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ADAPTIVITY WITH RELAXATION FOR ILL-POSED PROBLEMS AND
GLOBAL CONVERGENCE FOR A COEFFICIENT INVERSE PROBLEM *

LARTSA BEILINAT, MICHAET, V. KLIBANOV ¥ AND MIKHATL YU. KOKURIN §

Abstract. A new framework of the Functional Analysis is developed for the adaptive FEM (adaptivity) for the
Tikhonov regularization functional for ill-posed problems. As a result, the relaxation property for adaptive mesh
refinements is established. An application to a multidimensional Coefficient Inverse Problem for a hyperbolic equation
is discussed. This problem arises in the inverse scattering of acoustic and electromagnetic waves. First, a globally
convergent numerical method provides a good approximation for the correct solution of this problem. Next, this
approximation is enhanced via the subsequent application of the adaptivity. Analytical results are computationally
verified

Key words. ill-posed problems, globally convergent numerical method for a coefficient inverse problem, two-
stage numerical procedure, adaptivity for the Tikhonov functional, relaxation property, orthogonal projection oper-
ators

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. We develop a new framework of the Functional Analysis for the Finite Ele-
ment Adaptive technique (adaptivity for brevity) for the Tikhonov functional for ill-posed problems.
For the first time the so-called relaxation property for the adaptive mesh refinements is proved (see
below in this section). We use the adaptivity as a complementary tool to a globally convergent
numerical method, which was recently developed in [8] for a Coefficient Inverse Problem (CIP) for a
hyperbolic PDE (section 5). This CIP has applications in acoustics and electromagnetics. CIPs for
PDEs are both ill-posed and nonlinear, which causes serious difficulties for their numerical solutions.
In particular, least squares residual functionals for CIPs suffer from the problem of multiple local
minima and ravines, see, e.g. [19] for some examples. Because of the phenomenon of local minima,
conventional numerical methods for CIPs are locally convergent ones. The numerical method of [8]
relies on the structure of the PDE operator and thus, is not using least squares. The convergence
estimate in the global convergence theorem of [8] depends on a small parameter 7 > 0. This param-
eter incorporates the level of the error in the boundary data as well as some approximation errors
of the technique of [8].

This paper is motivated by our recent numerical experience. Namely, although 7 is small, we
have observed that it cannot be made infinitely small in practical computations, because of above
approximation errors of the method of [8]. On the other hand, locally convergent numerical methods
for CIPs are independent on these approximation errors. This led us to the idea of enhancing images
resulting from the globally convergent method via a subsequent application of a locally convergent
one. On the other hand, it is well known that a good first approximation for the correct solution
is one of the key inputs for any locally convergent method. Therefore, our natural conclusion was
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that one should have a two stage numerical procedure. On the first stage one should get a good first
approximation for the solution by the globally convergent method of [8]. And on the second stage
one should use this approximation as a first guess for a further enhancement via an appropriate
locally convergent numerical method. An important point here is that since 7 is small, then there is
a rigorous guarantee that the globally convergent part indeed provides the above input. This idea
is carried out in numerical experiments of section 8.

The next question to ask was about the choice of a proper locally convergent numerical method.
We have observed numerically (section 8) that a straightforward application of the quasi-Newton
method on the same mesh where the globally convergent part worked does not improve the solution
provided by the first stage. Thus, based on the previous numerical experience of the first author
for the same CIP [5-7], we have concluded that a sequence of adaptive local mesh refinements
should be used. It is shown numerically here that the adaptivity indeed refines images obtained on
the globally convergent stage. Therefore, we study here the problem of successive approximations
of the regularized solution via a sequence of adaptive mesh refinements for a given value of the
regularization parameter . In our computations « is chosen experimentally. The question of an
optimal choice of « is outside of the scope of this publication. We refer to [17] for a detailed study
of this question for the adaptivity technique.

In this paper the Tikhonov functional J, is constructed for a general nonlinear operator F, and
Jo 18 linked with the FEM. Our functional analytical framework for the adaptivity is independent
on a specific procedure of the minimization of J,. One of the key assumptions below is that a first
good approximation for the exact solution is available, which is in conjunction with the above idea
about the two stage procedure. Since the adaptivity is a locally convergent numerical method, then
our analysis is inevitably an “asymptotic” one, as it is always the case in such scenarios. In other
words, we assume that the error in the data is sufficiently small.

In addition to the above framework, the following five (5) new results are presented in this paper:
(1) We prove the strict convexity of J,, in a small neighborhood of the regularized solution, provided
that the originating nonlinear operator F' has the first Lipschitz continuous Frechet derivative. A
similar result was proven earlier in [24,25] under the condition that the nonlinear operator F has
the second continuous Frechet derivative. Note that such a result for the case of a bounded linear
operator is trivial. (2) We prove the relaxation property of the Tikhonov functional with respect
to adaptive mesh refinements, see (1.1) below, which is our main result. (3) We derive the Frechet
derivative of the Tikhonov functional for our CIP and prove that it equals to the so-called “all-
at-once” Frechet derivative of the Lagrangian used in [5-7]. The connection between these two
derivatives was not clarified in [5-7]. (4) Results of items 1, 2 are specified for our CIP. We prove
a posteriori error estimate for the computed regularized unknown coefficient of our CIP, which,
in particular, also approximately estimates the accuracy of the exact coefficient (Lemma 2.1). In
previous publications on the adaptivity for CIPs only the accuracy of Lagrangians was estimated,
see, e.g. [5-7]. Our estimate uses the local strict convexity of the Tikhonov functional instead of the
traditional apparatus of the Galerkin orthogonality. (5) In our numerical tests for the above two
stage procedure the medium consists of small inclusions embedded in a slowly varying background,
whereas the background function was constant in [8]. The relaxation property (1.1) is numerically
verified.

The adaptivity is about adaptive mesh refinements in the FEM to improve the accuracy of the
solution. This is a classic tool for forward problems [1], and it is also applied both to CIPs and
parameter identification problems, see, e.g. [5-7,17]. Mesh refinements can be either local, i.e., in
some subdomains of the original domain, or global, i.e. in the whole domain. Local refinements
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are preferable, because a globally fine mesh imposes extra demands on the computer’s capacity.
The following two questions are of an interest in the adaptivity technique: (A) Where to refine the
mesh? (B) Is it possible to estimate the distance between the solution obtained on the refined mesh
and the regularized one via that distance obtained on the previous coarser mesh? Let x, be the
regularized solution and V,, be a certain neighborhood of z, of the radius p € (0,a). Let z,, € V,
and z,41 € V, be minimizers of the above Tikhonov functional after n and n 4 1 adaptive mesh
refinements respectively. So, x,+1 is obtained on a finer mesh than z,. Although the intuition
seems to be saying that x,; should be closer to z, than z,, the authors are unaware about
published estimates of the ratio ||zp,4+1 — Z4l| / ||2n — x4 for a general Tikhonov functional. In
fact, because of the ill-posedness of CIPs, previously known a posteriori estimates of the accuracy
of Lagrangians do not imply such estimates for regularized coefficients. Hence, that intuitive feeling
was not rigorously justified so far. So, we prove the following relaxation property (under certain
conditions)

|Tnt1 — ol < 7 ||Tn — zo||, where r € (0,1). (1.1)

In the case of forward problems the above question (A) is addressed via a posteriori error
analysis, which estimates the difference between computed and exact solutions [1]. It is important
that instead of the knowledge of the exact solution, this analysis assumes only the knowledge of
an upper estimate for this solution. The latter is usually obtained on the basis of classic a priori
estimates for solutions of these problems. In addition, the well posed nature of forward problems
enables one to obtain a posteriori error estimates for computed solutions. Unlike this, the ill-
posedness of CIPs radically changes the situation. As a result, only the accuracy of Lagrange
functionals is estimated instead of that of the unknown coefficient [5-7,17]. In those estimates for
CIPs a priori upper bounds of solutions are imposed rather than proved. The latter is going along
well with the Tikhonov concept for ill-posed problems, which states that some a priori bounds can
be imposed on solutions of such problems [3,13,26].

In section 2 a new framework of the Functional Analysis for the adaptivity is introduced. In
section 3 the local strict convexity of the Tikhonov functional is proved, the main problem of the
interest of this paper is formulated and the existence of local minimizers on subspaces is established.
The relaxation property (1.1) is established in section 4. In section 5 we state our CIP and outline
the globally numerical convergent numerical method of [8] for it. In section 6 Frechet derivatives
with respect to the unknown coefficient of solutions of state and adjoint problems are derived. In
section 7 the Tikhonov functional for the CIP is constructed, its Frechet derivative is derived and
results of section 4 are specified for this case. In section 8 numerical tests are presented.

2. The Framework Of the Functional Analysis. We work only with piecewise linear finite
elements, because they are used in our numerical studies. An extension of our analysis on other
finite elements is outside of the scope of this publication. Let Q C R™,m = 2,3 be a bounded
domain. Consider a triangulation Ty of this domain with a rather coarse mesh. We obtain a
polygonal domain o C €. All subsequent mesh refinement via other triangulations will be done via
embedding (in a certain well known manner) smaller triangles/tetrahedra in triangles/tetrahedra
forming Ty. Hence, all those triangles/tetrahedra will be located inside of the domain o. Let T
be one of those triangulations. Then we have associated piecewise linear functions {e; (x,T) ?:1 .
We now construct a linear space of these functions similarly with the subsection 7.4 of the book
[15]. The function e; (2,T) is a first order polynomial within the triangle/tetrahedra number j,
which we denote as (1'r);. This function equals 1 at one vertex (Vs); of (T'r); and it equals zero
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at all other vertices of (17'r);. We extend the function e; (x,T") outside of (1'r); for all z € T as
follows. Let (1'r), be another triangle/tetrahedra of T'. Assume first that (V's); € ((Tr)j N W,ﬂ) .
Then we extend e; (z,T) in (T7), as e; (z,T) := ey (z,T),x € (ITr), . Suppose now that (Vs), ¢
(mj N (Tr)k) . Then we set for the extension e; (z,T) := 0,z € (I'r), . It is clear that if (V's),; =

(Vs), € ((Tr)j N (Tr)k> , then so obtained functions e; (z,T') and ey, (x,T') are equal to each other,

ej (x,T) =eg (x,T),Vz € 0. So, we do not differentiate between these equal functions. Hence, each
so obtained function e; (#,7) = 1 at the vertex (1'r);, it equals zero at all other vertices and has
a localized support in . In addition, each so obtained function e; (z,T') is piecewise linear in o.
Since these functions are linearly independent ones, we take them as the basis B (T') := {e; (z,T)}
for the linear space Span (e; (x,T)).

Let h/ be the minimal diameter of triangles/tetrahedra which form 7" and @’ be the radius of
the maximal circle/sphere contained in that triangle/tetrahedra. We assume that for all possible
triangulations T" which we consider below

ar <KW <w@as; a1,as = const. > 0,VT. (2.1)

Thus, the first inequality (2.1) means that we do not decrease the size of triangles/tetrahedra
indefinitely. The second inequality (2.1) means that all our triangulations are regular ones, see [12].
It follows from this construction that there exists only a finite number N of possible triangulations
satisfying (2.1). Denote H = UpSpan (B (T)). Then H is a subspace of Ly (0) and dim H := dp :=

dg (N) < oo. Furthermore,

HcC (H'(0)NC (7)) as aset, 0y, f € L (0),Vf € H. (2.2)

We set, the scalar product in H to be the same as one in Ly (o) and denote (,) and |-|| the scalar
product and the corresponding norm in H respectively. The space H can be viewed as an “ideal”
space of very fine finite elements, which is never reached in practical computations.

We now construct subspaces M,, C H associated with our triangulations T;,,. We need to
construct these subspaces in such a way that

Mn C Mn+1- (23)

First, we define the subspace My := Span (B (Tp)) C H. Next, given the pair (T,,M,), the
pair (Ty41, Mp4+1) is constructed as follows. First, we refine the mesh and obtain 7,17 and
B(Ty+1) - Let {e? (x)}j; be the basis in M,,. To form the basis of M,1, we first take func-

tions from B (T,4+1). Next, we add to B (T,41) such functions from the set {e?’ (x)}fll that

el (x) ¢ Span (B (Ty+1)), provided of course that such functions e? (x) exist (alternatively B (Ty41)
is the basis in M,,11). Thus, we obtain the basis {e?"|r1 (m)}?i+1 of the subspace M, 11 C H. Since

=1
{er (m)}jll C Span ({e?*’1 (x)}jzl), then (2.3) holds.

For any subspace M C H let Py; : H — M be the operator of the orthogonal projection
of H onto M. Since we use the subspace M,, many times below, we denote for brevity P, :=
P,y Pug1 i= Pu,,,,. Below I is the identity operator on H. Let the function f € H' (o) N C (7)
and its Oy, fz, € Loo (0) . Let h,, be the maximal diameter of the above triangles/tetrahedra which

are involved in T;,. By the construction of above subspaces h,,+1 < h,,. For any function f € H, let
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fn be its standard interpolant [15] on triangles/tetrahedra involved in T},. Then by one of properties
of orthogonal projection operators ||f — Pufll1, ) < |If = fallp, ). Hence, it follows from (2.2)
and formula 76.3 of the book [15] that with a positive constant K = K (o) depending only on the
domain o

If = Puflliyo) < KNVl hn, Vf € H. (2.4)

Let H; be another real valued Hilbert space, whose norm is denoted as |-||; . Let F:H— H
be a continuous operator, which does not necessary has a “good” continuous inverse. In general,
even if an ill-posed problem in an infinitely dimensional space is “turned” into a well-posed one via
a finite dimensional approximation, still the corresponding operator often does not have a “good”
continuous inverse, because of that “heritage” from the ill-posed case. Thus, one should apply
regularization. Consider the equation F'(z) = y. By the Tikhonov concept for ill-posed problems
[26], we assume that there exists an “ideal” exact solution z* € H of this equation with the “ideal”
exact right hand side y = y*, where y* is given without an error, i.e. ﬁ(m*) = y*. However, in
practice the right hand side y is always given with a small error of the level § € (0,1), |ly — y*||; < 9.
Denote F (z) = F (z) — y. Hence, in a small neighborhood of 2* we should find an approximate
solution of the following equation

F(z)=0, z€ H. (2.5)
So, we assume throughout the paper that
[F (=), <96, 6 €(0,1). (2.6)

For any d > 0 denote V; (z*) = {& € H : ||z — 2*|| < d} . We also assume throughout the paper
that the operator F' has the Frechet derivative F”' (z) for x € V4 (z*) = {|lz — 2*|| < 1}, and this
derivative is Lipschitz continuous, i.e. for certain positive constants Ny, Ny

IF" (@) < N, [|F' () = F' ()|l < Nz |z =y, Yo,y € Vi (27). (2.7)

Let 405 be a good first guess for the exact solution x*. For example, for our CIP of section 5 a
good first guess can be obtained by a globally convergent numerical method of [8]. Consider the
Tikhonov functional J, with the regularization parameter « € (0,1),

Ja (@) = S IF @2+ 5 o~ g (2.8)
Remark 2.1. In principle, by the Tikhonov theory [26], one should use a stronger norm in the
second term of the right hand side of (2.8) to ensure the existence of a minimizer of J,. However,
since all norms in the finite dimensional space H are equivalent, we use a simpler Ly (o) norm here.
By our numerical experience with the adaptivity both in section 8 and in previous publications
[5-7], this norm is sufficient for our CIP.

Let J/, (z) be the gradient (i.e. the Frechet derivative) of the functional J, (). Then by (2.4)

Jh (2) = (F' (2))" F (x) + a (x — x0) . (2.9)
Let N3 = N3 (N7, Na) = const. > 0 be such that

176, () = Jo W)l < N3 [l =yl , Vo, y € Wh. (2.10)
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Below C = C (N1, N3) > 0 denotes a finite number of different constants depending only on N7, No.
We now assume that

|zgior — x| < 81, 1 = const. € (0,1), (2.11)
a =02, g = const. € (0, min (p1,2 (1 — p1))) (2.12)

We impose these assumptions on parameters p1, o to ensure that the distance between the first
approximation x4, and the exact solution * as well as the regularization parameter o far exceed
the error in the data ¢ for sufficiently small §, since one cannot perform better than the level of
the error in the data. In addition, (2.11b) ensures that points x*, x4, belong to an appropriate
neighborhood of the regularized solution, see Lemmata 2.1 and 3.2.

Lemma 2.1. A minimizer x,, of the functional J, (x) on the space H exists for any value of the
regularization parameter . For any r > 0 denote V, (vo) = {x € H : ||z — 24| < r}. Assume that
conditions (2.11), (2.12) hold. Then zgiop € V. j350, (Ta) and x* € V(1+\/§)6”1 (zo). Let 51 € (0,1)
be any number. Then there exists a sufficiently small number 6o = 0o (p1, 2, 51) € (0,1) such that
if 6 €(0,00), then «*, x40 € V3,0 (za) -

Proof. Since dim H < oo, then lim ;| Jo () = oo implies the existence of a minimizer z,.
Since Jo (24) < Jo (z*) and by (2.6), (2.8) and (2.11), (2.12) J, (z*) < (0% + ad?1) /2 < ad?1,
then J, (z,) < ad?**. Hence, by (2.8) ||za — Zgi0b] < V26", Hence, |24 — 2*| < [|20 — Tgiob| +
lzgior — x| < (1 + \/5) o1, To finish the proof, note that by (2.12) (1 + \/5) O < Bra = [BoH2
for sufficiently small §. O

The point z,, is called the regularized solution of equation (2.3) [3,13,26]. In general, the classic
Theorem 2 of Tikhonov on page 65 of [26] states that one can often choose the regularization
parameter as « (§) = 62,0 € (0,1), which implies a (6) >> § for sufficiently small §. Hence, (2.12)
is in a good agreement with this result. The proof of the following lemma is rather standard and is
therefore omitted.

Lemma 2.2. Let M C H be a subspace and xpr € M be a point of a local minimum of the
functional J, on M. Then (J., (zp),z) =0,Vz € M. Hence,

J(Ix (a) =
PylJl () =

; (2.13)
(2.14)

3. Local Strict Convexity of J,, Problem Statement and Minimizers on Subspaces.

3.1. Convexity. Lemma 3.1 ([22], chapter 10). Let U C H be a convex set and G : U — R
be a continuous functional. Let (G'(u),z),Vz € H be its Frechet derivative at the point u € U.
Assume that G’ (u) is continuous for uw € U. Then each of conditions (5.1) and (3.2) is both
necessary and sufficient for the strict convezity of the functional G on U with the strict convexity
parameter Kk = const. > 0

G (u) — G (v) > (G (v),u—v)+k|lu—v|*,Yu,v €U, (3.1)
(G (u) =G (), u—v) > 26 |u—v|*,Vu,v e U. (3.2)
Theorem 3.1. Assume that conditions (2.11), (2.12) hold. Then there exists numbers (; =

081 (N1, N2) € (0,1) and 61 = 01 (p1, 2, No, 51) € (0,1) depending only on listed parameters such
that if p = Pia, then for any 6 € (0,01) the functional J, is strictly convez in the neighborhood
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V., (za) of the point x, with the strict convezity parameter k = a/4. Furthermore, by Lemma 2.1
points Tgion, * € V, (z4).

Proof. Let 8; € (0,1) be the number which we will choose below in this proof, p = 81« and
z,y € V, (za) be two arbitrary points. By (2.9)

(Jo (@) =T, (), z—y) =allz—y|” +
x) = F™* (x) F (y),x —y) (3.3)

Denote Ay = (F"* (x) ' (z) — F™ (2) F (y) ;2 —y) , A2 = (F" (z) F' (y) — F"* (y) F (y) .= — y) and
estimate Ay, As from the below.
Since Ay = Ay — (F™ (2) F' (z) (z —y) ,xz —y) + (F"™* () F' (z) (x —y),x — y), then

Using (2.7), we obtain

F™* (z /F' y+0(x—vy)—F (2)(x—y)dd,z —y
0

<|IF (@)l / IIF (5 + 0 (o — ) — ' @) (@ — )| 8- |}z ~ yll < 3 NaNa o — g
0

Also,
(F" (@) F' () (z =),z —y) = (F (@) (z = 9) , F () (z = 1)), = [|F' () (x = p)ll5 > 0
Hence, Ay > N1 Ns ||z — y||3 /2. Now we estimate As,
As| < |IF @), IF' () = F' W)l 1z = yll < Nellz = y|* [|F (1)l
Since |IF (za)lly < IF () — F (2a)lly + I1F (@a)lls < N1 ly — 2all + |F ()]l then
|[As| < N e = yl* (N1 [ly = zall + | (za)ll,) - (3.4)
By (2.6), (2.7) and Lemma 2.1 ||[F (z4)ll, < ||F (za) — F (2*)|y + 6 < aB1 N2 + 6. Hence, by (3.4)
As > =No [lz = y|* (N1 ||y — zall + a1 No +6) .
Combining this with (3.3) and the above estimate for A;, we obtain

(Jo (@) =I5 () 2z —y) > (3.5)
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Ny N-
o = o7 [~ %2 oyl = Moy = | - N2 (2t + ).
We have
.
NNy (M +lly — $a||> + Na (N2affy +6) < 2031 No (N1 + N2) + Nad. (3.6)

Choose 1 = (1 (N1, N2) € (0,1) such that 26Ny (N1 4+ N2) < 1/4. Given this 1, choose §; =
01 (p1, p2, N1, No) € (0,1) so small that Nod < 042 /4 = /4 and 261 < $10H2 = (1, Vo € (0,67) .
Then (3.5), (3.6) and (3.2) imply that Theorem 3.1 is proven. [
Lemma 3.2. Assume that conditions of Theorem 3.1 hold. Then in the neighborhood
V(1+x/§)6“1 (x*) of x* there exists unique minimizer xo of the functional J, (x). Furthermore,

V(1+\/§)5ur1 (z*) C V, (za). If the operator F' is one-to-one, then x* is unique and therefore . is

unique also.

Note that, unless the operator F' is one-to-one, there is no guarantee that the exact solution
of equation (2.5) is unique. The proof of Lemma 3.2 follows immediately from Lemma 2.1 and
Theorem 3.1. Hence, even though there might exist several exact solutions of equation (2.5), still as
long as a good first guess x40, about one of these solutions is available and conditions (2.11), (2.12)
are satisfied, one can guarantee uniqueness of the regularized solution in a small neighborhood of
that exact solution. Hence, below we work only with such an exact solution z* that satisfies (2.11),
assuming of course that z* exists for the given vector xgop. As to x4, all what we know about this
vector is it exists, is unique and by Lemma 2.1 z, € V(1+\/§)5M1 (z*). Thus, we denote below for

brevity V, (zq) := V,. Therefore the statement of the Problem 3.1 has no ambiguity now in terms
of z,. The following problem is the main interest of our study below.

Problem 3.1. Suppose that conditions of Theorem 3.1 are satisfied and § € (0,61). For a
fizxed value of the reqularization parameter o, approzimate the reqularized solution x, in the norm
of Lo (o) via a finite number of above described mesh refinements.

3.2. Local minimizers on subspaces. In this subsection we establish the existence and
uniqueness of a minimizer x,, € M, N (V,,\&Vp) of the functional J,. To do so, we first reformulate
Proposition 6.3.4 of [23], which is derived there from the Leray-Schauder theorem.

Proposition 3.1. Let D C R* be an open domain, ® : D — R* be a continuous mapping and
20 € D \OD be an arbitrary point. Assume that [<I> (), — xo] > 0,Vx € 0D, where [,] is the
scalar product in R¥. Then there exists a point T € D such that ® (z) = 0.

Theorem 3.2. Assume that conditions of Theorem 3.1 hold. Suppose that there exists an
integer m > 1 such that with the constant K from (2.4)

Bro? _ ap
VANZ 4 a2 /AN + a2

K |Vaall, g b = A < (3.7)

Let M’ C H be any subspace such that Mz C M'. Then V, N M’ # @. Furthermore, there exists
a unique point Ty € (V,,\&Vp) N M’ at which the functional J, (x) attains its minimal value on
the set V, N M'.

Proof of Theorem 3.2. We first prove this theorem for M’ = M. Denote

An = ||za — Prmall s R = \/p? — A2, Si = {x € Mz : ||z — Prrwal| < R} - (3.8)
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By (2.4) and (3.7)
A, <AL < p. (3.9)

Let € Mz be an arbitrary point. Since (x — Par2o) € Mg, then vectors (x — Ppyrx,) and
(o — PrZo ) are orthogonal. Hence,

|2 — 2ol = |2 — Prta + Para — 2ol = |z — Puzal® + | Prmza — zal?
<z = Pupaol® + A2 < p? — A2 + A2 = p? Vz € Sy
Hence,
Sm C V, N Mz implying that V, N Mz # @. (3.10)

Define the functional Jo ar. : Mz — R as Jo s (2) := Jo (z),V2 € Mz. Then the gradient
of Jo s (x) 18 ParJl, (z),Vo € Mz, Hence, it follows from (3.2), (3.10) and Theorem 3.1 that
the functional Ju s, (2) is strictly convex on V, N Mp. Hence, (3.10) and (2.14) imply that it is
sufficient to prove the existence of a point xar, € Sy, such that J; . (7ar,) = 0. To make sure

that the point x5, € S\ 0S5, consider a small number ¢ € (0,1) which will be chosen later. Let
Sw(e) ={z € Mz: ||x — Pyz2xol| = (1 —€) Rar.} . Hence, Sz (e) C Sg. Using (2.10), (2.13), (3.2),
Theorem 3.1 and (3.8), we obtain for x € Sz (¢)
( c/v,Mn (Z‘) y L — PMWxO/) = (PMWJ(I)( (Z‘) - J(; (.130,) y L — PMﬁxO/)
= (J(; ({E) - J(I)t (PMW:EQ) y L — PMW:EQ)
+ (J(Ix (PMﬁxa) - J(Ix ({Ea) y L — PMﬁxa)
o
2 b) |z — PMﬁxa”2 + (o (Pazza) = Jo (2a) ;@ — Paza)

a(l—eg)? R
- 2
Hence, (3.7), (3.9) and elementary calculations show that one can choose a sufficiently small e such
that (J}, 5, (2),2 — Prpa) > 0,Vz € Sp(e). Hence, Proposition 3.1 implies the existence of the
above point zpz_. By Theorem 3.1 this point is unique. Finally, if Mz C M’, then ||zq — Papzo| <
|ze — Prroll, which means that the above proof is applicable to M’ as well. O

- N3 (1 — E) RMWAH-

4. Relaxation. In this section we use without restating various properties of orthogonal pro-
jection operators in Hilbert spaces, which are well known from the standard Functional Analysis
course. In particular, we use the following three properties

P} = Py Py = Py Py (2) = 2,V2 € M; (z— Pyay) =0, Vo € H,Vy € M.

In sections 4 and 7 we assume without restating that the following Assumption 4.1 is valid.

Assumption 4.1. We assume that conditions of Theorem 3.2 hold, which implies that con-
ditions of Theorem 3.1 and Lemma 2.1 are also in place. In particular, we impose a priori upper
bound on the regularized solution x,. The latter is going along well with the above mentioned
(section 1) Tikhonov concept for ill-posed problems, by which a priori bounds should be imposed
[3,13,26]. Namely, we assume that [|[Vzal[; ) < A, where A is a given constant. Hence, we
assume below that n > 7 and impose a little bit stronger condition than (3.7),

pra®
AK\/ANZ + a?

hy < (4.1)



10 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURIN

By Theorem 3.2, there exists unique point x,, € (V,,\&Vp) N M,, at which the functional J, (x)
attains its minimal value on this set. Hence, by (2.14)

P,J., () = 0. (4.2)

For any two vectors a,b € H let An(a,b) € [0,7] be the angle between them, provided that at
least one of them is non zero. If one of them is zero, then An (a,b) := 0. The number cos [An (a, b)]
is defined via the scalar product. Lemma 4.1 is elementary.

Lemma 4.1. Let u,v € H be two orthogonal vectors, u+ v # 0 and ¢ = An (u,u+v). Then
¢ €10,7/2], Jull = Ju+ vl cos ¢ and [Jo]| = [[u+ v sin .

Consider the functional J, (z) for x € V, N M,,. It is reasonable to assume that

Jo (@) # 0. (4.3)

Indeed, if (4.3) is not true, then by (2.13) J/, (z,) = J. (x4) = 0 and Theorem 3.1 implies that
ZTp = X, and the Problem 3.1 is solved in this case. Assume that the subspace M,,;1 is also chosen.
Recall that by (2.3) M,, C My41. Since by (4.2) the gradient J/, (z,,) is orthogonal to the subspace
M, then one can consider two auziliary subspaces,

Gni1 =M, ® J(; (7n),

Gn-l—l - Pn—i—lGn-l—l;

where “@” denotes the orthogonal sum. By (4.4) M,, C Gpy1. Also, since M,, C M1, then by
(4.4) Pyyix = Pox + A (x) Pot1J, (25), V2 € Gpq1, where A (z) is a certain number depending on
x. Since, P,z € M,, and P,M, = M,, then by (4.5) M,, C G,+1. Therefore, Theorem 3.2 and
Assumption 4.1 imply that there exists two auxiliary minimizers 2% | € Gy41,%9, | € Gpy1 of the
functional J, (each one of them is unique) such that

Jo (29,1) = min Jy (z), 29, € (V,N\OV,) NGy, (4.6)
VpﬂGn+1

Jo (F,) = min Ju(2), 3, € (V,\V,) NGt (4.7)
VpﬂGn+1

Hence, by (4.6) and (4.7) there exist numbers An 41, An41 € R such that vectors x|, T | can be
represented as

xg,,_H = Yn+1 + )\n-i—l'](; (xn) ) 55%.1_1 = gn—i-l + Xn-{—an-i—lJ(; (xn) y YUn+1, gn—i-l S Mn (48)

Lemma 4.2. Let condition (4.3) holds. Then the following estimate is valid

291 — zal| < Tllan — 2all + FAL + AL, (4.9)
g g ~ a?
Ap = ||2n — Pazall, A) = ||xn_|_1 —Pgn+1xa||, r=4/1-— 4—]\[32 (4.10)
Proof. Consider the unit vector p, = J/, () /||J}, (z,)| . Then by (4.4) Pg,,, @ = P,z +

(x — Py, pp) pn, Vo € H. Consider vectors v = P,y — Pg, %0,V = PG, ,,Za — To. Since u =

n+1
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(PrZo — Ta, Prn) Pn € Gne1 and v is orthogonal to G,,41, then (u,v) = 0. Since by (4.3) and (2.13)
ZTo & My, then u+ v = Pyzy — 2,4 # 0. Hence, by Lemma 4.1

||xo/ - PGn_HxaH = gn |70 — anozH s Gn = SIN @y, (4.11)
where ¢, = An (u,z, — Ppy) . Using (4.11), we now estimate the norm folﬂ - xaH ,

||x$l+1 - xaH S ||xf7,+1 - PGn+1xa|| + ||xa - PG1L+1$Q||
= [|2%41 = Pa,irZal| + gn | 2a — Pazall

< gn |20 — Paxall + gn |20 — 2ol + foz-l—l - PGn+1xaH .

Hence, taking into account notations (4.10), we obtain (4.9) in which 7 is replaced with g,.
We now estimate g, from the above. By (4.2) (J), (zn), PnZo — xn) = 0. Hence,

(J(I), (xn) 5 ana - xa) = (J(I), (xn) 5 ana - xn) + (J(I), (xn) sy T — xa) = (J(; (xn) sy T — xo/) .

Comparing this with (4.11), we obtain ||J) (xn)||||Prta — Zall cospn = (J, (2n),2n — 24) . By
(2.13) and Theorem 3.1

(Jo (@) @0 = 2a) = (Jo (@) = I (@) 120 = 7a) 2 5 e — 2all”.
Hence,
/ o 2
[ (@)l [Za — Pazall cos¢n > b) [za — znl”. (4.12)

By (2.10) and (2.13) ||, (zn)|| = |J} (zn) — J, (xa)|| < N3 ||zn — 24| . Combining this with (4.12)
and using the fact that by one of the properties of orthogonal projection operators ||z, — x| >
|z — Pnzall, we obtain

COS Py > — - Mza = zal] o
"= 2N3 ||Z‘a — an()f” - 2N3

Hence, by (4.10) and (4.11) g,, = sing, < /1 —a2 (2N3) > =7. O

Numbers A, and A? | in (4.10) characterize approximating properties of subspaces M,, and
Gp+1 with respect to the regularized solution z,. In the proof of Lemma 4.2 we have not used
the fact that 7, is the minimizer of J, (z) on V, N Gy, see (4.6). We use (4.6) in Theorem
4.1. In the proof of this theorem we first obtain an upper estimate of ||z,+1 — Z|| via numbers
[@n — 2ol An, AY,, and |29, — 79, || Next, we estimate |29, , — 2% || from the above via
(I = Poy1) J, (o)l / T2, (20)] , which is the most technical part of the proof. Finally, we estimate
numbers A,, A, 41 and A%_H from the above via [|[(I — P,,) z4||. Next, in the proof of Theorem
4.2 we estimate from the above numbers ||(I — Poy1) J. (zn)]l /|| JL ()] and [[(I — P,) z4 ]| via
||xn — o], thus ending up with the target estimate (1.1). By (4.3) there exists such a subspace
Mn+1 C .[Tl-7 Mn C Mn+1 that

Poi1J) (zn) # 0, which is equivalent with (P,41J., (xn), J), (2,)) # 0. (4.13)
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Theorem 4.1. Assume that condition (4.8) holds. Then with the constant 7 € (0,1) of (4.10)
the following estimate is valid

- N B NI (o 1/2

|Tnt1 — 2ol <7 ll2n — 20| + C
Proof. We have
o1~ 2 821~ ]l s~ ol (415)
Since Tj | € Gni1 C My41, then, using (4.10), we obtain

79,1 = za| 2 IPat12a — zall > [2nt1 — zall = |1Zns1 — Por1@all = [|2n41 — Zall — Aptr.

Hence, it follows from (4.15) that |29, | — za|| > [|2n41 — zall = ||2941 — T%,1]| — Ansr. Substi-
tuting this inequality in (4. 9) we obtain

[Zn+1 — Zall = foz-i—l n+1|| Apyr < foz-i—l - xaH <Tlzn — zal +7AL + Afz-l—lv
which implies that
||$n+1 — ol T2 — 2ol +TAL + Apgr + AZ,-H + ||$Z,+1 - %Z,HH . (4.16)

We now estimate the norm folﬂ — EfLHH of the last term of (4.16) from the above. Using
(4.6), (4.9) and (2.14), we obtain

(o (2541) 2 fz+1 =) = (Ja (@h41) 2041 — Pe,n @)
(J/ ($Z+1) PGn+1 n41 5%4-1) = (J(Ix ($Z,+1) ) (PGn+1 - I) %g,-u) )

(J(Ix (~n+1) ’xn-l—l - Efz-i—l) == (J(Ix (Efz-l—l) ’xfz-i—l - Pénﬂx%ﬂ)
(']{; (~$L+1) 7P§n+1xi+1 - gfz-l—l) == (']{; (ng-l) ) (Pén+1 - I) n-l—l)

Hence, (3.2) and Theorem 3.1 imply that

3 28 =& ” < (i (@h) = Ti @r) 2 — Fo)
= (T (@81)  (Pes = D #00) = (T (@00) (o, — 1) #hn) (47)

< i @) (T = Pe) Eall + 19 @) ||| (1= Pa., ) |-

Since xnﬂ, n+1 € V,, p = Bia and the constant 3; depends only on constants N1, N2, we can tem-
porary set 1 := C. Hence (2.10) and (2.13) imply that with another constant C, ||J} (z%,)| =
| (29 11) = Jh (za)|| < N3 ||29, 1 — zal| < Ca. Similarly ||J}, (29,,)|| < Ca. Hence, (4.17) im-
plies that

foLJrl - %fwrlHQ <C (H(I = Pa,.,.) EszH + H(I Pa +1) xferlH) : (4.18)



Adaptivity with relaxation for the Tikhonov functional 13

By (4.3) and (4.13) the following angle is properly defined ¢, = An (J., (zn), Pnt1J) (24)) .
We now prove that

(7 = Pa, ) & || = |(T = Po) &y | sin o, (4.19)
(1= P, ) wha]| = 11 = Po) 2| sin . (4.20)

First, we figure out the form of the vector Pg, ,, 77 . By (4.4) and (4.8)

PGn+1%fL+1 = gnJrl + Xn+1PG1L+1Pn+1J(; ({En) agnJrl € M,. (4'21)

By (23) and (42) (3, PusrJh (2n)) = (Pasa9s 7l (2)) = (5, T2 () = 0¥y € M, Hence, by
(4.4) Pg, ., Pui1J), (xn) = a- J), (xn), where a € R. Compute the number a using (4.4),

a ”J(/y (:Kn)||2 = (PGn+1Pn+1J(Iy (xn) ) J(/y ({En)) = (PnJrlJ(/y (xn) ’ PGn+1J(/)¢ (:Kn))

2
= (PnJrlJ(Ix (Tn) J(/m (zn)) = (PnJrlJ(/x (zn), Pn+1J(; (zn)) = ”PnJrIJ(Ix (zn)[|” -
Hence, a = || Poy1J), (2)|1* |7, ()] 2. Hence, (4.21) leads to
- N ~ P S ()] -
PGn+1xZ,+1 = Yn+1 + /\n+1M : J(Ix (xn) s Unt1 € My, (4-22)

172, () I

Let uy = Pg, 2%, — Pa@,,v1 = (I — Pg,,,)7%,,. First, we show that (uy,v1) = 0.

Indeed, by (4.22) and (4.8)

5 Pani T @)l

Uy = )\n-i—l Ja (.237,) s (423)
174, ()|
0 1Pt T4 ()],
V1 = A1 | Par Sl () — e 00l g0 () ]
175 ()11

Hence,

2
T2 Pasr i (@)l

2 2
(ur,00) = X e S [P (el = WP T o) ] =0, @20

Next, u1 + v1 = Aps1Pas1J’, (#,). Thus, (4.23) and Lemma 4.1 imply (4.19) if A\,q # 0. If,
however, Ans1 = 0, then it follows from (4.8) and (4.22) that in (4.19) (I—Pg,.,)T%,, =
(I — P,) 7%, =0, which again implies (4.19).

To prove (4.20), denote

Ug = Pénﬂxiﬂ — Ppx) 00 = (I — P§n+1) Ty
By (4.4), (4.5) and (4.8)

!
Pénﬂxfwrl = PnJrleLJrl = Ynt1 + Any1 PosrJy, (Tn) -
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Hence, us = Apy1Poy1J), (z0) and va = Apt1 (I = Ppg1) J, (zy) . Thus, (ug,v2) = 0. Next, by
(4.4) and (4.8) up+v2 = (I — Pp) x) .1 = A1 J), (@) . Hence, if A y1 # 0, then the angle between
vectors us and ug + v is the same as the angle between vectors J/, (z,,) and P,41J,, (xy), i.e., this
is the angle v, introduced above. Hence, using Lemma 4.1, we obtain (4.20) for A,,11 # 0. In the
case A\p+1 = 0 we have (I P +1) xy = (I — P,)x) =0, which implies (4.20).

Since by (4.13) |[(I — Ppt1) J5, (xn)] < || 75, (xn)]], then by (4.20)

[oall [ = Pat1) Jo ()l

= < 1. 4.25
oz + va FACS] (4.25)

sin ¢, =

Thus, (4.18)-(4.20) and (4.25) imply that

I = Pry1) J& ()|
176 ()l

Estimate the term in the parenthesis in the right hand side of (4.26). By (4.6) and (4.7)

[ _xn+1|| < O (| = Pa)ap || +[[(1 = Po) @54 ]) - (4.26)

g ~9
[ = 2l 7241 — 2] < o

Also, since z,, € M,,, then (I — P,) (z,,) = 0. In addition, || — P,|| < ||| + || Pn]| < 2. Hence,

10 Byl + 00— BB =1~ Bo) (s — )] .
= P @ — 5| < 81— 2l + 311 — ] < Cr
Hence, (4.26) and (4.27) lead to
1/2
g =9 (- Pn+1) ( n)l
||xn+1 - xn—i—l” <Cva : (4.28)
TG
Therefore, it follows from (4.16) and (4.28) that
_ _ I — Poyr) T, (2)])'?
1 = Tall < Fllon = gall + 7n + Augr + A%, + Oyl L) Ja el )
[ P15, ()|
We now estimate from the above terms A,, A, 41 and A7 | in (4.29). We have
1
Ja () = Jo ) = o) o= 9) = [Ualo+0(e=9) = Jo )2~ ) db.
0
Hence, by (2.10)
o (@) = Ja () = (J () .2 = )| < Cllz —y|* o,y €V, (4.30)

Substituting in (4.30) z := P24,y := 2, and using (2.13), we obtain

Jo (Paza) — Jo (£0) < C [Pt — zol* = C||(I = Py) za” . (4.31)
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On the other hand, since Jy, (z5,) > Jo (Zo), then using (3.2), Theorem 3.1, (2.14) and (4.31), we
obtain

C (I = Po)zal® 2 Jo (Patta) = Jo (2a) > Jo (Pawa) = Jo (2n) (4.32)
> (‘](/y (l‘n),PnZ‘a _xn) ” , — P, xa” = E Hxn_anaHQ-

l\DIQ

Since by (2.3) and (4.4) M,, C M, 41 and M,, C Gyy1, then |[(I — Poi1) zo|| < ||(I — Py) 20| and
(I = Gnt1)zall < |[(I — Pp)za|l- On the other hand, two inequalities, similar with (4.32), can be
proven similarly via replacing the pair (||z,, — Pozal|, [|(I — Pn) o||) first with the pair

(1zn+1 = Porrzall, [(I — Pag1) zall)

and then with the pair

(ngwrl - PGonaH N~ Gn+1)xa”) .

Hence,

(0% 2 2 2
5 (l2ns1 = Paizal® + 2911 = Po,uza]*) < C I = P)aal®. (4.33)

Thus, (4.10), (4.32) and (4.33) imply the following three inequalities
AnyAng1, A < Ca™ 2 (I = Py)aal|.

Substitution of these three in (4.29) leads to (4.14). O

It is assumed in Theorem 4.1 that the vector J (x,) can be calculated exactly. In the compu-
tational practice, however, this vector is calculated with an error and the minimization process on
V, N M, is usually stopped at such a point Z,, for which the norm || P, J/, (Z,,)|| is sufficiently small,
although still non-zero. These considerations are reflected in Theorem 4.2, which establishes (1.1).

Theorem 4.2. Assume that the Frechet derivative J!, (z),z € V, is calculated with a small
error T € [0,1). In other words, for any point x € V, one actually calculates the vector S, (x) € H
and ||J,, () — Sa (z)|| < 7, Vz € V,,. Let T be the integer of Assumption 4.1. Suppose that for any
subspace My, with k > T the minimization process of the functional J, (x) on the set V, N My, is
stopped at such a point xy , that ||Par, Sa (Tk,r)|| < 7. Let a1 be the number from (2.1). Consider
the function of spatial variables Sy r (y) := Sa (Tn.r),y € 0. Assume that there exists a number
Ty € (7, 1) such that

hy, T
)< _ 4.34
C <AK\/5+\/aT+ a) < (rn =) 1Sa (@0l (4.34)
o Tn — T 3/2
alCK\/EHVS(y)HLw@ < e 18a ). (4.35)

Let 51 = 61 (1, po, N1, N2) be the number defined in Theorem 3.1. Then there exists a sufficiently
small number 65 € (0,61] and a subspace My+1 C H, M,, C M, 11 such that if 6 € (0,85], then the
following relaxation property holds

|Zn+1,r — Zall < 70|20 — 2all - (4.36)
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If at least one of inequalities (4.34), (4.35) is invalid, then the mesh refinement process should be
stopped. If T =0, then the above holds with the replacement of the pair {So (Tn ), Tn -} by the
pair {J. (zn),xn}. Let r € (7,1) be the mazimal value of corresponding numbers r, for a certain
finite number of such mesh refinements. Then (4.36) is valid with the replacement of r, with r,
which turns (4.36) into (1.1).

Remark 4.1. Although both constants C' and N3 depend on numbers Ni, No introduced in
(2.7), the inequality (4.35) makes sense, since these constants can be explicitly estimated via N1, Na.
The latter would turn both inequalities (4.34), (4.35) in more explicit forms. Following a common
tradition of the PDE theory, we are not providing such explicit estimates for brevity only. The same
is true for Theorem 7.4 (section 7) with respect to numbers Cs and Njy.

Proof of Theorem 4.2. Since a = 6#2, then by (2.12) one can choose

d2 = 02 (p1, p2, N1, No) € (0,61] so small that C/a > 2,V§ € (0,d2]. Hence, by (4.34) we can
assume that

[[Sa (;cm)ll > 7 (4.37)
Using (4.2), we obtain
T Hxn;r - an > (Sa (xn,'r) y In,r — xn) = (Sa (xn,'r) - J(/x (xn,T) y Tn,r — xn)
+(Jo @nr) = o (Tn) s Tnr — ) > % [@n, — anQ =7 ||@n,r —anl .
Hence, ||z, » — x| < 47/a. Using (2.10) and (4.34), we obtain

16 (@n)ll = 175 (zn,r) = (o (@n,r) = T (@) = [1G (@n,o) | = 1T (2n,7) = TG, (20)

« n,T 4
Similarly (4.34) and (4.37) lead to
16 (@a)ll < 15 @no)ll + 14 (2n7) = T4 () (4.39)

4t
< IS0 (@n )l + 7+ No— < C|Sa (@ar)ll

where the constant C' is different from one in (4.38).

It follows from (4.38) that (4.3) holds, which implies in turn the existence of such a subspace
M,,41 that (4.13) is valid. Hence, the point z,41 , exists and ||zp41,- — 2| < 47/a. Hence, by
(4.14)

~ 87 | Al = Pugy) za
ntlr — Tall < n,m — La —+(—F
||J3 v+1, 4 H >r ||Z‘ ) T || + o + \/a

coyall = Pa) Ji (a) |2
PACHI

Since hp+1 < hy, then by (2.4) (I — Poy1) ol < K||an||L2(g) hn, < AKh,. Hence, by (4.39)
and (4.40)

(4.40)

- hn 8
Jnt1ir = all < Fllon s = zall + CAK -2+ -

B 1/2
Cyar - +C\/E”(I Ppi1) Sa (T/T;,T)H
[1Sa (Zn, )l 1S (zn, )l

(4.41)
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By (2.10), (2.13) and (4.37)

/ J—
A /4 oS 05 g .1 G205 |

N3 - N3 - 2N3
By (4.34) we can assume that
I, 8 (rp—7)
AR T D S 4.42
CAK Z2+CVar + = < S |IS (@) (4.42)

Suppose that

CVa (I = Pat1) Sa (@) < B S ()2 (4.43)
3
Then (4.41) and (4.42) imply that (4.36) holds for M, ;1. So, we now construct the subspace M, ;1.
Let 0 C o be a subdomain in which one wants to refine the mesh and suppose that the mesh is
not refined in o\ 0. By refining the mesh in ¢ and not refining it in o\ g, one obtains the target
subspace M,,11. If meas (0\0) is not too small, then one obtains a local mesh refinement. We have
Prt1Sa (Tn,r) = Sn.r (y) for y € o\ . Hence,

1/2 1/2
(7 = Pa1) Sa (2, Y2 < (T = Pags) Sur W55 + 180 W1 5 - (4.44)

Since the limiting case of ¢ is simply o = o, then one can always choose ¢ such that

2 Tn — T
CVa S Wi z) < s 1S (@n) P2 (4.45)

Since Sy (zn,r) € H, then S, ; (y) € H' (o) and 8y, Sn,r (y) € Lo (o). Let hns1 be the maximal
mesh size for the new mesh in &. Then by (2.4)

”(I - Pn+1) Sn,'r (y)”L2(3) <K ”vsn,T (y)HLOQ(a) En+1- (4-46)

By (4.35) we can choose hn41 € (a1,1) such that

~ Tp —T
CKthrl\/a ||VSn,'r (y)”LDO(E) < 8—]V3 ||Sa (fEn,-r)H?:/Q . (4.47)

Estimates (4.44)-(4.47) imply (4.43), which in turn leads to (4.36). O

There is no point to have errors or parameters in calculations less than the level of error § in
the data. Hence, assuming that conditions of Theorem 4.2 hold, we now show the existence of an
interval for the number py in (2.11b), which guarantees that one indeed can choose parameters h,,, 7
satisfying above conditions and such that h,, 7 >> § for § € (0, d]. Estimating the right hand side
of (4.34) from the above and assuming that 7 < «, we obtain, (r, —7) [|Sa (n-)|| < Ca?. Hence,
(4.34), (4.35) and (2.12) imply that one should have CAKh,, < o35 = §35#2 7 < Ca® = C6°#2.
The first of these inequalities is stronger than (4.1). Hence, if pys € (0,1/5), then one can always
choose numbers h,,, 7 such that h,,7 >> 6 for 6 € (0,d2] and (4.34) holds. The same is true for

hnt1 in (4.46), provided that a; >> 4.
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Recommendation for the mesh refinement. By refining the mesh in &, one actually
decreases the value of ||(I — Pp11) S~ (y)||L2(5) and therefore “paves the way” for the validity of
the relaxation estimate (4.36). Hence, estimates (4.44)-(4.46) indicate that the mesh should be
refined in such a subdomain & of ¢ in which values of |S, - (y)| are close to maxz|S, - (v)|, and
it should not be refined in subdomains where these values are rather low. This is exactly what is
done in section 8 as well as in the past publications [5-7,17].

Remark 4.2. While Theorem 4.2 establishes the existence of such a subspace M,,;; that
relaxation property (4.36) is valid, one can pose the question on how to computationally decide
whether this subspace exists. A simple recipe for this follows from (4.36) and we actually use this
approach in our computations in section 8, also see [5-7]. Namely, having found the point x,, -, one
should refine the mesh and minimize the functional J, on the refined mesh. It follows from (4.36)
that if the change in the resulting solution is significant compared with the previous mesh, then the
subspace M, 41 exists, it is represented by this new mesh and the mesh refinement process should
be continued. Otherwise it should be stopped.

5. The Coefficient Inverse Problem. In this section we state our Coefficient Inverse Prob-
lem and outline the globally convergent numerical method of [8] for it. We refer to [8] for more
details about this method. In addition, we outline in subsection 5.2 some discrepancies between our
theory and numerical implementation. Consider the Cauchy problem for the hyperbolic equation

c(x)ugy = Au in R™ x (0,00) ,m = 2,3, (5.1)
u(x,0) = 0,us (2,0) =0 (z — xo) - (5.2)

Equation (5.1) governs a wide range of applications, including, e.g. propagation of acoustic and
electromagnetic waves. In the acoustical case 1/4/c(x) is the sound speed. In the 2-D case of EM
waves propagation in a non-magnetic medium, the dimensionless coefficient is ¢(x) = €,(x), where
er(x) is the spatially distributed dielectric constant of the medium, see [11], where this equation
was derived from Maxwell’s equations in the 2-D case. Let d; and d3, be two positive numbers,
dy < dy. We assume that the coefficient ¢ (z) of equation (5.1) is such that

c(z) € [d1,ds],c(x) =d; for z € R™\Q, (5.3)
ceC? (]R3) (5.4)

Coefficient Inverse Problem (CIP). Let Q C R™,m = 2,3 be a convex bounded domain with
the boundary 0Q € C3. Suppose that the coefficient ¢ (x) satisfies conditions (5.3) and (5.4), where
the numbers di and ds are given. Assume that the function c(x) is unknown in Q. Determine the
function c(z) for x € Q, assuming that the following function g (x,t) is known for a single source
position zo ¢ Q

u(z,t) =g(x,t),V(x,t) € 00 x (0,00). (5.5)

The reason why we assume here that the source z¢ ¢ €2 is that we do not want to deal with
singularities near the source location, see an applied scenario for this in, e.g. [2]. In applications the
assumption ¢ (x) = d; for x € R3\ {2 means that the target coefficient ¢ (x) has a known constant
value outside of the domain of interest 2. Since we do not impose any “smallness” conditions on
numbers d; and ds, the numerical method is not a locally convergent one. The function g (z,t)
models time dependent measurements of the wave field at the boundary of the domain of interest.
Practical measurements are performed at a number of detectors, of course. In this case the function
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g (x,t) can be obtained via one of standard interpolation procedures, which is outside the scope of
this publication. Uniqueness theorem for this inverse problem is a long standing and well known
open question, which is addressed positively only in the case when the d— function in (5.2) is
replaced with a function, which is non vanishing in the entire domain Q [18,19]. Tt is an opinion of
the authors that it is still worthy to develop numerical methods for this CIP because of applications.

5.1. Outline of the globally convergent numerical method of [8]. Let the function
w (z,s) be the Laplace transform of the function u (x,t) with respect to ¢ with the parameter
s > s = const. > 0. We call s “pseudo frequency”. One can prove that w (z,s) > 0. Let ¢ (x,s) =
0Os [s’2ln w(m,s)} . The function ¢ solves the following boundary value problem for a nonlinear
integral differential equation in which the unknown coefficient is not present

2

Aq —25*Vq - /Vq (x,7)dr 4+ 2s /Vq (x,7)dr (5.6)

+252VqVV —2sVV - /Vq (z,7)dr + 2s (VV)2 =0,q loa=v (x,s),(x,s) € 0N x [s,3].

where the function ¢ is generated by the function ¢ in (5.5). Here s is the truncation pseudo
frequency, it is one of regularization parameters here and it is assumed to be large. Numbers s and
5 should be chosen in numerical experiments. The truncation of integrals at a large value of the
pseudo frequency s is similar to a routine truncation of high frequencies in science and engineering,
and so our truncation is natural in this sense. In (5.6) V(2,5) =35 2Inw (x,3) is the so-called “tail”
function, and it is unknown. The presence of s-integrals as well as of the tail function implies the
nonlinearity and thus, leads to the main difficulty of the globally convergent stage of our method.
One can prove that, under certain conditions,

[V (2, 9)lg,, = O (1) 5o, (5.7

Here |-, is the norm in the Holder space CHt7 () . Although (5.6) implies that the tail is small
for large 5, it was found in numerical experiments in section 8 that resulting solutions have a better
quality if we approximate the tail via the procedure described below, rather than simply neglect it.
Equation (5.6) has two unknown functions ¢ and V. The reason why we can accurately approximate
both these functions is that we treat them differently, see below.

We consider a layer stripping procedure with respect to s partitioning the interval [s,3] into N
small subintervals with the step size k = s,_1—8p, 8 = sy < Sy—1 < ... < 89 = 5. Approximate the
function ¢(x, s) as a piecewise constant function with respect to s, q(z, s) = g, () for s € [sp, Sp—1) -
Let C, 2 (s) = exp[v (s — sn—1)] be the s-dependent Carleman Weight Function (CWF), where
v > 1 is a large parameter, which is chosen in numerical experiments. Multiplying both sides of
equation (5.6) by C,, » (s) and integrating over [s,, s,—1), we obtain the following finite sequence
of nonlinear second order elliptic equations for functions g, (x) with Dirichlet boundary conditions
¥, (), which are derived from the function 1 (z, s)
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n—1
Ln (Qn) L= AQn - Al,n (h Z VQz> VQn + AanQWVVn — Xqn (58)
i=1
n—1 2 n—1
= B, (Vgn)* — Ay nh’ (Z Vai (x)) +245,VV,, (h > ti> — Agn (VV2)?,
i=1 i=1

dn | BQ:wn(x)an:]-v"'vN'

Here A ,,As ., By, are certain numbers depending on v,k,n and s > 0 is a small parameter
of ones choice. We use in (5.8) V,, instead of V for convenience of notations, see below in this
paragraph. It is important that lim,_ ., B, = 0 uniformly for all n due to the presence of the
CWF. Hence, the presence of the CWF with v >> 1 mitigates the influence of the nonlinear term
(an)Q, which enables us to solve the boundary value problem for each ¢, iteratively via solving
a linear elliptic problem on each step. Still, the computational experience shows that we cannot
take v exceedingly large, which would effectively turn equations (5.8) into linear ones. Starting
from n = 1, we solve problems (5.8) sequentially with respect to n. For each n we have inner
iterations with respect to the tail function and calculate functions g, ; until convergence occurs.
We set go := 0. The first approximation V; 1 for the tail was V41 = 0 in [8], and in section 8 we
use Vi1 (2,3) = 3 2Inwp (2,3), where wy, (,3) is the Laplace transform of the solution of the
problem (5.1), (5.2) for the case ¢ (z) = d;. Substituting V,, ; € C?*7 (R™) in (5.8) for V,,, we find
the first approximation ¢, € C?* (ﬁ) for ¢, via solving the boundary value problem (5.8). This
is our inner iteration, in which we set (an)2 = (an,1)2. To find the next approximation for the
tail via the outer iteration, we first find the new approximation ¢, 1 € C7 (R™),cp,1 (z) = d; in
R™\ 2 via a simple backwards calculation. Next, we solve the problem (5.1), (5.2) with ¢:= ¢, 1,
calculate the Laplace transform w1 and set V,, 2 (z,3) = 572 [In Wn1 (2,5)]. Then we find a new
approximation g, for g, etc.. Suppose that convergence of inner iterations occurs at gn m.,.
Then we set (Gn,m,.» Cnymns Vamn) = (Gns Cny Vag1,1) € C2T7 () x C7 (R™) x C?7 (R™), where
en () = di in R™\ (2, and repeat the above process for n := n + 1. The convergence for both
qn,; (with respect to i) and gy, is evaluated via evaluating the residuals at a part of the boundary,
see section 8. We have added the term —s¢q, to the left hand side of equation (5.8) to improve
the stability property of the Dirichlet value problem (5.8) because of the maximum principle [20]
(Chapter 3).

Now we briefly outline the global convergence theorem of [8]. Because of (5.7), we assume
that |V, (2,5)[y,., < &, Vn, where ¢ is a small number. Let § be the level of the error in the data
g. Denote n = 2 (k+ d + >+ ). Hence, n is a small parameter, which, in particular, depends on
two regularization parameters of our method, s and 3. It is important that the second stage of
our two stage procedure, the adaptivity, is independent on parameters x, s, £, also see the second
paragraph of section 1. Let ¢* (z) be the exact solution of our CIP. Let N € [1, N] be the total
number of functions ¢, we have calculated, and 32 = kN be the length of the interval s € [5 — 32, 3]
covered this way. We assume that the number 3, is small. Indeed, equations (5.8) are generated by
equation (5.6), which contains Volterra integrals in nonlinear terms. It is well known from, e.g. the
classic ODE course that one can guarantee a “good” behavior of solutions of such equations only on
a small interval. Hence, for a given thickness of the s-layer , the number N of computed functions
cn is another regularization parameter here, and we set ¢y := cgi0p- This is going along well with
one of main ideas of the theory of Tll-Posed Problems, by which the iteration number can serve as a
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regularization parameter, see pages 156 and 157 in [13]. The following global convergence estimate
was proven in [8]

o — |, < B, V¥n € [1,N], (5.9)

with a certain positive constant By. Since 7 is small, then (5.9) guarantees that one obtains a good
approximation for the solution for each n. On the other hand, although 7 is small, we see in our
numerical experiments that it is impossible to make it infinitely small in practical computations.
The latter two factors pave the way for a subsequent application of the adaptivity technique,
which enhances the solution cg0p. This technique uses the function cgop as its starting point for a
subsequent enhancement.

5.2. Some discrepancies between our theory and computational experiments. Since
the above CIP is a quite complex problem with many yet unknown factors, it is hard to anticipate
that practical computations would not have any deviations from the theory and also that the
theories of two stages of our numerical method would exactly match each other. So, as it is often
the case when numerical methods for some complicated nonlinear ill-posed problems are backed
up analytically, some discrepancies of this sort take place in this paper. We list them in this
subsection. Still, the main point is that, regardless on these discrepancies, the above theory of the
globally convergent numerical method still works, including the convergence estimate (5.9).

The 1% discrepancy is that, because of some conveniences of our past computational practice [5-
8] and because the main focus of this paper is analytical rather than numerical, we use a generating
plane wave instead of the point source in (5.2). We launch this plane wave outside of the target
domain Q. Note that we have used the point source only to justify the asymptotic behavior (5.6),
see Lemma 2.1 in [8]. We verify this asymptotic behavior computationally, see subsection 7.2 of [8].
The 2"d discrepancy is that we solve boundary value problems (5.8) in a square, whose boundary
is non-smooth. In principle, this might result in singularities near the corners. However, we have
not observed such singularities in our computations. Although the boundary of this square is not
smooth, as required in subsection 5.1, a modification of the convergence estimate (5.9) can be
proven in this case if considering solutions of FEM analogs of (5.8) with a step size bounded from
below and applying the Lax-Milgram theorem instead of the Schauder theorem, also see subsection
7.2 of [8].

The 3™ discrepancy is that in order to figure out the Frechet derivative of the Tikhonov func-
tional for the above CIP for the adaptivity, we need to assume that solutions of certain hyperbolic
initial boundary value problems are sufficiently smooth. These conditions cannot be guaranteed
for the fundamental solution of the hyperbolic equation (5.1). Still, they can be guaranteed if the
function 0 (z — x¢) in (5.2) is replaced with

1 _
0p (x — x0) = Co exp (Iw*wo\2*92) e = o <0 ,/59 (x —xo) dz =1,
0, |z —xo| > 0 o

for a sufficiently small # > 0. Hence, since xg ¢ ©, then dg (z — x9) = 0 for in Q as well as in a small
neighborhood of 992 outside of 2. Here the constant Cp > 0 is such that the above integral equals
unity. We stress that we have introduced this function only to show that the required smoothness
of sections 6 and 7 can indeed be ensured for an initial condition, which is close to (5.2) in the
distribution sense. The theory of the globally convergent numerical method works for this case,
including (5.9).
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To consider the Frechet derivative in sections 6,7, we need to vary the coefficient ¢. To do this,
it is convenient to introduce the set of functions Z = Z (dy,ds,w, H) ,

(5.10)

g c:c(x)€ Hforxz€oc(x)€ (d —w,dy+w) forz €Q,
N ceC(R™),c—dy € H (R™),c(x) = d; in R™\ o ’

where w € (0,d;) is a small positive number. Because of (5.10), denote Z’ the set of all functions
be H' (R™)NC (R™) such that

b(z) € H for x € 6,0,,0 € Looc (R™),b(x) =0 for z € R™\ 0. (5.11)

By (5.10) and (5.11) ¢; — ¢y € Z', Vey,c0 € Z. Since H is a finite dimensional space, then we can
estimate C' (7) norms via Ly (o) norms, which is important for our derivations in section 6,

lex = ezllom < Clles = lle) s Yer,e2 € 25 Plog) < Gl 0EZ, (512)

for a positive constant 51 = 51 (Z). Hence, Z can be considered as an open subset of the space
Loy (ﬁ) for any bounded domain Q such that ¢ C Q. While conditions (5.10), (5.11) are suitable

for our theory of sections 2-4, condition (5.4) is violated for functions ¢ € Z, and this is our 4!
discrepancy. Still, we need the adaptivity only on the second stage of our procedure, and also in
actual computations of the first stage we obtain the function cg0p € Z.

6. Frechet Derivatives. In this section we derive Frechet derivatives of solutions of certain
hyperbolic initial boundary value problems for equation (5.1) with respect to the coefficient ¢ € Z.
Let T = const > 0. Let €1 be a convex bounded domain such that Q C Q;,0QN 90 = @,00; €
C*. Denote Qr = Q1 x(0,T), Sy = 081 x (0,T) . We replace in sections 6,7 the § (x — x¢) function
in (5.2) with the function &y (x — z¢) defined in section 5 and assume that zq ¢ Q; and @ is so small
that dg (x —x9) = 0 in Q. Using results of Chapter 4 of [21], one can prove that the function
u € C(R™ x [0,T]). We also assume that there exists a function a (z) € C> (£2;) such that
Ona o, = 1,a |sg,= 0,a(z) = 0 in Q. For example, if Q; = {z: |z| < R}, then one can choose
a(z) = x(x) (|x|2 = RZ) / (2R), where the function y € C* (Q1), x |an,= 1 and x (z) = 0 in €.
Although the existence of such functions a () might also be established for more general domains,
we are not doing this here for brevity.

Since the function ¢ (z) = d; in R™\ Q) and the constant d; is known, we can uniquely solve the
resulting initial boundary value problem (5.1), (5.2), (5.5) in the domain (R™\ ) x (0, 7). Hence,
the following two functions g, p can be uniquely determined: g (z,t) = v |g,, p(z,t) = Opu |s, . We
assume that there exist two functions P, G such that

PaG € Hm+2 (QT)v
OnP sy =p(x,t),0,G |sp=7g (z,t)
P(z,t) =G (z,t) =0 for z € Q,
P (2,0)=0inQy,j=0,...,3.

—~ o~ —~
R
=W N =
NP2 N

We impose these assumptions because the function ¢ in (5.5) might be given with an error, meaning
that the solution of the initial boundary value problem (5.1), (5.2), (5.5) in (R™\ ) x (0,T) would
not necessarily belong to C* then. Next, we consider solutions u and A of the following initial
boundary value problems (6.5) and (6.6) (we do not use a new notation for u for brevity),



Adaptivity with relaxation for the Tikhonov functional 23

c(x)uy = Auin Qp,
u(x,0) = uy (x,0) =0, (6.5)
8nu |ST =Pp (Z‘, t) ;

C(J?) )\tt = A)\ in QT,
Az, T) =X\ (2,T) =0, (6.6)
OnA |ST = (g_ u |ST) C€2 (t)

We call problems (6.5) and (6.6) the “state problem” and the “adjoint problem” respectively. So,
(6.6) is the problem with the reversed time, and the boundary condition for it is known only if the
function u |g, is known. Hence, for a given coefficient ¢ (z) , one should first solve the state problem
and next solve the adjoint problem. In (6.6) (., (¢) is a cut-off function, which is introduced to
ensure that the compatibility condition is satisfied at S7N{t = T}, where g5 > 0 is a small number.
So, we choose such a function (., that (., € C*[0,T], ¢, (t) =1 for € [0,T — e9], (., (t) = 0 for
te (T —eq/2,T) and (g, (t) € [0,1] for t € (T — €9, T — £2/2].

We now remind a result from the classic theory of hyperbolic PDEs with the Neumann boundary
condition, see Theorems 5 and 6 in section 7.2 of [16]. We formulate it for our specific needs rather
than providing a more general formulation of [16]. Although those Theorems 5 and 6 are proven
for the Dirichlet boundary data, extensions of those proofs to the case of Neumann boundary data
are rather straightforward, see, e.g. Theorem 5.1 of Chapter 4 in [21]. Consider the following initial
boundary value problem

c(x)vy = Av+ f in Qr,
v (x,0) = v (2,0) =0, (6.7)
Onv |sp= 0™ (2,t) € Ly (S7),

where the function f € H* (Qr). By the definition, the weak solution v € H' (Qr) of the problem
(6.7) should satisfy the following integral identity (see an analogue for y = 0 in §5 of Chapter 4 in
[21]) for all functions z € H' (Q) such that z (z,T) =0

/ (—c(z) veze + VoVz) dadt — /v(”)zdS - / fzdzxdt = 0. (6.8)
Qr St Qr

Assume that there exists such an extension W (z,t) of the function v(™ from the boundary St in
the domain Qr that 9,W |s,= y(z,t),W € H**2(Qr),W (z,t) = 0 for x € Q, /W (2,0) =
0,7 = 0,...,k. In the case k > 2 we also assume that 9 f (z,0) = 0,7 = 0..,k — 2. Consider the
function v — W. Let the function ¢ € Z. Dividing both sides of equation (6.7) by ¢ (z) and using
¢ 'Av = V- (¢7'Vuv) — V (¢71) Vv, we obtain that v € H*™! (Qr) and the following estimate
holds

1ol aress gy < C1 [IW sz + 1o - (6.9)

Here and below C71 = C1 (Z,Qr,a(x)) and
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Cy = Cy (Z, Qr,Cy,a(x), ||P||H1"+2(QT) , ||G||HM+2(QT)) denote different positive constants

depending on listed parameters. Consider functions 4 = u— P, A = A — (G — a(z)u) and substitute
them in (6.5), (6.6). Then, using (6.1)-(6.4), (6.7) and (6.9), we obtain that u, A\ € H™! (Qr) and

3

lull grms1(@ry < CLlPll gmeziry > (Al gmergqpy < Ca (||P||Hm+2(QT) + ||G||Hm+2(QT)> . (6.10)

Theorem 6.1. Let domains 2, be those specified above. Assume functions P, G satisfying
conditions (6.1)-(6.4) exist. Consider the set Z as an open set in the space Lo (Qq) (see (5.12)).
Let operators Ay : Z — H?(Qr) and Az : Z — H?* (Qr) map every function c € Z in the solution
u(z,t,¢) € H*(Q7) of the problem (6.5) and the solution \ (x,t,c) € H? (Qr) of the problem (6.6)
respectively, where in (6.7) u |s;:= u(x,t,¢) |s, . Let €3 € (0,1) be a number and the function
¢ € Z be such that dj —w (1 —e3) < c(z) < dg +w(l —e3). Then each of the operators Ay, As
has the Frechet derivative at this point c, A} (c) (b) = u(x,t,¢,b), AL () (b) = X(z,t,¢,b), where
b(z) € Z' C Lo () is an arbitrary function. Functions U,\ € H? (Qr) and they are solutions of
the following initial boundary value problems

c(x) Uy = Au—b(x) uy (x,t,¢), in Qr,

6.11
U (x,0) = (2,0) = 0,0, |s7.= 0; ( )

e (@) Mg = AX = b (z) A (2, t,¢), in Qr,

- - z (6.12)
Az, T) =M (2,T) = 0,00\ |s7= =0t |5 -

Proof. Since m = 2,3, then by the embedding theorem H™*! (Qr) C C' (Q) and ||f||01(§T) <

By ||f||Hm+1(QT) ,Vf € H™ 1 (Qr), where the positive constant By = By (Q7) depends only on the
domain Q7. Let the function b € Z’ be such that ||b||c(§1) < esw. Then ¢+ b € Z. It follows from

(6.10) that
||u||cl(§T) < B; ||u||Hm+1(QT) <y ||P||Hm+2(QT) . (6.13)
By (5.12), (6.9)-(6.11) and (6.13) u € H? (Qr) and

[l 2y < CrllPlgmra(@ry - 10l Ly o) - (6.14)

Consider now the function w; (z,t,¢,b) = u(x,t,c+b) — u(x,t,¢c) — u(x,t,¢,b). Then wy €
H? (Qr) . Using (6.5), we obtain

(c+b)wiy = Awy — bug;  wy (2,0) = wyg (2,0) =0, pwi |s.= 0.

Hence, by (5.12), (6.9) and (6.14) [|w1| 2, < C2 ||b||i2(g) . Sincithe function @ (z,t, ¢, b) depends
linearly on b, then the latter inequality proves that the function w is indeed the Frechet derivative
of the operator A; at the point ¢. Hence, we now can consider u (x,t,¢,b) for all functions b € Z’.
The proof for the operator A, is similar. [J

Theorem 6.2. Let conditions of Theorem 6.1 be satisfied. Consider the operator As : Z —

Lo (o) defined as

T
Az (¢) (z) = /(ut)\t) (x,t,c)dt,x € o,Vc € Z,
0
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where functions u, \ € H™H! (Qr) are solutions of initial boundary value problems (6.5), (6.6).
Then the function As (c) (z) € C (Q) and the operator A is Lipschitz continuous,

145 (1) = Az (c2)ll 1,0y < Cller = e2ll (5 Ver, 2 € Z.

Proof. Since by (6.10) and the embedding theorem functions u, A € C* (Q) , then A3 (c) € C (7).
For i = 1,2 let u; = u(x,t,¢;), \i = A(x,t,¢;). Denote U = ug — ug, A = Ay — Aa. Then

iUy = AU — (1 — c2) uzey, U (2,0) =Us (2,0) =0, 0nU |s5,=0, (6.15)
ClAtt = AA — (Cl — 02) Agtt, A (Z‘, T) = At (Z‘, T) = 0, 8nA |ST= —§52U |ST . (616)

Hence, using (5.12) and (6.10), we obtain from (6.15) and (6.16)

14a (e) = A ()17 < Tl g, 102y + T 2l (g 1Ay
< Caller — el 0y - O

7. The Tikhonov Functional for the CIP. To apply results of sections 2-4 to our CIP, we
specify in this section the Tikhonov functional for this CIP and derive the Frechet derivative for it.
We assume in this section that conditions of Theorem 6.1 hold and consider now the set Z as an
open subset of the space H (see the paragraph after (5.12)). Recall that the norm in H is Lo (o)
and the set Z C H. Let ¢ € Z be an arbitrary function and u = u (z,t,¢) € H™ (Qr) be the
solution of the problem (6.5). Denote Hy := Lo (S7). Consider the operator F' : Z — H; defined
as

F(e)(x,1) = (9 —u(2,t,0) [s7) G, (1) (7.1)

Since the function g (z,t), (x,t) € St is actually generated by the data g (z,t) in (5.5) for our CIP,
we assume that g (x,t) = g* (z,t) + g5 (z,t) , where g* corresponds to the exact solution ¢* (section
5) and gs corresponds to the error in the data with a sufficiently small level of error § € (0,1).
Hence, g* (z,t) —u (x,t,¢*) |s,= 0 and by (7.1) F (c*) = gs (x,t) . Following (6.1)-(6.4), we assume
that there exist functions G*, G, such that

G*7G5 € Hm+2 (QT);G: G* +G55G* (l',t) = G(S (xvt) = O,fOI' S Q7

X * 7.2
OnG |ST: 9", 0G5 |ST: gs, ||G6||Hm+2(QT) <. ( )
Obviously one can take, e.g. G* = a (z) u (z,t,c*) . Hence, we assume that

||F(C*)||L2(ST) <9, (7.3)

which is required by (2.6). In addition, by Theorem 6.1 and the trace theorem the operator F' has
the Frechet derivative F’ (c) (b) at every point ¢ € Z,

F () (8) = —Cea (1) (2, ,,0) |, VD € 2. (7.4)

Lemma 7.1. Assume that conditions of Theorem 6.1 and consider Z is a subset of H. Then
the Frechet derivative F' (c) satisfies the Lipschitz condition

||F/ (Cl) _ (62)” < (Cy ||01 — CZ”LQ(O') ,Vei,c0 € Z.
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Proof. For i = 1,2 denote u; = u; (x,t,¢;) and w; = U; (x,t, ¢;, b) solutions of problem (6.13) and
(6.15) respectively with ¢ = ¢;. Similarly with the proof of Theorem 6.2 let U = uy —us, U = %1 —Us.
Hence, U € H™1 (Qr),U € H*(Qr) . By (6.11)

Uy = AU — bUy — (c1 — ¢2) Tage, U (2,0) = Uy (£,0) =0, 0,U |s,=0. (7.5)

It follows (5.12), (6.9), (6.11) and (6.15) that

||bUtt||L2(QT) + [[(er — CQ)%ttHLQ(QT) < Coller — (32||L2(a) ||b||L2(U) :
Hence, by (6.9), (7.4), (7.5) and the trace theorem
£ (e1) (0) = F' (e2) D)l gy, < Cller = eall gy o) bl ooy - B

Recall that the function cgop € Z (subsection 5.2) and consider the Tikhonov functional Y, :
Z — R for the operator F' (c) in (7.1) (also, see Remark 2.1),

1 2 « 2
Ya () = 3 IF @, + 5 e = cgonll] ) (7.6)

In order to find the Frechet derivative Y (¢), consider the Lagrange functional L (c),

L(c)=Ya(c)+ | (—c(x)uths + VuVA)dedt — [ pAdSdt, (7.7)
! /

where functions u (z,t,¢), A (z,t,c¢) € H™ ! (Qr) are solutions of initial boundary value prob-
lems (6.5), (6.6). By (6.5), (6.6) and (6.8) the integral term in (7.7) equals zero. Hence, L (¢) =
Y, (¢),Vc € Z. However, it is not straightforward to figure out the analytic expression for (F’ (¢))* F (c)
for the operator F' in (7.1). The latter is required by (2.9) for the calculation of the Frechet deriva-
tive Y, (¢). The reason why L (c) is introduced is that it is easier to calculate its Frechet derivative
L’ (¢) compared with the one of Yy, (¢). To obtain the explicit expression for L’ (¢), we need, sim-
ilarly with section 6, to vary the function ¢ via considering ¢ +b € Z for b € Z’ and then to
single out the term, which is linear with respect to b. When varying ¢, we also need to consider
respective variations of functions u and A in (7.7), since these functions depend on ¢ as solutions
of state and adjoint problems. And linear, with respect to ¢, parts of these variations will be func-
tions @ (z,t,¢,b), A(x,t,¢,b). Unlike this, the “all-at-once” approach of [5-7], assumes that in (7.7)
L (¢,u,\), where functions ¢, u, A are treated as mutually independent ones with variations

L =
(b,ﬂ, X) of (¢, u, A) satisfying
€ H (Qr),u(x,0) = X(x,T) = 0. (7.8)

The resulting expression L (c,u, \) (b, u, X) is considered as the “all-at-once” Frechet derivative of

the Lagrangian L (¢, u, A) rather than the one of the Tikhonov functional Y,, (¢). One of assertions
of Theorem 7.1 is that these two derivatives are equal to each other.
Theorem 7.1. Assume that conditions of Theorem 6.1 hold. Then

«

T
Y. (c)(b) =L (c)(b) = a(e—cgop) — | wAedt| b(x)dz, Ve e Z, Vb e Z'. (7.9)
[lreer]
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In particular, since by (5.11) b(z) =0 for x € R™\ o, then
T
Y. (¢) (z) = a(c— cgop) () — / (ughe) (z,t,c)dt, x € 0, Ve € Z, (7.10)
0

and by Theorem 6.2 Y. (c) € C (7). The same expression (7.9) holds for the all-at-once Frechet
derivative of the Lagrangian, L' (c,u,\) (b, A) =Y (c) (b),Vc € ZNb € Z', i.e. the all-at-once
Frechet derivative of the Lagrangian equals the Frechet derivative of the Tikhonov functional.

Proof. Considering in (7.7) L (¢ + b) — L (¢), singling out the term, which is linear with respect
to b and using (7.4), (7.6) and Theorem 6.1, we obtain

T
L' (c) (b) =Yg, (c) (b)=/ a(c_cglob)_/ut)\tdt b (x) dx
0

+ / (—cutXtJrvwX) dxdt — / pAdSdt (7.11)
QT St

+ / (—eMity + VAVE) dedt — / (9 —ulsy) e, () udSdt,Ne € Z,¥b € Z,
Qr St

where @ and X are solutions of problems (6.11) and (6.12) respectively. Since & (z,0) = X (z,T) =0,
then (6.8), (6.11) and (6.12) imply that second and third lines in (7.11) equal zero, which proves
(7.9). Consider now the all-at-once Frechet derivative via considering L (¢ +b,u+,A+ ) —

L(c,u,A) and singling out in this expression the term, which is linear with respect to (b,ﬂ, X) .

Then we obtain the same expression as in (7.11) where functions a,X are replaced of with @, \.
Hence, (6.5)-(6.8) and (7.8) imply that second and third lines in the latter expression equal zero.
O

Remark 7.1. We refer to the earlier work [10] where the Frechet derivative for the Tikhonov
functional for the parameter identification problem (which is different from a CIP) was derived,
although the proof was not presented: by the rules of that journal. The forward problem in [10] is
the Cauchy problem for a hyperbolic equation. A private communication with the author of [10]
has revealed that the complete proof was presented in his Ph.D. thesis (1971). Since the Lagrangian
was not introduced in [10], then the above equality of two derivatives was not proved in [10].

Now we are ready to reformulate theorems of sections 2-4 for our CIP. To do this, it is convenient
to consider another set Z; C H, which is the set of restrictions of all functions ¢ € Z on the polygonal
domain ¢. Hence, when considering solutions u and A of state and adjoint problems in the functional
Y, (¢), we assume that the coefficient ¢ € Z. However, when subsequently applying the theory of
sections 2-4 to this functional, we assume that ¢ € Z;. Since we always work with the gradient
Y. (¢) in that theory, then (7.9) and (7.10) imply that this theory is not affected this way.

There is no guarantee that the function Y/ (¢) € H, because of the integral term in (7.10).
Hence, in order to apply the theory of section 4, we should consider the function PY, (c) instead of
Y! (¢), where P : Ly (0) — H is the operator of the orthogonal projection of Lg (o) onto H. In prac-
tical computations we actually compute the interpolant of Y (¢) on the corresponding mesh instead
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of PY! (¢), and this is one of sources of error, see Theorems 7.3 and 7.4. Increasing the smoothness
of functions P,G by 1 in (6.1), one can prove that in Theorem 6.2 A (c) € C* (7), which leads to
an estimate of this error via (2.4). We keep in mind below that (PY/ (¢), f) = (Y. (¢), f),Vc €
Z1,¥f € H. It follows from Lemma 7.1 that there exists a number Ny = N4 (C3) > 0 such that
Yz (c1) = Yo (e)lln,0) < Naller = e2llp, o, Ver, c2 € Z1. Obviously, lemmata and theorems of sec-
tions 2 and 3 are applicable now with the natural replacement of the vector (*, Zgi0p, To, N3) with
the vector (¢*, cgion, Ca, Na) and assuming that conditions (2.11), (2.12) hold. Hence, below we still
regard, without restating, Assumption 4.1 as a standing one. Also, in Lemma 3.2 and Theorems
3.1, 3.2 we now have 81 = 31 (C2) € (0,1),p = frax = $16#2,61 = 01 (1, p2, Ca) ,0 € (0,071) and

V(1+x/§)6“1 (c"):= {f EH:|f— C*HLQ(U) < (1 + \/§> 5"1},

Vp = {f S H: ||f_ca||L2(‘7) < p}

In addition, (4.1) holds where A is a given positive constant and ||[Vca|[, (5 < A. The proof of
Theorem 7.2 follows immediately from (5.10)-(5.12), (6.1)-(6.4), Lemmata 2.1, 3.2 and Theorems
3.1, 3.2.

Theorem 7.2. Assume that conditions of Theorem 6.1 hold, functions c*,cqop € Z1 and in
particular ||cgion — c*||L2(U) < 6", Then one can choose the number 62 = o2 (u1, p2, C2) € (0,d1]
so small that for ¢ € (0,02) we have: V(1+\/§)5,L1 (¢*) CV, C Zu, the functional Y, (c) is strictly
convex on V, with the strict convexity parameter k = /4 and there exists the unique minimizer cq
of Y, (¢) on the set V(1+\/§)6u1 (c*) as well as the unique minimizer c,, on the set (OV ,\V,) N M,.

Theorem 7.3. Let conditions of Theorem 7.2 hold. Suppose that the function PY. (¢) € H
is calculated with an error. That is, one calculates the function S, (¢) € H instead of PY, (c) and
[PYe (¢) = Sa ()1, < 7.Ve € V), where the number 7 € [0,1) is sufficiently small. Suppose
that the minimization process of the functional Y, (c) on the set M, NV, with n > 7 is stopped at
such a point ¢, » that T < | PpS, (Cn’T)”LQ(a) /2. Then the following a posteriori error estimate of
the reconstruction of the reqularized coefficient holds

<

Q|

[|Sa (Cn,T)HLQ(U) .

llen,r — Ca”Lz(g)

In particular, if T =0, then

3
(0%

3
llen = call o) < 2 I1PYG () lnuo) < 5 1Ya ()l -

Proof. Since Y (¢,) = 0, then by (3.2) and Theorem 7.2
« ”Cn,‘r - Ca||L2(g) <2 ”Yolz (Cn,‘r) - Yolz (Ca)”LQ(g) <2]8 (Cn,‘r)”Lz(g) +27 <3S (Cn,T)HLQ(U) .0

We now reformulate the relaxation Theorem 4.2 for our CIP. This is Theorem 7.4, which
immediately follows from Theorems 4.2, 7.2 and 7.3.

Theorem 7.4. Denote 7 = /1 — a2 (2N,) 2. Assume that conditions of Theorem 7.8 hold
and T is the integer of Assumption 4.1. Suppose that for any subspace My with k > 7T the min-
imization process of the functional Yo (c) on the set V, N M, is stopped at such a point cy . that
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||PM]CS(C]€7T)||L2(O-) < 7. Let n > T and ay be the number from (2.1). Assume that there exists a
number ry, € (7,1) such that

h, ~

Cy <AKﬁ +ar + g) < (=P 15 €nr)ll o) (7.12)
Ty —T

@GRV VS (eno)lly @) < g IS (enn)l2fo) - (7.13)

Let 62 € (0,61] be the number of Theorem 7.2. Then there exists such a subspace M1 of the
space H that M,, C My41 and for § € (0,83) the following relazation property holds

||Cn+1,T - Ca”LQ(g) <7y ||Cn,T - Ca”LQ(g) . (7.14)

If at least one of inequalities (7.12), (7.13) is invalid, then the mesh refinement process should be
stopped. If T =0, then the above holds with the replacement of the pair {S (cp,-),cn r} by the pair
{PY, (¢pn),cn}. Let r € (7¥,1) be the mazimal value of corresponding numbers r,, for a certain finite
number of such mesh refinements. Then (7.14) is valid with the replacement of r, with r, which
turns (7.14) into (1.1).

Remark 7.2. In reference to numbers Co and Ny in (7.13), see Remark 4.1. Since the local
strict convexity of the functional Y, on the set V, in combination with Assumption 4.1 implies
convergence of gradient-like methods of minimization of Y, on sets V,, N M,,, a corresponding global
convergence theorem for the entire two-stage procedure for the above CIP to the above defined
regularized solution ¢, can be proven, unlike the current first stage only of [8]. This can be done,
provided that the globally convergent stage would be modified for the smooth initial condition
do (x — x0) (see section 5).

8. Numerical Studies.

8.1. Computation of the forward problem. In this paper we work with the computa-
tionally simulated data. That is, the data for the CIP are generated by computing the forward
problem with the given function ¢(x) := ¢* (z). To solve the forward problem, it is convenient
to use the hybrid FEM/FDM method described in [4]. The computational domain for the for-
ward problem is G = [-4.0,4.0] x [—5.0,5.0]. This domain is split into a finite element domain
Greym = Q = [-3.0,3.0] x [-3.0,3.0] and a surrounding domain Gppys with a structured mesh,
G = Grem UGrpu, see 8.1-a). The reason of the convenience of the hybrid method is that there
is no need to have the unstructured mesh in the domain G\, since ¢ () = 1 in this domain. The
space mesh in ) consists of triangles and in Ggpys - of squares with the mesh size h = 0.125 both
in the overlapping regions and in G\ £2. At the top and bottom boundaries of G we use first-order
absorbing boundary conditions [14]. At the lateral boundaries, mirror boundary conditions allow
us to assume an infinite space domain in the lateral direction. The coefficient ¢(z) is unknown only
in the square 2 C G,

1:=d; in GN\
c(z) = 1+ k(x) in 9, , (8.1)

¢ = 4 in small squares

k(z) = { 0.5 sin? (F25) sin? (F£22) | for |21],|z2| < 2.875 } .

0 otherwise, including small squares
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0.4 —&— =001, 500
—6—a=0.15, 5:0.0

1.720¢

B ae00

(a) G=GrEm UGFrDM (b) c7,9 (©) llen — callr,

Fia. 8.1. a) The computational domain for the forward problem is the rectangle. The dark blue square is
the domain Q. b) The spatial distribution of the function c79 (x) = c7 (x) := cgiop (%) resulting from the globally
convergent stage of our method. The mazimal value of this function within imaged inclusions is 3.1 (correct mazimal
value is 4). Also, cgiop () = 1 outside of imaged inclusions. Hence, it is desirable to enhance the image in two
ways: (1) it would be good to increase the value of the function ¢ within imaged inclusions from 3.1 to 4, and (2) it
is desirable to move up the location of the left imaged inclusion. This paves the way for the subsequent application
of the adaptivity technique. c¢) Computed norms ||cn *Ca”[@(g) on five (5) adaptively refined meshes including

the initial coarse mesh. Two cases are presented: (1) ¢ = 0.02 = §,a = 0.15 =~ ¢%® and (2) ¢ = a = 0.01, see
ezplanations in the text. The relazation property (7.14) is evident from this figure. In the first case the relazation
is more pronounced on the 4 ** mesh refinement with r4 ~ 0.79, although it is also clear that 0.95 < ri,re,r3 < L.
In the second case r1 ~ 0.82,1r9 =~ 0.89,7r3 ~ g ~ 0.71.

Hence, (8.1) means that ¢(x) = 1 both near the boundary of the square © and outside of this square
and c¢(x) > 1 := d; everywhere. The constant ¢ characterizes the inclusion/background contrast
in small squares. The number 0.5 is the maximal amplitude of the slowly changing background
function. We point out that our goal is to image small squares of Figure 8.1 (c) rather than to image
the slowly changing background function. Another approach to imaging of small inclusions can be
found in, e.g. [2]. The trace of the solution of the forward problem is recorded at the boundary
0% as the function g (x,t), see (5.5). Next, the coefficient ¢(z) is “forgotten”, and our goal is to
reconstruct this coefficient for z € Q from the data g (z,¢). The boundary of the domain G is
0G = 0G1 U 0G5 U 0G3. Here, 0G1 and 0G4 are respectively top and bottom sides of the largest
domain of 8.1-a) and dG3 is the union of left and right sides of this domain. Let ¢, := 27/35,T =
17.8t1. We initialize the plane wave f(¢) on the top boundary 0G; (also, see subsection 5.2), where
f(#) =01 (sin(St—n/2) +1), 0 <t <ty f(t)=0,t € (t1,7). Hence, it is initialized for ¢ € (0, ;]
and propagates into G. In the integral of the Laplace transform (subsection 5.1) we integrate for
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t € (0,T). Thus, the forward problem in our numerical test is

c(@)uy —Au=0, inGx (0,7T),
u(z,0) = u(x,0) =0, in G,

= f(t), on 9Gy x (0,t4],

= —0wu, on Gy x (t1,T),

(9nu|aG2 = —0wu, on dGs x (0,T),

877,u|aG3 =0, on 0G5 x (0,T).

(8.2)

To see how our algorithm works with the noisy date, we introduce the multiplicative random noise
in the data g. thus considering the following function g.

ge (J?i, tj) =4 (J?i, tj) [1 + N2 (gmax - gmin)] ) (83)

where 2t € 90,1/ € [0,T] are mesh points at the boundary of the square 2 and in the time interval
[0,T],a; € [-1,1] is the random number taken from the uniform distribution, ¢ ~ § is the noise
level, where giax and gnin are maximal and minimal values of the function g. However, we have
differentiated the Laplace transform w (z, s) with respect to s using the finite difference, because
the Laplace transforms smooths out the noise.

8.2. Reconstruction result on the globally convergent stage. In our numerical studies
we have used the interval s € [s,3] = [6.95,7.45], which is a part of the interval [6.7,7.45] used in
[8]. We have taken its partition step size k = 0.05, which means that N = 10. We have taken the
following values of parameters: v = 20, 5, = 0 for n = 1,2 and 5, = 0.0001 for n € [3,10],¢ = 0.05.
Thus, the noise level on the first stage of our two stage procedure was 5%. We have solved Dirichlet
boundary value problems (5.8) by the FEM. If in our computations we saw that ¢, ; (') < 0.5
for any point 2’ € Q, then we have set a new value as i (@) ;=1 = d; in order to ensure that
the operator ¢, ; (') 9 — A is a hyperbolic one when solving the forward problem (8.2) with the
function ¢, ;, which we need for iterations with respect to tails (subsection 5.1). The latter cut-off
procedure prevents us from imaging the slowly changing background, which is not our goal anyway
(see subsection 8.1).

To monitor the convergence of our method, we have evaluated norms

||Qn,1 |Fh _wn ||L2(aQ)

Fri= (8.4)

Tonl oo

In (8.4) values of calculated functions q,km are taken at the points h-inside from the lower boundary,
where h = 0.125. We stop inner iterations with respect to tails (i.e., with respect to i), when either
Friv1 > Fyior |Fy i1 — Fy ;| <0.0005. One can see from Table 8.1 that norms F), ; decay first
with the grow of n € [1,7]. Next, they start to grow at n = 8 and grow sharply at n = 9. Hence, we
stop the globally convergent part at c79 := ¢7 := cgiob, see label for Table 8.1. Another reason of
the growth at n = 8 might be that the s-interval covered at n = 7 has the length of 0.35, and this
might be the limit for the number 35 of subsection 5.1. Figure 8.1-b) displays the resulting image
and its legend explains details.
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i |n=1 n=2 n=3 n=4 n=>5 n==06 n="7 n=2~8 n=29
1 | 1.07519 | 0.979843 | 0.957188 | 0.960068 | 0.840414 | 0.799041 | 0.188793 | 0.380556 | 0.563063
2 | 0.98301 | 0.978974 | 0.955977 | 0.934431 | 0.763071 | 0.826884 | 0.197357 | 0.397676 | 1.563063
3 | 0.98301 | 0.978574 | 0.957078 | 0.931403 | 0.753745 | 0.826884 | 0.203472 | 0.399297
4 0.956932 | 0.931034 | 0.768198 0.21208 0.400714
5 0.956501 | 0.931012 | 0.768198 0.214845 | 0.414013
6 0.955725 0.1983 0.435663
7 0.955006 0.201933 | 0.426121
8 0.954221 0.19723 0.420526
9 0.953986 0.195233 | 0.420526
10 0.953287 0.199145
11 0.952856 0.199145
12 0.952856
TaBLE 8.1

Values of numbers F, ; in (8.4). One can see that they generally decrease until n = 7. And stabilization with
respect to i is also observed. Next, they start to increase at n = 8 and grow sharply at n = 9. Therefore, we stop
the globally convergent part at n := N = 7 and set c7,9 1= c7 := Cglob- This is going along well with one of basic
ideas of the theory of Ill-Posed Problems by which the iteration number can be one of reqularization parameters, see
pages 156, 157 of [13].

8.3. The second stage of the two-stage procedure. In this second stage of our two stage
procedure we use the adaptivity technique, which is the main focus of the analytical study of this
publication. We take the above function ¢y (Figure 8.1-b)) as the first guess for our method.
On each mesh we use the quasi-Newton method to find an approximate solution of the equation
(Y)) (¢) = 0, where the function Y/ (c) is given in (7.10), see [7] for details of our implementation
of the quasi-Newton method. Here the superscript “I” stands for the standard interpolant of the
function Y (¢) on this mesh (see section 7 for some details). On each mesh we stop iterations of
VAR (c™) H < 107° or these
La(o)
norms are stabilized. Usually norms are stabilized and the resulting norm H(YOC)I (c(")) HL - #0.

2(o

the quasi-Newton method on such a function ¢(™ that either

Hence, we refine the mesh in such subdomains of ¢ that
)" () ()] 2 vmax| ()" () (@)].

where v = 0.6 was chosen in numerical experiments. This corresponds to the mesh refinement
recommendation presented after the proof of Theorem 4.2. In our case is the domain Q; =
{z2 > =3} N G (section 6). We do not use the cut-off function (., (¢) in (6.6) and (7.1), since we
have observed computationally that u (z,T") = 0. Since the convergence estimate (5.9) guarantees
that the correct solution is not far from cg0p, then we use some constrains for the reconstructed
coefficient. We impose these constraints using the solution obtained on the globally convergent
stage. The idea is that the solution obtained on the second stage should not be too far from the
function cgiop. Thus, in all adaptive meshes we enforce that the coefficient c¢(z) belongs to the
following set of admissible parameters, c¢(z) € {¢c € H : 1 < ¢(z) < 4}. The solution computed
on the mesh, which was obtained after n refinements, is denoted here as ¢(™), for convenience. In
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Fic. 8.2. Computational results for the second stage of our two stage numerical procedure. We have taken on
this stage the noise level in (8.3) ¢ = 0.02 =~ § and the regularization parameter a = 0.15 = 048, Hence, o =~ 0.48,
where the number po is defined in (2.12). Adaptively refined meshes on five consequtive mesh refinements are shown
on a)-¢). Fig. 8.2 f) displays the resulting image of the coefficient ¢(5 () after five (5) mesh refinements, see details
in the text. Locations of both inclusions are accurately imaged (compare with Fig. 8.1 a)). The mazimal value of
the function c(® (z) = 4 inside of each imaged inclusion, which means that the inclusion/background contrast is
also accurately imaged. In addition, ¢®) (z) = 1 outside of imaged inclusions. We set cq () := ¢(®) ()

addition, we use a cut-off parameter C.,; for the reconstructed coefficient ¢(™,

(™) (z), if () () > Clys maxz c(n) (z)
Cglob, €lsewhere.

C(n) (if)

In our numerical experiments we have taken C.,; = 0.75 and in the adaptivity technique we
have taken in (8.3) ¢ = 0.02 ~ § which corresponds to 2% of the noise level, and we have taken
a = 0.15 ~ §°48, which means that in (2.12) po = 0.48. First, we use the quasi-Newton method on
the same coarse mesh where the globally convergent method worked and have obtained the same
image quality (not shown) as on Figure 8.1b. Next, we have performed our testing on 5 times
refined meshes. As a result, the image was stabilized. This stabilization basically means that the

norm H(Yo’t)l c®) H o) became too small, indicating that at least one of conditions (7.12), (7.13)
Lo(o

is likely invalid at n = 5 and thus, the mesh refinement process should be stopped (Theorem 7.4).
Figure 8.2 displays those mesh refinements as well as the resulting image on the finally refined
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mesh. One can see that the image quality is significantly enhanced compared with Figure 8.1-b).
Namely, the maximal value of the imaged coefficient within both inclusions is now 4, which is the
correct value, and locations of both imaged inclusions are also imaged accurately.

An important additional point is to computationally verify the relaxation property (7.14). As
co we have taken the function obtained on the finally refined mesh (see Figure 8.1-c)). Next, we
compute norms ||c(") — CQHLQ(U) , where ¢(™ is the approximation for the function ¢ obtained after

n mesh refinements. Each function ¢(™ is linearly interpolated on the finally refined mesh. Since
¢ is a piecewise linear function, this interpolation does not change it. Figure 8.1-d) displays
computed values of norms ||c(") — ca||L2(U) for all six meshes on which computations have been
performed. The relaxation property (7.14) is evident. Note that this figure also displays result of
another test with ¢ = @ = 0.01, which we have performed. We observe that computed norms for
this second test are slightly lower than those of the first, so as relaxation numbers r,,. The resulting
image for the second test (not shown) was of about the same quality as the one for the first.
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