCortmdrdy, lgln=<g.8 >4,
< fr,gT >1—i:/ri fe¥|G" -n|dv, and the jumps
[g=g"—¢" &= =limeorg(x,v,1+5),

<fr.g >zi=/ <fT.8% >r+ dt.
Using notation Vf := (V.f,V,f) = (df/dx1,...,0f[dx4,df/dv1,...,df]/dvs)
and G := (vl,...,vd,—atp/axl,...,—3¢/8xd), divG(f) = 0. For our finite ele-
ment procedure (both in the streamline diffusion and the discontinuous Galekin
case) we let & to be a certain (linear) function space, f € % an approximation
of fand ITf € ¥ a projection of f into .#, then to estimate the approximation error

f=F=(-Of)+IIf-f)=n+& EeZ,

(i) We use interpolation theory to give sharp error bounds for a certain |||n7]||-norm
(ii) Bstablish [[|§[|| < C[[nll,  (/l|-]]| :=I-[|=, Z=SD or Z=DG, below).

Now we consider the streamline diffusion (SD) method for (P1) with test func-
tions of the form u+ & (u, +G(f) -Vu) with 8 ~ h, the mesh size. For convenience
we use the notation 2w := w, + G(f3) - Vw and formulate the SD method for
problem (I) as follows: given f, (-,-,%») find fj, € V;, such that form =0,...,M —1,

Pu)  BY(G(fa): fusu) = IS(fasu) =LY (u),  Yu € Vy. (8)
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B:Sn = (th,u—i— 6@1/[)," + O'(vahavvu)m + <[fh]>”)m - 30'(Avfh, 9u)m; (©))
I8 = (Vo (Bvf),u+ 8Du)m, (10)

and
Ly = (S,u+8Duhm+ (fHut ) + (f 70 )z (11)

Problem P, is a linear system of equations leading to an implicit scheme. Therefore
to solve P is equivalent to find fj € Vj, such that

BY(G(fa)s fosw) =IO (fiyu) = L2(u),  Vu €W, (12)
M—1 M—1 M-1

B =Y B, 17°:=YJ5 L°=Y L] (13)
m=0 m=0 m=0

3.1 Stability and error estimates

Lemma 1. For the SD method we have the coercivity and stability estimates

1 .
vge#, B (G(/":ig.g)>5llgllipy  with

1 M—1
leli3p = 5 [201Vvelid, + e+ lgf+ X llsl+21 Pl + [ 216" nl]
m=1

1 M—-1

2 2 2 2\ ~h C16

<[—@ / G-]al, vC, > 0.
gl @r.sp) < c1” 8l +m);1|[g]lm+ agxlgl n||ée 12>

Remark 1. In the discontinuous Galerkin case, ||g||pG and ||g||1,(e;,pc) are defined
by replacing the [-term, in the SD case, by ¥ [5x (67) [8]*|G" - n| ds where

0K_(G") = {(x,v,t) € dK_(G') : ny(x,v,t) = 0}.
Theorem 3. Assume that there is a constant C such that
IV f1leo +1IG(f) oo + V7|0 < C. (14)
Then we have the following error estimate for the SD method for (P1):

Ilf = fspllsp < Chk+1/2||f||Hk+1(gT),

where fsp € Vy, is the SD-approximation for f, and we have assumed f € H**1(Qr).

Proof. (sketch of the main ideas) Let f” be an interpolant of £, and split the error as
e=f—foo=f—F"+7 ~fo:=n—E.

Then, by the above coercivity estimate and Galerkin orthogonality, we may write
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SIEIRD < BGU)5E, ) = BGU): £,6) ~ BGU™): 1,8) +J(, ) = I(1:6)
=88+ 47 < 5 & 1Ro +Cal 1 + 511 + Colinl o

where to estimate J-term, we have used the inverse estimate. Further interpolation
estimates give ||1|2p < CGHF2||£|| Hk+1(qy)> Which yields the desired result.

In the discontinuous Galerkin (DG) case, we assume also discontinuities in x and v
over the interelement boundaries. Here, we shall use the discrete function spaces

Wy, = {g € LQ(QT) :g|K € Pk(K) VK € %},}, and
Wi = {wel(0n] :wlk (AR VK €%},

Then, the corresponding final error estimate for the DG case reads as follows:

Theorem 4. Under the assumptions (14) of Theorem 3 and regularity assumption
for the exact solution as f € H*1(Qr) NWk1=(Qy), we have that the discontin-
uous Galerkin approximation fpg € W,f’ for f in (P1) satisfies the error estimate

1 = foallog < CH*H12 (1| fll s gy + 1 llwtsnmqar) ) -

Proof. (Sketchy) Here we demonstrate only the terms that are involved in estima-
tions of the enterelement jump terms, which are additional to those in the SD-case.
To this end, we introduce R: W, — W4, see [6], defined by

R(gw=— Z /’L:xl ZE /[[g]]nv-(w)odV, VwEW,f, (15)

TeX Iy e

E, is the set of all interior edges of the triangulation 7,/. Define

(1) = L2

2 ) and [[X]] =X—- Xw:

X% is the value of y in the element 7& having e € E, common edge with 7,. Now
we let r, be the restriction of R to the elements sharing the edge e € E,, then

e@w==Y [ [lehldv, vwewl a6

Te X Iy

Hence, we may easily verify that

Y =R ont,=[R@Ix<y Y @l (17)
eCITNEy eCITyNEy

where T, corresponds to the element K and v = y(d) > 0 is a constant. Furthermore,
since the support of each r, is the union of elements sharing the edge e,
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Y lr@P=Y Y ol (18)

¢€Ey KeCeCdt,NEv

The corresponding discontinuous Galerkin method reads as: find f € W, such that

BpG(G(fn) fn:8) —K(fn,8) =L(g),  VgEW,,
where,  (Kf,g) = (Vu(Bvf).g +h%s).

Proving a coercivity which, compared to Bgp, contains also interelement jumps;

(BDGG(fh);gag)Za”lg“lza VgGWh;

and following the same procedure as in the SD case yields the DG error estimate.
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