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ADAPTIVITY WITH RELAXATION FOR ILL-POSED PROBLEMS ANDGLOBAL CONVERGENCE FOR A COEFFICIENT INVERSE PROBLEM ∗LARISA BEILINA† , MICHAEL V. KLIBANOV ‡ , AND MIKHAIL YU. KOKURIN §Abstra
t. A new framework of the Fun
tional Analysis is developed for the adaptive FEM (adaptivity) for theTikhonov regularization fun
tional for ill-posed problems. As a result, the relaxation property for adaptive meshre�nements is established. An appli
ation to a multidimensional Coe�
ient Inverse Problem for a hyperboli
 equationis dis
ussed. This problem arises in the inverse s
attering of a
ousti
 and ele
tromagneti
 waves. First, a globally
onvergent numeri
al method provides a good approximation for the 
orre
t solution of this problem. Next, thisapproximation is enhan
ed via the subsequent appli
ation of the adaptivity. Analyti
al results are 
omputationallyveri�edKey words. ill-posed problems, globally 
onvergent numeri
al method for a 
oe�
ient inverse problem, two-stage numeri
al pro
edure, adaptivity for the Tikhonov fun
tional, relaxation property, orthogonal proje
tion oper-atorsAMS subje
t 
lassi�
ations. 15A15, 15A09, 15A231. Introdu
tion. We develop a new framework of the Fun
tional Analysis for the Finite Ele-ment Adaptive te
hnique (adaptivity for brevity) for the Tikhonov fun
tional for ill-posed problems.For the �rst time the so-
alled relaxation property for the adaptive mesh re�nements is proved (seebelow in this se
tion). We use the adaptivity as a 
omplementary tool to a globally 
onvergentnumeri
al method, whi
h was re
ently developed in [8℄ for a Coe�
ient Inverse Problem (CIP) for ahyperboli
 PDE (se
tion 5). This CIP has appli
ations in a
ousti
s and ele
tromagneti
s. CIPs forPDEs are both ill-posed and nonlinear, whi
h 
auses serious di�
ulties for their numeri
al solutions.In parti
ular, least squares residual fun
tionals for CIPs su�er from the problem of multiple lo
alminima and ravines, see, e.g. [19℄ for some examples. Be
ause of the phenomenon of lo
al minima,
onventional numeri
al methods for CIPs are lo
ally 
onvergent ones. The numeri
al method of [8℄relies on the stru
ture of the PDE operator and thus, is not using least squares. The 
onvergen
eestimate in the global 
onvergen
e theorem of [8℄ depends on a small parameter η > 0. This param-eter in
orporates the level of the error in the boundary data as well as some approximation errorsof the te
hnique of [8℄.This paper is motivated by our re
ent numeri
al experien
e. Namely, although η is small, wehave observed that it 
annot be made in�nitely small in pra
ti
al 
omputations, be
ause of aboveapproximation errors of the method of [8℄. On the other hand, lo
ally 
onvergent numeri
al methodsfor CIPs are independent on these approximation errors. This led us to the idea of enhan
ing imagesresulting from the globally 
onvergent method via a subsequent appli
ation of a lo
ally 
onvergentone. On the other hand, it is well known that a good �rst approximation for the 
orre
t solutionis one of the key inputs for any lo
ally 
onvergent method. Therefore, our natural 
on
lusion was
∗ This work was supported by US Army Resear
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2 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINthat one should have a two stage numeri
al pro
edure. On the �rst stage one should get a good �rstapproximation for the solution by the globally 
onvergent method of [8℄. And on the se
ond stageone should use this approximation as a �rst guess for a further enhan
ement via an appropriatelo
ally 
onvergent numeri
al method. An important point here is that sin
e η is small, then there isa rigorous guarantee that the globally 
onvergent part indeed provides the above input. This ideais 
arried out in numeri
al experiments of se
tion 8.The next question to ask was about the 
hoi
e of a proper lo
ally 
onvergent numeri
al method.We have observed numeri
ally (se
tion 8) that a straightforward appli
ation of the quasi-Newtonmethod on the same mesh where the globally 
onvergent part worked does not improve the solutionprovided by the �rst stage. Thus, based on the previous numeri
al experien
e of the �rst authorfor the same CIP [5-7℄, we have 
on
luded that a sequen
e of adaptive lo
al mesh re�nementsshould be used. It is shown numeri
ally here that the adaptivity indeed re�nes images obtained onthe globally 
onvergent stage. Therefore, we study here the problem of su

essive approximationsof the regularized solution via a sequen
e of adaptive mesh re�nements for a given value of theregularization parameter α. In our 
omputations α is 
hosen experimentally. The question of anoptimal 
hoi
e of α is outside of the s
ope of this publi
ation. We refer to [17℄ for a detailed studyof this question for the adaptivity te
hnique.In this paper the Tikhonov fun
tional Jα is 
onstru
ted for a general nonlinear operator F, and
Jα is linked with the FEM. Our fun
tional analyti
al framework for the adaptivity is independenton a spe
i�
 pro
edure of the minimization of Jα. One of the key assumptions below is that a �rstgood approximation for the exa
t solution is available, whi
h is in 
onjun
tion with the above ideaabout the two stage pro
edure. Sin
e the adaptivity is a lo
ally 
onvergent numeri
al method, thenour analysis is inevitably an �asymptoti
� one, as it is always the 
ase in su
h s
enarios. In otherwords, we assume that the error in the data is su�
iently small.In addition to the above framework, the following �ve (5) new results are presented in this paper:(1)We prove the stri
t 
onvexity of Jα in a small neighborhood of the regularized solution, providedthat the originating nonlinear operator F has the �rst Lips
hitz 
ontinuous Fre
het derivative. Asimilar result was proven earlier in [24,25℄ under the 
ondition that the nonlinear operator F hasthe se
ond 
ontinuous Fre
het derivative. Note that su
h a result for the 
ase of a bounded linearoperator is trivial. (2) We prove the relaxation property of the Tikhonov fun
tional with respe
tto adaptive mesh re�nements, see (1.1) below, whi
h is our main result. (3) We derive the Fre
hetderivative of the Tikhonov fun
tional for our CIP and prove that it equals to the so-
alled �all-at-on
e� Fre
het derivative of the Lagrangian used in [5-7℄. The 
onne
tion between these twoderivatives was not 
lari�ed in [5-7℄. (4) Results of items 1, 2 are spe
i�ed for our CIP. We provea posteriori error estimate for the 
omputed regularized unknown 
oe�
ient of our CIP, whi
h,in parti
ular, also approximately estimates the a

ura
y of the exa
t 
oe�
ient (Lemma 2.1). Inprevious publi
ations on the adaptivity for CIPs only the a

ura
y of Lagrangians was estimated,see, e.g. [5-7℄. Our estimate uses the lo
al stri
t 
onvexity of the Tikhonov fun
tional instead of thetraditional apparatus of the Galerkin orthogonality. (5) In our numeri
al tests for the above twostage pro
edure the medium 
onsists of small in
lusions embedded in a slowly varying ba
kground,whereas the ba
kground fun
tion was 
onstant in [8℄. The relaxation property (1.1) is numeri
allyveri�ed.The adaptivity is about adaptive mesh re�nements in the FEM to improve the a

ura
y of thesolution. This is a 
lassi
 tool for forward problems [1℄, and it is also applied both to CIPs andparameter identi�
ation problems, see, e.g. [5-7,17℄. Mesh re�nements 
an be either lo
al, i.e., insome subdomains of the original domain, or global, i.e. in the whole domain. Lo
al re�nements



Adaptivity with relaxation for the Tikhonov fun
tional 3are preferable, be
ause a globally �ne mesh imposes extra demands on the 
omputer's 
apa
ity.The following two questions are of an interest in the adaptivity te
hnique: (A) Where to re�ne themesh? (B) Is it possible to estimate the distan
e between the solution obtained on the re�ned meshand the regularized one via that distan
e obtained on the previous 
oarser mesh? Let xα be theregularized solution and Vρ be a 
ertain neighborhood of xα of the radius ρ ∈ (0, α) . Let xn ∈ Vρand xn+1 ∈ Vρ be minimizers of the above Tikhonov fun
tional after n and n + 1 adaptive meshre�nements respe
tively. So, xn+1 is obtained on a �ner mesh than xn. Although the intuitionseems to be saying that xn+1 should be 
loser to xα than xn, the authors are unaware aboutpublished estimates of the ratio ‖xn+1 − xα‖ / ‖xn − xα‖ for a general Tikhonov fun
tional. Infa
t, be
ause of the ill-posedness of CIPs, previously known a posteriori estimates of the a

ura
yof Lagrangians do not imply su
h estimates for regularized 
oe�
ients. Hen
e, that intuitive feelingwas not rigorously justi�ed so far. So, we prove the following relaxation property (under 
ertain
onditions)
‖xn+1 − xα‖ ≤ r ‖xn − xα‖ , where r ∈ (0, 1) . (1.1)In the 
ase of forward problems the above question (A) is addressed via a posteriori erroranalysis, whi
h estimates the di�eren
e between 
omputed and exa
t solutions [1℄. It is importantthat instead of the knowledge of the exa
t solution, this analysis assumes only the knowledge ofan upper estimate for this solution. The latter is usually obtained on the basis of 
lassi
 a prioriestimates for solutions of these problems. In addition, the well posed nature of forward problemsenables one to obtain a posteriori error estimates for 
omputed solutions. Unlike this, the ill-posedness of CIPs radi
ally 
hanges the situation. As a result, only the a

ura
y of Lagrangefun
tionals is estimated instead of that of the unknown 
oe�
ient [5-7,17℄. In those estimates forCIPs a priori upper bounds of solutions are imposed rather than proved. The latter is going alongwell with the Tikhonov 
on
ept for ill-posed problems, whi
h states that some a priori bounds 
anbe imposed on solutions of su
h problems [3,13,26℄.In se
tion 2 a new framework of the Fun
tional Analysis for the adaptivity is introdu
ed. Inse
tion 3 the lo
al stri
t 
onvexity of the Tikhonov fun
tional is proved, the main problem of theinterest of this paper is formulated and the existen
e of lo
al minimizers on subspa
es is established.The relaxation property (1.1) is established in se
tion 4. In se
tion 5 we state our CIP and outlinethe globally numeri
al 
onvergent numeri
al method of [8℄ for it. In se
tion 6 Fre
het derivativeswith respe
t to the unknown 
oe�
ient of solutions of state and adjoint problems are derived. Inse
tion 7 the Tikhonov fun
tional for the CIP is 
onstru
ted, its Fre
het derivative is derived andresults of se
tion 4 are spe
i�ed for this 
ase. In se
tion 8 numeri
al tests are presented.2. The Framework Of the Fun
tional Analysis. We work only with pie
ewise linear �niteelements, be
ause they are used in our numeri
al studies. An extension of our analysis on other�nite elements is outside of the s
ope of this publi
ation. Let Ω ⊂ Rm,m = 2, 3 be a boundeddomain. Consider a triangulation T0 of this domain with a rather 
oarse mesh. We obtain apolygonal domain σ ⊆ Ω. All subsequent mesh re�nement via other triangulations will be done viaembedding (in a 
ertain well known manner) smaller triangles/tetrahedra in triangles/tetrahedraforming T0. Hen
e, all those triangles/tetrahedra will be lo
ated inside of the domain σ. Let Tbe one of those triangulations. Then we have asso
iated pie
ewise linear fun
tions {ej (x, T )}ep

j=1 .We now 
onstru
t a linear spa
e of these fun
tions similarly with the subse
tion 7.4 of the book[15℄. The fun
tion ej (x, T ) is a �rst order polynomial within the triangle/tetrahedra number j,whi
h we denote as (Tr)j . This fun
tion equals 1 at one vertex (V s)j of (Tr)j and it equals zero



4 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINat all other verti
es of (Tr)j . We extend the fun
tion ej (x, T ) outside of (Tr)j for all x ∈ σ asfollows. Let (Tr)k be another triangle/tetrahedra of T . Assume �rst that (V s)j ∈
(
(Tr)j ∩ (Tr)k

)
.Then we extend ej (x, T ) in (Tr)k as ej (x, T ) := ek (x, T ) , x ∈ (Tr)k . Suppose now that (V s)j /∈(

(Tr)j ∩ (Tr)k

)
. Then we set for the extension ej (x, T ) := 0, x ∈ (Tr)k . It is 
lear that if (V s)j =

(V s)k ∈
(
(Tr)j ∩ (Tr)k

)
, then so obtained fun
tions ej (x, T ) and ek (x, T ) are equal to ea
h other,

ej (x, T ) = ek (x, T ) , ∀x ∈ σ. So, we do not di�erentiate between these equal fun
tions. Hen
e, ea
hso obtained fun
tion ej (x, T ) = 1 at the vertex (Tr)j , it equals zero at all other verti
es and hasa lo
alized support in σ. In addition, ea
h so obtained fun
tion ej (x, T ) is pie
ewise linear in σ.Sin
e these fun
tions are linearly independent ones, we take them as the basis B (T ) := {ej (x, T )}for the linear spa
e Span (ej (x, T )) .Let h′ be the minimal diameter of triangles/tetrahedra whi
h form T and ̟′ be the radius ofthe maximal 
ir
le/sphere 
ontained in that triangle/tetrahedra. We assume that for all possibletriangulations T whi
h we 
onsider below
a1 ≤ h′ ≤ ̟′a2; a1, a2 = const. > 0, ∀T. (2.1)Thus, the �rst inequality (2.1) means that we do not de
rease the size of triangles/tetrahedrainde�nitely. The se
ond inequality (2.1) means that all our triangulations are regular ones, see [12℄.It follows from this 
onstru
tion that there exists only a �nite number Ñ of possible triangulationssatisfying (2.1). Denote H = ∪TSpan (B (T )) . Then H is a subspa
e of L2 (σ) and dimH := dH :=

dH

(
Ñ
)
<∞. Furthermore,

H ⊂
(
H1 (σ) ∩ C (σ)

) as a set, ∂xi
f ∈ L∞ (σ) , ∀f ∈ H. (2.2)We set the s
alar produ
t in H to be the same as one in L2 (σ) and denote (, ) and ‖·‖ the s
alarprodu
t and the 
orresponding norm in H respe
tively. The spa
e H 
an be viewed as an �ideal�spa
e of very �ne �nite elements, whi
h is never rea
hed in pra
ti
al 
omputations.We now 
onstru
t subspa
es Mn ⊂ H asso
iated with our triangulations Tn. We need to
onstru
t these subspa
es in su
h a way that

Mn ⊂Mn+1. (2.3)First, we de�ne the subspa
e M0 := Span (B (T0)) ⊂ H. Next, given the pair (Tn,Mn) , thepair (Tn+1,Mn+1) is 
onstru
ted as follows. First, we re�ne the mesh and obtain Tn+1 and
B (Tn+1) . Let {en

j (x)
}pn

j=1
be the basis in Mn. To form the basis of Mn+1, we �rst take fun
-tions from B (Tn+1). Next, we add to B (Tn+1) su
h fun
tions from the set {en

j (x)
}pn

j=1
that

en
j (x) /∈ Span (B (Tn+1)), provided of 
ourse that su
h fun
tions en

j (x) exist (alternatively B (Tn+1)is the basis in Mn+1). Thus, we obtain the basis {en+1
j (x)

}pn+1

j=1
of the subspa
e Mn+1 ⊆ H. Sin
e

{
en

j (x)
}pn

j=1
⊂ Span

({
en+1

j (x)
}pn+1

j=1

), then (2.3) holds.For any subspa
e M ⊂ H let PM : H → M be the operator of the orthogonal proje
tionof H onto M . Sin
e we use the subspa
e Mn many times below, we denote for brevity Pn :=
PMn

, Pn+1 := PMn+1
. Below I is the identity operator on H . Let the fun
tion f ∈ H1 (σ) ∩ C (σ)and its ∂xi

fxi
∈ L∞ (σ) . Let hn be the maximal diameter of the above triangles/tetrahedra whi
hare involved in Tn. By the 
onstru
tion of above subspa
es hn+1 ≤ hn. For any fun
tion f ∈ H, let
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tional 5
fn be its standard interpolant [15℄ on triangles/tetrahedra involved in Tn. Then by one of propertiesof orthogonal proje
tion operators ‖f − Pnf‖L2(σ) ≤ ‖f − fn‖L2(σ). Hen
e, it follows from (2.2)and formula 76.3 of the book [15℄ that with a positive 
onstant K = K (σ) depending only on thedomain σ

‖f − Pnf‖L2(σ) ≤ K ‖∇f‖L∞(σ) hn, ∀f ∈ H. (2.4)Let H1 be another real valued Hilbert spa
e, whose norm is denoted as ‖·‖1 . Let F̃ : H → H1be a 
ontinuous operator, whi
h does not ne
essary has a �good� 
ontinuous inverse. In general,even if an ill-posed problem in an in�nitely dimensional spa
e is �turned� into a well-posed one viaa �nite dimensional approximation, still the 
orresponding operator often does not have a �good�
ontinuous inverse, be
ause of that �heritage� from the ill-posed 
ase. Thus, one should applyregularization. Consider the equation F̃ (x) = y. By the Tikhonov 
on
ept for ill-posed problems[26℄, we assume that there exists an �ideal� exa
t solution x∗ ∈ H of this equation with the �ideal�exa
t right hand side y = y∗, where y∗ is given without an error, i.e. F̃ (x∗) = y∗. However, inpra
ti
e the right hand side y is always given with a small error of the level δ ∈ (0, 1) , ‖y − y∗‖1 ≤ δ.Denote F (x) = F̃ (x) − y. Hen
e, in a small neighborhood of x∗ we should �nd an approximatesolution of the following equation
F (x) = 0, x ∈ H. (2.5)So, we assume throughout the paper that

‖F (x∗)‖1 ≤ δ, δ ∈ (0, 1) . (2.6)For any d > 0 denote Vd (x∗) = {x ∈ H : ‖x− x∗‖ < d} . We also assume throughout the paperthat the operator F has the Fre
het derivative F ′ (x) for x ∈ V1 (x∗) = {‖x− x∗‖ < 1} , and thisderivative is Lips
hitz 
ontinuous, i.e. for 
ertain positive 
onstants N1, N2

‖F ′ (x)‖ ≤ N1, ‖F ′ (x) − F ′ (y)‖ ≤ N2 ‖x− y‖ , ∀x, y ∈ V1 (x∗) . (2.7)Let xglob be a good �rst guess for the exa
t solution x∗. For example, for our CIP of se
tion 5 agood �rst guess 
an be obtained by a globally 
onvergent numeri
al method of [8℄. Consider theTikhonov fun
tional Jα with the regularization parameter α ∈ (0, 1) ,

Jα (x) =
1

2
‖F (x)‖2

1 +
α

2
‖x− xglob‖2

. (2.8)Remark 2.1. In prin
iple, by the Tikhonov theory [26℄, one should use a stronger norm in these
ond term of the right hand side of (2.8) to ensure the existen
e of a minimizer of Jα. However,sin
e all norms in the �nite dimensional spa
e H are equivalent, we use a simpler L2 (σ) norm here.By our numeri
al experien
e with the adaptivity both in se
tion 8 and in previous publi
ations[5-7℄, this norm is su�
ient for our CIP.Let J ′
α (x) be the gradient (i.e. the Fre
het derivative) of the fun
tional Jα (x) . Then by (2.4)

J ′
α (x) = (F ′ (x))

∗
F (x) + α (x− x0) . (2.9)Let N3 = N3 (N1, N2) = const. > 0 be su
h that

‖J ′
α (x) − J ′

α (y)‖ ≤ N3 ‖x− y‖ , ∀x, y ∈W1. (2.10)



6 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINBelow C = C (N1, N2) > 0 denotes a �nite number of di�erent 
onstants depending only on N1, N2.We now assume that
‖xglob − x∗‖ ≤ δµ1 , µ1 = const. ∈ (0, 1) , (2.11)

α = δµ2 , µ2 = const. ∈ (0,min (µ1, 2 (1 − µ1))) (2.12)We impose these assumptions on parameters µ1, µ2 to ensure that the distan
e between the �rstapproximation xglob and the exa
t solution x∗ as well as the regularization parameter α far ex
eedthe error in the data δ for su�
iently small δ, sin
e one 
annot perform better than the level ofthe error in the data. In addition, (2.11b) ensures that points x∗, xglob belong to an appropriateneighborhood of the regularized solution, see Lemmata 2.1 and 3.2.Lemma 2.1. A minimizer xα of the fun
tional Jα (x) on the spa
e H exists for any value of theregularization parameter α. For any r > 0 denote Vr (xα) = {x ∈ H : ‖x− xα‖ < r} . Assume that
onditions (2.11), (2.12) hold. Then xglob ∈ V√2δµ1
(xα) and x∗ ∈ V(1+

√
2)δµ1

(xα) . Let β1 ∈ (0, 1)be any number. Then there exists a su�
iently small number δ0 = δ0 (µ1, µ2, β1) ∈ (0, 1) su
h thatif δ ∈ (0, δ0) , then x∗, xglob ∈ Vβ1α (xα) .Proof. Sin
e dimH <∞, then lim‖x‖→∞ Jα (x) = ∞ implies the existen
e of a minimizer xα.Sin
e Jα (xα) ≤ Jα (x∗) and by (2.6), (2.8) and (2.11), (2.12) Jα (x∗) ≤
(
δ2 + αδ2µ1

)
/2 < αδ2µ1 ,then Jα (xα) < αδ2µ1 . Hen
e, by (2.8) ‖xα − xglob‖ ≤

√
2δµ1 . Hen
e, ‖xα − x∗‖ ≤ ‖xα − xglob‖ +

‖xglob − x∗‖ ≤
(
1 +

√
2
)
δµ1 . To �nish the proof, note that by (2.12) (1 +

√
2
)
δµ1 < β1α = β1δ

µ2for su�
iently small δ. �The point xα is 
alled the regularized solution of equation (2.3) [3,13,26℄. In general, the 
lassi
Theorem 2 of Tikhonov on page 65 of [26℄ states that one 
an often 
hoose the regularizationparameter as α (δ) = δ̺, ̺ ∈ (0, 1) , whi
h implies α (δ) >> δ for su�
iently small δ. Hen
e, (2.12)is in a good agreement with this result. The proof of the following lemma is rather standard and istherefore omitted.Lemma 2.2. Let M ⊂ H be a subspa
e and xM ∈ M be a point of a lo
al minimum of thefun
tional Jα on M . Then (J ′
α (xM ) , z) = 0, ∀z ∈M. Hen
e,

J ′
α (xα) = 0, (2.13)

PMJ ′
α (xM ) = 0. (2.14)3. Lo
al Stri
t Convexity of Jα, Problem Statement and Minimizers on Subspa
es.3.1. Convexity. Lemma 3.1 ([22℄, 
hapter 10). Let U ⊂ H be a 
onvex set and G : U → Rbe a 
ontinuous fun
tional. Let (G′ (u) , z) , ∀z ∈ H be its Fre
het derivative at the point u ∈ U.Assume that G′ (u) is 
ontinuous for u ∈ U. Then ea
h of 
onditions (3.1) and (3.2) is bothne
essary and su�
ient for the stri
t 
onvexity of the fun
tional G on U with the stri
t 
onvexityparameter κ = const. > 0

G (u) −G (v) ≥ (G′ (v) , u− v) + κ ‖u− v‖2
, ∀u, v ∈ U, (3.1)

(G′ (u) −G′ (v) , u− v) ≥ 2κ ‖u− v‖2 , ∀u, v ∈ U. (3.2)Theorem 3.1. Assume that 
onditions (2.11), (2.12) hold. Then there exists numbers β1 =
β1 (N1, N2) ∈ (0, 1) and δ1 = δ1 (µ1, µ2, N2, β1) ∈ (0, 1) depending only on listed parameters su
hthat if ρ = β1α, then for any δ ∈ (0, δ1) the fun
tional Jα is stri
tly 
onvex in the neighborhood
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Vρ (xα) of the point xα with the stri
t 
onvexity parameter κ = α/4. Furthermore, by Lemma 2.1points xglob, x

∗ ∈ Vρ (xα) .Proof. Let β1 ∈ (0, 1) be the number whi
h we will 
hoose below in this proof, ρ = β1α and
x, y ∈ Vρ (xα) be two arbitrary points. By (2.9)

(J ′
α (x) − J ′

α (y) , x− y) = α ‖x− y‖2
+ (F ′∗ (x)F (x) − F ′∗ (y)F (y) , x− y)

= α ‖x− y‖2
+ (F ′∗ (x)F (x) − F ′∗ (x)F (y) , x− y) (3.3)

+ (F ′∗ (x)F (y) − F ′∗ (y)F (y) , x− y) .Denote A1 = (F ′∗ (x)F (x) − F ′∗ (x)F (y) , x− y) , A2 = (F ′∗ (x)F (y) − F ′∗ (y)F (y) , x− y) andestimate A1, A2 from the below.Sin
e A1 = A1 − (F ′∗ (x)F ′ (x) (x− y) , x− y) + (F ′∗ (x)F ′ (x) (x− y) , x− y) , then
A1 = F ′∗ (x)

1∫

0

(F ′ (y + θ (x− y)) − F ′ (x)) (x− y) dθ, x− y

+ (F ′∗ (x)F ′ (x) (x− y) , x− y) .Using (2.7), we obtain
∣∣∣∣∣∣
F ′∗ (x)

1∫

0

[F ′ (y + θ (x− y)) − F ′ (x)] (x− y) dθ, x− y

∣∣∣∣∣∣

≤ ‖F ′ (x)‖
1∫

0

‖[F ′ (y + θ (x− y)) − F ′ (x)] (x− y)‖ dθ · ‖x− y‖ ≤ 1

2
N1N2 ‖x− y‖3

.Also,
(F ′∗ (x)F ′ (x) (x− y) , x− y) = (F ′ (x) (x− y) , F ′ (x) (x− y))2 = ‖F ′ (x) (x− y)‖2

2 ≥ 0.Hen
e, A1 ≥ N1N2 ‖x− y‖3 /2. Now we estimate A2,

|A2| ≤ ‖F (y)‖2 ‖F ′(x) − F ′ (y)‖ ‖x− y‖ ≤ N2 ‖x− y‖2 ‖F (y)‖2 .Sin
e ‖F (xα)‖2 ≤ ‖F (y) − F (xα)‖2 + ‖F (xα)‖2 ≤ N1 ‖y − xα‖ + ‖F (xα)‖2 , then
|A2| ≤ N2 ‖x− y‖2

(N1 ‖y − xα‖ + ‖F (xα)‖2) . (3.4)By (2.6), (2.7) and Lemma 2.1 ‖F (xα)‖2 ≤ ‖F (xα) − F (x∗)‖2 + δ ≤ αβ1N2 + δ. Hen
e, by (3.4)
A2 ≥ −N2 ‖x− y‖2 (N1 ‖y − xα‖ + αβ1N2 + δ) .Combining this with (3.3) and the above estimate for A1, we obtain

(J ′
α (x) − J ′

α (y) , x− y) ≥ (3.5)
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‖x− y‖2

[
α− N1N2

2
‖x− y‖ −N1N2 ‖y − xα‖ −N2 (N2αβ1 + δ)

]
.We have

N1N2

(‖x− y‖
2

+ ‖y − xα‖
)

+N2 (N2αβ1 + δ) ≤ 2αβ1N2 (N1 +N2) +N2δ. (3.6)Choose β1 = β1 (N1, N2) ∈ (0, 1) su
h that 2β1N2 (N1 +N2) ≤ 1/4. Given this β1, 
hoose δ1 =
δ1 (µ1, µ2, N1, N2) ∈ (0, 1) so small that N2δ < δµ2/4 = α/4 and 2δµ1 < β1δ

µ2 = β1α, ∀δ ∈ (0, δ1) .Then (3.5), (3.6) and (3.2) imply that Theorem 3.1 is proven. �Lemma 3.2. Assume that 
onditions of Theorem 3.1 hold. Then in the neighborhood
V(1+

√
2)δµ1

(x∗) of x∗ there exists unique minimizer xα of the fun
tional Jα (x) . Furthermore,
V(1+

√
2)δµ1

(x∗) ⊂ Vρ (xα) . If the operator F is one-to-one, then x∗ is unique and therefore xα isunique also.Note that, unless the operator F is one-to-one, there is no guarantee that the exa
t solutionof equation (2.5) is unique. The proof of Lemma 3.2 follows immediately from Lemma 2.1 andTheorem 3.1. Hen
e, even though there might exist several exa
t solutions of equation (2.5), still aslong as a good �rst guess xglob about one of these solutions is available and 
onditions (2.11), (2.12)are satis�ed, one 
an guarantee uniqueness of the regularized solution in a small neighborhood ofthat exa
t solution. Hen
e, below we work only with su
h an exa
t solution x∗ that satis�es (2.11),assuming of 
ourse that x∗ exists for the given ve
tor xglob. As to xα, all what we know about thisve
tor is it exists, is unique and by Lemma 2.1 xα ∈ V(1+
√

2)δµ1
(x∗) . Thus, we denote below forbrevity Vρ (xα) := Vρ. Therefore the statement of the Problem 3.1 has no ambiguity now in termsof xα. The following problem is the main interest of our study below.Problem 3.1. Suppose that 
onditions of Theorem 3.1 are satis�ed and δ ∈ (0, δ1). For a�xed value of the regularization parameter α, approximate the regularized solution xα in the normof L2 (σ) via a �nite number of above des
ribed mesh re�nements.3.2. Lo
al minimizers on subspa
es. In this subse
tion we establish the existen
e anduniqueness of a minimizer xn ∈Mn∩

(
V ρ�∂V ρ

) of the fun
tional Jα. To do so, we �rst reformulateProposition 6.3.4 of [23℄, whi
h is derived there from the Leray-S
hauder theorem.Proposition 3.1. Let D ⊂ Rk be an open domain, Φ : D → Rk be a 
ontinuous mapping and
x0 ∈ D �∂D be an arbitrary point. Assume that [Φ (x) , x− x0

]
≥ 0, ∀x ∈ ∂D, where [, ] is thes
alar produ
t in Rk. Then there exists a point x̃ ∈ D su
h that Φ (x̃) = 0.Theorem 3.2. Assume that 
onditions of Theorem 3.1 hold. Suppose that there exists aninteger n ≥ 1 su
h that with the 
onstant K from (2.4)

K ‖∇xα‖L∞(σ) hn := ∆′
n <

β1α
2

√
4N2

3 + α2
=

αρ√
4N2

3 + α2
. (3.7)Let M ′ ⊆ H be any subspa
e su
h that Mn ⊆ M ′. Then Vρ ∩M ′ 6= ∅. Furthermore, there existsa unique point xM ′ ∈

(
V ρ�∂Vρ

)
∩M ′ at whi
h the fun
tional Jα (x) attains its minimal value onthe set Vρ ∩M ′.Proof of Theorem 3.2. We �rst prove this theorem for M ′ = Mn. Denote

∆n = ‖xα − PMn
xα‖ , RMn

=
√
ρ2 − ∆2

n, Sn = {x ∈Mn : ‖x− PMn
xα‖ < RMn

} . (3.8)
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tional 9By (2.4) and (3.7)
∆n ≤ ∆′

n < ρ. (3.9)Let x ∈ Mn be an arbitrary point. Sin
e (x− PMn
xα) ∈ Mn, then ve
tors (x− PMn

xα) and
(xα − PMn

xα) are orthogonal. Hen
e,
‖x− xα‖2

= ‖x− PMn
xα + PMn

xα − xα‖2
= ‖x− PMn

xα‖2
+ ‖PMn

xα − xα‖2

< ‖x− PMn
xα‖2

+ ∆2
n ≤ ρ2 − ∆2

n + ∆2
n = ρ2, ∀x ∈ Sn.Hen
e,

Sn ⊆ Vρ ∩Mn implying that Vρ ∩Mn 6= ∅. (3.10)De�ne the fun
tional Jα,Mn
: Mn → R as Jα,Mn

(x) := Jα (x) , ∀x ∈ Mn. Then the gradientof Jα,Mn
(x) is PMn

J ′
α (x) , ∀x ∈ Mn. Hen
e, it follows from (3.2), (3.10) and Theorem 3.1 thatthe fun
tional Jα,Mn
(x) is stri
tly 
onvex on Vρ ∩Mn. Hen
e, (3.10) and (2.14) imply that it issu�
ient to prove the existen
e of a point xMn

∈ Sn su
h that J ′
α,Mn

(xMn
) = 0. To make surethat the point xMn

∈ Sn�∂Sn, 
onsider a small number ε ∈ (0, 1) whi
h will be 
hosen later. Let
Sn (ε) = {x ∈Mn : ‖x− PMn

xα‖ = (1 − ε)RMn
} . Hen
e, Sn (ε) ⊂ Sn. Using (2.10), (2.13), (3.2),Theorem 3.1 and (3.8), we obtain for x ∈ Sn (ε)

(
J ′

α,Mn
(x) , x− PMn

xα

)
= (PMn

J ′
α (x) − J ′

α (xα) , x− PMn
xα)

= (J ′
α (x) − J ′

α (PMn
xα) , x− PMn

xα)

+ (J ′
α (PMn

xα) − J ′
α (xα) , x− PMn

xα)

≥ α

2
‖x− PMn

xα‖2
+ (J ′

α (PMn
xα) − J ′

α (xα) , x− PMn
xα)

≥
α (1 − ε)

2
R2

Mn

2
−N3 (1 − ε)RMn

∆n.Hen
e, (3.7), (3.9) and elementary 
al
ulations show that one 
an 
hoose a su�
iently small ε su
hthat (J ′
α,Mn

(x) , x− PMn
xα

)
> 0, ∀x ∈ Sn (ε) . Hen
e, Proposition 3.1 implies the existen
e of theabove point xMn

. By Theorem 3.1 this point is unique. Finally, if Mn ⊆M ′, then ‖xα − PM ′xα‖ ≤
‖xα − PMn

xα‖ , whi
h means that the above proof is appli
able to M ′ as well. �4. Relaxation. In this se
tion we use without restating various properties of orthogonal pro-je
tion operators in Hilbert spa
es, whi
h are well known from the standard Fun
tional Analysis
ourse. In parti
ular, we use the following three properties
P 2

M = PM ; P ∗
M = PM ; PM (z) = z, ∀z ∈M ; (x− PMx.y) = 0, ∀x ∈ H, ∀y ∈M.In se
tions 4 and 7 we assume without restating that the following Assumption 4.1 is valid.Assumption 4.1. We assume that 
onditions of Theorem 3.2 hold, whi
h implies that 
on-ditions of Theorem 3.1 and Lemma 2.1 are also in pla
e. In parti
ular, we impose a priori upperbound on the regularized solution xα. The latter is going along well with the above mentioned(se
tion 1) Tikhonov 
on
ept for ill-posed problems, by whi
h a priori bounds should be imposed[3,13,26℄. Namely, we assume that ‖∇xα‖L∞(σ) ≤ A, where A is a given 
onstant. Hen
e, weassume below that n ≥ n and impose a little bit stronger 
ondition than (3.7),

hn <
β1α

2

AK
√

4N2
3 + α2

. (4.1)
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(
V ρ�∂Vρ

)
∩Mn at whi
h the fun
tional Jα (x)attains its minimal value on this set. Hen
e, by (2.14)

PnJ
′
α (xn) = 0. (4.2)For any two ve
tors a, b ∈ H let An (a, b) ∈ [0, π] be the angle between them, provided that atleast one of them is non zero. If one of them is zero, then An (a, b) := 0. The number cos [An (a, b)]is de�ned via the s
alar produ
t. Lemma 4.1 is elementary.Lemma 4.1. Let u, v ∈ H be two orthogonal ve
tors, u+ v 6= 0 and ϕ = An (u, u+ v) . Then

ϕ ∈ [0, π/2] , ‖u‖ = ‖u+ v‖ cosϕ and ‖v‖ = ‖u+ v‖ sinϕ.Consider the fun
tional Jα (x) for x ∈ Vρ ∩Mn. It is reasonable to assume that
J ′

α (xn) 6= 0. (4.3)Indeed, if (4.3) is not true, then by (2.13) J ′
α (xn) = J ′

α (xα) = 0 and Theorem 3.1 implies that
xn = xα and the Problem 3.1 is solved in this 
ase. Assume that the subspa
eMn+1 is also 
hosen.Re
all that by (2.3) Mn ⊂Mn+1. Sin
e by (4.2) the gradient J ′

α (xn) is orthogonal to the subspa
e
Mn, then one 
an 
onsider two auxiliary subspa
es,

Gn+1 = Mn ⊕ J
′

α (xn) , (4.4)
G̃n+1 = Pn+1Gn+1, (4.5)where �⊕� denotes the orthogonal sum. By (4.4) Mn ⊂ Gn+1. Also, sin
e Mn ⊂ Mn+1, then by(4.4) Pn+1x = Pnx+ λ (x)Pn+1J

′

α (xn) , ∀x ∈ Gn+1, where λ (x) is a 
ertain number depending on
x. Sin
e, Pnx ∈ Mn and PnMn = Mn, then by (4.5) Mn ⊂ G̃n+1. Therefore, Theorem 3.2 andAssumption 4.1 imply that there exists two auxiliary minimizers xg

n+1 ∈ Gn+1, x̃
g
n+1 ∈ G̃n+1 of thefun
tional Jα (ea
h one of them is unique) su
h that

Jα

(
xg

n+1

)
= min

V ρ∩Gn+1

Jα (x) , xg
n+1 ∈

(
V ρ�∂V ρ

)
∩Gn+1, (4.6)

Jα

(
x̃g

n+1

)
= min

V ρ∩ eGn+1

Jα (x) , x̃g
n+1 ∈

(
V ρ�∂V ρ

)
∩ G̃n+1. (4.7)Hen
e, by (4.6) and (4.7) there exist numbers λn+1, λ̃n+1 ∈ R su
h that ve
tors xg

n+1, x̃
g
n+1 
an berepresented as

xg
n+1 = yn+1 + λn+1J

′

α (xn) , x̃g
n+1 = ỹn+1 + λ̃n+1Pn+1J

′

α (xn) ; yn+1, ỹn+1 ∈Mn. (4.8)Lemma 4.2. Let 
ondition (4.3) holds. Then the following estimate is valid
∥∥xg

n+1 − xα

∥∥ ≤ r̃ ‖xn − xα‖ + r̃∆n + ∆g
n+1, (4.9)

∆n = ‖xn − Pnxα‖ , ∆g
n+1 =

∥∥xg
n+1 − PGn+1

xα

∥∥ , r̃ =

√
1 − α2

4N2
3

. (4.10)Proof. Consider the unit ve
tor pn = J ′
α (xn) / ‖J ′

α (xn)‖ . Then by (4.4) PGn+1
x = Pnx +

(x− Pnx, pn) pn, ∀x ∈ H. Consider ve
tors u = Pnxα − PGn+1
xα, v = PGn+1

xα − xα. Sin
e u =
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(Pnxα − xα, pn) pn ∈ Gn+1 and v is orthogonal to Gn+1, then (u, v) = 0. Sin
e by (4.3) and (2.13)
xα /∈Mn, then u+ v = Pnxα − xα 6= 0. Hen
e, by Lemma 4.1

∥∥xα − PGn+1
xα

∥∥ = gn ‖xα − Pnxα‖ , gn = sinϕn, (4.11)where ϕn = An (u, xα − Pnxα) . Using (4.11), we now estimate the norm ∥∥xg
n+1 − xα

∥∥ ,
∥∥xg

n+1 − xα

∥∥ ≤
∥∥xg

n+1 − PGn+1
xα

∥∥+
∥∥xα − PGn+1

xα

∥∥

=
∥∥xg

n+1 − PGn+1
xα

∥∥+ gn ‖xα − Pnxα‖
≤ gn ‖xn − Pnxα‖ + gn ‖xn − xα‖ +

∥∥xg
n+1 − PGn+1

xα

∥∥ .Hen
e, taking into a

ount notations (4.10), we obtain (4.9) in whi
h r̃ is repla
ed with gn.We now estimate gn from the above. By (4.2) (J ′
α (xn) , Pnxα − xn) = 0. Hen
e,

(J ′
α (xn) , Pnxα − xα) = (J ′

α (xn) , Pnxα − xn) + (J ′
α (xn) , xn − xα) = (J ′

α (xn) , xn − xα) .Comparing this with (4.11), we obtain ‖J ′
α (xn)‖ ‖Pnxα − xα‖ cosϕn = (J ′

α (xn) , xn − xα) . By(2.13) and Theorem 3.1
(J ′

α (xn) , xn − xα) = (J ′
α (xn) − J ′

α (xα) , xn − xα) ≥ α

2
‖xα − xn‖2 .Hen
e,

‖J ′
α (xn)‖ ‖xα − Pnxα‖ cosϕn ≥ α

2
‖xα − xn‖2

. (4.12)By (2.10) and (2.13) ‖J ′
α (xn)‖ = ‖J ′

α (xn) − J ′
α (xα)‖ ≤ N3 ‖xn − xα‖ . Combining this with (4.12)and using the fa
t that by one of the properties of orthogonal proje
tion operators ‖xα − xn‖ ≥

‖xα − Pnxα‖ , we obtain
cosϕn ≥ α

2N3
· ‖xα − xn‖
‖xα − Pnxα‖

≥ α

2N3
.Hen
e, by (4.10) and (4.11) gn = sinϕn ≤

√
1 − α2 (2N3)

−2 = r̃. �Numbers ∆n and ∆g
n+1 in (4.10) 
hara
terize approximating properties of subspa
es Mn and

Gn+1 with respe
t to the regularized solution xα. In the proof of Lemma 4.2 we have not usedthe fa
t that xg
n+1 is the minimizer of Jα (x) on Vρ ∩ Gn+1, see (4.6). We use (4.6) in Theorem4.1. In the proof of this theorem we �rst obtain an upper estimate of ‖xn+1 − xα‖ via numbers

‖xn − xα‖ ,∆n,∆
g
n+1 and ∥∥xg

n+1 − x̃g
n+1

∥∥ . Next, we estimate ∥∥xg
n+1 − x̃g

n+1

∥∥ from the above via
‖(I − Pn+1)J

′
α (xn)‖ / ‖J ′

α (xn)‖ , whi
h is the most te
hni
al part of the proof. Finally, we estimatenumbers ∆n,∆n+1 and ∆g
n+1 from the above via ‖(I − Pn) xα‖. Next, in the proof of Theorem4.2 we estimate from the above numbers ‖(I − Pn+1)J

′
α (xn)‖ / ‖J ′

α (xn)‖ and ‖(I − Pn)xα‖ via
‖xn − xα‖, thus ending up with the target estimate (1.1). By (4.3) there exists su
h a subspa
e
Mn+1 ⊂ H, Mn ⊂Mn+1 that

Pn+1J
′
α (xn) 6= 0, whi
h is equivalent with (Pn+1J

′
α (xn) , J ′

α (xn)) 6= 0. (4.13)
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ondition (4.3) holds. Then with the 
onstant r̃ ∈ (0, 1) of (4.10)the following estimate is valid
‖xn+1 − xα‖ ≤ r̃ ‖xn − xα‖ + C

‖(I − Pn+1)xα‖√
α

+ C
√
α
‖(I − Pn+1)J

′
α (xn)‖1/2

‖J ′
α (xn)‖1/2

. (4.14)Proof. We have
∥∥xg

n+1 − xα

∥∥ ≥
∥∥x̃g

n+1 − xα

∥∥−
∥∥xg

n+1 − x̃g
n+1

∥∥ . (4.15)Sin
e x̃g
n+1 ∈ G̃n+1 ⊂Mn+1, then, using (4.10), we obtain

∥∥x̃g
n+1 − xα

∥∥ ≥ ‖Pn+1xα − xα‖ ≥ ‖xn+1 − xα‖ − ‖xn+1 − Pn+1xα‖ = ‖xn+1 − xα‖ − ∆n+1.Hen
e, it follows from (4.15) that ∥∥xg
n+1 − xα

∥∥ ≥ ‖xn+1 − xα‖ −
∥∥xg

n+1 − x̃g
n+1

∥∥ − ∆n+1. Substi-tuting this inequality in (4.9), we obtain
‖xn+1 − xα‖ −

∥∥xg
n+1 − x̃g

n+1

∥∥− ∆n+1 ≤
∥∥xg

n+1 − xα

∥∥ ≤ r̃ ‖xn − xα‖ + r̃∆n + ∆g
n+1,whi
h implies that

‖xn+1 − xα‖ ≤ r̃ ‖xn − xα‖ + r̃∆n + ∆n+1 + ∆g
n+1 +

∥∥xg
n+1 − x̃g

n+1

∥∥ . (4.16)We now estimate the norm ∥∥xg
n+1 − x̃g

n+1

∥∥ of the last term of (4.16) from the above. Using(4.6), (4.9) and (2.14), we obtain
(
J ′

α

(
xg

n+1

)
, xg

n+1 − x̃g
n+1

)
=
(
J ′

α

(
xg

n+1

)
, xg

n+1 − PGn+1
x̃g

n+1

)

+
(
J ′

α

(
xg

n+1

)
, PGn+1

x̃g
n+1 − x̃g

n+1

)
=
(
J ′

α

(
xg

n+1

)
,
(
PGn+1

− I
)
x̃g

n+1

)
,

−
(
J ′

α

(
x̃g

n+1

)
, xg

n+1 − x̃g
n+1

)
= −

(
J ′

α

(
x̃g

n+1

)
, xg

n+1 − P eGn+1
xg

n+1

)

−
(
J ′

α

(
x̃g

n+1

)
, P eGn+1

xg
n+1 − x̃g

n+1

)
= −

(
J ′

α

(
x̃g

n+1

)
,
(
P eGn+1

− I
)
xg

n+1

)
.Hen
e, (3.2) and Theorem 3.1 imply that

α

2

∥∥xg
n+1 − x̃g

n+1

∥∥2 ≤
(
J ′

α

(
xg

n+1

)
− J ′

α

(
x̃g

n+1

)
, xg

n+1 − x̃g
n+1

)

=
(
J ′

α

(
xg

n+1

)
,
(
PGn+1

− I
)
x̃g

n+1

)
−
(
J ′

α

(
x̃g

n+1

)
,
(
P eGn+1

− I
)
xg

n+1

) (4.17)
≤
∥∥J ′

α

(
xg

n+1

)∥∥ ∥∥(I − PGn+1

)
x̃g

n+1

∥∥+
∥∥J ′

α

(
x̃g

n+1

)∥∥
∥∥∥
(
I − P eGn+1

)
xg

n+1

∥∥∥ .Sin
e xg
n+1, x̃

g
n+1 ∈ Vρ, ρ = β1α and the 
onstant β1 depends only on 
onstants N1, N2, we 
an tem-porary set β1 := C. Hen
e (2.10) and (2.13) imply that with another 
onstant C, ∥∥J ′

α

(
xg

n+1

)∥∥ =∥∥J ′
α

(
xg

n+1

)
− J ′

α (xα)
∥∥ ≤ N3

∥∥xg
n+1 − xα

∥∥ ≤ Cα. Similarly ∥∥J ′
α

(
x̃g

n+1

)∥∥ ≤ Cα. Hen
e, (4.17) im-plies that
∥∥xg

n+1 − x̃g
n+1

∥∥2 ≤ C
(∥∥(I − PGn+1

)
x̃g

n+1

∥∥+
∥∥∥
(
I − P eGn+1

)
xg

n+1

∥∥∥
)
. (4.18)



Adaptivity with relaxation for the Tikhonov fun
tional 13By (4.3) and (4.13) the following angle is properly de�ned ψn = An (J ′
α (xn) , Pn+1J

′
α (xn)) .We now prove that

∥∥(I − PGn+1

)
x̃g

n+1

∥∥ =
∥∥(I − Pn) x̃g

n+1

∥∥ sinψn, (4.19)
∥∥∥
(
I − P eGn+1

)
xg

n+1

∥∥∥ =
∥∥(I − Pn)xg

n+1

∥∥ sinψn. (4.20)First, we �gure out the form of the ve
tor PGn+1
x̃g

n+1. By (4.4) and (4.8)
PGn+1

x̃g
n+1 = ỹn+1 + λ̃n+1PGn+1

Pn+1J
′
α (xn) , ỹn+1 ∈Mn. (4.21)By (2.3) and (4.2) (y, Pn+1J

′
α (xn)) = (Pn+1y, J

′
α (xn)) = (y, J ′

α (xn)) = 0, ∀y ∈ Mn. Hen
e, by(4.4) PGn+1
Pn+1J

′
α (xn) = a · J ′

α (xn) , where a ∈ R. Compute the number a using (4.4),
a ‖J ′

α (xn)‖2
=
(
PGn+1

Pn+1J
′
α (xn) , J ′

α (xn)
)

=
(
Pn+1J

′
α (xn) , PGn+1

J ′
α (xn)

)

= (Pn+1J
′
α (xn) , J ′

α (xn)) = (Pn+1J
′
α (xn) , Pn+1J

′
α (xn)) = ‖Pn+1J

′
α (xn)‖2

.Hen
e, a = ‖Pn+1J
′
α (xn)‖2 ‖J ′

α (xn)‖−2. Hen
e, (4.21) leads to
PGn+1

x̃g
n+1 = ỹn+1 + λ̃n+1

‖Pn+1J
′
α (xn)‖2

‖J ′
α (xn)‖2 · J ′

α (xn) , ỹn+1 ∈Mn. (4.22)Let u1 = PGn+1
x̃g

n+1 − Pnx̃
g
n+1, v1 =

(
I − PGn+1

)
x̃g

n+1. First, we show that (u1, v1) = 0.Indeed, by (4.22) and (4.8)
u1 = λ̃n+1

‖Pn+1J
′
α (xn)‖2

‖J ′
α (xn)‖2 J ′

α (xn) , (4.23)
v1 = λ̃n+1

[
Pn+1J

′
α (xn) − ‖Pn+1J

′
α (xn)‖2

‖J ′
α (xn)‖2 J ′

α (xn)

]
.Hen
e,

(u1, v1) = λ̃2
n+1

‖Pn+1J
′
α (xn)‖2

‖J ′
α (xn)‖2

[
‖Pn+1J

′
α (xn)‖2 − ‖Pn+1J

′
α (xn)‖2

]
= 0. (4.24)Next, u1 + v1 = λ̃n+1Pn+1J

′
α (xn) . Thus, (4.23) and Lemma 4.1 imply (4.19) if λ̃n+1 6= 0. If,however, λ̃n+1 = 0, then it follows from (4.8) and (4.22) that in (4.19) (I − PGn+1

)
x̃g

n+1 =
(I − Pn) x̃g

n+1 = 0, whi
h again implies (4.19).To prove (4.20), denote
u2 = P eGn+1

xg
n+1 − Pnx

g
n+1, v2 =

(
I − P eGn+1

)
xg

n+1.By (4.4), (4.5) and (4.8)
P eGn+1

xg
n+1 = Pn+1x

g
n+1 = yn+1 + λn+1Pn+1J

′
α (xn) .



14 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINHen
e, u2 = λn+1Pn+1J
′
α (xn) and v2 = λn+1 (I − Pn+1)J

′
α (xn) . Thus, (u2, v2) = 0. Next, by(4.4) and (4.8) u2 + v2 = (I − Pn) xg

n+1 = λn+1J
′
α (xn) . Hen
e, if λn+1 6= 0, then the angle betweenve
tors u2 and u2 + v2 is the same as the angle between ve
tors J ′

α (xn) and Pn+1J
′
α (xn) , i.e., thisis the angle ψn introdu
ed above. Hen
e, using Lemma 4.1, we obtain (4.20) for λn+1 6= 0. In the
ase λn+1 = 0 we have (I − P eGn+1

)
xg

n+1 = (I − Pn)xg
n+1 = 0, whi
h implies (4.20).Sin
e by (4.13) ‖(I − Pn+1)J

′
α (xn)‖ < ‖J ′

α (xn)‖ , then by (4.20)
sinψn =

‖v2‖
‖u2 + v2‖

=
‖(I − Pn+1)J

′
α (xn)‖

‖J ′
α (xn)‖ < 1. (4.25)Thus, (4.18)-(4.20) and (4.25) imply that

∥∥xg
n+1 − x̃g

n+1

∥∥2 ≤ C
(∥∥(I − Pn) xg

n+1

∥∥+
∥∥(I − Pn) x̃g

n+1

∥∥) · ‖(I − Pn+1)J
′
α (xn)‖

‖J ′
α (xn)‖ . (4.26)Estimate the term in the parenthesis in the right hand side of (4.26). By (4.6) and (4.7)

∥∥xg
n+1 − xn

∥∥ ,
∥∥x̃g

n+1 − xn

∥∥ ≤ Cα.Also, sin
e xn ∈Mn, then (I − Pn) (xn) = 0. In addition, ‖I − Pn‖ ≤ ‖I‖ + ‖Pn‖ ≤ 2. Hen
e,
∥∥(I − Pn)xg

n+1

∥∥+
∥∥(I − Pn) x̃g

n+1

∥∥ =
∥∥(I − Pn)

(
xg

n+1 − xn

)∥∥

+
∥∥(I − Pn)

(
x̃g

n+1 − xn

)∥∥ ≤
∥∥xg

n+1 − xn

∥∥+
∥∥x̃g

n+1 − xn

∥∥ ≤ Cα.
(4.27)Hen
e, (4.26) and (4.27) lead to

∥∥xg
n+1 − x̃g

n+1

∥∥ ≤ C
√
α
‖(I − Pn+1)J

′
α (xn)‖1/2

‖J ′
α (xn)‖1/2

. (4.28)Therefore, it follows from (4.16) and (4.28) that
‖xn+1 − xα‖ ≤ r̃ ‖xn − xα‖ + r̃∆n + ∆n+1 + ∆g

n+1 + C
√
α
‖(I − Pn+1)J

′
α (xn)‖1/2

‖Pn+1J ′
α (xn)‖1/2

. (4.29)We now estimate from the above terms ∆n,∆n+1 and ∆g
n+1 in (4.29). We have

Jα (x) − Jα (y) − (J ′
α (y) , x− y) =

1∫

0

(J ′
α (y + θ (x− y)) − J ′

α (y) , x− y)dθ.Hen
e, by (2.10)
|Jα (x) − Jα (y) − (J ′

α (y) , x− y)| ≤ C ‖x− y‖2 , ∀x, y ∈ Vρ. (4.30)Substituting in (4.30) x := Pnxα, y := xα and using (2.13), we obtain
Jα (Pnxα) − Jα (xα) ≤ C ‖Pnxα − xα‖2

= C ‖(I − Pn)xα‖2
. (4.31)



Adaptivity with relaxation for the Tikhonov fun
tional 15On the other hand, sin
e Jα (xn) ≥ Jα (xα) , then using (3.2), Theorem 3.1, (2.14) and (4.31), weobtain
C ‖(I − Pn)xα‖2 ≥ Jα (Pnxα) − Jα (xα) ≥ Jα (Pnxα) − Jα (xn) (4.32)

≥ (J ′
α (xn) , Pnxα − xn) +

α

2
‖xn − Pnxα‖2

=
α

2
‖xn − Pnxα‖2

.Sin
e by (2.3) and (4.4) Mn ⊂ Mn+1 and Mn ⊂ Gn+1, then ‖(I − Pn+1)xα‖ ≤ ‖(I − Pn)xα‖ and
‖(I −Gn+1)xα‖ ≤ ‖(I − Pn)xα‖ . On the other hand, two inequalities, similar with (4.32), 
an beproven similarly via repla
ing the pair (‖xn − Pnxα‖ , ‖(I − Pn)xα‖) �rst with the pair

(‖xn+1 − Pn+1xα‖ , ‖(I − Pn+1)xα‖)and then with the pair
(∥∥xg

n+1 − PGn+1
xα

∥∥ , ‖(I −Gn+1)xα‖
)
.Hen
e,

α

2

(
‖xn+1 − Pn+1xα‖2

+
∥∥xg

n+1 − PGn+1
xα

∥∥2
)
≤ C ‖(I − Pn)xα‖2 . (4.33)Thus, (4.10), (4.32) and (4.33) imply the following three inequalities

∆n,∆n+1,∆
g
n+1 ≤ Cα−1/2 ‖(I − Pn)xα‖ .Substitution of these three in (4.29) leads to (4.14). �It is assumed in Theorem 4.1 that the ve
tor J ′

α (xn) 
an be 
al
ulated exa
tly. In the 
ompu-tational pra
ti
e, however, this ve
tor is 
al
ulated with an error and the minimization pro
ess on
Vρ ∩Mn is usually stopped at su
h a point xn for whi
h the norm ‖PnJ

′
α (xn)‖ is su�
iently small,although still non-zero. These 
onsiderations are re�e
ted in Theorem 4.2, whi
h establishes (1.1).Theorem 4.2. Assume that the Fre
het derivative J ′

α (x) , x ∈ Vρ is 
al
ulated with a smallerror τ ∈ [0, 1). In other words, for any point x ∈ Vρ one a
tually 
al
ulates the ve
tor Sα (x) ∈ Hand ‖J ′
α (x) − Sα (x)‖ ≤ τ, ∀x ∈ Vρ. Let n be the integer of Assumption 4.1. Suppose that for anysubspa
e Mk with k ≥ n the minimization pro
ess of the fun
tional Jα (x) on the set Vρ ∩Mk isstopped at su
h a point xk,τ that ‖PMk

Sα (xk,τ )‖ ≤ τ . Let a1 be the number from (2.1). Considerthe fun
tion of spatial variables Sn,τ (y) := Sα (xn,τ ) , y ∈ σ. Assume that there exists a number
rn ∈ (r̃, 1) su
h that

C

(
AK

hn√
α

+
√
ατ +

τ

α

)
≤ (rn − r̃) ‖Sα (xn,τ )‖ , (4.34)

a1CK
√
α
∥∥∥∇S̃ (y)

∥∥∥
L∞(eσ)

<
rn − r̃

8N3
‖Sα (xn,τ )‖3/2 . (4.35)Let δ1 = δ1 (µ1, µ2, N1, N2) be the number de�ned in Theorem 3.1. Then there exists a su�
ientlysmall number δ2 ∈ (0, δ1] and a subspa
e Mn+1 ⊆ H,Mn ⊂Mn+1 su
h that if δ ∈ (0, δ2] , then thefollowing relaxation property holds

‖xn+1,τ − xα‖ ≤ rn ‖xn,τ − xα‖ . (4.36)



16 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINIf at least one of inequalities (4.34), (4.35) is invalid, then the mesh re�nement pro
ess should bestopped. If τ = 0, then the above holds with the repla
ement of the pair {Sα (xn,τ ) , xn,τ} by thepair {J ′
α (xn) , xn} . Let r ∈ (r̃, 1) be the maximal value of 
orresponding numbers rn for a 
ertain�nite number of su
h mesh re�nements . Then (4.36) is valid with the repla
ement of rn with r,whi
h turns (4.36) into (1.1).Remark 4.1. Although both 
onstants C and N3 depend on numbers N1, N2 introdu
ed in(2.7), the inequality (4.35) makes sense, sin
e these 
onstants 
an be expli
itly estimated viaN1, N2.The latter would turn both inequalities (4.34), (4.35) in more expli
it forms. Following a 
ommontradition of the PDE theory, we are not providing su
h expli
it estimates for brevity only. The sameis true for Theorem 7.4 (se
tion 7) with respe
t to numbers C2 and N4.Proof of Theorem 4.2. Sin
e α = δµ2 , then by (2.12) one 
an 
hoose

δ2 = δ2 (µ1, µ2, N1, N2) ∈ (0, δ1] so small that C/α ≥ 2, ∀δ ∈ (0, δ2] . Hen
e, by (4.34) we 
anassume that
‖Sα (xn,τ )‖

2
≥ τ. (4.37)Using (4.2), we obtain

τ ‖xn,τ − xn‖ ≥ (Sα (xn,τ ) , xn,τ − xn) = (Sα (xn,τ ) − J ′
α (xn,τ ) , xn,τ − xn)

+ (J ′
α (xn,τ ) − J ′

α (xn) , xn,τ − xn) ≥ α

2
‖xn,τ − xn‖2 − τ ‖xn,τ − xn‖ .Hen
e, ‖xn,τ − xn‖ ≤ 4τ/α. Using (2.10) and (4.34), we obtain

‖J ′
α (xn)‖ = ‖J ′

α (xn,τ ) − (J ′
α (xn,τ ) − J ′

α (xn))‖ ≥ ‖J ′
α (xn,τ )‖ − ‖J ′

α (xn,τ ) − J ′
α (xn)‖

≥ ‖Sα (xn,τ )‖
2

−N3
4τ

α
≥ C ‖Sα (xn,τ )‖ > 0. (4.38)Similarly (4.34) and (4.37) lead to

‖J ′
α (xn)‖ ≤ ‖J ′

α (xn,τ )‖ + ‖J ′
α (xn,τ ) − J ′

α (xn)‖ (4.39)
≤ ‖Sα (xn,τ )‖ + τ +N3

4τ

α
≤ C ‖Sα (xn,τ )‖ ,where the 
onstant C is di�erent from one in (4.38).It follows from (4.38) that (4.3) holds, whi
h implies in turn the existen
e of su
h a subspa
e

Mn+1 that (4.13) is valid. Hen
e, the point xn+1,τ exists and ‖xn+1,τ − xn‖ ≤ 4τ/α. Hen
e, by(4.14)
‖xn+1,τ − xα‖ ≤ r̃ ‖xn,τ − xα‖ +

8τ

α
+ C

‖(I − Pn+1)xα‖√
α

(4.40)
+C

√
α
‖(I − Pn+1)J

′
α (xn)‖1/2

‖J ′
α (xn)‖1/2Sin
e hn+1 ≤ hn, then by (2.4) ‖(I − Pn+1)xα‖ ≤ K ‖∇xα‖L2(σ) hn ≤ AKhn. Hen
e, by (4.39)and (4.40)

‖xn+1,τ − xα‖ ≤ r̃ ‖xn,τ − xα‖ + CAK
hn√
α

+
8τ

α
(4.41)

C
√
ατ

‖Sα (xn,τ )‖1/2
+ C

√
α
‖(I − Pn+1)Sα (xn,τ )‖1/2

‖S (xn,τ )‖1/2
.



Adaptivity with relaxation for the Tikhonov fun
tional 17By (2.10), (2.13) and (4.37)
‖xn,τ − xα‖ ≥ ‖J ′

α (xn,τ )‖
N3

≥ ‖S (xn,τ )‖ − τ

N3
≥ ‖S (xn,τ )‖

2N3
.By (4.34) we 
an assume that

CAK
hn√
α

+ C
√
ατ +

8τ

α
≤ (rn − r̃)

4N3
‖S (xn,τ )‖ . (4.42)Suppose that

C
√
α ‖(I − Pn+1)Sα (xn,τ )‖1/2 ≤ rn − r̃

4N3
‖Sα (xn,τ )‖3/2

. (4.43)Then (4.41) and (4.42) imply that (4.36) holds forMn+1. So, we now 
onstru
t the subspa
eMn+1.Let σ̃ ⊆ σ be a subdomain in whi
h one wants to re�ne the mesh and suppose that the mesh isnot re�ned in σ�σ̃. By re�ning the mesh in σ̃ and not re�ning it in σ�σ̃, one obtains the targetsubspa
eMn+1. If meas (σ�σ̃) is not too small, then one obtains a lo
al mesh re�nement. We have
Pn+1Sα (xn,τ ) = Sn,τ (y) for y ∈ σ�σ̃. Hen
e,

‖(I − Pn+1)Sα (xn,τ )‖1/2 ≤ ‖(I − Pn+1)Sn,τ (y)‖1/2
L2(eσ) + ‖Sn,τ (y)‖1/2

L2(σ�eσ) . (4.44)Sin
e the limiting 
ase of σ̃ is simply σ̃ = σ, then one 
an always 
hoose σ̃ su
h that
C
√
α ‖Sn,τ (y)‖1/2

L2(σ�eσ) ≤
rn − r̃

8N3
‖Sα (xn,τ )‖3/2

. (4.45)Sin
e Sα (xn,τ ) ∈ H, then Sn,τ (y) ∈ H1 (σ) and ∂yi
Sn,τ (y) ∈ L∞ (σ) . Let h̃n+1 be the maximalmesh size for the new mesh in σ̃. Then by (2.4)

‖(I − Pn+1)Sn,τ (y)‖L2(eσ) ≤ K ‖∇Sn,τ (y)‖L∞(eσ) h̃n+1. (4.46)By (4.35) we 
an 
hoose h̃n+1 ∈ (a1, 1) su
h that
CKh̃n+1

√
α ‖∇Sn,τ (y)‖L∞(eσ) ≤

rn − r̃

8N3
‖Sα (xn,τ )‖3/2

. (4.47)Estimates (4.44)-(4.47) imply (4.43), whi
h in turn leads to (4.36). �There is no point to have errors or parameters in 
al
ulations less than the level of error δ inthe data. Hen
e, assuming that 
onditions of Theorem 4.2 hold, we now show the existen
e of aninterval for the number µ2 in (2.11b), whi
h guarantees that one indeed 
an 
hoose parameters hn, τsatisfying above 
onditions and su
h that hn, τ >> δ for δ ∈ (0, δ2]. Estimating the right hand sideof (4.34) from the above and assuming that τ < α, we obtain, (rn − r̃) ‖Sα (xn,τ )‖ ≤ Cα3. Hen
e,(4.34), (4.35) and (2.12) imply that one should have CAKhn < α3.5 = δ3.5µ2 , τ ≤ Cα5 = Cδ5µ2 .The �rst of these inequalities is stronger than (4.1). Hen
e, if µ2 ∈ (0, 1/5) , then one 
an always
hoose numbers hn, τ su
h that hn, τ >> δ for δ ∈ (0, δ2] and (4.34) holds. The same is true for
h̃n+1 in (4.46), provided that a1 >> δ.



18 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINRe
ommendation for the mesh re�nement. By re�ning the mesh in σ̃, one a
tuallyde
reases the value of ‖(I − Pn+1)Sn,τ (y)‖L2(eσ) and therefore �paves the way� for the validity ofthe relaxation estimate (4.36). Hen
e, estimates (4.44)-(4.46) indi
ate that the mesh should bere�ned in su
h a subdomain σ̃ of σ in whi
h values of |Sn,τ (y)| are 
lose to maxσ |Sn,τ (y)| , andit should not be re�ned in subdomains where these values are rather low. This is exa
tly what isdone in se
tion 8 as well as in the past publi
ations [5-7,17℄.Remark 4.2. While Theorem 4.2 establishes the existen
e of su
h a subspa
e Mn+1 thatrelaxation property (4.36) is valid, one 
an pose the question on how to 
omputationally de
idewhether this subspa
e exists. A simple re
ipe for this follows from (4.36) and we a
tually use thisapproa
h in our 
omputations in se
tion 8, also see [5-7℄. Namely, having found the point xn,τ , oneshould re�ne the mesh and minimize the fun
tional Jα on the re�ned mesh. It follows from (4.36)that if the 
hange in the resulting solution is signi�
ant 
ompared with the previous mesh, then thesubspa
e Mn+1 exists, it is represented by this new mesh and the mesh re�nement pro
ess shouldbe 
ontinued. Otherwise it should be stopped.5. The Coe�
ient Inverse Problem. In this se
tion we state our Coe�
ient Inverse Prob-lem and outline the globally 
onvergent numeri
al method of [8℄ for it. We refer to [8℄ for moredetails about this method. In addition, we outline in subse
tion 5.2 some dis
repan
ies between ourtheory and numeri
al implementation. Consider the Cau
hy problem for the hyperboli
 equation
c(x)utt = ∆u in Rm × (0,∞) ,m = 2, 3, (5.1)
u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (5.2)Equation (5.1) governs a wide range of appli
ations, in
luding, e.g. propagation of a
ousti
 andele
tromagneti
 waves. In the a
ousti
al 
ase 1/

√
c(x) is the sound speed. In the 2-D 
ase of EMwaves propagation in a non-magneti
 medium, the dimensionless 
oe�
ient is c(x) = εr(x), where

εr(x) is the spatially distributed diele
tri
 
onstant of the medium, see [11℄, where this equationwas derived from Maxwell's equations in the 2-D 
ase. Let d1 and d2, be two positive numbers,
d1 < d2. We assume that the 
oe�
ient c (x) of equation (5.1) is su
h that

c (x) ∈ [d1, d2] , c (x) = d1 for x ∈ Rm�Ω, (5.3)
c ∈ C2

(
R3
) (5.4)Coe�
ient Inverse Problem (CIP). Let Ω ⊂ Rm,m = 2, 3 be a 
onvex bounded domain withthe boundary ∂Ω ∈ C3. Suppose that the 
oe�
ient c (x) satis�es 
onditions (5.3) and (5.4), wherethe numbers d1 and d2 are given. Assume that the fun
tion c (x) is unknown in Ω. Determine thefun
tion c (x) for x ∈ Ω, assuming that the following fun
tion g (x, t) is known for a single sour
eposition x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (5.5)The reason why we assume here that the sour
e x0 /∈ Ω is that we do not want to deal withsingularities near the sour
e lo
ation, see an applied s
enario for this in, e.g. [2℄. In appli
ations theassumption c (x) = d1 for x ∈ R3�Ω means that the target 
oe�
ient c (x) has a known 
onstantvalue outside of the domain of interest Ω. Sin
e we do not impose any �smallness� 
onditions onnumbers d1 and d2, the numeri
al method is not a lo
ally 
onvergent one. The fun
tion g (x, t)models time dependent measurements of the wave �eld at the boundary of the domain of interest.Pra
ti
al measurements are performed at a number of dete
tors, of 
ourse. In this 
ase the fun
tion
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g (x, t) 
an be obtained via one of standard interpolation pro
edures, whi
h is outside the s
ope ofthis publi
ation. Uniqueness theorem for this inverse problem is a long standing and well knownopen question, whi
h is addressed positively only in the 
ase when the δ− fun
tion in (5.2) isrepla
ed with a fun
tion, whi
h is non vanishing in the entire domain Ω [18,19℄. It is an opinion ofthe authors that it is still worthy to develop numeri
al methods for this CIP be
ause of appli
ations.5.1. Outline of the globally 
onvergent numeri
al method of [8℄. Let the fun
tion
w (x, s) be the Lapla
e transform of the fun
tion u (x, t) with respe
t to t with the parameter
s > s = const. > 0. We 
all s �pseudo frequen
y�. One 
an prove that w (x, s) > 0. Let q (x, s) =
∂s

[
s−2 lnw(x, s)

]
. The fun
tion q solves the following boundary value problem for a nonlinearintegral di�erential equation in whi
h the unknown 
oe�
ient is not present

∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2 (5.6)

+2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )
2

= 0, q |Ω= ψ (x, s) , (x, s) ∈ ∂Ω × [s, s] .where the fun
tion ψ is generated by the fun
tion g in (5.5). Here s is the trun
ation pseudofrequen
y, it is one of regularization parameters here and it is assumed to be large. Numbers s and
s should be 
hosen in numeri
al experiments. The trun
ation of integrals at a large value of thepseudo frequen
y s is similar to a routine trun
ation of high frequen
ies in s
ien
e and engineering,and so our trun
ation is natural in this sense. In (5.6) V (x, s) = s−2 lnw (x, s) is the so-
alled �tail�fun
tion, and it is unknown. The presen
e of s-integrals as well as of the tail fun
tion implies thenonlinearity and thus, leads to the main di�
ulty of the globally 
onvergent stage of our method.One 
an prove that, under 
ertain 
onditions,

|V (x, s)|2+γ = O

(
1

s

)
, s→ ∞, (5.7)Here |·|k+γ is the norm in the H	older spa
e Ck+γ

(
Ω
)
. Although (5.6) implies that the tail is smallfor large s, it was found in numeri
al experiments in se
tion 8 that resulting solutions have a betterquality if we approximate the tail via the pro
edure des
ribed below, rather than simply negle
t it.Equation (5.6) has two unknown fun
tions q and V . The reason why we 
an a

urately approximateboth these fun
tions is that we treat them di�erently, see below.We 
onsider a layer stripping pro
edure with respe
t to s partitioning the interval [s, s] into Nsmall subintervals with the step size κ = sn−1−sn, s = sN < sN−1 < ... < s0 = s. Approximate thefun
tion q(x, s) as a pie
ewise 
onstant fun
tion with respe
t to s, q(x, s) = qn(x) for s ∈ [sn, sn−1) .Let Cn,λ (s) = exp [ν (s− sn−1)] be the s-dependent Carleman Weight Fun
tion (CWF), where

ν > 1 is a large parameter, whi
h is 
hosen in numeri
al experiments. Multiplying both sides ofequation (5.6) by Cn,λ (s) and integrating over [sn, sn−1) , we obtain the following �nite sequen
eof nonlinear se
ond order ellipti
 equations for fun
tions qn(x) with Diri
hlet boundary 
onditions
ψn(x), whi
h are derived from the fun
tion ψ (x, s),
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Ln (qn) : = ∆qn −A1,n

(
h

n−1∑

i=1

∇qi
)
∇qn +A1n∇qn∇Vn − κqn (5.8)

= Bn (∇qn)
2 −A2,nh

2

(
n−1∑

i=1

∇qi (x)

)2

+ 2A2,n∇Vn

(
h

n−1∑

i=1

∇qi
)

−A2,n (∇Vn)
2
,

qn | ∂Ω = ψn(x), n = 1, ..., N.Here A1,n, A2,n, Bn are 
ertain numbers depending on ν, κ, n and κ > 0 is a small parameterof ones 
hoi
e. We use in (5.8) Vn instead of V for 
onvenien
e of notations, see below in thisparagraph. It is important that limν→∞Bn = 0 uniformly for all n due to the presen
e of theCWF. Hen
e, the presen
e of the CWF with ν >> 1 mitigates the in�uen
e of the nonlinear term
(∇qn)

2
, whi
h enables us to solve the boundary value problem for ea
h qn iteratively via solvinga linear ellipti
 problem on ea
h step. Still, the 
omputational experien
e shows that we 
annottake ν ex
eedingly large, whi
h would e�e
tively turn equations (5.8) into linear ones. Startingfrom n = 1, we solve problems (5.8) sequentially with respe
t to n. For ea
h n we have inneriterations with respe
t to the tail fun
tion and 
al
ulate fun
tions qn,i until 
onvergen
e o

urs.We set q0 := 0. The �rst approximation V1,1 for the tail was V1,1 ≡ 0 in [8℄, and in se
tion 8 weuse V1,1 (x, s) = s−2 lnw0 (x, s) , where wd1

(x, s) is the Lapla
e transform of the solution of theproblem (5.1), (5.2) for the 
ase c0 (x) ≡ d1. Substituting Vn,1 ∈ C2+γ (Rm) in (5.8) for Vn, we �ndthe �rst approximation qn,1 ∈ C2+γ
(
Ω
) for qn via solving the boundary value problem (5.8). Thisis our inner iteration, in whi
h we set (∇qn)

2
:= (∇qn−1)

2. To �nd the next approximation for thetail via the outer iteration, we �rst �nd the new approximation cn,1 ∈ Cγ (Rm) , cn,1 (x) = d1 in
Rm�Ω via a simple ba
kwards 
al
ulation. Next, we solve the problem (5.1), (5.2) with c := cn,1,
al
ulate the Lapla
e transform wn,1 and set Vn,2 (x, s) = s−2 [lnwn,1 (x, s)] . Then we �nd a newapproximation qn,2 for qn, et
.. Suppose that 
onvergen
e of inner iterations o

urs at qn,mn

.Then we set (qn,mn
, cn,mn

, Vn,mn
) := (qn, cn, Vn+1,1) ∈ C2+γ

(
Ω
)
× Cγ (Rm) × C2+γ (Rm) , where

cn (x) = d1 in Rm�Ω, and repeat the above pro
ess for n := n + 1. The 
onvergen
e for both
qn,i (with respe
t to i) and qn is evaluated via evaluating the residuals at a part of the boundary,see se
tion 8. We have added the term −κqn to the left hand side of equation (5.8) to improvethe stability property of the Diri
hlet value problem (5.8) be
ause of the maximum prin
iple [20℄(Chapter 3).Now we brie�y outline the global 
onvergen
e theorem of [8℄. Be
ause of (5.7), we assumethat |Vn (x, s)|2+γ ≤ ξ, ∀n, where ξ is a small number. Let δ be the level of the error in the data
g. Denote η = 2 (κ+ δ + κ + ξ) . Hen
e, η is a small parameter, whi
h, in parti
ular, depends ontwo regularization parameters of our method, κ and s. It is important that the se
ond stage ofour two stage pro
edure, the adaptivity, is independent on parameters κ,κ, ξ, also see the se
ondparagraph of se
tion 1. Let c∗ (x) be the exa
t solution of our CIP. Let N ∈ [1, N ] be the totalnumber of fun
tions qn we have 
al
ulated, and β2 = κN be the length of the interval s ∈ [s− β2, s]
overed this way. We assume that the number β2 is small. Indeed, equations (5.8) are generated byequation (5.6), whi
h 
ontains Volterra integrals in nonlinear terms. It is well known from, e.g. the
lassi
 ODE 
ourse that one 
an guarantee a �good� behavior of solutions of su
h equations only ona small interval. Hen
e, for a given thi
kness of the s-layer κ, the number N of 
omputed fun
tions
cn is another regularization parameter here, and we set cN := cglob. This is going along well withone of main ideas of the theory of Ill-Posed Problems, by whi
h the iteration number 
an serve as a
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tional 21regularization parameter, see pages 156 and 157 in [13℄. The following global 
onvergen
e estimatewas proven in [8℄
|cn − c∗|γ ≤ B1η, ∀n ∈

[
1, N

]
, (5.9)with a 
ertain positive 
onstant B1. Sin
e η is small, then (5.9) guarantees that one obtains a goodapproximation for the solution for ea
h n. On the other hand, although η is small, we see in ournumeri
al experiments that it is impossible to make it in�nitely small in pra
ti
al 
omputations.The latter two fa
tors pave the way for a subsequent appli
ation of the adaptivity te
hnique,whi
h enhan
es the solution cglob. This te
hnique uses the fun
tion cglob as its starting point for asubsequent enhan
ement.5.2. Some dis
repan
ies between our theory and 
omputational experiments. Sin
ethe above CIP is a quite 
omplex problem with many yet unknown fa
tors, it is hard to anti
ipatethat pra
ti
al 
omputations would not have any deviations from the theory and also that thetheories of two stages of our numeri
al method would exa
tly mat
h ea
h other. So, as it is oftenthe 
ase when numeri
al methods for some 
ompli
ated nonlinear ill-posed problems are ba
kedup analyti
ally, some dis
repan
ies of this sort take pla
e in this paper. We list them in thissubse
tion. Still, the main point is that, regardless on these dis
repan
ies, the above theory of theglobally 
onvergent numeri
al method still works, in
luding the 
onvergen
e estimate (5.9).The 1st dis
repan
y is that, be
ause of some 
onvenien
es of our past 
omputational pra
ti
e [5-8℄ and be
ause the main fo
us of this paper is analyti
al rather than numeri
al, we use a generatingplane wave instead of the point sour
e in (5.2). We laun
h this plane wave outside of the targetdomain Ω. Note that we have used the point sour
e only to justify the asymptoti
 behavior (5.6),see Lemma 2.1 in [8℄. We verify this asymptoti
 behavior 
omputationally, see subse
tion 7.2 of [8℄.The 2nd dis
repan
y is that we solve boundary value problems (5.8) in a square, whose boundaryis non-smooth. In prin
iple, this might result in singularities near the 
orners. However, we havenot observed su
h singularities in our 
omputations. Although the boundary of this square is notsmooth, as required in subse
tion 5.1, a modi�
ation of the 
onvergen
e estimate (5.9) 
an beproven in this 
ase if 
onsidering solutions of FEM analogs of (5.8) with a step size bounded frombelow and applying the Lax-Milgram theorem instead of the S
hauder theorem, also see subse
tion7.2 of [8℄.The 3rd dis
repan
y is that in order to �gure out the Fre
het derivative of the Tikhonov fun
-tional for the above CIP for the adaptivity, we need to assume that solutions of 
ertain hyperboli
initial boundary value problems are su�
iently smooth. These 
onditions 
annot be guaranteedfor the fundamental solution of the hyperboli
 equation (5.1). Still, they 
an be guaranteed if thefun
tion δ (x− x0) in (5.2) is repla
ed with

δθ (x− x0) =

{
Cθ exp

(
1

|x−x0|2−θ2

)
, |x− x0| < θ

0, |x− x0| > θ

}
,

∫

Rm

δθ (x− x0) dx = 1,for a su�
iently small θ > 0. Hen
e, sin
e x0 /∈ Ω, then δθ (x− x0) = 0 for in Ω as well as in a smallneighborhood of ∂Ω outside of Ω. Here the 
onstant Cθ > 0 is su
h that the above integral equalsunity. We stress that we have introdu
ed this fun
tion only to show that the required smoothnessof se
tions 6 and 7 
an indeed be ensured for an initial 
ondition, whi
h is 
lose to (5.2) in thedistribution sense. The theory of the globally 
onvergent numeri
al method works for this 
ase,in
luding (5.9).
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onsider the Fre
het derivative in se
tions 6,7, we need to vary the 
oe�
ient c. To do this,it is 
onvenient to introdu
e the set of fun
tions Z = Z (d1, d2, ω,H) ,

Z =

{
c : c (x) ∈ H for x ∈ σ, c (x) ∈ (d1 − ω, d2 + ω) for x ∈ Ω,
c ∈ C (Rm) , c− d1 ∈ H1 (Rm) , c (x) = d1 in Rm�σ

}
, (5.10)where ω ∈ (0, d1) is a small positive number. Be
ause of (5.10), denote Z ′ the set of all fun
tions

b ∈ H1 (Rm) ∩ C (Rm) su
h that
b (x) ∈ H for x ∈ σ, ∂xi

b ∈ L∞ (Rm) , b (x) = 0 for x ∈ Rm�σ. (5.11)By (5.10) and (5.11) c1 − c2 ∈ Z ′, ∀c1, c2 ∈ Z. Sin
e H is a �nite dimensional spa
e, then we 
anestimate C (σ) norms via L2 (σ) norms, whi
h is important for our derivations in se
tion 6,
‖c1 − c2‖C(σ) ≤ C̃1 ‖c1 − c2‖L2(σ) , ∀c1, c2 ∈ Z; ‖b‖C(σ) ≤ C̃1 ‖b‖L2(σ) , ∀b ∈ Z ′, (5.12)for a positive 
onstant C̃1 = C̃1 (Z) . Hen
e, Z 
an be 
onsidered as an open subset of the spa
e

L2

(
Ω̃
) for any bounded domain Ω̃ su
h that σ ⊂ Ω̃. While 
onditions (5.10), (5.11) are suitablefor our theory of se
tions 2-4, 
ondition (5.4) is violated for fun
tions c ∈ Z, and this is our 4thdis
repan
y. Still, we need the adaptivity only on the se
ond stage of our pro
edure, and also ina
tual 
omputations of the �rst stage we obtain the fun
tion cglob ∈ Z.6. Fre
het Derivatives. In this se
tion we derive Fre
het derivatives of solutions of 
ertainhyperboli
 initial boundary value problems for equation (5.1) with respe
t to the 
oe�
ient c ∈ Z.Let T = const > 0. Let Ω1 be a 
onvex bounded domain su
h that Ω ⊂ Ω1, ∂Ω ∩ ∂Ω1 = ∅, ∂Ω1 ∈

C∞. Denote QT = Ω1×(0, T ) , ST = ∂Ω1×(0, T ) .We repla
e in se
tions 6,7 the δ (x− x0) fun
tionin (5.2) with the fun
tion δθ (x− x0) de�ned in se
tion 5 and assume that x0 /∈ Ω1 and θ is so smallthat δθ (x− x0) = 0 in Ω1. Using results of Chapter 4 of [21℄, one 
an prove that the fun
tion
u ∈ C∞ (Rm × [0, T ]) . We also assume that there exists a fun
tion a (x) ∈ C∞ (

Ω1

) su
h that
∂na |∂Ω1

= 1, a |∂Ω1
= 0, a (x) = 0 in Ω. For example, if Ω1 = {x : |x| < R} , then one 
an 
hoose

a (x) = χ (x)
(
|x|2 −R2

)
/ (2R) , where the fun
tion χ ∈ C∞ (Ω1

)
, χ |∂Ω1

= 1 and χ (x) = 0 in Ω.Although the existen
e of su
h fun
tions a (x) might also be established for more general domains,we are not doing this here for brevity.Sin
e the fun
tion c (x) = d1 in Rm�Ω and the 
onstant d1 is known, we 
an uniquely solve theresulting initial boundary value problem (5.1), (5.2), (5.5) in the domain (Rm�Ω)× (0, T ) . Hen
e,the following two fun
tions g̃, p 
an be uniquely determined: g̃ (x, t) = u |ST
, p(x, t) = ∂nu |ST

. Weassume that there exist two fun
tions P,G su
h that
P,G ∈ Hm+2 (QT ) , (6.1)

∂nP |ST
= p (x, t) , ∂nG |ST

= g̃ (x, t) (6.2)
P (x, t) = G (x, t) = 0 for x ∈ Ω, (6.3)

∂j
tP (x, 0) = 0 in Ω1, j = 0, ..., 3. (6.4)We impose these assumptions be
ause the fun
tion g in (5.5) might be given with an error, meaningthat the solution of the initial boundary value problem (5.1), (5.2), (5.5) in (Rm�Ω)× (0, T ) wouldnot ne
essarily belong to C∞ then. Next, we 
onsider solutions u and λ of the following initialboundary value problems (6.5) and (6.6) (we do not use a new notation for u for brevity),
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c (x)utt = ∆u in QT ,

u (x, 0) = ut (x, 0) = 0,

∂nu |ST
= p (x, t) ;

(6.5)
c (x) λtt = ∆λ in QT ,

λ (x, T ) = λt (x, T ) = 0,

∂nλ |ST
= (g̃ − u |ST

) ζε2
(t) .

(6.6)We 
all problems (6.5) and (6.6) the �state problem� and the �adjoint problem� respe
tively. So,(6.6) is the problem with the reversed time, and the boundary 
ondition for it is known only if thefun
tion u |ST
is known. Hen
e, for a given 
oe�
ient c (x) , one should �rst solve the state problemand next solve the adjoint problem. In (6.6) ζε2

(t) is a 
ut-o� fun
tion, whi
h is introdu
ed toensure that the 
ompatibility 
ondition is satis�ed at ST ∩{t = T } , where ε2 > 0 is a small number.So, we 
hoose su
h a fun
tion ζε2
that ζε2

∈ C∞ [0, T ], ζε2
(t) = 1 for ∈ [0, T − ε2] , ζε2

(t) = 0 for
t ∈ (T − ε2/2, T ] and ζε2

(t) ∈ [0, 1] for t ∈ (T − ε2, T − ε2/2] .We now remind a result from the 
lassi
 theory of hyperboli
 PDEs with the Neumann boundary
ondition, see Theorems 5 and 6 in se
tion 7.2 of [16℄. We formulate it for our spe
i�
 needs ratherthan providing a more general formulation of [16℄. Although those Theorems 5 and 6 are provenfor the Diri
hlet boundary data, extensions of those proofs to the 
ase of Neumann boundary dataare rather straightforward, see, e.g. Theorem 5.1 of Chapter 4 in [21℄. Consider the following initialboundary value problem
c (x) vtt = ∆v + f in QT ,

v (x, 0) = vt (x, 0) = 0,

∂nv |ST
= v(n) (x, t) ∈ L2 (ST ) ,

(6.7)where the fun
tion f ∈ Hk (QT ). By the de�nition, the weak solution v ∈ H1 (QT ) of the problem(6.7) should satisfy the following integral identity (see an analogue for y = 0 in �5 of Chapter 4 in[21℄) for all fun
tions z ∈ H1 (QT ) su
h that z (x, T ) = 0

∫

QT

(−c (x) vtzt + ∇v∇z) dxdt−
∫

ST

v(n)zdS −
∫

QT

fzdxdt = 0. (6.8)Assume that there exists su
h an extension W (x, t) of the fun
tion v(n) from the boundary ST inthe domain QT that ∂nW |ST
= y (x, t) ,W ∈ Hk+2 (QT ) ,W (x, t) = 0 for x ∈ Ω, ∂j

tW (x, 0) =
0, j = 0, ..., k. In the 
ase k ≥ 2 we also assume that ∂i

tf (x, 0) = 0, i = 0.., k − 2. Consider thefun
tion v −W. Let the fun
tion c ∈ Z. Dividing both sides of equation (6.7) by c (x) and using
c−1∆v = ∇ ·

(
c−1∇v

)
− ∇

(
c−1
)
∇v, we obtain that v ∈ Hk+1 (QT ) and the following estimateholds

‖v‖Hk+1(QT ) ≤ C1

[
‖W‖Hk+2(QT ) + ‖f‖Hk(QT )

]
. (6.9)Here and below C1 = C1 (Z,QT , a (x)) and
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C2 = C2

(
Z,QT , ζε2

, a (x) , ‖P‖Hm+2(QT ) , ‖G‖Hm+2(QT )

) denote di�erent positive 
onstantsdepending on listed parameters. Consider fun
tions û = u−P, λ̂ = λ− (G− a (x)u) and substitutethem in (6.5), (6.6). Then, using (6.1)-(6.4), (6.7) and (6.9), we obtain that u, λ ∈ Hm+1 (QT ) and
‖u‖Hm+1(QT ) ≤ C1 ‖P‖Hm+2(QT ) , ‖λ‖Hm+1(QT ) ≤ C1

(
‖P‖Hm+2(QT ) + ‖G‖Hm+2(QT )

)
. (6.10)Theorem 6.1. Let domains Ω,Ω1 be those spe
i�ed above. Assume fun
tions P,G satisfying
onditions (6.1)-(6.4) exist. Consider the set Z as an open set in the spa
e L2 (Ω1) (see (5.12)).Let operators A1 : Z → H2 (QT ) and A2 : Z → H2 (QT ) map every fun
tion c ∈ Z in the solution

u (x, t, c) ∈ H2 (QT ) of the problem (6.5) and the solution λ (x, t, c) ∈ H2 (QT ) of the problem (6.6)respe
tively, where in (6.7) u |ST
:= u (x, t, c) |ST

. Let ε3 ∈ (0, 1) be a number and the fun
tion
c ∈ Z be su
h that d1 − ω (1 − ε3) ≤ c (x) ≤ d2 + ω (1 − ε3). Then ea
h of the operators A1, A2has the Fre
het derivative at this point c, A′

i (c) (b) = ũ (x, t, c, b) , A′
2 (c) (b) = λ̃ (x, t, c, b), where

b(x) ∈ Z ′ ⊂ L2 (Ω1) is an arbitrary fun
tion. Fun
tions ũ,λ̃ ∈ H2 (QT ) and they are solutions ofthe following initial boundary value problems
c (x) ũtt = ∆ũ− b (x) utt (x, t, c) , in QT ,

ũ (x, 0) = ũt (x, 0) = 0, ∂nũ |ST
= 0;

(6.11)
c (x) λ̃tt = ∆λ̃− b (x)λtt (x, t, c) , in QT ,

λ̃ (x, T ) = λ̃t (x, T ) = 0, ∂nλ̃ |ST
= −ζε2

ũ |ST
.

(6.12)Proof. Sin
e m = 2, 3, then by the embedding theorem Hm+1 (QT ) ⊂ C1
(
QT

) and ‖f‖C1(QT ) ≤
B2 ‖f‖Hm+1(QT ) , ∀f ∈ Hm+1 (QT ) , where the positive 
onstant B2 = B2 (QT ) depends only on thedomain QT . Let the fun
tion b ∈ Z ′ be su
h that ‖b‖C(Ω1) < ε3ω. Then c+ b ∈ Z. It follows from(6.10) that

‖u‖C1(QT ) ≤ B2 ‖u‖Hm+1(QT ) ≤ C1 ‖P‖Hm+2(QT ) . (6.13)By (5.12), (6.9)-(6.11) and (6.13) ũ ∈ H2 (QT ) and
‖ũ‖H2(QT ) ≤ C1 ‖P‖Hm+2(QT ) · ‖b‖L2(σ) . (6.14)Consider now the fun
tion w1 (x, t, c, b) = u (x, t, c+ b) − u (x, t, c) − ũ (x, t, c, b) . Then w1 ∈

H2 (QT ) . Using (6.5), we obtain
(c+ b)w1tt = ∆w1 − bũtt; w1 (x, 0) = w1t (x, 0) = 0, ∂nw1 |ST

= 0.Hen
e, by (5.12), (6.9) and (6.14) ‖w1‖H2(QT ) ≤ C2 ‖b‖2
L2(σ) . Sin
e the fun
tion ũ (x, t, c, b) dependslinearly on b, then the latter inequality proves that the fun
tion ũ is indeed the Fre
het derivativeof the operator A1 at the point c. Hen
e, we now 
an 
onsider ũ (x, t, c, b) for all fun
tions b ∈ Z ′.The proof for the operator A2 is similar. �Theorem 6.2. Let 
onditions of Theorem 6.1 be satis�ed. Consider the operator A3 : Z →

L2 (σ) de�ned as
A3 (c) (x) =

T∫

0

(utλt) (x, t, c) dt, x ∈ σ, ∀c ∈ Z,
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tional 25where fun
tions u, λ ∈ Hm+1 (QT ) are solutions of initial boundary value problems (6.5), (6.6).Then the fun
tion A3 (c) (x) ∈ C
(
Ω
) and the operator A is Lips
hitz 
ontinuous,

‖A3 (c1) −A3 (c2)‖L2(σ) ≤ C2 ‖c1 − c2‖L2(σ) , ∀c1, c2 ∈ Z.Proof. Sin
e by (6.10) and the embedding theorem fun
tions u, λ ∈ C1
(
QT

)
, then A3 (c) ∈ C (σ) .For i = 1, 2 let ui = u (x, t, ci) , λi = λ (x, t, ci) . Denote U = u1 − u2,Λ = λ1 − λ2. Then

c1Utt = ∆U − (c1 − c2)u2tt, U (x, 0) = Ut (x, 0) = 0, ∂nU |ST
= 0, (6.15)

c1Λtt = ∆Λ − (c1 − c2)λ2tt, Λ (x, T ) = Λt (x, T ) = 0, ∂nΛ |ST
= −ζε2

U |ST
. (6.16)Hen
e, using (5.12) and (6.10), we obtain from (6.15) and (6.16)

‖A3 (c1) −A3 (c2)‖L2(σ) ≤ T ‖λ1‖C1(QT ) ‖U‖H2(QT ) + T ‖u2‖C1(QT ) ‖Λ‖H2(QT )

≤ C2 ‖c1 − c2‖L2(σ) . �7. The Tikhonov Fun
tional for the CIP. To apply results of se
tions 2-4 to our CIP, wespe
ify in this se
tion the Tikhonov fun
tional for this CIP and derive the Fre
het derivative for it.We assume in this se
tion that 
onditions of Theorem 6.1 hold and 
onsider now the set Z as anopen subset of the spa
e H (see the paragraph after (5.12)). Re
all that the norm in H is L2 (σ)and the set Z ⊂ H. Let c ∈ Z be an arbitrary fun
tion and u = u (x, t, c) ∈ Hm+1 (QT ) be thesolution of the problem (6.5). Denote H1 := L2 (ST ) . Consider the operator F : Z → H1 de�nedas
F (c) (x, t) := (g̃ − u (x, t, c) |ST

) ζε2
(t) . (7.1)Sin
e the fun
tion g̃ (x, t) , (x, t) ∈ ST is a
tually generated by the data g (x, t) in (5.5) for our CIP,we assume that g̃ (x, t) = g̃∗ (x, t)+ g̃δ (x, t) , where g̃∗ 
orresponds to the exa
t solution c∗ (se
tion5) and g̃δ 
orresponds to the error in the data with a su�
iently small level of error δ ∈ (0, 1).Hen
e, g̃∗ (x, t)− u (x, t, c∗) |ST

≡ 0 and by (7.1) F (c∗) = g̃δ (x, t) . Following (6.1)-(6.4), we assumethat there exist fun
tions G∗, Gδ, su
h that
G∗, Gδ ∈ Hm+2 (QT ) , G = G∗ +Gδ, G

∗ (x, t) = Gδ (x, t) = 0, for x ∈ Ω,

∂nG
∗ |ST

= g∗, ∂nGδ |ST
= gδ, ‖Gδ‖Hm+2(QT ) ≤ δ.

(7.2)Obviously one 
an take, e.g. G∗ = a (x)u (x, t, c∗) . Hen
e, we assume that
‖F (c∗)‖L2(ST ) ≤ δ, (7.3)whi
h is required by (2.6). In addition, by Theorem 6.1 and the tra
e theorem the operator F hasthe Fre
het derivative F ′ (c) (b) at every point c ∈ Z,

F ′ (c) (b) = −ζε2
(t) ũ (x, t, c, b) |ST

, ∀b ∈ Z ′. (7.4)Lemma 7.1. Assume that 
onditions of Theorem 6.1 and 
onsider Z is a subset of H. Thenthe Fre
het derivative F ′ (c) satis�es the Lips
hitz 
ondition
‖F ′ (c1) − F ′ (c2)‖ ≤ C2 ‖c1 − c2‖L2(σ) , ∀c1, c2 ∈ Z.



26 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINProof. For i = 1, 2 denote ui = ui (x, t, ci) and ũi = ũi (x, t, ci, b) solutions of problem (6.13) and(6.15) respe
tively with c = ci. Similarly with the proof of Theorem 6.2 let U = u1−u2, Ũ = ũ1−ũ2.Hen
e, U ∈ Hm+1 (QT ) , Ũ ∈ H2 (QT ) . By (6.11)
c1Ũtt = ∆Ũ − bUtt − (c1 − c2) ũ2tt, Ũ (x, 0) = Ũt (x, 0) = 0, ∂nŨ |ST

= 0. (7.5)It follows (5.12), (6.9), (6.11) and (6.15) that
‖bUtt‖L2(QT ) + ‖(c1 − c2) ũ2tt‖L2(QT ) ≤ C2 ‖c1 − c2‖L2(σ) ‖b‖L2(σ) .Hen
e, by (6.9), (7.4), (7.5) and the tra
e theorem

‖F ′ (c1) (b) − F ′ (c2) (b)‖H1
≤ C2 ‖c1 − c2‖L2(σ) ‖b‖L2(σ) . �Re
all that the fun
tion cglob ∈ Z (subse
tion 5.2) and 
onsider the Tikhonov fun
tional Yα :

Z → R for the operator F (c) in (7.1) (also, see Remark 2.1),
Yα (c) =

1

2
‖F (c)‖2

H1
+
α

2
‖c− cglob‖2

L2(σ) , (7.6)In order to �nd the Fre
het derivative Y ′
α (c) , 
onsider the Lagrange fun
tional L (c) ,

L (c) = Yα (c) +

∫

QT

(−c (x) utλt + ∇u∇λ) dxdt −
∫

ST

pλdSdt, (7.7)where fun
tions u (x, t, c) , λ (x, t, c) ∈ Hm+1 (QT ) are solutions of initial boundary value prob-lems (6.5), (6.6). By (6.5), (6.6) and (6.8) the integral term in (7.7) equals zero. Hen
e, L (c) =
Yα (c),∀c ∈ Z. However, it is not straightforward to �gure out the analyti
 expression for (F ′ (c))∗ F (c)for the operator F in (7.1). The latter is required by (2.9) for the 
al
ulation of the Fre
het deriva-tive Y ′

α (c). The reason why L (c) is introdu
ed is that it is easier to 
al
ulate its Fre
het derivative
L′ (c) 
ompared with the one of Yα (c) . To obtain the expli
it expression for L′ (c), we need, sim-ilarly with se
tion 6, to vary the fun
tion c via 
onsidering c + b ∈ Z for b ∈ Z ′ and then tosingle out the term, whi
h is linear with respe
t to b. When varying c, we also need to 
onsiderrespe
tive variations of fun
tions u and λ in (7.7), sin
e these fun
tions depend on c as solutionsof state and adjoint problems. And linear, with respe
t to c, parts of these variations will be fun
-tions ũ (x, t, c, b), λ̃ (x, t, c, b) . Unlike this, the �all-at-on
e� approa
h of [5-7℄, assumes that in (7.7)
L := L̃ (c, u, λ) , where fun
tions c, u, λ are treated as mutually independent ones with variations(
b, u, λ

) of (c, u, λ) satisfying
u, λ ∈ H1 (QT ) , u (x, 0) = λ (x, T ) = 0. (7.8)The resulting expression L̃′ (c, u, λ)

(
b, u, λ

) is 
onsidered as the �all-at-on
e� Fre
het derivative ofthe Lagrangian L̃ (c, u, λ) rather than the one of the Tikhonov fun
tional Yα (c). One of assertionsof Theorem 7.1 is that these two derivatives are equal to ea
h other.Theorem 7.1. Assume that 
onditions of Theorem 6.1 hold. Then
Y ′

α (c) (b) = L′ (c) (b) =

∫

Ω



α (c− cglob) −
T∫

0

utλtdt



 b (x) dx, ∀c ∈ Z, ∀b ∈ Z ′. (7.9)
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tional 27In parti
ular, sin
e by (5.11) b (x) = 0 for x ∈ Rm�σ, then
Y ′

α (c) (x) = α (c− cglob) (x) −
T∫

0

(utλt) (x, t, c) dt, x ∈ σ, ∀c ∈ Z, (7.10)and by Theorem 6.2 Y ′
α (c) ∈ C (σ) . The same expression (7.9) holds for the all-at-on
e Fre
hetderivative of the Lagrangian, L̃′ (c, u, λ)

(
b, u, λ

)
= Y ′

α (c) (b) , ∀c ∈ Z, ∀b ∈ Z ′, i.e. the all-at-on
eFre
het derivative of the Lagrangian equals the Fre
het derivative of the Tikhonov fun
tional.Proof. Considering in (7.7) L (c+ b)−L (c), singling out the term, whi
h is linear with respe
tto b and using (7.4), (7.6) and Theorem 6.1, we obtain
L′ (c) (b) = Y ′

α (c) (b) =

∫

Ω


α (c− cglob) −

T∫

0

utλtdt


 b (x) dx

+

∫

QT

(
−cutλ̃t + ∇u∇λ̃

)
dxdt−

∫

ST

pλ̃dSdt (7.11)
+

∫

QT

(−cλtũt + ∇λ∇ũ) dxdt−
∫

ST

(g − u |ST
) ζε2

(t) ũdSdt, ∀c ∈ Z, ∀b ∈ Z ′,where ũ and λ̃ are solutions of problems (6.11) and (6.12) respe
tively. Sin
e ũ (x, 0) = λ̃ (x, T ) = 0,then (6.8), (6.11) and (6.12) imply that se
ond and third lines in (7.11) equal zero, whi
h proves(7.9). Consider now the all-at-on
e Fre
het derivative via 
onsidering L̃
(
c+ b, u+ u, λ+ λ

)
−

L̃ (c, u, λ) and singling out in this expression the term, whi
h is linear with respe
t to (b, u, λ) .Then we obtain the same expression as in (7.11) where fun
tions ũ, λ̃ are repla
ed of with u, λ.Hen
e, (6.5)-(6.8) and (7.8) imply that se
ond and third lines in the latter expression equal zero.
� Remark 7.1. We refer to the earlier work [10℄ where the Fre
het derivative for the Tikhonovfun
tional for the parameter identi�
ation problem (whi
h is di�erent from a CIP) was derived,although the proof was not presented: by the rules of that journal. The forward problem in [10℄ isthe Cau
hy problem for a hyperboli
 equation. A private 
ommuni
ation with the author of [10℄has revealed that the 
omplete proof was presented in his Ph.D. thesis (1971). Sin
e the Lagrangianwas not introdu
ed in [10℄, then the above equality of two derivatives was not proved in [10℄.Now we are ready to reformulate theorems of se
tions 2-4 for our CIP. To do this, it is 
onvenientto 
onsider another set Z1 ⊂ H, whi
h is the set of restri
tions of all fun
tions c ∈ Z on the polygonaldomain σ. Hen
e, when 
onsidering solutions u and λ of state and adjoint problems in the fun
tional
Yα (c) , we assume that the 
oe�
ient c ∈ Z. However, when subsequently applying the theory ofse
tions 2-4 to this fun
tional, we assume that c ∈ Z1. Sin
e we always work with the gradient
Y ′

α (c) in that theory, then (7.9) and (7.10) imply that this theory is not a�e
ted this way.There is no guarantee that the fun
tion Y ′
α (c) ∈ H, be
ause of the integral term in (7.10).Hen
e, in order to apply the theory of se
tion 4, we should 
onsider the fun
tion PY ′

α (c) instead of
Y ′

α (c) , where P : L2 (σ) → H is the operator of the orthogonal proje
tion of L2 (σ) ontoH . In pra
-ti
al 
omputations we a
tually 
ompute the interpolant of Y ′
α (c) on the 
orresponding mesh instead
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α (c) , and this is one of sour
es of error, see Theorems 7.3 and 7.4. In
reasing the smoothnessof fun
tions P,G by 1 in (6.1), one 
an prove that in Theorem 6.2 A (c) ∈ C1 (σ), whi
h leads toan estimate of this error via (2.4). We keep in mind below that (PY ′

α (c) , f) = (Y ′
α (c) , f) , ∀c ∈

Z1, ∀f ∈ H. It follows from Lemma 7.1 that there exists a number N4 = N4 (C2) > 0 su
h that
‖Y ′

α (c1) − Y ′
α (c1)‖L2(σ) ≤ N4 ‖c1 − c2‖L2(σ) , ∀c1, c2 ∈ Z1. Obviously, lemmata and theorems of se
-tions 2 and 3 are appli
able now with the natural repla
ement of the ve
tor (x∗, xglob, xα, N3) withthe ve
tor (c∗, cglob, cα, N4) and assuming that 
onditions (2.11), (2.12) hold. Hen
e, below we stillregard, without restating, Assumption 4.1 as a standing one. Also, in Lemma 3.2 and Theorems3.1, 3.2 we now have β1 = β1 (C2) ∈ (0, 1) , ρ = β1α = β1δ

µ2 , δ1 = δ1 (µ1, µ2, C2) , δ ∈ (0, δ1) and
V(1+

√
2)δµ1

(c∗) : =
{
f ∈ H : ‖f − c∗‖L2(σ) <

(
1 +

√
2
)
δµ1

}
,

Vρ : =
{
f ∈ H : ‖f − cα‖L2(σ) < ρ

}
.In addition, (4.1) holds where A is a given positive 
onstant and ‖∇cα‖L∞(σ) ≤ A. The proof ofTheorem 7.2 follows immediately from (5.10)-(5.12), (6.1)-(6.4), Lemmata 2.1, 3.2 and Theorems3.1, 3.2.Theorem 7.2. Assume that 
onditions of Theorem 6.1 hold, fun
tions c∗, cglob ∈ Z1 and inparti
ular ‖cglob − c∗‖L2(σ) ≤ δµ1 . Then one 
an 
hoose the number δ2 = δ2 (µ1, µ2, C2) ∈ (0, δ1]so small that for δ ∈ (0, δ2) we have: V(1+√

2)δµ1
(c∗) ⊂ Vρ ⊂ Z1, the fun
tional Yα (c) is stri
tly
onvex on Vρ with the stri
t 
onvexity parameter κ = α/4 and there exists the unique minimizer cαof Yα (c) on the set V(1+√

2)δµ1
(c∗) as well as the unique minimizer cn on the set (∂V ρ�Vρ

)
∩Mn.Theorem 7.3. Let 
onditions of Theorem 7.2 hold. Suppose that the fun
tion PY ′

α (c) ∈ His 
al
ulated with an error. That is, one 
al
ulates the fun
tion Sα (c) ∈ H instead of PY ′
α (c) and

‖PY ′
α (c) − Sα (c)‖L2(σ) ≤ τ, ∀c ∈ Vρ, where the number τ ∈ [0, 1) is su�
iently small. Supposethat the minimization pro
ess of the fun
tional Yα (c) on the set Mn ∩ Vρ with n ≥ n is stopped atsu
h a point cn,τ that τ ≤ ‖PnSα (cn,τ )‖L2(σ) /2. Then the following a posteriori error estimate ofthe re
onstru
tion of the regularized 
oe�
ient holds

‖cn,τ − cα‖L2(σ) ≤
3

α
‖Sα (cn,τ )‖L2(σ) .In parti
ular, if τ = 0, then

‖cn − cα‖L2(σ) ≤
3

α
‖PY ′

α (cn)‖L2(σ) ≤
3

α
‖Y ′

α (cn)‖L2(σ) .Proof. Sin
e Y ′
α (cα) = 0, then by (3.2) and Theorem 7.2

α ‖cn,τ − cα‖L2(σ) ≤ 2 ‖Y ′
α (cn,τ ) − Y ′

α (cα)‖L2(σ) ≤ 2 ‖S (cn,τ )‖L2(σ) + 2τ ≤ 3 ‖S (cn,τ )‖L2(σ) . �We now reformulate the relaxation Theorem 4.2 for our CIP. This is Theorem 7.4, whi
himmediately follows from Theorems 4.2, 7.2 and 7.3.Theorem 7.4. Denote r̂ =

√
1 − α2 (2N4)

−2
. Assume that 
onditions of Theorem 7.3 holdand n is the integer of Assumption 4.1. Suppose that for any subspa
e Mk with k ≥ n the min-imization pro
ess of the fun
tional Yα (c) on the set Vρ ∩Mn is stopped at su
h a point ck,τ that
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‖PMk

S (ck,τ )‖L2(σ) ≤ τ . Let n ≥ n and a1 be the number from (2.1). Assume that there exists anumber rn ∈ (r̃, 1) su
h that
C2

(
AK

hn√
α

+
√
ατ +

τ

α

)
≤ (rn − r̂) ‖S (cn,τ )‖L2(σ) , (7.12)

a1C2K
√
α ‖∇S (cn,τ )‖L∞(eσ) ≤

rn − r̂

8N4
‖S (cn,τ )‖3/2

L2(σ) . (7.13)Let δ2 ∈ (0, δ1] be the number of Theorem 7.2. Then there exists su
h a subspa
e Mn+1 of thespa
e H that Mn ⊂Mn+1 and for δ ∈ (0, δ2) the following relaxation property holds
‖cn+1,τ − cα‖L2(σ) ≤ rn ‖cn,τ − cα‖L2(σ) . (7.14)If at least one of inequalities (7.12), (7.13) is invalid, then the mesh re�nement pro
ess should bestopped. If τ = 0, then the above holds with the repla
ement of the pair {S (cn,τ ) , cn,τ} by the pair

{PY ′
α (cn) , cn} . Let r ∈ (r̂, 1) be the maximal value of 
orresponding numbers rn for a 
ertain �nitenumber of su
h mesh re�nements . Then (7.14) is valid with the repla
ement of rn with r, whi
hturns (7.14) into (1.1).Remark 7.2. In referen
e to numbers C2 and N4 in (7.13), see Remark 4.1. Sin
e the lo
alstri
t 
onvexity of the fun
tional Yα on the set Vρ in 
ombination with Assumption 4.1 implies
onvergen
e of gradient-like methods of minimization of Yα on sets Vρ ∩Mn, a 
orresponding global
onvergen
e theorem for the entire two-stage pro
edure for the above CIP to the above de�nedregularized solution cα 
an be proven, unlike the 
urrent �rst stage only of [8℄. This 
an be done,provided that the globally 
onvergent stage would be modi�ed for the smooth initial 
ondition

δθ (x− x0) (see se
tion 5).8. Numeri
al Studies.8.1. Computation of the forward problem. In this paper we work with the 
omputa-tionally simulated data. That is, the data for the CIP are generated by 
omputing the forwardproblem with the given fun
tion c(x) := c∗ (x). To solve the forward problem, it is 
onvenientto use the hybrid FEM/FDM method des
ribed in [4℄. The 
omputational domain for the for-ward problem is G = [−4.0, 4.0] × [−5.0, 5.0]. This domain is split into a �nite element domain
GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0] and a surrounding domain GFDM with a stru
tured mesh,
G = GFEM ∪GFDM , see 8.1-a). The reason of the 
onvenien
e of the hybrid method is that thereis no need to have the unstru
tured mesh in the domain G�Ω, sin
e c (x) = 1 in this domain. Thespa
e mesh in Ω 
onsists of triangles and in GFDM - of squares with the mesh size h̃ = 0.125 bothin the overlapping regions and in G�Ω. At the top and bottom boundaries of G we use �rst-orderabsorbing boundary 
onditions [14℄. At the lateral boundaries, mirror boundary 
onditions allowus to assume an in�nite spa
e domain in the lateral dire
tion. The 
oe�
ient c(x) is unknown onlyin the square Ω ⊂ G,

c(x) =






1 := d1 in G�Ω
1 + k(x) in Ω,

c̃ = 4 in small squares  , (8.1)
k(x) =

{
0.5 sin2

(
πx1

2.875

)
sin2

(
πx2

2.875

)
, for |x1| , |x2| < 2.875

0 otherwise, in
luding small squares }
.
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(a) G = GFEM ∪GFDM (b) c7,9 (
) ||cn − cα||L2Fig. 8.1. a) The 
omputational domain for the forward problem is the re
tangle. The dark blue square isthe domain Ω. b) The spatial distribution of the fun
tion c7,9 (x) := c7 (x) := cglob (x) resulting from the globally
onvergent stage of our method. The maximal value of this fun
tion within imaged in
lusions is 3.1 (
orre
t maximalvalue is 4). Also, cglob (x) = 1 outside of imaged in
lusions. Hen
e, it is desirable to enhan
e the image in twoways: (1) it would be good to in
rease the value of the fun
tion c within imaged in
lusions from 3.1 to 4, and (2) itis desirable to move up the lo
ation of the left imaged in
lusion. This paves the way for the subsequent appli
ationof the adaptivity te
hnique. 
) Computed norms ‖cn − cα‖L2(σ) on �ve (5) adaptively re�ned meshes in
ludingthe initial 
oarse mesh. Two 
ases are presented: (1) ς = 0.02 ≈ δ, α = 0.15 ≈ ς0.48 and (2) ς = α = 0.01, seeexplanations in the text. The relaxation property (7.14) is evident from this �gure. In the �rst 
ase the relaxationis more pronoun
ed on the 4 th mesh re�nement with r4 ≈ 0.79, although it is also 
lear that 0.95 < r1, r2,r3 < 1.In the se
ond 
ase r1 ≈ 0.82, r2 ≈ 0.89, r3 ≈ r4 ≈ 0.71.

Hen
e, (8.1) means that c(x) = 1 both near the boundary of the square Ω and outside of this squareand c(x) ≥ 1 := d1 everywhere. The 
onstant c̃ 
hara
terizes the in
lusion/ba
kground 
ontrastin small squares. The number 0.5 is the maximal amplitude of the slowly 
hanging ba
kgroundfun
tion. We point out that our goal is to image small squares of Figure 8.1 (
) rather than to imagethe slowly 
hanging ba
kground fun
tion. Another approa
h to imaging of small in
lusions 
an befound in, e.g. [2℄. The tra
e of the solution of the forward problem is re
orded at the boundary
∂Ω as the fun
tion g (x, t) , see (5.5). Next, the 
oe�
ient c(x) is �forgotten�, and our goal is tore
onstru
t this 
oe�
ient for x ∈ Ω from the data g (x, t) . The boundary of the domain G is
∂G = ∂G1 ∪ ∂G2 ∪ ∂G3. Here, ∂G1 and ∂G2 are respe
tively top and bottom sides of the largestdomain of 8.1-a) and ∂G3 is the union of left and right sides of this domain. Let t1 := 2π/s, T =
17.8t1. We initialize the plane wave f(t) on the top boundary ∂G1 (also, see subse
tion 5.2), where
f(t) = 0.1 (sin (st−π/2) + 1) , 0 ≤ t ≤ t1, f(t) = 0, t ∈ (t1, T ) . Hen
e, it is initialized for t ∈ (0, t1]and propagates into G. In the integral of the Lapla
e transform (subse
tion 5.1) we integrate for
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t ∈ (0, T ) . Thus, the forward problem in our numeri
al test is

c (x)utt −△u = 0, in G× (0, T ),

u(x, 0) = ut(x, 0) = 0, in G,
∂nu

∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ).

(8.2)
To see how our algorithm works with the noisy date, we introdu
e the multipli
ative random noisein the data g. thus 
onsidering the following fun
tion gς

gς

(
xi, tj

)
= g

(
xi, tj

)
[1 + ςαj (gmax − gmin)] , (8.3)where xi ∈ ∂Ω, tj ∈ [0, T ] are mesh points at the boundary of the square Ω and in the time interval

[0, T ] , αj ∈ [−1, 1] is the random number taken from the uniform distribution, ς ≈ δ is the noiselevel, where gmax and gmin are maximal and minimal values of the fun
tion g. However, we havedi�erentiated the Lapla
e transform w (x, s) with respe
t to s using the �nite di�eren
e, be
ausethe Lapla
e transforms smooths out the noise.8.2. Re
onstru
tion result on the globally 
onvergent stage. In our numeri
al studieswe have used the interval s ∈ [s, s] = [6.95, 7.45] , whi
h is a part of the interval [6.7, 7.45] used in[8℄. We have taken its partition step size κ = 0.05, whi
h means that N = 10. We have taken thefollowing values of parameters: ν = 20,κn = 0 for n = 1, 2 and κn = 0.0001 for n ∈ [3, 10] , ς = 0.05.Thus, the noise level on the �rst stage of our two stage pro
edure was 5%. We have solved Diri
hletboundary value problems (5.8) by the FEM. If in our 
omputations we saw that cn,i (x′) ≤ 0.5for any point x′ ∈ Ω, then we have set a new value as cn,i (x′) := 1 = d1 in order to ensure thatthe operator cn,i (x′) ∂2
t − ∆ is a hyperboli
 one when solving the forward problem (8.2) with thefun
tion cn,i, whi
h we need for iterations with respe
t to tails (subse
tion 5.1). The latter 
ut-o�pro
edure prevents us from imaging the slowly 
hanging ba
kground, whi
h is not our goal anyway(see subse
tion 8.1).To monitor the 
onvergen
e of our method, we have evaluated norms

Fn,i =
‖qn,i |Γh

−ψn‖L2(∂Ω)

‖ψn‖L2(∂Ω)

. (8.4)In (8.4) values of 
al
ulated fun
tions qk
n,i are taken at the points h-inside from the lower boundary,where h = 0.125. We stop inner iterations with respe
t to tails (i.e., with respe
t to i), when either

Fn,i+1 ≥ Fn,i or |Fn,i+1 − Fn,i| ≤ 0.0005. One 
an see from Table 8.1 that norms Fn,i de
ay �rstwith the grow of n ∈ [1, 7] . Next, they start to grow at n = 8 and grow sharply at n = 9. Hen
e, westop the globally 
onvergent part at c7,9 := c7 := cglob, see label for Table 8.1. Another reason ofthe growth at n = 8 might be that the s-interval 
overed at n = 7 has the length of 0.35, and thismight be the limit for the number β2 of subse
tion 5.1. Figure 8.1-b) displays the resulting imageand its legend explains details.
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i n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 91 1.07519 0.979843 0.957188 0.960068 0.840414 0.799041 0.188793 0.380556 0.5630632 0.98301 0.978974 0.955977 0.934431 0.763071 0.826884 0.197357 0.397676 1.5630633 0.98301 0.978574 0.957078 0.931403 0.753745 0.826884 0.203472 0.3992974 0.956932 0.931034 0.768198 0.21208 0.4007145 0.956501 0.931012 0.768198 0.214845 0.4140136 0.955725 0.1983 0.4356637 0.955006 0.201933 0.4261218 0.954221 0.19723 0.4205269 0.953986 0.195233 0.42052610 0.953287 0.19914511 0.952856 0.19914512 0.952856 Table 8.1Values of numbers Fn,i in (8.4). One 
an see that they generally de
rease until n = 7. And stabilization withrespe
t to i is also observed. Next, they start to in
rease at n = 8 and grow sharply at n = 9. Therefore, we stopthe globally 
onvergent part at n := N = 7 and set c7,9 := c7 := cglob. This is going along well with one of basi
ideas of the theory of Ill-Posed Problems by whi
h the iteration number 
an be one of regularization parameters, seepages 156, 157 of [13℄.8.3. The se
ond stage of the two-stage pro
edure. In this se
ond stage of our two stagepro
edure we use the adaptivity te
hnique, whi
h is the main fo
us of the analyti
al study of thispubli
ation. We take the above fun
tion cglob (Figure 8.1-b)) as the �rst guess for our method.On ea
h mesh we use the quasi-Newton method to �nd an approximate solution of the equation

(Y ′
α)

I
(c) = 0, where the fun
tion Y ′

α (c) is given in (7.10), see [7℄ for details of our implementationof the quasi-Newton method. Here the supers
ript �I� stands for the standard interpolant of thefun
tion Y ′
α (c) on this mesh (see se
tion 7 for some details). On ea
h mesh we stop iterations ofthe quasi-Newton method on su
h a fun
tion c(n) that either ∥∥∥(Y ′

α)
I (
c(n)

)∥∥∥
L2(σ)

≤ 10−5 or thesenorms are stabilized. Usually norms are stabilized and the resulting norm ∥∥∥(Y ′
α)

I (
c(n)

)∥∥∥
L2(σ)

6= 0.Hen
e, we re�ne the mesh in su
h subdomains of σ that
∣∣∣(Y ′

α)
I
(
c(n)

)
(x)
∣∣∣ ≥ υmax

σ

∣∣∣(Y ′
α)

I
(
c(n)

)
(x)
∣∣∣ ,where υ = 0.6 was 
hosen in numeri
al experiments. This 
orresponds to the mesh re�nementre
ommendation presented after the proof of Theorem 4.2. In our 
ase is the domain Ω1 =

{x2 > −3} ∩ G (se
tion 6). We do not use the 
ut-o� fun
tion ζε2
(t) in (6.6) and (7.1), sin
e wehave observed 
omputationally that u (x, T ) ≈ 0. Sin
e the 
onvergen
e estimate (5.9) guaranteesthat the 
orre
t solution is not far from cglob, then we use some 
onstrains for the re
onstru
ted
oe�
ient. We impose these 
onstraints using the solution obtained on the globally 
onvergentstage. The idea is that the solution obtained on the se
ond stage should not be too far from thefun
tion cglob. Thus, in all adaptive meshes we enfor
e that the 
oe�
ient c(x) belongs to thefollowing set of admissible parameters, c(x) ∈ {c ∈ H : 1 ≤ c(x) ≤ 4}. The solution 
omputedon the mesh, whi
h was obtained after n re�nements, is denoted here as c(n), for 
onvenien
e. In
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a) 4776 elements b) 5272 elements 
) 6174 elements
d) 7682 elements e) 11068 elements f) chα ≈ 3.99Fig. 8.2. Computational results for the se
ond stage of our two stage numeri
al pro
edure. We have taken onthis stage the noise level in (8.3) ς = 0.02 ≈ δ and the regularization parameter α = 0.15 ≈ ς0.48. Hen
e, µ2 ≈ 0.48,where the number µ2 is de�ned in (2.12). Adaptively re�ned meshes on �ve 
onsequtive mesh re�nements are shownon a)-e). Fig. 8.2 f) displays the resulting image of the 
oe�
ient c(5) (x) after �ve (5) mesh re�nements, see detailsin the text. Lo
ations of both in
lusions are a

urately imaged (
ompare with Fig. 8.1 a)). The maximal value ofthe fun
tion c(5) (x) = 4 inside of ea
h imaged in
lusion, whi
h means that the in
lusion/ba
kground 
ontrast isalso a

urately imaged. In addition, c(5) (x) = 1 outside of imaged in
lusions. We set cα (x) := c(5) (x) .addition, we use a 
ut-o� parameter Ccut for the re
onstru
ted 
oe�
ient c(n),

c(n) (x) =

{
c(n) (x) , if c(n) (x) ≥ Ccut maxσ c

(n)(x)
cglob, elsewhere. .In our numeri
al experiments we have taken Ccut = 0.75 and in the adaptivity te
hnique wehave taken in (8.3) ς = 0.02 ≈ δ whi
h 
orresponds to 2% of the noise level, and we have taken

α = 0.15 ≈ δ0.48, whi
h means that in (2.12) µ2 ≈ 0.48. First, we use the quasi-Newton method onthe same 
oarse mesh where the globally 
onvergent method worked and have obtained the sameimage quality (not shown) as on Figure 8.1b. Next, we have performed our testing on 5 timesre�ned meshes. As a result, the image was stabilized. This stabilization basi
ally means that thenorm ∥∥∥(Y ′
α)

I (
c(5)
)∥∥∥

L2(σ)
be
ame too small, indi
ating that at least one of 
onditions (7.12), (7.13)is likely invalid at n = 5 and thus, the mesh re�nement pro
ess should be stopped (Theorem 7.4).Figure 8.2 displays those mesh re�nements as well as the resulting image on the �nally re�ned



34 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINmesh. One 
an see that the image quality is signi�
antly enhan
ed 
ompared with Figure 8.1-b).Namely, the maximal value of the imaged 
oe�
ient within both in
lusions is now 4, whi
h is the
orre
t value, and lo
ations of both imaged in
lusions are also imaged a

urately.An important additional point is to 
omputationally verify the relaxation property (7.14). As
cα we have taken the fun
tion obtained on the �nally re�ned mesh (see Figure 8.1-
)). Next, we
ompute norms ∥∥c(n) − cα

∥∥
L2(σ)

, where c(n) is the approximation for the fun
tion c obtained after
n mesh re�nements. Ea
h fun
tion c(n) is linearly interpolated on the �nally re�ned mesh. Sin
e
c(n) is a pie
ewise linear fun
tion, this interpolation does not 
hange it. Figure 8.1-d) displays
omputed values of norms ∥∥c(n) − cα

∥∥
L2(σ)

for all six meshes on whi
h 
omputations have beenperformed. The relaxation property (7.14) is evident. Note that this �gure also displays result ofanother test with ς = α = 0.01, whi
h we have performed. We observe that 
omputed norms forthis se
ond test are slightly lower than those of the �rst, so as relaxation numbers rn. The resultingimage for the se
ond test (not shown) was of about the same quality as the one for the �rst.A
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