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RESTRICTIONS OF m-WYTHOFF NIM AND
p-COMPLEMENTARY BEATTY SEQUENCES

URBAN LARSSON

Abstract. Fix a positive integer m. The game of m-Wythoff Nim
(A.S. Fraenkel, 1982) is a well-known extension of Wythoff Nim (W.A.
Wythoff, 1907). The set of P -positions may be represented as a pair
of increasing sequences of non-negative integers. It is well-known that
these sequences are so-called complementary Beatty sequences, that is
they satisfy Beatty’s theorem. For a positive integer p, we generalize
the solution of m-Wythoff Nim to a pair of p-complementary—each
non-negative integer is represented exactly p times—Beatty sequences
a = (an)n∈N0 and b = (bn)n∈N0 , which, for all n, satisfy bn − an = mn.
Our main result is that {{an, bn} | n ∈ N0} represents the solution
to three new ’p-restrictions’ of m-Wythoff Nim—of which one has a
certain blocking manoeuvre on the rook-type options. C. Kimberling
has shown that the solution of Wythoff Nim satisfies the complementary
equation xxn = yn − 1. We generalize this formula to a certain
’p-complementary equation’ satisfied by our pair a and b. Further, if
p > 1, we prove that this pair is unique in the sense that it is the only
pair of p-complementary Beatty sequences of which one of the sequences
is strictly increasing. We also show that one may obtain our new pair
of sequences by three so-called Minimal EXclusive algorithms.

1. Introduction and notation

The combinatorial game of Wythoff Nim ([Wyt07]) is a so-called (2-
player) impartial game played on two piles of tokens. (For an introduction
to impartial games see [BeCoGu82, Con76].) As an addition to the rules
of the game of Nim ([Bou02]), where the players alternate in removing any
finite number of tokens from precisely one of the piles (at most the whole
pile), Wythoff Nim also allows removal of the same number of tokens from
both piles. The player who removes the last token wins.

This game is more known as ’Corner the Queen’, invented by R. P. Isaacs
(1960), because the game can be played on a (large) Chess board with
one single Queen. Two players move the Queen alternately but with the
restriction that, for each move, the (L1) distance to the lower left corner,
position (0, 0), must decrease. (The Queen must at all times remain on the
board.) The player who moves to this final/terminal position wins.

Date: November 17, 2009.
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In this paper we follow the convention to denote our players with the next
player (the player who is in turn to move) and the previous player. A P -
position is a position from which the previous player can win (given perfect
play). An N -position is a position from which the next player can win. Any
position is either a P -position or an N -position. We denote the solution, the
set of all P -positions, of an impartial game G, by P = P(G) and the set of
all N -positions by N = N (G). The positive integers are denoted by N and
the non-negative integers by N0.

1.1. Restrictions of m-Wythoff Nim. Let m ∈ N. We next turn to a
certain m-extension of Wythoff Nim, studied in [Fra82] by A.S. Fraenkel.
In the game of m-Wythoff Nim, or just mWN (our notation), the Queen’s
’bishop-type’ options are extended so that (x, y) → (x + i, y + j) is legal if
| i− j | < m. The ’rook-type’ options are as in Nim. Hence 1-Wythoff Nim
is identical to Wythoff Nim.

In this paper we define three new restrictions of m-Wythoff Nim—here a
rough outline:

• The first has a so-called blocking manoeuvre/Muller Twist on the
rook-type options—before the next player moves, the previous player
may announce at most a predetermined number of these options as
forbidden (see also [HoRe, SmSt02] and Section 1.2 of this paper);

• The second has a certain congruence restriction on the rook-type
options;

• For the third, a rectangle is removed from the lower left corner of
the game board (including position (0, 0)), so that here we get two
terminal positions.

1.2. A pair of p-complementary Beatty sequences. A Beatty sequence
is a sequence of the form (bnα + βc)n∈N0 , where α is a positive irrational
and β is a real number. S. Beatty ([Bea26]) is maybe most known for a
(re)1discovery of (the statement of) the following theorem: If α and β are
positive reals such that 1

α + 1
β = 1 then (bnαc)n∈N and (bnβc)n∈N split N0

if and only if they are Beatty sequences. This was proven by [HyOs27] (see
also [Fra82]).

A pair of sequences that satisfies Beatty’s theorem is complementary (see
[Fra69, Fra73, Kim07, Kim08]).

In this paper we generalize the notion of complementarity.

Definition 1. Let p ∈ N. Two sequences (xi) and (yi) of non-negative
integers are p-complementary, if, for each n ∈ N0,

#{i | xi = n}+ #{i | yi = n} = p.

As usual, a 1-complementary pair of sequences is denoted complementary.

We study the Beatty sequences a = (an)n∈N0 and b = (bn)n∈N0 , where for
all n ∈ N,

an = am,p
n =

⌊
nφmp

p

⌋
(1)

1This theorem was in fact discovered by J. W. Rayleigh, see [Ray94, Bry03].
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and

bn = bm,p
n =

⌊
n(φmp + mp)

p

⌋
,(2)

and where

φα =
2− α +

√
α2 + 4

2
.(3)

We show that a and b are p-complementary. (Notice also that, for all n,
bn − an = mn.)

In [Wyt07] W.A. Wythoff proved that the solution of Wythoff Nim is
given by {{a1,1

n , b1,1
n }2 | n ∈ N0}, Then in [Fra82] it was shown that the

solution of m-Wythoff Nim is

{{am,1
n , bm,1

n } | n ∈ N0}.
1.3. Recurrence. Let X be a strict subset of the non-negative integers.
Then the Minimal EXclusive of X is defined as usual (see [Con76]):

mexX := min(N0\X).

For n ∈ N0 put

xn = mex{xi, yi | i ∈ [0, n− 1]} and yn = xn + mn.(4)

With notation as in (4), it was proven in [Fra82] that (xn) = (am,1) and
(yn) = (bm,1). The minimal exclusive algorithm in (4) gives an exponen-
tial time solution to mWN whereas the Beatty-pair in (1) and (2) give a
polynomial time ditto. (For interesting discussions on complexity issues for
combinatorial games, see for example [Fra04, FrPe09].) We show that one
may obtain a and b by three minimal exclusive algorithms, which in various
ways generalize (4).

It is well-known that the solution of Wythoff Nim satisfies the comple-
mentary equation (see for example [Kim95, Kim07, Kim08])

xxn = yn − 1.

For arbitrary positive integers m and p, we generalize this formula to a
’p-complementary equation’

xϕn = yn − 1,(5)

where ϕn = xn+(mp−1)yn

m , and show that a solution is given by x = a and
y = b.

1.4. I.G. Connell’s restriction of Wythoff Nim. In the literature there
is another generalization of Wythoff Nim that is of special interest to us.
Let p ∈ N. In [Con59] I.G. Connell studies the restriction of Wythoff Nim,
where the the rook-type options are restricted to jumps of precise multiples
of p. This game we call Wythoff modulo-p Nim and denote with WN(p).
Hence Wythoff modulo-1 Nim equals Wythoff Nim.

2As usual, {x, y} denotes unordered pairs (of integers), that is (x, y) and (y, x) are
considered the same.
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Figure 1. The P -positions of Wythoff modulo-3 Nim,
WN(3) are the positions nearest the origin such that there
are precisely three positions in each row and column and one
position in each NE-SW-diagonal. The black positions repre-
sent the (first few) P -positions of 3-Wythoff Nim, namely the
positions nearest the origin such that there is precisely one
position in each row and one position in every third NE-SW
diagonal.

Call the P -positions of WN(p) {{cn, dn} | n ∈ N0}, where cn = c
(p)
n and

dn = d
(p)
n and let φα be as in (3). The general solution of WN(p) is given by

cn =
⌊

nφp

p

⌋
and dn = cn + n,

a formula which can be derived from [Con59]—from which one may also
deduce that (ci) and (di)>0 are p-complementary. Notice that, for fixed p

and for all n, a1,p
n = c

(p)
n and b1,p

n = d
(p)
n ,.

d
(3)
n 0 1 2 4 5 7 8 10 11 12 14 15 17 18 20 21 22

c
(3)
n 0 0 0 1 1 2 2 3 3 3 4 4 5 5 6 6 6

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 1. Some values of c
(3)
n = bnφ3

3 c and d
(3)
n = c

(3)
n + n.

Remark 1. In Connell’s presentation, for the proof of the above formulas,
he rather uses p pairs of complementary sequences of integers (in analogy
with the discovery of a new formulation of Beatty’s theorem in [Sko57]). We
have indicated this pattern of P -positions with different shades in Figure 1.
In fact, the squares of darkest shade, starting with (0, 0) are P -positions of
3-Wythoff Nim—in general ap,1

n = c
(p)
pn and bp,1

n = d
(p)
pn — and, as we will see,

given a certain game constant, each lighter shade represents the solution of
our third variation of this game.

Remark 2. In [BoFr73], Fraenkel and I. Borosh study yet another varia-
tion of both m-Wythoff Nim and Wythoff modulo-p Nim which includes a
(different from ours) Beatty-type characterization of the P -positions.
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1.5. Exposition. In Section 2 we define our games, exemplify them and
state our main theorem. Roughly: For each of our games, given appropriate
game constants, a position is P if and only if it is of the form {an, bn},
with a and b as in (1) and (2) (so that, in terms of game complexity, the
solution of each of our games is polynomial). In Section 3 we generalize
Beatty’s theorem to p-complementary sequences and prove some arithmetic
properties of a and b—most important of which is that (for fixed m and
p) a and b are p-complementary. Then, in Section 4, for arbitrary m and
p > 1, we prove that our new pair of sequences is unique in the sense
that it is the only pair of p-complementary Beatty sequences for which one
of the sequences is (strictly) increasing. Section 5 is devoted to our p-
complementary equation (5) and minimal exclusive algorithms. In Section 6
we prove our game theory results (stated in Section 2) and finally in Section
7 a few questions are posed.

Let us, before we move on to our games, give some more background to
the so-called blocking manoeuvre in the context of Wythoff Nim.

1.6. A bishop-type blocking variation of m-Wythoff Nim. Let m, p ∈
N. In [HeLa06] we gave an exponential time solution to a variation of
m-Wythoff Nim with a ’bishop-type’ blocking manoeuvre, denoted by p-
Blocking m-Wythoff Nim (and with (m, p)-Wythoff Nim in [Lar09]).

The rules are as in m-Wythoff Nim, except that before the next player
moves, the previous player is allowed to block off (at most) p − 1 bishop-
type—note, not m-bishop-type—options and declare that the next player
must refrain from these options. When the next player has moved, any
blocked options are forgotten.

The solution of this game is in a certain sense ’very close’ to pairs of
Beatty sequences (see also the Appendix of [Lar09]) of the form

(⌊
n

√
m2 + 4p2 + 2p−m

2p

⌋)
and

(⌊
n

√
m2 + 4p2 + 2p + m

2p

⌋)
.

But we explain why there can be no Beatty-type solution to this game for
p > 1. However, in [Lar09], for the cases p |m, we give a certain ’Beatty-type’
characterisation. For these kind of questions, see also [BoFr84]. However,
a recent discovery, in [Had, FrPe09], provides a polynomial time algorithm
for the solution of (m, p)-Wythoff Nim (for any combination of m and p).

An interesting connection to 4-Blocking 2-Wythoff Nim is presented in
[DuGr08], where the authors give an explicit bijection of solutions to a
variation of Wythoff’s original game, where a player’s bishop-type move
is restricted to jumps by multiples of a predetermined positive integer.

For another variation, [Lar09] defines the rules of a so-called move-size
dynamic variation of two-pile Nim, (m, p)-Imitation Nim, for which the P -
positions, treated as starting positions, are identical to the P -positions of
(m, p)-Wythoff Nim.

This discovery of a ’dual’ game to (m, p)-Wythoff Nim has in its turn
motivated the study of dual constructions of the ’rook-type’ blocking ma-
noeuvre in this paper.
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2. Three games

This section is devoted to defining and exemplifying our new game rules
and to state our main result. We begin by introducing some (non-standard)
notation whereby we ’decompose’ the Queen’s moves into rook-type and
bishop-type ditto.

Definition 2. Fix m, p ∈ N and an l ∈ {0, 1, . . . , m}.
(i) An (l, p)-rook moves as in Nim, but the length of a move must be

ip+j > 0 positions for some i ∈ N0 and j ∈ {0, 1, . . . , l−1} (we denote
a (0, p)-rook by a p-rook and a (p, p)-rook simply by a rook);

(ii) A m-bishop may move 0 ≤ i < m rook-type positions and then any
number of, say j ≥ 0, bishop-type positions (a bishop moves as in
Chess), all in one and the same move, provided i + j > 0 and the
L1-distance to (0, 0) decreases.

2.1. Game definitions. As is clear from Definition 2 the rook-type options
intersect the m-bishop-type options precisely when m > 1. For example,
(2, 3) → (1, 3) is both a 2-bishop-type and a rook-type move. We will make
use of this fact when defining the blocking manoeuvre. Therefore, let us
introduce some new terminology.

Fix an m ∈ N. A rook-type option, which is not of the form of the m-
bishop as in Definition 2 (ii), is a roob(-type)3 option. Hence, for m = 2,
(2, 3) → (2, 1) is a roob option, but (2, 3) → (2, 2) is not (both are rook
options).

Let us define our games.

Definition 3. Fix m, p ∈ N.

(1) The game of m-Wythoff p-Blocking Nim, or mWNp, is a restriction
of m-Wythoff Nim with a roob-type blocking manoeuvre.

The Queen moves as in m-Wythoff Nim (that is, as the m-bishop
or the rook), but with one exception: Before the next player moves,
the previous player may block off (at most) p−1 of the next player’s
roob options. The blocked options are then excluded from the Queen’s
options. As usual, each blocking manoeuvre is particular to a spe-
cific move; that is, when the next player has moved, any blocked
options are forgotten and has no further impact on the game. (For
p = 1 this game equals m-Wythoff Nim.)

(2) Fix an integer 0 ≤ l < p. In the game of m-Wythoff Modulo-p l-Nim,
or mWN(l,p), the Queen moves as the m-bishop or the (l, p)-rook.
For l = 0 we denote this game by m-Wythoff Modulo-p Nim or
mWN(p). (In case m = l = 0 the game reduces to Wythoff modulo-p
Nim, whereas for l = p the game is simply m-Wythoff Nim.)

(3a) Fix an integer 0 ≤ l < p. In the game of l-Shifted m×p-Wythoff Nim,
or m×pWNl, the Queen moves as in (mp)-Wythoff Nim (that is, as
the (mp)-bishop or the rook), except that, if l > 0, it is not allowed
to move to a position of the form (i, j), where 0 ≤ i < ml and

3Think of ’roob’ as ’ROOk minus m-Bishop’, or maybe ’ROOk Blocking’
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0 ≤ j < m(p − l)4. Hence, for this case, the terminal positions are
(ml, 0) and (0,m(p− l)). On the other hand m×pWN0 is identical
to (mp)-Wythoff Nim.

(3b) The game of m×p-Wythoff Nim, m×pWN: Before the first player
moves, the second player may decide the parameter l as in (3a).
Once the parameter l is fixed, it remains the same until the game
has terminated, so that for the remainder of the game, the rules are
as in m×pWNl.

2.2. Examples. Let us illustrate some of our games, where our players are
Alice and Bob—Alice makes the first move (and Bob makes the first blocking
manoeuvre in case the game has a Muller twist).

Example 1. Suppose the starting position is (0, 2) and the game is 2WN2.
Then the only bishop-type move is (0, 2) → (0, 1). There is precisely one
roob option, namely (0, 0). Since this is a terminal position Bob will block
it off from Alice’s options, so that Alice has to move to (0, 1). The move
(0, 1) → (0, 0) cannot be blocked off for the same reason, so Bob wins. If
y ≥ 3 there is always a move (0, y) → (0, x), where x = 0 or 2. This is
because the previous player may block off at most one option. Altogether,
this gives that {0, y} is P if and only if y = 0 or 2.

Example 2. Suppose the starting position is (0, 2) and the game is 2WN(2).
Alice can move to (0, 0), since 0 ≡ 2 (mod 2), so (0, 2) is N . On the other
hand, the position (0, 3) is P since the only options are (0, 2) and (0, 1).
(The latter is N since the 2-bishop can move (0, 1) → (0, 0).)

Example 3. Suppose the starting position is (0, 2) and the game is 2WN(2,4).
Alice cannot move to (0, 0), since 2 − 0 6≡ 3, 4 (mod 4) and since (0, 1) →
(0, 0) is a 2-bishop-type move (0, 1) is N , so that {0, 2} must be P . Then
(0, 3) is N and since (0, y) → (0, 0) is legal if y = 4 or 5 we get, by similar
reasoning, that {0, y} is N for all y ≥ 3.

Example 4. Suppose the starting position is (0, 4) and the game is 2WN3.
Then the only bishop-type move is (0, 4) → (0, 3), so that the roob op-
tions are (0, 0), (0, 1), (0, 2). Bob may block off 2 of these positions, say
(0, 0), (0, 2). Then if Alice moves to (0, 1) she will loose (since she may not
block off (0,0)), so suppose rather that she moves to (0, 3). Than she may
not block off (0, 2) so Bob moves (0, 3) → (0, 2) and blocks off (0, 0). Hence
(0, 4) is a P -position.

Example 5. Suppose the starting position is (0, 4) and the game is 2WN(3).
Alice cannot move to (0, 0) or (0, 2). But (0, 1) → (0, 0) is a 2-bishop-type
option and (0, 3) → (0, 0) is a 3-rook-type option. This shows that (0, 4) is
a P -position.

Notice that, in comparison to Examples 4 and 5, the P -positions in the
Examples 1 and 2 are distinct in spite the identical game constants (m =
p = 2). On the other hand, the P -positions in Examples 1 and 3 coincide.

4One may think of the game as if this lower left rectangle is cut out from the game
board.
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Example 6. If the starting position is (0, 4) and the game is 2×3WN1,
then Alice cannot move so that Bob wins. If, on the other hand, the game
is 2×3WN2, the position (0, 2) is terminal and so Alice wins (by moving
(0, 4) → (0, 2)).

Suppose now that the starting position of 2×3WN2 is (1, 8). Then, Alice
may move to (0, 2). But if the starting position of 2×3WN0 is (1, 7) Alice
may not move to (0, 0) and hence Bob wins.

Figure 2. P -positions of 2WN(3), 2WN3, 2WN2,6 and 2×
3WN—the positions nearest the origin such that there are
precisely three positions in each row and column and one po-
sition in every second NE-SW-diagonal. The palest coloured
squares represent P -positions of 2×3WN1. They are of the
form (a3n+1, b3n+1) or (b3n+2, a3n+2). The darkest squares,
({a2,3

3i , b2,3
3i }), represent the solution of 6WN.

b2,3
n 0 2 4 7 9 11 14 16 19 21 23 26 28 31 33 35 38

a2,3
n 0 0 0 1 1 1 2 2 3 3 3 4 4 5 5 5 6

bn−an 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 2. Some initial values of the Beatty pairs defined in
(1) and (2), here m = 2 and p = 3, together with the differ-
ences of their coordinates (=2n).

2.3. Game theory results. We may now state our main results. We prove
them in Section 6, since our proofs depend on some arithmetic results pre-
sented in Section 3,4 and 5.

Theorem 2.1. Fix m, p ∈ N and let a and b be as in (1) and (2). Then
(i) P(mWNp) = {{ai, bi} | i ∈ N0};
(ii) (a) P(mWN(p)) = {{ai, bi} | i ∈ N0} if and only if gcd(m, p) = 1;

(b) P(mWN(m,mp)) = {{ai, bi} | i ∈ N0};
(iii) (a) P(m×pWNl) = {(aip+l, bip+l) | i ∈ N0} ∪ {(bip−l, aip−l) | i ∈ N}

(b) P(m×pWN) = {{ai, bi} | i ∈ N0}.
8



3. More on p-complementary Beatty sequences

As we have seen, it is customary to represent the solution of ’a removal
game on two heaps’ as a sequence of pairs of non-negative integers; or more
precisely, as pairs of non-decreasing sequences of non-negative integers. This
leads us to a certain extension of Beatty’s original theorem, to (a pair of)
p-complementary sequences.

In the literature there is a proof of this theorem in [Bry02], where K.
O’Bryant uses generating functions (a method adapted from [BoBo93]).
Here, we have chosen to include an elementary proof, in analogy to ideas
presented in [HyOs27, Fra82].

Theorem 3.1 (O’Bryant). Let 0 < α < β be real numbers such that
1
α

+
1
β

= 1.

Let p ∈ N. Then we have that (xi) = (b iα
p c)i∈N0 and (yi) = (b iβ

p c)i∈N are
p-complementary, that is, for each n ∈ N0,

p = #
{

i ∈ N0 | n =
⌊

iα

p

⌋}
+ #

{
i ∈ N | n =

⌊
iβ

p

⌋}

if and only if α, β are irrational.

Proof. It suffices to establish that exactly p members of the set

S = {0, α, β, 2α, 2β, . . .}
is in the interval [n, n + 1) for each n ∈ N0. But

#(S ∩ [0, N ]) = #({0, α, 2α, . . .} ∩ [0, N ]) + #({β, 2β, . . .} ∩ [1, N ])

= bpN/αc+ 1 + bpN/βc,
and since

pN/α + pN/β − 1 < bpN/αc+ 1 + bpN/βc
< pN/α + pN/β + 1,

we are done. 2

The following result is a special case of the generalization of Beatty’s
theorem to non-homogeneous sequences in [Sko57, Fra69, Bry03] (so we
omit a proof).

Proposition 3.2 (Skolem, Fraenkel). With notation as in Theorem 3.1, for
any integer 0 ≤ l < p, the sequences

(xpi+l) and (ypi−l)

are complementary. 2

The next result is almost immediate by definition of a and b and by
Theorem 3.1. It is central to the rest of the paper.

Lemma 3.3. Fix m, p ∈ N and let a and b be as in (1) and (2) respectively.
Then for each n ∈ N0 we have that

(i) a and b are p-complementary;
9



(ii) bn − an = mn;
(iii) if p = 1, then

(a) an+1 − an = 1 and bn+1 − bn = m + 1, or
(b) an+1 − an = 2 and bn+1 − bn = m + 2;

(iv) if p > 1, then
(a) an+1 − an = 0 and bn+1 − bn = m, or
(b) an+1 − an = 1 and bn+1 − bn = m + 1.

Proof. Since φx is irrational and 1
φx

+ 1
φx+x = 1, case (i) is immediate from

Theorem 3.1.
For case (ii) put ν = νm,p = φmp

p + m
2 and observe that

bn − an =
⌊
n

(
ν +

m

2

)⌋
−

⌊
n(ν − m

2
)
⌋

.

The result follows since⌊nm

2

⌋
−

⌊
−nm

2

⌋
=

⌊nm

2

⌋
+

⌈nm

2

⌉
= mn

for all n ∈ Z.
For case (iii), by [Fra82], we are done. In case p > 1, by the triangle

inequality, we get

0 <
φm,p

p

=
1
p
− m

2
+

√
m

4
+

1
p2

<
1
p

+
1
p

≤ 1, whenever p > 1,

so that we may estimate

an+1 − an =
⌊

(n + 1)φmp

p

⌋
−

⌊
nφmp

p

⌋
∈ {0, 1}.

Then by (ii) we have

bn+1 − bn = an+1 + m(n + 1)− an −mn

= an+1 − an + m,

so that (iv) holds. 2

4. A unique pair of p-complementary Beatty sequences

Suppose that, say (yi), in Theorem 3.1, is strictly increasing. In this
case, we may formulate certain ’uniqueness properties’ for our pairs of p-
complementary Beatty sequences (in case p = 1 see also [HeLa06] for exten-
sive generalizations).

Theorem 4.1. Fix an integer p > 1. Suppose x = (xi) = (xi)i∈N0 and
y = (yi) = (yi)i∈N0 are non-decreasing sequences of non-negative integers
such that x0 = y0 = 0 and, for all n, xn ≤ yn. Then the following items are
equivalent:

10



(i) (xi) and (yi)i>0 are p-complementary and there is an m ∈ N such that,
for all n, yn − xn = mn;

(ii) (xi) and (yi)>0 are p-complementary Beatty sequences and (yi) is
(strictly) increasing;

(iii) for some fixed m ∈ N and for all n, xn = am,p
n and yn = bm,p

n ;

Proof. By Lemma 3.3 it is clear that (iii) implies (ii) and (i). Hence, it
suffices to prove that (i) implies (iii) and (ii) implies (iii).

(i)⇒ (iii): Since x is non-decreasing the condition yn−xn = mn clearly implies
that y is increasing. Since p > 1, by this and by p-complementarity
of x and y we get x1−x0 = 0 and y1−y0 = m. Suppose further that
Lemma (3.3) (iv) holds for each of the n first entries of the sequences
(xi) (exchanged for (ai)) and (yi) (exchanged for (bi)) respectively.
Then, since these sequences are p-complementary and y is increasing,
we get that xn+1 − xn = 0 or xn+1 − xn = 1 (otherwise the integer
xn +1 would have at most one representation in the sequences x and
y, a contradiction). By yn−xn = mn, we get that Lemma (3.3) (iv)
is satisfied for x and y. But, by Lemma (3.3) (i) and (ii) the same
inductive argument also holds for the sequences (ai) and (bi) (in the
sense that xn+1 − xn = 0 if and only if an+1 − an = 0), so we are
done.

(ii)⇒ (iii): for each n ∈ N0, the ’first difference’ of a Beatty sequence z = (zi) is
zn+1 − zn ∈ {δ(z),∆(z)} for some non-negative integers 0 ≤ δ(z) <
∆(z).

By the conditions in (ii) we get that δ(x) = 0. Then if ∆(x) > 1
we must have δ(y) = 0 for otherwise the number of representations
of 1 is strictly less then p, which contradicts our assumption, so we
must have ∆(x) = 1.

Clearly we may take δ(y) = m > 0 so we must show that ∆(y) =
m+1. Suppose that ∆(y) > m+1. Then me may estimate the num-
ber of Sturmian words of the successive differences for the sequence
x. We already know that (iv a) or (iv b) holds for a Beatty sequence
so that Sx(p(m + 1) − 1) = p(m + 1) whenever ∆(y) = m + 1, and
where Sx is the function that counts the number of words of succes-
sive first differences of x of a given length. But exchanging m+1 for
m+r with r > 1 gives all the same words of length p(m+1) and in ad-
dition it gives the word ζζ . . . ζη where ζ = 00 . . . 01 and η = 00 . . . 0
(where the number of successive ζ:s are m and the number of suc-
cessive 0:s are p− 1). Then we get Sx(p(m + 1)− 1) = p(m + 1) + 1,
which contradicts the assumption in (ii) that x is a Beatty sequence.

2

5. Recurrence results

We will next generalize the minimal exclusive algorithm in (4). Since our
game rules are three-folded we will study three different recurrences. But
first we would like to reveal some more structure of our sequences a and b.
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Theorem 5.1. Fix m, p ∈ N and let a and b be as in (1) and (2). For each
n ∈ N0, define

ϕn = ϕm,p
n :=

an + (mp− 1)bn

m
.

Then, for each n ∈ N, ϕn is the greatest integer such that

bn − 1 = aϕn .(6)

Proof. Notice that, for all n,

ϕn =
an + (mp− 1)bn

m

=
bn −mn + (mp− 1)bn

m

=
mpbn −mn

m
= pbn − n,(7)

so that

ϕn+1 − ϕn = pbn+1 − (n + 1)− (pbn − n)

= p(bn+1 − bn)− 1.(8)

For the base case, notice that b1 = m, a1 = 0 and ϕ1 = (mp− 1). Recall
that, for each 0 ≤ j < m, there are precisely p representative(s) from a and
b > 0, (the only representative from b in this interval is b0 = 0 which we by
definition do not count). Hence, by a0 = 0, we get that

aϕ1 = amp−1 = m− 1 = b1 − 1

and
aϕ1+1 = amp = m = b1.

Suppose that (6) holds for all i ≤ n. Then we need to show that bn+1−1 =
aϕn+1 and bn+1 = aϕn+1+1.

In case aϕn+1 − aϕn = bn+1 − bn, by bn − 1 = aϕn and bn = aϕn+1 we get
the result, so let us investigate the remaining cases:

(A) aϕn+1 − aϕn < bn+1 − bn;
(B) aϕn+1 − aϕn > bn+1 − bn.

By p-complementarity, the number of representations from a and b in the
interval

In := (aϕn , aϕn+1 ]

= (aϕn , aϕn+p(bn+1−bn)−1)]

is Rn := p(aϕn+1 − aϕn), and where the equality is by (8). By assumption,
aϕn+1 ∈ In so that we have at least p(bn+1 − bn) − 1 representations from
a in In. But also bn = aϕn + 1 ∈ In so that altogether we have at least
p(bn+1 − bn) representations in In. Hence

p(bn+1 − bn) ≤ Rn

= p(aϕn+1 − aϕn)

which rules out case (A).
12



Notice that case (B) implies that bn+1 lies in In so that aϕn+1 = bn <
bn+1 ≤ aϕn+1 . Since both bn and bn+1 lie in In we get

2 + ϕn+1 − ϕn = p(bn+1 − bn) + 1

≤ p(aϕn+1 − (aϕn + 1)) + 1

= p(aϕn+1 − aϕn + 1)− 2p + 1.(9)

By Lemma 3.3 and our assumption it is obvious that bn+2 > aϕn+1 . If in
addition aϕn+1+1 > aϕn+1 we are done, since p > 0 together with (9) and
p-complementarity give that there is at least one representative to little in
In.

If on the other hand aϕn+1+1 = aϕn+1 this forces m > 1 which together
with (9) implies that there are two representatives to little, unless also
aϕn+1+2 = aϕn+1 . But this forces p > 2 which in its turn implies that
there are at least three representatives missing, and so on. 2

Remark 3. For arbitrary m > 0 and p = 1 it is well known that a and b
solve xyn = xn +yn. This complementary equation is studied in for example
[Conn59, FrKi94, Kim07]. However, we have not been able to find any
references for the complementary equation yn − 1 = xyn−n (by (7), for the
cases p = 1, a solution is given by a = x and b = y).

For the first of our recursive characterizations, we introduce another nota-
tion. A multiset (or a sequence) X may be represented as (another) sequence
of non-negative integers (ξi)i∈N0 , where, for each i ∈ N0, ξi = ξi(X) counts
the number of occurrences of i in X. For a positive integer p, let mexp(ξi)
denote the least non-negative integer i ∈ (ξi) such that ξi < p.

Proposition 5.2. Let m > 0 and p ≥ 1 be integers. Then the recursive
characterizations (i), (ii) and (iii) are equivalent. In fact, for each n ∈ N0,
xn = am,p

n and yn = bm,p
n with notation as in (1) and (2).

(i) For n ≥ 0,

xn = mexp(ξi
n),

where ξn is the multiset, where for each i ∈ N0,

ξi
n = #{j | i = xj or i = yj , 0 ≤ j < n},

yn = xn + mn.

(ii) For n ≥ 0,

xn = mex{νn
i , µn

i | 0 ≤ i < n}, where

νn
i = xi if n ≡ i (mod p), else νn

i = ∞,

µn
i = yi if n ≡ −i (mod p), else µn

i = ∞;
yn = xn + mn.

(iii) For n ≥ 0 and for each 0 < l < p,

xpn = mex{xpi, ypi | 0 ≤ i < n},
ypn = xpn + mpn,

xpn+l = mex{xpi+l, yp(i+1)−l | 0 ≤ i < n},
ypn+l = xpn+l + m(pn + l).

13



Proof. For p = 1 each recurrence is equivalent to (4). Hence let p > 1
and, for x ∈ Z, let x denote the congruence class of x modulo p. For each
recurrence it is straightforward to check that (xi, yi) = (ai, bi) = (0, mi) if
0 ≤ i < p. Otherwise, by each definition of mex, we must at least have
xi > 0.

For case (i), by Theorem 4.1 and by yn = xn + mn, it suffices to prove
that (xi) is non-decreasing and that (xi) and (yi) are p-complementary. But
this is immediate by the definition of mexp.

For case (ii), notice that, for n ∈ N0, (see the proof of Theorem 5.1) we
have

ϕn = pbn − n ≡ −n (mod p).(10)

If the assertion does not hold then there is a least n ≥ p, say n′, such that
xn′ 6= an′ . Hence, we have two cases to consider.

(a) r := xn′ < an′ : By Theorem 3.2 there are two cases to consider.
Case 1: There is an i ≥ 0 such that ϕ(i) + p− 1 < n′ and

yi = xϕ(i)+1 = xϕ(i)+2 = . . . = xϕ(i)+p−1 = r.

But then, by

{ −i, −i + 1, . . . , −i + p− 1 } = { 0, 1, . . . , p− 1 }(11)

and (10), there is a j ∈ {i, ϕ(i)+1, . . . , ϕ(i)+p−1} such that either
n′ ≡ j (mod p) and j ∈ {ϕ(i) + 1, . . . ϕ(i) + p − 1} which implies
νn′

j = r, or n′ ≡ −j (mod p) and j = i which implies µn′
j = r. In

either case the choice of xn′ = r contradicts the definition of mex.
Case 2: There is an i ≥ 0 such that i + p− 1 < n′ and

r = xi = xi+1 = xi+2 = . . . = xi+p−1.

This case is similar but simpler, since for this case we rather use
that

{ i, i + 1, . . . , i + p− 1 } = { 0, 1, . . . , p− 1 }(12)

(b) r := an′ < xn′ : Then our mex-algorithm has refused r as the choice
for xn′ . But then there must be an indice 0 ≤ j < n′ such that either
νn′

j = r or µn′
j = r. Hence, we get to consider two cases.

Case 1: j = n′ and r = xj . On the one hand, there is a p ∈ N such that
pm+ j = n′ On the other hand, there is a greatest p′ ∈ N such that
an′−p′ = an′−p′+1 = . . . = an′ and by p-complementarity 0 ≤ p′ < p.
But then, since n′ − p′ > n′ − pm = j, we get aj < r = xj , which
contradicts the minimality of n′.

Case 2: −j = n′ and r = yj . Then by Theorem 3.2, ϕj+1 is the least indice
such that aϕj+1 = an′ . Then, since (by minimality of n′) Theorem
3.2 gives an′ = bj , by p-complementarity we get n′− (ϕj + 1) + 1 ≤
p− 1. Then 0 < p′ := n′ − ϕj < p and so

−j + p′ = ϕ(j) + p′ = n′ = −j,

which is nonsense.
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For case (iii), suppose that there is a least indice n′ ≥ p such that an′ 6=
xn′ . Clearly, there exist unique integers, say t and 0 ≤ l < p, such that
tp + l = n′.

Suppose that r := an′ > xn′ . Then, since the mex-algorithm did not
choose xn′ = r, there must be an indice 0 ≤ t′ < t such that either xt′p+l = r
or y(t′+1)p−l = r. But then, by assumption, either at′p+l = xt′p+l = atp+l

or b(t′+1)p−l = y(t′+1)p−l = b(t+1)p−l =. By Proposition 3.2 both cases are
ridiculous so we may assume an′ ≤ xn′ .

If an′ < xn′ , by Proposition 3.2, there is an indice 0 ≤ t′ < t such
that either at′p+l = xn′ or b(t′+1)p−l = xn′ . But this contradicts the mex-
algorithm’s choice of xn′ < an′ . Hence, we get an′ = xn′ . 2

6. Solving our games

Proof of Theorem 2.1. For p = 1, the games have identical rules. This
case has been established in [Fra82]. The case m = 1 has been studied in
[Con59] for games of form (ii). (and implicitly for 1×pWNl).

For the rest of the proof assume that p > 1. Let us first explain the ’only
if’ direction of (ii)(a). Denote with γ = gcd(m, p), p′ = p/γ and m′ = m/γ.
Then the positions of the form (0,mi), where 0 ≤ i < p′, are P -positions
of mWN(p). Now, (0,mp′) is an N -position because m′p = mp′ implies
(0, p′m) → (0, 0). But, by definition, bp′ = mp′ if p′ < p which holds if and
only if γ > 1.

For each game (we need another notation for Case (iii)), we need to prove
that, if (x, y)
(A) is of the form {ai, bi}, then none of its options is;
(B) is not of the form {ai, bi}, then there is an option of this form.
By symmetry, we may assume that 0 ≤ x ≤ y. Clearly, for our games in (i)
and (ii), the final position (x, y) = (0, 0) satisfies (A) but not (B). Hence for
these games assume y > 0 (and so i > 0 for case (A)).

Case (i): Suppose (x, y) = (ai, bi) for some i ∈ N0. By Lemma 3.3 (i) and (ii),
a and b are p-complementary and bi−bj ≥ m for all j < i. Then any
roob-type option may be blocked off, unless perhaps aj < ai and bj =
bi for some j < i. But this is ridiculous since b is strictly increasing.
By Lemma 3.3 (ii) we get that, for i > j, bi − ai ± (bj − aj) ≥ m.
Then an m-bishop cannot move (ai, bi) → {aj , bj}, This proves (A).

For (B), since p ≥ 2 and b is strictly increasing, we may assume
x = ai for some i. Then, by Lemma 3.3 (iv): (*) There exists a j < i
such that an m-bishop can move (x, y) → (aj , bj) (and this move is
not a roob-type move) unless y − x − (bj − aj) ≥ m for all j such
that aj ≤ x. But then, since y ≥ x + (m + 1)j > bj for all j such
that aj = x, by Lemma 3.3 (i), the previous player cannot block off
all p roob-type options of the form {ai, bi}.

Case (iia): For this game, the options of the m-bishop are identical to those in
(i). Let us analyze the p-rook.

Hence, suppose (x, y) = (ai, bi) for some i ∈ N0 and that a p-
rook can move to {aj , bj}. Then, since b is strictly increasing, there
is a 0 ≤ j < i, such that either bi ≡ bj (mod p) and ai = aj , or
bi ≡ aj (mod p) and ai = bj . But then, for the first case, since
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mj = bj − aj = bi − ai = mi and gcd(m, p) = 1 we must have j = i.
this is ridiculous, since by p-complementarity we have 0 < i− j < p.
For the second case, by Theorem 5.1, we have that

−mj = aj − bj = bi − ai = mi = m(ϕ(j) + t) = m(−j + t),

for some t ∈ {1, . . . , p − 1}. This implies 0 = mt but then again
gcd(m, p) = 1 gives a contradiction.

For (B), we follow the ideas in the second part of Case (i) up until
(*). Then, for this game, we rather need to show that there is a j
such that y ≡ bj (mod p) and aj = x or y ≡ aj (mod p) and bj = x.
But this follows directly from the proof of Proposition 5.2 (ii)(a).

Case (iib): Suppose (x, y) = (ai, bi) for some i ∈ N0 but the (m,mp)-rook can
move to some {aj , bj} (where j < i). Then, we have two cases:

Case 1: bi ≡ bj−r (mod mp) and ai = aj , for some r ∈ {0, 1, . . . ,m−1}.
Then bi − ai ≡ bj − aj − r (mod mp) so that mi ≡ mj − r
(mod mp) and so m(i − j) ≡ −r (mod mp). But this forces
r = 0 and i − j ≡ 0 (mod p) which is impossible since Lemma
3.3 (i) and (iv) implies i− j ∈ {1, 2, . . . , p− 1}.

Case 2: bi ≡ aj−r (mod mp) and ai = bj , for some r ∈ {0, 1, . . . ,m−1}.
Then bi − ai ≡ aj − bj − r (mod mp) so that mi ≡ −mj −
r (mod mp) and so m(i + j) ≡ −r (mod mp). By Theorem
5.1 we have that i = ϕ(j) + s for some s ∈ {1, 2, . . . , p − 1}.
Further, by (10), we have ϕ(j) ≡ −j (mod p), so that m(ϕ(j)+
s + j) = ms ≡ −r (mod mp). Once again we have reached a
contradiction.

For (B), in analogy with (*), it suffices to study the (m,mp)-rook’s
options where y is such that y − x − (bj − aj) ≥ m for all j such
that aj ≤ x = ai. Hence, we need to show that there are a j and an
r ∈ {0, 1, . . . m− 1} such that

y ≡ bj − r (mod mp) and aj = x,

or
y ≡ aj − r (mod mp) and bj = x.

Clearly, we may choose r such that y − x + r ≡ 0 (mod m). Then,
for all j, we get ms := y−x+r ≡ bj±aj (mod m). Hence, it suffices
to find a specific j such that

j =
bj − aj

m
≡ s (mod p) and aj = x,

or
−j =

aj − bj

m
≡ s (mod p) and bj = x.

But then, by (11) and (12), we are done.
Case (iiia): We may assume that l > 0. We have already seen that (a′i) :=

(api+l)i≥0 and (b′i) := (bp(i+1)−l)i≥0 are complementary. Our proof
will be a straightforward extension of those in [Fra82] (which deals
with the case l = 0) and [Con59] (which implicitly deals with the
case m = 0). Observe that a′0 = al = 0 and b′0 = bp−l = m(p− l).

For (A), let (x, y) = (ai, bi). In case i = 0 (by Definition 3 (3a)),
the Queen has no options at all, so assume i > 0. Proposition 5.2
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(iii) gives that b′i−a′i±(b′j−a′j) ≥ mp for all 0 ≤ j < i. Then the mp-
bishop cannot move (x, y) → (a′j , b

′
j) for any 0 ≤ j < i. Since a′ and

b′ are complementary there is no rook-type option (a′i, b
′
i) → {a′j , b′j}.

For (B), we adjust the statement (*) accordingly: Suppose x = a′i
(and y ≥ b′0). By Proposition 5.2 (iii): If the mp-bishop cannot move
to (a′j , b

′
j) for any j < i we get that either i = 0 or y−x− (b′j−a′j) ≥

mp for all j < i.
But, if i = 0 there is a rook-type option to (a′0, b

′
0) (recall here

y > b′0), so suppose i > 0. But then, since, by Proposition 5.2 (iii),
both a′ and b′ are increasing we get y ≥ b′j +mp+x− a′j ≥ b′i + a′i−
a′j > b′i. Hence, for this case, the rook-type move (x, y) → (a′i, b

′
i)

suffices. Suppose on the other hand that x = b′i with i ≥ 0. Then,
since y ≥ x = b′i > a′i, by complementarity, the Queen may move
(x, y) → (b′i, a

′
i).

Case (iiib): Suppose that the starting position is (ai, bi). Then i = pj + l′ for
some (unique) pair j ∈ N0 and 0 ≤ l′ < p. The second player should
choose l = l′. If, on the other hand, the starting position is (bi, ai).
Then i = pj − l′ for some (unique) pair j ∈ N and 0 < l′ ≤ p. The
second player should choose l = p− l′. In either case, by Case (iiia),
there is no option of the form (a′i, b

′
i).

If the (x, y) is not of this form, again, by Case (iiia), for any (choice
of) 0 ≤ l < p, there is a move (x, y) → {a′i, b′i} for some i ≥ 0.

2

7. Questions

Can one find a polynomial time solution of mWN(l,p) for some integers
l ≥ 0, m > 0 and p > 0 whenever

• gcd(m, p) 6= 1 and l = 0, or
• 0 < l 6= m or m - p?

If this turns out to be complicated, can one at least say something about its
asymptotic behaviour?

Denote the solution of mWN(l,p) with {{c(l,m,p)
i , d

(l,m,p)
i }}i∈N0 . Let us

finish off with two tables of the initial P -positions of such games.

d
(0,2,2)
n 0 3 6 9 12 15 19 22 25 28 31 34 37 40 43 46 49

c
(0,2,2)
n 0 0 1 1 2 2 3 4 4 5 5 6 7 7 8 8 9

dn − cn 0 3 5 8 10 13 16 18 21 23 26 28 30 33 35 38 40
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3. The first few P -positions of 2WN2 together with
the respective differences of their coordinates.

From these tables one may conclude that: The infinite arithmetic pro-
gressions of the sequences

(bm,p
i − am,p

i )i∈N0 = (mi)i∈N0
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d
(1,2,3)
n 0 2 5 7 11 14 16 19 21 26 29 31 36 39 41 44 46

c
(1,2,3)
n 0 0 1 1 2 3 3 4 4 5 6 6 7 8 8 9 9

dn − cn 0 2 4 6 9 11 13 15 17 21 23 25 29 31 33 35 37
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 4. The first few P -positions of 2WN(1,3). Notice that
(as in Table 3) the successive differences of their coordinates
are not in arithmetic progression.

(see also Table 2) are not in general seen among the sequences

(d(l,m,p)
i − c

(l,m,p)
i )i∈N0 .

We believe that the latter sequence is an arithmetic progression if and only
if none of the items in our above question is satisfied. We also believe that,
for arbitrary constants, (c(l,m,p)

i ) and (d(l,m,p)
i )>0 are p-complementary. But

the solution of these questions are left for some future work.

Remark 4. We may also define generalizations of mWNp and m× pWNl:
Fix l ∈ N. Let mWNp

l be as mWNp but where the player may only block
off l-roob-type options (recall, non-l-bishop options). Otherwise, the Queen
moves as the m-bishop or the rook. Then obviously mWNp

m = mWNp.
Let u, v ∈ N and let m × pWNu,v be as m × pWNl, but the removed

(lower left) rectangle has base u and hight v. Then for this game the final
positions are (u, 0) and (0, v). If l > 0, u = ml and v = m(p − l) we get
m× pWNlm,m(p−l) = m× pWNl.

We may ask questions in analogy to the above for these variations. For
example, we have found a minimal exclusive algorithm satisfying P(mWNp

1)
which is related to a polynomial time construction in [Fra98]. Is there an
analog polynomial time construction for P(mWNp

1)? Another question is
if any of these further generalized games conincide via identical set of P -
positions? But all this is left for future investigations.
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[SmSt02] F. Smith and P. Stănică, Comply/Constrain Games or Games with a Muller
Twist, Integers, 2, (2002).

[Wyt07] W.A. Wythoff, A modification of the game of Nim, Nieuw Arch. Wisk. 7 (1907)
199-202.

E-mail address: urban.larsson@chalmers.se

Mathematical Sciences, Chalmers University of Technology and Univer-
sity of Gothenburg, Göteborg, Sweden
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