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The replaement problem: A polyhedral and omplexityanalysis. The omplete versionTorgny Almgren,∗ Nilas Andréasson,† Mihael Patriksson,‡Ann-Brith Strömberg,‡ and Adam Wojiehowski‡January 26, 2009AbstratWe onsider an optimization model for determining optimal opportunisti maintenane (thatis, omponent replaement) shedules when data is deterministi. This problem, whihgeneralizes that of Dikman, Epstein, and Wilamowsky [4℄, is a natural starting point forthe modelling of replaement shedules when omponent lives are non-deterministi, whenea mathematial study of the model is of large interest. We show that the onvex hull of the setof feasible replaement shedules is full-dimensional, and that all the neessary inequalitiesare faet-induing. We show that when maintenane oasions are �xed, the remainingproblem redues to a linear program; in some ases the latter is solvable through a greedyproedure. We further show that this basi replaement problem is NP-hard.1 IntrodutionThe importane of performing maintenane operations well�and of improving the state of theart�seems to be impossible to overestimate: aording to [8, Chapter 1℄, maintenane osts inplants in the US alone aounted for more than $600 billion in 1981, more than $800 billionin 1991, and were then projeted to inrease to beome more than $1.2 trillion by the year2000. It is stated that these evaluations indiate that on average, one third, or $250 billion,of all maintenane dollars are wasted through ine�etive maintenane management methods.Aording to a reent study (made by Forum Vision Instandhaltung, Germany), maintenaneosts in the manufaturing industry within the EU amount to roughly $2 trillion per year.Studies over the last 20 years have indiated that around Europe, the diret ost of maintenaneis equivalent to between 4% and 8% of total sales turnover. Also in these ases, it is quitenatural to assume that not all the money spent is spent well: aording to information gatheredby the Swedish Center for Maintenane Management, maintenane is quite often performed toofrequently, and surprisingly often equipment failure is triggered by inspetions and the onditionmonitoring itself. One objetive with onstruting and studying mathematial models for theoptimization of the sheduling of maintenane and inspetion ativities is to mitigate some ofthese problems, and to thereby ontribute to a shift of fous from onsidering maintenane asmainly a ost-induing ativity to that of an investment in availability improvement.One strategy for planning maintenane ativities is so alled opportunisti maintenane, inwhih a mathematial model is utilized to deide whether, at a (possibly already planned) mainte-nane oasion, more than the neessary maintenane ativities should be performed. Aording
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†Tegnérsgatan 29, SE-333 32 Smålandsstenar, Sweden.
‡Mathematial Sienes, Chalmers University of Tehnology, and Mathematial Sienes, Gothenburg Univer-sity, SE-412 96 Gothenburg, Sweden. E-mail: {mipat,anstr,wojadam}�halmers.se.1



to Dikman et al. [4℄, Jorgenson and Radner [7℄ introdued the original opportunisti replae-ment/maintenane problem. They onsidered a system of stohastially failing omponents,whih inur extensive maintenane osts upon failure, that is, for shutting down and disassem-bling the system. When the system is down for whatever reason, omponents may be replaed atno additional maintenane ost. Thereby, opportunities arise to trade o� remaining life of om-ponents in order to avoid maintenane osts assoiated with omponent failure, perhaps alreadyin the near future. This is their main motive for studying the problem.In [6, 3℄ a problem assoiated with fusion power plants is addressed. For safety reasons, om-ponents are assigned life limits at whih removal is mandatory, and before whih the probabilityof failure is e�etively zero. Their problem therefore is deterministi. (Later, in [5℄, this problemwas solved for the ase of an in�nite horizon and for a system of two omponents.)Our original motivation for studying the replaement problem was a projet onerning theoptimization of jet engine maintenane shedules at Volvo Aero Corporation (VAC). An airraftengine onsists of thousands of parts. Some of the parts are safety-ritial, as in fusion powerplants, whih means that if they fail there will be an engine breakdown, possibly with atastrophionsequenes. Therefore, the safety-ritial parts have �xed life limits, and must be replaedbefore they are reahed. Hene, we onsider the safety-ritial parts as having deterministilives. All other parts of the engine are onsidered to have stohasti lives; therefore, their lifelimits need to be estimated, whih in turn makes it muh more di�ult to ompute a reliablereplaement shedule. For some of these parts failure distributions may be omputed fromhistorial data and monitoring observations. This information ould then be disretized andbe used as an input into optimization models. This was the subjet of two PhD projets (see[1, 10℄).Taking into aount parts that are either deterministi or stohasti in a uni�ed model isquite a lot more omplex than what has been studied in the past; even stohasti models foundin the literature typially do not inorporate failure distributions but failure intensities only, andsolution approahes provide simple maintenane poliies for in�nite horizon problems.The purpose of the present paper is to initiate a detailed mathematial study of opportunistimaintenane optimization models through an analysis of a basi replaement model. In thenear future we will onsider extensions to this problem. In a reent ase study at Volvo AeroCorporation the struture of the jet engine, and in partiular the disassembly of its parts, hasbeen taken better into aount through detailed ost dependenies between omponents. Further,reent appliations of opportunisti maintenane optimization to the generation of wind andnulear power have resulted in the study of multi-stage stohasti programming models, properlyinorporating stohasti information about the remaining lives of omponents.2 The basi replaement modelConsider a set N of omponents and de�ne N = |N |. Consider also a set T = {1, . . . , T} oftimes, with T ≥ 2. Suppose that a new omponent i ∈ N has a (deterministi) life of is Ti timesteps. (Without loss of generality, 2 ≤ Ti ≤ T .) The purhase ost at time t ∈ T for omponent
i is cit > 0. There is a �xed ost of dt > 0 assoiated with a maintenane oasion at time t,independent of the number of parts replaed at this oasion.The objetive is to minimize the ost of having a working system between times 1 and T .
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Letting
zt =

{
1, if maintenane shall our at time t,

0, otherwise, t ∈ T ,

xit =

{
1, if part i shall be replaed at time t,

0, otherwise, i ∈ N , t ∈ T ,the replaement problem is that to
minimize

(x,z)

∑

t∈T

(
∑

i∈N

citxit + dtzt

)
, (1a)

subject to

ℓ+Ti∑

t=ℓ+1

xit ≥ 1, ℓ = 0, . . . , T − Ti, i ∈ N , (1b)
xit ≤ zt, t ∈ T , i ∈ N , (1)
xit ≥ 0, t ∈ T , i ∈ N , (1d)
zt ≤ 1, t ∈ T , (1e)

xit ∈ {0, 1}, t ∈ T , i ∈ N . (1f)
zt ∈ {0, 1}, t ∈ T . (1g)The onstraint (1b) ensures that eah part is replaed before the end of its life; the onstraint(1) enfores the payment of the �xed maintenane ost dt whenever any part is replaed at time

t, and, one this ost is paid, indues maintenane opportunities at no extra maintenane ost.The remaining onstraints are de�nitional; the removal of (1f)�(1g) amounts to a ontinuousrelaxation of the problem.This problem originates from [4℄; the model in [1℄ replaes the original onstraints∑i∈N xit ≤
Nzt, t ∈ T , with the equivalent but stronger onstraints (1); the model (1), in turn, generalizesthe ost funtion in [1℄ to allow for time dependeny.As a numerial illustration, we onsider an instane of (1) with T = 60, N = 4, T1 = 13,
T2 = 19, T3 = 34, T4 = 18, c1t = 80, c2t = 185, c3t = 160, and c4t = 125 for all t ∈ T . The datais hosen so that the relations between the lives and the osts are similar to those for the fanmodule of the RM12 engine, maintained at VAC. The model is solved for dt = 0, 10, and 1000 forall t (where dt = 10 represents the most reasonable value in the maintenane situation at VAC).For dt = 0, the optimal total number of replaement oasions is 11 and there is no advantagewith replaing a omponent before its life limit is reahed. Inreasing the value of dt from 0 to 10dereases the optimal total number of replaement oasions from 11 to �ve. It is now bene�ialto replae the omponents in larger groups and they are often replaed before their respetivelife limits are reahed. For dt = 1000 it is very important to utilize the opportunity to replaeseveral omponents at the same time. The optimal total number of replaement oasions is four(the least feasible number of replaement oasions for this instane).Figure 1 shows optimal maintenane shedules for eah of the three ases. The horizontalaxis represents the 60 time steps and eah maintenane oasion is represented by a vertialbar, where a dot at a ertain height represents a omponent of the orresponding type beingreplaed. The �gure learly illustrates how opportunisti replaement beomes more bene�ialwith an inreasing �xed maintenane ost.The remainder of the paper is organized as follows. Setion 3 presents some properties har-aterizing an optimal maintenane shedule. In partiular, we show that if the variables zt,assoiated with the maintenane oasions, are �xed to binary values, then the polyhedron aris-ing from the ontinuous relaxation of the variables xit, assoiated with the replaement of theparts, is integral (i.e., possesses integral extreme points). In other words, the integrality re-stritions on those variables may be dropped. Moreover, we provide results, in part reahed in3



PSfrag replaements dt = 0

dt = 10

dt = 1000 timetimetime
Figure 1: Optimal maintenane shedules for dt = 0, 10, and 1000 for all t. When dt inreasesfrom 0 to 10 the replaement oasions 1�3, 5�7, and 9�11, are grouped into one oasion for eahof the three groups. When dt is inreased from 10 to 1000, the last four maintenane oasionsare rearranged into three oasions; the redution from �ve to four oasions results in severalmore omponent replaements.[4℄, on the possibility to a priori remove some maintenane oasions from onsideration. InSetion 4 we perform a polyhedral study of the onvex hull of the set of feasible solutions tothe model (1), referred to as the replaement polytope. We show that the replaement poly-tope is full-dimensional under natural assumptions and that the neessary inequality onstraints(1b)�(1e) in the original formulation (1) are faet-de�ning. Further, we show that they are notsu�ient to ompletely desribe the replaement polytope. By using Chvátal�Gomory roundingwe onstrut a new lass of valid inequalities and show that they are faet-de�ning. Finally, inSetion 5, we establish that the problem (1) is NP-omplete, based on a redution from the setovering problem. We onlude with remarks on urrent and planned researh endeavours.3 Speial properties of optimal solutionsWe here present some speial properties of the problem (1). First we show that the integralityonstraints on the variables xit an be relaxed. Then we review a result from [4℄ and show thatfor instanes of the problem where osts are non-inreasing with time the replaement ativitieswill only our at times that are sums of positive integer multiples of life limits. Finally, we showthat, again for non-inreasing osts and given �xed binary values of the zt variables, the optimal
xit values an be obtained by a greedy algorithm.3.1 Integrality propertyThe following proposition onerns integrality properties of the polyhedron in R

N×T de�ned by(1b)�(1d), when the variables zt, t ∈ T , are �xed to binary values. Aordingly, we let z̃t ∈ {0, 1},
t ∈ T , and de�ne T̃ = {t ∈ T | z̃t = 1}; hene, z̃t = 0, t ∈ T \ T̃ .Proposition 1 (integral polyhedron) The polyhedron de�ned by (1b) and

xit ≤ 1, t ∈ T̃ , (2a)
xit ≤ 0, t ∈ T \ T̃ , (2b)for i ∈ N , is integral.Proof We derive the result by showing that the onstraint matrix of (1b) and (2) is totallyunimodular (TU) using the haraterization in [9, pp. 542�543, Thm. 2.7℄. The inequalities (1b)and (2) separate over i ∈ N ; therefore it su�es to show that the onstraint matrix of the4



inequality system
ℓ+Ti∑

t=ℓ+1

xit ≥ 1, ℓ ∈ {0, . . . , T − Ti}, (3a)
−xit ≥

{
−1, t ∈ T̃ ,

0, t ∈ T \ T̃ ,
(3b)is TU for eah i ∈ N . Let Ai ∈ B

(T−Ti+1)×T be the onstraint matrix de�ned by the lefthand sides of the inequalities (3a), that is, for eah r ∈ {0, . . . , T − Ti}, let ai
rs = 1 for s ∈

{r + 1, . . . , r + Ti} and ai
rs = 0 for s ∈ T \ {r + 1, . . . , r + Ti}. The essential property of thematrix Ai is that the ones appear onseutively in eah row, that is, if ai

rℓ = ai
rk = 1 and

1 ≤ ℓ ≤ k ≤ T , then ai
rs = 1 for all s ∈ {ℓ, . . . , k}. Let B ∈ B

T×T be the onstraint matrixde�ned by the left hand sides of the inequalities (3b). Then B = −IT (minus the T ×T identitymatrix). Therefore, it is enough to show that property (ii) of [9, pp. 542�543, Thm. 2.7℄ issatis�ed for J = T . Let J1 = {s ∈ T | s odd} and J2 = T \ J1. For eah ℓ ∈ {0, . . . , T − Ti} itholds that
∑

s∈J1

ai
ℓs −

∑

s∈J2

ai
ℓs =





1, if Ti is odd and ℓ is even,

−1, if Ti is odd and ℓ is odd,
0, if Ti is even,and for eah ℓ ∈ T it holds that

∑

s∈J1

bℓs −
∑

s∈J2

bℓs =

{
−1, if ℓ is even,

1, if ℓ is odd.It follows that the property (ii) stated in [9, pp. 542�543, Thm. 2.7℄ holds. Hene, the onstraintmatrix ((Ai)T, BT)T of (3) is TU. Sine the right-hand sides of (3) are all integral it follows from[2, p. 221℄ that the orresponding polyhedron is integral.The result of Proposition 1 implies that the binary requirements on the variables xit an berelaxed, provided that the model (1) is to be solved using an algorithm that detets extremeoptimal solutions to linear programming subproblems.3.2 Non-inreasing ostsThe results presented in this subsetion are derived for instanes of the model (1) for whih theosts are non-inreasing with time, that is, ci,t+1 ≤ cit and dt+1 ≤ dt for all i and t.The following proposition extends [4, Thm. 2℄ from three to N omponents. It implies thatwe may a priori set zt = 0 in (1) for eah t whih is not a non-negative sum of life limits.Proposition 2 (a priori variable elimination) For all instanes of (1) with osts ful�lling ci,t+1 ≤
cit and dt+1 ≤ dt for all i and t, an optimal solution exists with zt = 0 for every t ∈ T whih isnot a sum of non-negative integer multiples of the life limits (that is, for every t ∈ T suh that{
ℓ ∈ Z

N
+ |
∑

i∈N ℓiTi = t
}

= ∅).Proof Consider a feasible solution to (1) with zt = 1 for some t that is not a positive sum of lifelimits Ti, i ∈ N . Let the orresponding objetive value be f . Assume, without loss of generality,that t is the earliest time with suh a property (that is, all previous replaements have ourredat times that are positive sums of lives Ti). This implies that all parts must have remaining lives5



greater than zero, sine otherwise t would have been a positive sum of lives. We an thereforepostpone all replaements made at t to the time t̃ > t, when some part i ∈ N reahes a remaininglife of zero. The time t̃ is then a positive sum of lives. The adjusted solution, with zt = 0 and
zt̃ = 1, is feasible and the orresponding ost f̃ ≤ f . This proedure an be applied to all times
t that are not positive sums of life limits and for whih zt = 1. The result follows.The next proposition shows that given values of zt, t ∈ T , the greedy algorithm de�ned belowprodues orresponding optimal values of xit, i ∈ N , t ∈ T .Definition 3 (greedy rule) Let the set T̃ be de�ned by the �xed values of the variables zt, t ∈ T(as in Setion 3.1). The greedy rule for the basi replaement problem is de�ned as follows: Giveall parts their initial lives. (*) Move to the earliest time t̃ ∈ T̃ . Let all parts age. Replae eahpart having a remaining life that is shorter than the time left to next replaement oasion. Let
T̃ := T̃ \ {t̃}. If T̃ 6= ∅, repeat from (*).Proposition 4 (greedy rule yields optimum) Consider the problem (1) and assume that ci,t+1 ≤

cit holds for all i and all t. Let the set T̃ be suh that for eah t ∈ T̃ ∪{0} there is an s ∈ T̃ ∪{T+1}with 0 < s− t ≤ mini∈N Ti. Let z̃t, t ∈ T , be de�ned by T̃ . Then the greedy rule of De�nition 3yields orresponding optimal values of the variables xit, i ∈ N , t ∈ T .Proof Let x̃it, i ∈ N , t ∈ T , be the solution obtained by the greedy rule. Then, (x̃, z̃) islearly feasible in (1). Let (x̄, z̃), suh that x̄ 6= x̃, be feasible in (1). We an then postpone anyreplaement orresponding to x̄it that is possible to postpone to the next time in T̃ . This willtransform x̄ to x̃ without introduing any additional replaements and at a non-inreasing ost.Hene, ∑i∈N

∑
t∈T cit(x̃it − x̄it) ≤ 0 holds and the result follows.4 The replaement polytopeWe let the set S ⊂ R

N×T × {0, 1}T be de�ned by the values of the variables (x, z) that ful�lthe onstraints (1b)�(1e), (1g). The onvex hull of S, denoted conv S, is alled the replaementpolytope. By studying the faial struture of conv S and thereby desribing it by a �nite setof linear inequalities, it is possible to solve the problem using linear programming tehniques.Our ambition here is to take the �rst steps towards suh a omplete linear desription of thereplaement polytope.We �rst ompute the dimension of the replaement polytope and show that all the neessaryinequalities in (1b)�(1e) de�ne faets of the same. However, by an example we show that thesebasi inequalities do not ompletely de�ne conv S. We then derive a new lass of faets by usingChvátal�Gomory rounding.4.1 The dimension and basi faets of conv SIn this setion we derive the dimension of the replaement polytope conv S and investigate theinequalities used to de�ne S. Under weak and natural assumptions we show that the replaementpolytope is full-dimensional. Further, we show that all inequalities that are neessary to de�nethe replaement polytope are faets of the same.Proposition 5 (dimension of the replaement polytope) If Ti ≥ 2 for all i ∈ N , then the dimen-sion of conv S is (N + 1)T , that is, conv S is full-dimensional.Proof First note that sine S ⊆ R
(N+1)T it holds that dim(conv S) ≤ (N +1)T . Let the vetors

(xk, zk) ∈ B
(N+1)T , k ∈ {0, . . . , (N + 1)T}, be given by the following. For i ∈ N and t ∈ T , let6



xk
it = 0 if k ∈ {(N + 1)(t − 1) + i, (N + 1)t} and xk

it = 1 otherwise. For t ∈ T , let zk
t = 0 if

k = (N + 1)t and zk
t = 1 otherwise. Sine Ti ≥ 2 for i ∈ N it holds that ∑ℓ+Ti

t=ℓ+1 xk
it ≥ 1 for all

i ∈ N , all ℓ ∈ {0, . . . , T − Ti}, and all k ∈ {0, . . . , (N + 1)T}.Moreover, for all t ∈ T and k ∈ {0, . . . , (N + 1)T} suh that zk
t = 0 it holds that xk

it = 0,
i ∈ N ; it follows that (xk, zk) ∈ S. It an be veri�ed that the only solution to the system

(N+1)T∑

k=0

xk
itαk = 0, i ∈ N ,

(N+1)T∑

k=0

zk
t αk = 0, t ∈ T ,

(N+1)T∑

k=0

αk = 0,is αk = 0, k ∈ {0, . . . , (N + 1)T}, implying that the vetors (xk, zk), k ∈ {0, . . . , (N + 1)T},are a�nely independent. Hene, it holds that dim(conv S) ≥ (N + 1)T , thus implying that
dim(conv S) = (N + 1)T . The proposition follows.The replaement polytope is not full-dimensional if Ti = 1 for some i ∈ N , sine it thenholds that xit = zt = 1, t ∈ T , for all (x, z) ∈ conv S. Letting A= denote the matrix orre-sponding to the equality subsystem of conv S, this would yield that rankA= ≥ 2T and thus that
dim(conv S) ≤ (N − 1)T . However, the ase that Ti = 1 is not interesting in pratie sine itwould mean that omponent i must be replaed�and thus maintenane must be performed�atevery time step.The following result from polyhedral ombinatoris ([9, Thm. 3.6 of Ch. I.4℄) is utilized todetermine faets of conv S.Theorem 6 (haraterization of faets) Let P be a full-dimensional polyhedron and F = {x ∈
P | πTx = π0} a proper fae of P (i.e., ∅ 6= F ⊂ P ). The following two statements are equivalent:1. F is a faet of P .2. If λTx = λ0 for all x ∈ F then (λ, λ0) = α(π, π0) for some α ∈ R.Proposition 7 (the inequalities (1b) de�ne faets) If Ti ≥ 2 for all i ∈ N , then eah of theinequalities ∑ℓ+Tr

t=ℓ+1 xrt ≥ 1, ℓ = 0, . . . , T − Tr, r ∈ N , de�nes a faet of conv S.Proof Sine Ti ≥ 2 for i ∈ N , conv S is full-dimensional (f. Proposition 5). Hene, we an usethe uniqueness haraterization of the faet desription from Theorem 6 to show the proposition.For eah r ∈ N and eah ℓ ∈ {0, . . . , T − Tr}, let F̂rℓ = { (x, z) ∈ conv S |
∑ℓ+Tr

t=ℓ+1 xrt = 1 }.Further, let x0
it = z0

t = 1, i ∈ N , t ∈ T . Sine Ti ≥ 2 it follows that (x0, z0) ∈ S \ F̂rℓ. Then,de�ning the vetor (xA, zA) as xA
it = 0 if i = r and t ∈ {ℓ+ 2, . . . , ℓ+ Tr}, xA

it = 1 otherwise, and
zA
t = 1, t ∈ T , it follows that (xA, zA) ∈ F̂rℓ and hene that F̂rℓ is a proper fae of conv S.Moreover, there exist values of λ ∈ R

N×T , µ ∈ R
T , and ρ ∈ R suh that the equation

∑

t∈T

(
∑

i∈N

λitxit + µtzt

)
= ρ (4)is satis�ed for all (x, z) ∈ F̂rℓ. We will show that for any value of ρ ∈ R, in a solution to (4) thefollowing hold: λit = ρ if i = r and t ∈ {ℓ + 1, . . . , ℓ + Tr}, λit = 0 otherwise; µt = 0 for t ∈ T .Choose any i ∈ N \ {r} and any t ∈ T . Let, for j ∈ N and k ∈ T , x1

jk = 0 if (j, k) = (i, t),
x1

jk = xA
jk otherwise, and let z1 = zA. It follows that (x1, z1) ∈ F̂rℓ. The vetors (xA, zA)and (x1, z1), respetively, inserted in (4) then yield that λit = 0. It follows that λit = 0 for all

i ∈ N \ {r} and all t ∈ T . 7



For eah t ∈ T \ {ℓ + 1, . . . , ℓ + Tr + 1}, let, for i ∈ N and k ∈ T , x2
ik = 0 if (i, k) = (r, t),

x2
ik = xA

ik otherwise, and let z2 = zA. It follows that (x2, z2) ∈ F̂rℓ. The vetors (xA, zA) and
(x2, z2), respetively, inserted in (4) then yield that λrt = 0 for all t ∈ T \{ℓ+1, . . . , ℓ+Tr +1}.Further, let, for i ∈ N and t ∈ T , xB

it = 0 if i = r and t ∈ {ℓ + 1, . . . , ℓ + Tr − 1},
xB

it = 1 otherwise, and let zB
t = 1, t ∈ T . Moreover, let, for i ∈ N and t ∈ T , x3

it = 0 if
(i, t) = (r, ℓ + Tr + 1), x3

it = xB
it otherwise, and let z3 = zB. It follows that (x3, z3) ∈ F̂rℓ. Thevetors (xB, zB) and (x3, z3), respetively, inserted in (4) then yield that λr,ℓ+Tr+1 = 0. Theequation (4) an then be rewritten as

ℓ+Tr∑

t=ℓ+1

λrtxrt +
∑

t∈T

µtzt = ρ. (5)For eah t ∈ T \{ℓ+1, ℓ+Tr +1}, let, for i ∈ N , x4
ik = z4

k = 0 if k = t, x4
ik = xA

ik and z4
k = zA

kotherwise. It follows that (x4, z4) ∈ F̂rℓ. The vetors (xA, zA) and (x4, z4), respetively, insertedin (5) then yield that µt = 0 for t ∈ T \ {ℓ + 1, ℓ + Tr + 1}.Further, for eah t ∈ {ℓ + 1, ℓ + Tr + 1}, let, for i ∈ N , x5
ik = z5

k = 0 if k = t, x5
ik = xB

ik and
z5
k = zB

k otherwise. It follows that (x5, z5) ∈ F̂rℓ. The vetors (xB, zB) and (x5, z5), respetively,inserted in (5) then yield that µℓ+1 = µℓ+Tr+1 = 0. Equation (5) an then be rewritten as
ℓ+Tr∑

t=ℓ+1

λrtxrt = ρ. (6)For eah t ∈ {ℓ + 2, . . . , ℓ + Tr}, let for i ∈ N and k ∈ T , x6
ik = 0 if (i, k) = (r, ℓ + 1),

x6
ik = 1 if (i, k) = (r, t), and x6

ik = xA
ik otherwise, and let z6 = zA. It follows that (x6, z6) ∈ F̂rℓ.The vetors (xA, zA) and (x6, z6), respetively, inserted in (6) then yield that λr,ℓ+1 = ρ = λrt,

t ∈ {ℓ + 2, . . . , ℓ + Tr} Sine (xA, zA) ∈ F̂rℓ it follows that λrt = ρ, t ∈ {ℓ + 1, . . . , ℓ + Tr}. Theequation (6) an then be rewritten as ∑ℓ+Tr

t=ℓ+1 ρxrt = ρ. From [9, pp. 91�92℄ then follows thatthe inequality ∑ℓ+Tr

t=ℓ+1 xrt ≥ 1 de�nes a faet of conv S.Proposition 8 (the inequalities (1) de�ne faets) If Ti ≥ 2 for all i ∈ N , then eah of theinequalities xrs ≤ zs, r ∈ N , s ∈ T , de�nes a faet of conv S.Proof Sine Ti ≥ 2 for i ∈ N , conv S is full-dimensional (f. Proposition 5). Hene, we an usethe uniqueness haraterization of the faet desription from Theorem 6 to show the proposition.For eah r ∈ N and eah s ∈ T , let Frs = { (x, z) ∈ conv S | xrs = zs }. Further, let, for
i ∈ N and t ∈ T , x0

it = 0 if (i, t) = (r, s), x0
it = 1 otherwise, and let z0

t = 1, t ∈ T . It followsthat (x0, z0) ∈ S \ Frs. Then, letting xA
it = zA

t = 1, i ∈ N , t ∈ T , it follows that (xA, zA) ∈ Frsand hene that Frs is a proper fae of conv S.Moreover, there exists values of λ ∈ R
N×T , µ ∈ R

T , and ρ ∈ R suh that the equation (4) issatis�ed for all (x, z) ∈ Frs. We will show that for any value of µs ∈ R, in a solution to (4) thefollowing hold: λit = −µs if (i, t) = (r, s), λit = 0 otherwise; µt = 0 for t ∈ T \ {s}; ρ = 0.For eah ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x1
jt = 0 if (j, t) = (r, ℓ), x1

jt = xA
jt otherwise,and let z1 = zA. It follows that (x1, z1) ∈ Frs. The vetors (xA, zA) and (x1, z1), respetively,inserted in (4) then yield that λrℓ = 0 for ℓ ∈ T \ {s}.Similarly, for eah k ∈ N\{r} and eah ℓ ∈ T , let for j ∈ N and t ∈ T , x2

jt = 0 if (j, t) = (k, ℓ),
x2

jt = xA
jt otherwise, and let z2 = zA. It follows that (x2, z2) ∈ Frs. The vetors (xA, zA) and

(x2, z2), respetively, inserted in (4) then yield that λkℓ = 0 for k ∈ N \ {r} and ℓ ∈ T ; hene,the equation (4) an be rewritten as
λrsxrs +

∑

t∈T

µtzt = ρ. (7)8



For eah ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x3
jt = z3

t = 0 if t = ℓ, x3
jt = z3

t = 1 otherwise.It follows that (x3, z3) ∈ Frs. The vetors (xA, zA) and (x3, z3), respetively, inserted in (7) thenyields that µℓ = 0 for ℓ ∈ T \ {s}. Equation (7) an now be rewritten as
λrsxrs + µszs = ρ. (8)Let, for j ∈ N and t ∈ T , x4

jt = z4
t = 0 if t = s, x4

jt = z4
t = 1 otherwise. It follows that

(x4, z4) ∈ Frs. The vetors (x4, z4) and (xA, zA), respetively, inserted in (8) then yield that
0 = ρ = λrs + µs. The equation (8) an thus be rewritten as µsxrs = µszs, and from [9, pp.91�92℄ follows that the inequality xrs ≤ zs de�nes a faet of conv S.Proposition 9 (the inequalities (1d) de�ne faets) If Ti ≥ 2 for all i ∈ N , then eah of theinequalities xrs ≥ 0, r ∈ N : Tr ≥ 3, s ∈ T , de�nes a faet of conv S.Proof Sine Ti ≥ 2 for i ∈ N , conv S is full-dimensional (f. Proposition 5). Hene, we an usethe uniqueness haraterization of the faet desription from Theorem 6 to show the proposition.For eah r ∈ N suh that Tr ≥ 3 and eah s ∈ T , let F̃rs = { (x, z) ∈ conv S | xrs = 0 }.Further, let x0

it = z0
t = 1, i ∈ N , t ∈ T . It follows that (x0, z0) ∈ S \ F̃rs. Then letting, for

j ∈ N and t ∈ T , xA
jt = 0 if (j, t) = (r, s), xA

jt = 1 otherwise, and letting zA
t = 1, t ∈ T , it followsthat (xA, zA) ∈ F̃rs and hene that F̃rs is a proper fae of conv S.Moreover, there exists values of λ ∈ R

N×T , µ ∈ R
T , and ρ ∈ R suh that the equation (4) issatis�ed for all (x, z) ∈ F̃rs. We will show that for any value of λrs ∈ R, in a solution to (4) thefollowing hold: λit = 0 if (i, t) ∈ {N × T } \ {(r, s)}; µt = 0 for t ∈ T ; ρ = 0.For eah i ∈ N and eah t ∈ T , let for j ∈ N and k ∈ T , x1

jk = 0 if (j, k) = (i, t), x1
jk = xA

jkotherwise, and let z1 = zA. Sine Tr ≥ 3, it follows that (x1, z1) ∈ F̃rs. The vetors (xA, zA)and (x1, z1), respetively, inserted in (4) then yield that λit = 0 for all (i, t) ∈ {N ×T }\{(r, s)}.The equation (4) an then be rewritten as (7).For eah t ∈ T , let, for j ∈ N and k ∈ T , x2
jk = z2

k = 0 if k = t, x2
jk = xA

jk and z2
k = zA

kotherwise. Sine Tr ≥ 3, it follows that (x2, z2) ∈ F̃rs. The vetors (xA, zA) and (x2, z2),respetively, inserted in (7) then yield that µt = 0 for t ∈ T .Sine xrs = 0 for all (x, z) ∈ F̃rs it follows that ρ = 0. Equation (7) an then be rewritten as
λrsxrs = 0, and from [9, pp. 91�92℄ follows that the inequality xrs ≥ 0 de�nes a faet of conv S.The inequalities xrs ≥ 0, s ∈ T (f. Proposition 9) do not de�ne faets for any r ∈ Nsuh that Tr = 2 sine the onstraints (1d) are then implied by (1b)�(1), (1e) aording to
xr,s+1 ≥ 1 − xrs ≥ 1 − zs ≥ 0, s ∈ T \ {T}, and xr1 ≥ 1 − xr2 ≥ 1 − z2 ≥ 0. Hene, theonstraints (1d) need to be de�ned only for i ∈ N suh that Ti ≥ 3.Proposition 10 (the inequalities (1e) de�ne faets) If Ti ≥ 2 for all i ∈ N , then eah of theinequalities zs ≤ 1, s ∈ T , de�nes a faet of conv S.Proof Sine Ti ≥ 2 for i ∈ N , conv S is full-dimensional (f. Proposition 5). Hene, we an usethe uniqueness haraterization of the faet desription from Theorem 6 to show the proposition.For eah s ∈ T , let Fs = { (x, z) ∈ conv S | zs = 1 }. Further, let, for j ∈ N and t ∈ T ,
x0

jt = z0
t = 0 if t = s, x0

jt = z0
t = 1, otherwise. It follows that (x0, z0) ∈ S \ Fs. Then, letting

xA
it = zA

t = 1, i ∈ N , t ∈ T , it follows that (xA, zA) ∈ Fs and that Fs is a proper fae of conv S.Moreover, there exists values of λ ∈ R
N×T , µ ∈ R

T , and ρ ∈ R suh that the equation (4) issatis�ed for all (x, z) ∈ Fs. We will show that for any value of ρ ∈ R, in a solution to (4) thefollowing hold: λit = 0 for i ∈ N and t ∈ T ; µs = ρ, µt = 0 for t ∈ T \ {s}.For eah r ∈ N and eah ℓ ∈ T , let, for j ∈ N and t ∈ T , x1
jt = 0 if (j, t) = (r, ℓ), x1

jt = 1otherwise, and let z1 = zA. It follows that (x1, z1) ∈ Fs. The vetors (xA, zA) and (x1, z1),9



respetively, inserted in (4) then yield that λrℓ = 0 for r ∈ N and ℓ ∈ T . Equation (4) an thenbe rewritten as
∑

t∈T

µtzt = ρ. (9)For eah ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x2
jt = z2

t = 0 if t = ℓ, x2
jt = z2

t = 1 otherwise.It follows that (x2, z2) ∈ Fs. The vetors (xA, zA) and (x2, z2), respetively, inserted in (9) thenyield that µℓ = 0 for ℓ ∈ T \ {s}. Equation (9) an then be rewritten as µszs = ρ. Sine zs = 1for all (x, z) ∈ Fs it follows that µs = ρ, whih yields the equation ρzs = ρ. From [9, pp. 91�92℄then follows that the inequality zs ≤ 1 de�nes a faet of conv S.The impliation of Propositions 7�10 is that all of the inequalities neessary in the desriptionof the set S de�ne faets of its onvex hull. A natural question then arises: Is conv S ompletelydesribed by the system (1b)�(1e)? The answer to this question is �no�, whih beomes apparentby the following example.Example 11 (ontinuous relaxation) Consider a system with N = 2, T1 = 3, and T2 = T = 4.Then the problem tominimize x11 + x12 + 2x13 + x14 + x21 + 5x22 + 5x23 + x24 + 3z1 + 3z2 + z3 + 3z4,subjet to (1b)�(1g),has the two optimal solutions
(x11, x12, x13, x14;x21, x22, x23, x24; z1, z2, z3, z4) = (0, 0, 1, 0; γ, 0, 0, 1−γ; γ, 0, 1, 1−γ) (10)for γ ∈ {0, 1}, with objetive value 7. Relaxing the integrality requirements yields the optimalsolution
(x11, x12, x13, x14;x21, x22, x23, x24; z1, z2, z3, z4) = (

1

2
, 0,

1

2
,
1

2
;
1

2
, 0, 0,

1

2
;
1

2
, 0,

1

2
,
1

2
) (11)with objetive value 6.5. Hene the onvex hull of the set of feasible solutions to the system(1b)�(1g) is not ompletely de�ned by the inequalities therein.Aording to the Propositions 7�10, all of the neessary inequalities de�ne faets of conv S.Sine, by Proposition 5, conv S is full-dimensional (under reasonable assumptions) the minimaldesription of conv S is unique. Therefore, all of these faets are neessary to desribe conv S.Example 11 shows that the inequalities (1b)�(1e) are not su�ient to desribe conv S. Butto ompletely desribe conv S we need also other faets; faet-generating proedures will bepresented in forthoming work.5 Complexity analysisWe next show that the problem de�ned in (1) is NP-hard.Theorem 12 (redution of set overing to (1)) The set overing problem is polynomially redu-ible to (1).Proof Let {At}

m
t=1 be a given olletion of nonempty subsets of the �nite set {1, . . . , n}. Letting

ait = 1 if i ∈ At and 0 otherwise, the set overing problem is de�ned as tominimize m∑

t=1

yt, (12a)10



subjet to m∑

t=1

aityt ≥ 1, i = 1, . . . , n, (12b)
yt ∈ {0, 1}, t = 1, . . . ,m. (12)Consider then an instane of the program (1) suh that N = n, T = m, dt = 1, Ti = m, and

cit = 2(1−ait) for all i = 1, . . . , n and t = 1, . . . ,m. Sine Ti = T = m, eah omponent must bereplaed one between the times 1 and T , and one replaement is always enough (for feasibility).Furthermore, in every optimal solution and for eah i and t suh that ait = 0, xit = 0 holds sine
cit = 2 > d and there exists a t̃ ∈ T with ait̃ = 1, whih implies that cit̃ = 0. Hene, this spei�instane of (1) an be reformulated as the problem tominimize{ m∑

t=1

zt

∣∣∣∣∣

m∑

t=1

aitxit ≥ 1, i = 1, . . . , n, and (1)�(1g) holds } . (13)An optimal solution (x∗, z∗) to (13) is given by
z∗ ∈ argmin

z∈{0,1}m

{
m∑

t=1

zt

∣∣∣∣∣

m∑

t=1

aitzt ≥ 1, i = 1, . . . , n

} (14)and x∗
it = aitz

∗
t , i = 1, . . . , n, t = 1, . . . ,m. The result then follows, sine the program (14) isequivalent to (12).Sine (12) is an NP-hard problem it follows from [9, Prop. 6.4, p. 132℄ that (1) is an NP-hardproblem.Finally, it should be mentioned that the omplexity of the instane of (1) for whih the osts

cit are non-inreasing with time (i.e., ci,t+1 ≤ cit for all i and t) is still an open question; thisinludes the interesting speial ase for whih the osts are independent of time (i.e., cit = ciand dt = d for all i and t), as originally studied in [4℄ and [1℄.6 Conlusions and future researhThe opportunisti maintenane model has been shown to have a nie inherent struture, in thatwhile the problem is NP-hard, it redues to a linear program one the maintenane oasionsare �xed; the latter an in some ases even be solved through a greedy proedure. Also, all theneessary linear onstraints de�ne faets of the onvex hull of the set of feasible shedules. Itwould be interesting to investigate whether additional faets exist whih an be relatively easilygenerated.Work in progress inlude the proper modelling of maintenane deisions over time whenomponent lives are nondeterministi. In partiular, we study models wherein one inorporatessuessive improvements of life distribution estimates through the addition of measurement-basedinformation about the ondition of the system. Even in the ase when osts are independent oftime, we have already shown that suh a stohasti extension of the urrent model is NP-hard.In order to provide a omputationally feasible model we will therefore also investigate how tobest de�ne an aurate enough senario representation of the omponent lives.The replaement problem (1) has been utilized in studies of optimal maintenane shedulesat Volvo Aero (as reported in [1, 10℄), as well as to maintenane sheduling problems in thenulear and wind power industries. In the near future, experienes from the latter ativities willbe reported. 11
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