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Abstract

We consider an optimization model for determining optimal opportunistic maintenance (that
is, component replacement) schedules when data is deterministic. This problem, which
generalizes that of Dickman, Epstein, and Wilamowsky [4], is a natural starting point for
the modelling of replacement schedules when component lives are non-deterministic, whence
a mathematical study of the model is of large interest. We show that the convex hull of the set
of feasible replacement schedules is full-dimensional, and that all the necessary inequalities
are facet-inducing. We show that when maintenance occasions are fixed, the remaining
problem reduces to a linear program; in some cases the latter is solvable through a greedy
procedure. We further show that this basic replacement problem is NP-hard.

1 Introduction

The importance of performing maintenance operations well—and of improving the state of the
art seems to be impossible to overestimate: according to [8, Chapter 1], maintenance costs in
plants in the US alone accounted for more than $600 billion in 1981, more than $800 billion
in 1991, and were then projected to increase to become more than $1.2 trillion by the year
2000. Tt is stated that these evaluations indicate that on average, one third, or $250 billion,
of all maintenance dollars are wasted through ineffective maintenance management methods.
According to a recent study (made by Forum Vision Instandhaltung, Germany), maintenance
costs in the manufacturing industry within the EU amount to roughly $2 trillion per year.
Studies over the last 20 years have indicated that around Europe, the direct cost of maintenance
is equivalent to between 4% and 8% of total sales turnover. Also in these cases, it is quite
natural to assume that not all the money spent is spent well: according to information gathered
by the Swedish Center for Maintenance Management, maintenance is quite often performed too
frequently, and surprisingly often equipment failure is triggered by inspections and the condition
monitoring itself. One objective with constructing and studying mathematical models for the
optimization of the scheduling of maintenance and inspection activities is to mitigate some of
these problems, and to thereby contribute to a shift of focus from considering maintenance as
mainly a cost-inducing activity to that of an investment in availability improvement.

One strategy for planning maintenance activities is so called opportunistic maintenance, in
which a mathematical model is utilized to decide whether, at a (possibly already planned) mainte-
nance occasion, more than the necessary maintenance activities should be performed. According
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to Dickman et al. [4], Jorgenson and Radner [7] introduced the original opportunistic replace-
ment /maintenance problem. They considered a system of stochastically failing components,
which incur extensive maintenance costs upon failure, that is, for shutting down and disassem-
bling the system. When the system is down for whatever reason, components may be replaced at
no additional maintenance cost. Thereby, opportunities arise to trade off remaining life of com-
ponents in order to avoid maintenance costs associated with component failure, perhaps already
in the near future. This is their main motive for studying the problem.

In [6, 3] a problem associated with fusion power plants is addressed. For safety reasons, com-
ponents are assigned life limits at which removal is mandatory, and before which the probability
of failure is effectively zero. Their problem therefore is deterministic. (Later, in [5], this problem
was solved for the case of an infinite horizon and for a system of two components.)

Our original motivation for studying the replacement problem was a project concerning the
optimization of jet engine maintenance schedules at Volvo Aero Corporation (VAC). An aircraft
engine consists of thousands of parts. Some of the parts are safety-critical, as in fusion power
plants, which means that if they fail there will be an engine breakdown, possibly with catastrophic
consequences. Therefore, the safety-critical parts have fixed life limits, and must be replaced
before they are reached. Hence, we consider the safety-critical parts as having deterministic
lives. All other parts of the engine are considered to have stochastic lives; therefore, their life
limits need to be estimated, which in turn makes it much more difficult to compute a reliable
replacement schedule. For some of these parts failure distributions may be computed from
historical data and monitoring observations. This information could then be discretized and
be used as an input into optimization models. This was the subject of two PhD projects (see
[1, 10]).

Taking into account parts that are either deterministic or stochastic in a unified model is
quite a lot more complex than what has been studied in the past; even stochastic models found
in the literature typically do not incorporate failure distributions but failure intensities only, and
solution approaches provide simple maintenance policies for infinite horizon problems.

The purpose of the present paper is to initiate a detailed mathematical study of opportunistic
maintenance optimization models through an analysis of a basic replacement model. In the
near future we will consider extensions to this problem. In a recent case study at Volvo Aero
Corporation the structure of the jet engine, and in particular the disassembly of its parts, has
been taken better into account through detailed cost dependencies between components. Further,
recent applications of opportunistic maintenance optimization to the generation of wind and
nuclear power have resulted in the study of multi-stage stochastic programming models, properly
incorporating stochastic information about the remaining lives of components.

2 The basic replacement model

Consider a set A/ of components and define N = |N|. Consider also a set 7 = {1,...,T} of
times, with 7" > 2. Suppose that a new component i € N has a (deterministic) life of is T} time
steps. (Without loss of generality, 2 < T; < T.) The purchase cost at time ¢t € 7 for component
118 ¢ > 0. There is a fixed cost of d; > 0 associated with a maintenance occasion at time ¢,
independent of the number of parts replaced at this occasion.

The objective is to minimize the cost of having a working system between times 1 and 7.



Letting

1, if maintenance shall occur at time ¢,
2t = . teT,
0, otherwise,
1, if part ¢ shall be replaced at time ¢, .
Tit = P . P 1€ N, teT,
0, otherwise,

the replacement problem is that to

mi?irr;ize Z <Z CitTit + dtzt) , (1a)

teT \ieN
0+T;
subject to Y iy > 1, (=0,....,T=T;, ieN, (1b)
t=0+1
Tit < 2, tET, iEN, (10)
2t > 0, teT, ieN, (1d)
2 < 1, te T, (16)
zip €{0,1}, t€T, ieN. (1f)
z €40,1}, teT. (1g)

The constraint (1b) ensures that each part is replaced before the end of its life; the constraint
(1c) enforces the payment of the fixed maintenance cost d; whenever any part is replaced at time
t, and, once this cost is paid, induces maintenance opportunities at no extra maintenance cost.
The remaining constraints are definitional; the removal of (1f) (1g) amounts to a continuous
relaxation of the problem.

This problem originates from [4]; the model in [1] replaces the original constraints ) ;.\ #4 <
Nz, t € T, with the equivalent but stronger constraints (1c); the model (1), in turn, generalizes
the cost function in [1] to allow for time dependency.

As a numerical illustration, we consider an instance of (1) with 7' = 60, N = 4, Ty = 13,
Ty, =19, T3 = 34, Ty = 18, ¢4 = 80, cor = 185, c3 = 160, and ¢4y = 125 for all £ € 7. The data
is chosen so that the relations between the lives and the costs are similar to those for the fan
module of the RM12 engine, maintained at VAC. The model is solved for d; = 0, 10, and 1000 for
all t (where d; = 10 represents the most reasonable value in the maintenance situation at VAC).
For d; = 0, the optimal total number of replacement occasions is 11 and there is no advantage
with replacing a component before its life limit is reached. Increasing the value of d; from 0 to 10
decreases the optimal total number of replacement occasions from 11 to five. It is now beneficial
to replace the components in larger groups and they are often replaced before their respective
life limits are reached. For d; = 1000 it is very important to utilize the opportunity to replace
several components at the same time. The optimal total number of replacement occasions is four
(the least feasible number of replacement occasions for this instance).

Figure 1 shows optimal maintenance schedules for each of the three cases. The horizontal
axis represents the 60 time steps and each maintenance occasion is represented by a vertical
bar, where a dot at a certain height represents a component of the corresponding type being
replaced. The figure clearly illustrates how opportunistic replacement becomes more beneficial
with an increasing fixed maintenance cost.

The remainder of the paper is organized as follows. Section 3 presents some properties char-
acterizing an optimal maintenance schedule. In particular, we show that if the variables z,
associated with the maintenance occasions, are fixed to binary values, then the polyhedron aris-
ing from the continuous relaxation of the variables x;, associated with the replacement of the
parts, is integral (i.e., possesses integral extreme points). In other words, the integrality re-
strictions on those variables may be dropped. Moreover, we provide results, in part reached in
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Figure 1: Optimal maintenance schedules for d; = 0, 10, and 1000 for all t. When d; increases
from 0 to 10 the replacement occasions 1 3,5 7, and 9 11, are grouped into one occasion for each
of the three groups. When d; is increased from 10 to 1000, the last four maintenance occasions
are rearranged into three occasions; the reduction from five to four occasions results in several
more component replacements.

[4], on the possibility to a priori remove some maintenance occasions from consideration. In
Section 4 we perform a polyhedral study of the convex hull of the set of feasible solutions to
the model (1), referred to as the replacement polytope. We show that the replacement poly-
tope is full-dimensional under natural assumptions and that the necessary inequality constraints
(Ib)—(1e) in the original formulation (1) are facet-defining. Further, we show that they are not
sufficient to completely describe the replacement polytope. By using Chvatal Gomory rounding
we construct a new class of valid inequalities and show that they are facet-defining. Finally, in
Section 5, we establish that the problem (1) is NP-complete, based on a reduction from the set
covering problem. We conclude with remarks on current and planned research endeavours.

3 Special properties of optimal solutions

We here present some special properties of the problem (1). First we show that the integrality
constraints on the variables x;; can be relaxed. Then we review a result from [4] and show that
for instances of the problem where costs are non-increasing with time the replacement activities
will only occur at times that are sums of positive integer multiples of life limits. Finally, we show
that, again for non-increasing costs and given fixed binary values of the z; variables, the optimal
zi values can be obtained by a greedy algorithm.

3.1 Integrality property

The following proposition concerns integrality properties of the polyhedron in RV*T defined by
(1b) (1d), when the variables 2, t € 7, are fixed to binary values. Accordingly, we let Z; € {0, 1},
te7T,and define T ={t €7 |z =1}; hence, 2, =0,t €T\ 7.

PROPOSITION 1 (integral polyhedron) The polyhedron defined by (1b) and

<1, teT, (2a)
10 <0, teT\T, (2b)

for i € N, is integral.

PrROOF We derive the result by showing that the constraint matrix of (1b) and (2) is totally
unimodular (TU) using the characterization in |9, pp. 542-543, Thm. 2.7|. The inequalities (1b)
and (2) separate over i € N; therefore it suffices to show that the constraint matrix of the



inequality system

0+T;
 wa>1,  Le{0,...,T-T} (3a)
t=0+1
~1 teT
> ) U 3b
x“{ 0, teT\7, (3)

is TU for each i € N. Let A € BI-Ti+)xT he the constraint matrix defined by the left
hand sides of the inequalities (3a), that is, for each r € {0,...,T — T;}, let a’;, = 1 for s €
{r+1,...,r+T;} and aly = 0 for s € 7\ {r + 1,...,7 + T;}. The essential property of the
matrix A’ is that the ones appear consecutively in each row, that is, if aig = aik = 1 and
1 <l <k<T,thenal,=1foralsec{l.. k} Let B BT*T be the constraint matrix
defined by the left hand sides of the inequalities (3b). Then B = —I7 (minus the T' x T identity
matrix). Therefore, it is enough to show that property (ii) of [9, pp. 542-543, Thm. 2.7] is
satisfied for 7 =7. Let J1 ={s €T | s odd} and Jo =T \ Ji. For each ¢ € {0,...,T —T;} it
holds that

1, if T; is odd and £ is even,
Z ab, — Z aps =< —1, if Ty is odd and £ is odd,
SET s€a 0, if T} is even,

and for each ¢ € 7 it holds that

-1 if £ is even
zbes—zbgsz{ s even,
oy o 1, if £ is odd.
It follows that the property (ii) stated in |9, pp. 542-543, Thm. 2.7| holds. Hence, the constraint
matrix ((A")T, BT)T of (3) is TU. Since the right-hand sides of (3) are all integral it follows from
[2, p. 221] that the corresponding polyhedron is integral. a

The result of Proposition 1 implies that the binary requirements on the variables x;; can be
relaxed, provided that the model (1) is to be solved using an algorithm that detects extreme
optimal solutions to linear programming subproblems.

3.2 Non-increasing costs

The results presented in this subsection are derived for instances of the model (1) for which the
costs are non-increasing with time, that is, ¢; ;11 < ¢ and diqq < d; for all ¢ and ¢.

The following proposition extends [4, Thm. 2| from three to N components. It implies that
we may a priori set z; = 0 in (1) for each ¢ which is not a non-negative sum of life limits.

PROPOSITION 2 (a priori variable elimination) For all instances of (1) with costs fulfilling ¢; 111 <
cit and dy1q < d; for all i and t, an optimal solution exists with z; = 0 for every t € 7 which is
not a sum of non-negative integer multiples of the life limits (that is, for every t € T such that

L) | Dien tiTi =1t} =0).

PRrROOF Consider a feasible solution to (1) with z; = 1 for some ¢ that is not a positive sum of life
limits Tj, i € N. Let the corresponding objective value be f. Assume, without loss of generality,
that t is the earliest time with such a property (that is, all previous replacements have occurred
at times that are positive sums of lives T;). This implies that all parts must have remaining lives



greater than zero, since otherwise ¢t would have been a positive sum of lives. We can therefore
postpone all replacements made at ¢ to the time ¢ > ¢, when some part i € N reaches a remaining
life of zero. The time # is then a positive sum of lives. The adjusted solution, with z; = 0 and
z; = 1, is feasible and the corresponding cost f < f. This procedure can be applied to all times
t that are not positive sums of life limits and for which z; = 1. The result follows. O

The next proposition shows that given values of z;, t € 7, the greedy algorithm defined below
produces corresponding optimal values of z;, i € N, t € T.

DEFINITION 3 (greedy rule) Let the set T be defined by the fixed values of the variables z;, t € T
(as in Section 3.1). The greedy rule for the basic replacement problem is defined as follows: Give
all parts their initial lives. (*) Move to the earliest time ¢ € 7. Let all parts age. Replace each
part having a remaining life that is shorter than the time left to next replacement occasion. Let
T :=T\{i}. If T # 0, repeat from (*). a

PROPOSITION 4 (greedy rule yields optimum) Consider the problem (1) and assume that ¢; ;41 <
¢it holds for all i and all t. Let the set T be such that for each t € %U{O} thereisan s € %U{T—l—l}
with 0 < s —t < mingen 1;. Let Z;, t € T, be defined by T. Then the greedy rule of Definition 3
vields corresponding optimal values of the variables x;, i € N, t € T.

PROOF Let %y, i« € N, t € T, be the solution obtained by the greedy rule. Then, (,2) is
clearly feasible in (1). Let (Z, 2), such that Z # %, be feasible in (1). We can then postpone any
replacement corresponding to Z; that is possible to postpone to the next time in 7. This will
transform Z to T without introducing any additional replacements and at a non-increasing cost.
Hence, D ;e n > ser Cit(Tit — Ti¢) < 0 holds and the result follows. 0

4 The replacement polytope

We let the set S € RYXT x {0,1}7 be defined by the values of the variables (x,z) that fulfil
the constraints (1b)—(1e), (1g). The convex hull of S, denoted conv S, is called the replacement
polytope. By studying the facial structure of conv.S and thereby describing it by a finite set
of linear inequalities, it is possible to solve the problem using linear programming techniques.
Our ambition here is to take the first steps towards such a complete linear description of the
replacement polytope.

We first compute the dimension of the replacement polytope and show that all the necessary
inequalities in (1b) (1e) define facets of the same. However, by an example we show that these
basic inequalities do not completely define conv.S. We then derive a new class of facets by using
Chvatal Gomory rounding.

4.1 The dimension and basic facets of conv S

In this section we derive the dimension of the replacement polytope conv S and investigate the
inequalities used to define S. Under weak and natural assumptions we show that the replacement
polytope is full-dimensional. Further, we show that all inequalities that are necessary to define
the replacement polytope are facets of the same.

PROPOSITION 5 (dimension of the replacement polytope) IfT; > 2 for all i € N, then the dimen-
sion of conv S is (N + 1)T', that is, conv S is full-dimensional.

PROOF First note that since § € RV+DT it holds that dim(conv S) < (N +1)T. Let the vectors
(2%, 2F) e BNHDT ke {0,..., (N + 1)T}, be given by the following. For i € A" and t € T, let



2k =0if k€ {(N+1)(t—1)+i, (N + 1)t} and 25 = 1 otherwise. For t € 7, let 2f = 0 if
k= (N + 1)t and 2 = 1 otherwise. Since T; > 2 for i € N it holds that Zf+ZT+1 zk > 1 for all
ieN,all£e{0,....,T—T;}, and all k € {0,..., (N +1)T).

Moreover, for all t € 7 and k € {0,...,(N + 1)T} such that zF = 0 it holds that 2% = 0,
i € N it follows that (z¥,z¥) € S. Tt can be verified that the only solution to the system

(N+1)T (N+1)T (N+1)T
Z abap =0, icN, Z Koy =0, teT, Z a =0,
k=0

is ap =0, k € {0,...,(N + 1)T}, implying that the vectors (2*,2%), k € {0,...,(N 4+ 1)T},
are affinely independent. Hence, it holds that dim(convS) > (N 4 1)T', thus 1mply1ng that
dim(conv S) = (N 4+ 1)T. The proposition follows. O

The replacement polytope is not full-dimensional if T; = 1 for some i € N, since it then
holds that z;; = 2z = 1, t € T, for all (z,2z) € convS. Letting A= denote the matrix corre-
sponding to the equality subsystem of conv S, this would yield that rank A= > 27T and thus that
dim(conv S) < (N — 1)T. However, the case that 7; = 1 is not interesting in practice since it
would mean that component ¢ must be replaced—and thus maintenance must be performed—at
every time step.

The following result from polyhedral combinatorics (|9, Thm. 3.6 of Ch. 1.4]) is utilized to
determine facets of conv S.

THEOREM 6 (characterization of facets) Let P be a full-dimensional polyhedron and F = {z €
P | 7tx = my} a proper face of P (i.e., ) # F C P). The following two statements are equivalent:

1. F is a facet of P.

2. If \Tx = )\ for all x € F then (\,\g) = a(m,mg) for some a € R. O

PROPOSITION 7 (the inequalities (1b) define facets) If T; > 2 for all i € N, then each of the
inequalities Zfiﬁl x4 >1,0=0,...,T —T,, r € N, defines a facet of conv S.

PROOF Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 5). Hence, we can use
the uniqueness characterization of the facet description from Theorem 6 to show the proposition.
For each r € N and each £ € {0,...,T — T}, let Frp = { (z,2) € conv S | ZfUTJ’;l e =1}
Further, let 2%, = 20 = 1, i € N t € 7. Since T; > 2 it follows that (xo,zo) €S\ F.¢. Then,
deﬁning the vector (2, A) as xlt =0ifi=randte {{+2,...,0+T,}, vi = 1 otherwise, and
Zt =1,teT,it follovv@ that ( ) € Frg and hence that Frg is a proper face of conv S.
Moreover, there exist values of )\ e RVXT 1, € RT and p € R such that the equation

Z (Z AitTi¢ + ,thzt> =p (4)

teT \ieN

is satisfied for all (z,z2) € F,. We will show that for any value of p € R, in a solution to (4) the
following hold: Ay =pifi=randte{{+1,... .+ T}, A\ix =0 otherwise; i, =0 for t € 7.
Choose any i € N\ {r} and any t € 7. Let, for j e N and k € T, a:;k =0if (j,k) = (i,t),
;k = xAk otherwise, and let z' = 2. Tt follows that (z!,2') € F.. The vectors (zh, 24)
and (!, zl), respectively, inserted in (4) then yield that A;; = 0. Tt follows that Ay = 0 for all
ieN\{r}andallteT.



Foreach t €e T\ {{+1,...,0+ T, + 1}, let, fori e N and k € T, xfk =0if (i,k) = (r,t),
x} = x4 otherwise, and let 22 = 2% Tt follows that (22,22) € F,. The vectors (z*,2*) and
(22, 22), respectively, inserted in (4) then yield that A\, = 0 for allt € T\ {f+1,..., 0+ T, +1}.

Further, let, for i € N and t e T, xiBt =0ifi=randt e {{+1,....0+ T, — 1},
28 = 1 otherwise, and let 2 =1,t € T. Moreover, let, for i € N and t € T, x5, = 0 if
(i,t) = (r, 0 + T, + 1), 23, = 25 otherwise, and let 2% = 2B. Tt follows that (23,23) € F.y. The
vectors (zB,28) and (23, 2%), respectively, inserted in (4) then yield that A.,i7.41 = 0. The
equation (4) can then be rewritten as

4T,
Z ArtTrt + Zuﬂt = p- (5)
t=t+1 teT

For each t € T\ {¢+ 1,0+ T, + 1}, let, fori € NV, az?k = zﬁ =0if k =t, az?k = azﬁc and z,if = z{j
otherwise. It follows that (z#, z%) € ﬁrg. The vectors (z, 2%) and (2%, 2%), respectively, inserted

n (5) then yield that y; =0fort € 7T\ {{+ 1,0+ T, + 1}.

Further, for each t € {{ +1,{+ T, +1} let, for i € NV, xk:zk—01fk—t x5, = 28 and
29 = 2B otherwise. It follows that (%, 2°) € F.¢. The vectors (zB, 2B) and (27, 2°), respectively,
inserted in (5) then yield that pyy1 = pey7.+1 = 0. Equation (5) can then be rewrltten as

(4T,

Z ArtTre = p. (6)

t=0+1

For each t € {€+2,...,€+TT}, let for i € N and k € T, 28 = 0if (i,k) = (r,0 + 1),
ab = 1if (i,k) = (r,t), and 2% = 24} otherwise, and let 26 = zA. It follows that (29, 2%) € Fy.
The vectors (z,2%) and (29, 2%), respectively, inserted in (6) then yield that Arit1 = P = A,
te{+2,...,0+T} Since (22, 24) € F\M 1t follows that Ay = p, t € {{+1,...,0+T,}. The
equation (6) can then be rewrltten as Zt o517 = p. From [9, pp. 91-92] then follows that
the inequality thg 11 Zrt > 1 defines a facet of conv S. 0

PROPOSITION 8 (the inequalities (1¢) define facets) If T; > 2 for all i € N, then each of the
inequalities x,s < zs, 7 € N, s € T, defines a facet of conv S.

PROOF Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 5). Hence, we can use
the uniqueness characterization of the facet description from Theorem 6 to show the proposition.

For each r € N and each s € T, let F.; = {(x,2) € conv S | 2,5 = 25 }. Further, let, for
i€ NandteT, 2l =0if (i,t) = (r,s), 2% = 1 otherwise, and let 2) = 1, t € 7. It follows
that (z°,2°) € S\ Fs. Then, letting x4} = 2f* = 1,1 € N, t € 7, it follows that (22, 2%) € F,
and hence that F,.s is a proper face of conv S.

Moreover, there exists values of A € RV*XT ;€ R and p € R such that the equation (4) is
satisfied for all (z,z) € F,s. We will show that for any value of us € R, in a solution to (4) the
following hold: \jy = —pus if (i,t) = (1, s), Ay = 0 otherwise; py = 0 for ¢ € T\ {s}; p = 0.

For each ¢ € T \ {s}, let, for j e N and t € T, le-t =0if (j,t) = (r,0), = t = a4 4+ otherwise,
and let z! = 22, Tt follows that (z!,2!) € F,,. The vectors (z*,2%) and (2!, z!), respectively,
inserted in (4) then yield that A\, =0 for £ € 7 \ {s}.

Similarly, for each k € N\{r} and each £ € T, let for j € N andt € T, a:?t =0if (4,t) = (k,0),
x?t = x}f“t otherwise, and let 22 = 22, It follows that (z2,22) € F,s. The vectors (z*,2%) and
(22, 22), respectively, inserted in (4) then yield that A\, = 0 for k € N\ {r} and ¢ € T hence,
the equation (4) can be rewritten as

ArsTrs + Zﬂtzt = p. (7)
teT



For each ¢ € T \ {s}, let, for j e N and t € T, m?t =z =0ift =1, m?t = 2z} = 1 otherwise.
It follows that (23, 2%) € F,,. The vectors (2, 2%) and (23, 2), respectively, inserted in (7) then
yields that uy = 0 for £ € 7 \ {s}. Equation (7) can now be rewritten as

ArsTrs + HsZs = p- (8)

Let, for j € N and t € T, az?t =zt =0if t = s, x?t = z} = 1 otherwise. It follows that
(z%,2%) € Frs. The vectors (z*,2%) and (2, 2%), respectively, inserted in (8) then yield that
0 =p = N\s+ ps. The equation (8) can thus be rewritten as psz,s = pszs, and from [9, pp.
91-92| follows that the inequality z,s < zs defines a facet of conv S. 0

PROPOSITION 9 (the inequalities (1d) define facets) If T; > 2 for all i € N, then each of the
inequalities x,.s > 0, r € N : T,, > 3, s € T, defines a facet of conv S.

PROOF Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 5). Hence, we can use
the uniqueness characterization of the facet description from Theorem 6 to show the proposition.

For each r € A such that T, > 3 and each s € T, let F,, = {(x,2) € convS | s = 0}.
Further, let 2% = 20 = 1,7 € N, t € T. It follows that (2°,2°) € S\ F,,. Then letting, for
jeENandteT, $§; =0if (4,t) = (r,s), x}f“t = 1 otherwise, and letting z* = 1, ¢t € 7, it follows
that ($A,ZA) € ﬁ’m and hence that ﬁ’m is a proper face of conv S.

Moreover, there exists values of A € RV*T ;€ RT | and p € R such that the equation (4) is
satisfied for all (z,z) € F,,. We will show that for any value of A5 € R, in a solution to (4) the
following hold: Ay = 0if (4,¢t) € {N x T} \ {(r,s)}; pe =0for t € T; p = 0.

For each i € N and each t € T, let for j € N and k € T, ajjlk =0if (4,k) = (i,1), ajjlk = ajjAk
otherwise, and let z! = 2. Since T} > 3, it follows that (z!,z!) € Fy,. The vectors (z?, z%)
and (2!, 2!), respectively, inserted in (4) then yield that \; = 0 for all (i,¢) € {N' x T}\{(r,s)}.
The equation (4) can then be rewritten as (7).

Foreachte’T,let,forjGNandkeT,x?k:zgzoifk:t,wgk:x?kandzi:zﬁ
otherwise. Since T, > 3, it follows that (22,22) € Fn. The vectors (z,2%) and (a2, 22),
respectively, inserted in (7) then yield that u; =0 for t € 7.

Since 2., = 0 for all (z, 2) € Fyq it follows that p = 0. Equation (7) can then be rewritten as
Arsrs = 0, and from |9, pp. 91-92| follows that the inequality x,s > 0 defines a facet of conv S. O

The inequalities x,s > 0, s € T (cf. Proposition 9) do not define facets for any r € N
such that T, = 2 since the constraints (1d) are then implied by (1b)—(1c), (1e) according to
Tpsg1 > 1 —2pg > 1—2,>0,s € T\{T}, and 2,1 > 1 — 22 > 1 — 20 > 0. Hence, the
constraints (1d) need to be defined only for ¢ € N such that T; > 3.

PROPOSITION 10 (the inequalities (1e) define facets) If T; > 2 for all i € N, then each of the
inequalities z; < 1, s € T, defines a facet of conv S.

PROOF Since T; > 2 for i € N, conv S is full-dimensional (cf. Proposition 5). Hence, we can use
the uniqueness characterization of the facet description from Theorem 6 to show the proposition.
For each s € T, let Fs = {(x,2) € convS | zg = 1}. Further, let, for j € N and t € T,
(g)'t =20 =0if t = s, m?t = 2zY = 1, otherwise. It follows that (2°,2%) € S\ Fi. Then, letting
& =z0=1,i€ N, teT,it follows that (x4, 2%) € F, and that F is a proper face of conv S.
Moreover, there exists values of A € RV*T ;€ RT and p € R such that the equation (4) is
satisfied for all (z,2) € Fs. We will show that for any value of p € R, in a solution to (4) the
following hold: Ay =0 fori e N and t € T; us = p, ut = 0 for t € T \ {s}.
For each r € N and each £ € T, let, for j € N and t € T, x}t =0if (5,t) = (r,¢), x}t =1
otherwise, and let z! = zA. Tt follows that (2!,2') € F,. The vectors (z*,2%) and (z',2!),

x
€T



respectively, inserted in (4) then yield that A\, = 0 for r € A and £ € 7. Equation (4) can then

be rewritten as
Z peze = p- (9)
teT

For each £ € T \ {s}, let, for j e N and t € T, m?t =22=0ift =1, m?t = 22 = 1 otherwise.
It follows that (x2, 2%) € F,. The vectors (z,2%) and (22, 22), respectively, inserted in (9) then
yield that p, = 0 for £ € 7 \ {s}. Equation (9) can then be rewritten as pusz; = p. Since z5 =1
for all (x, z) € Fy it follows that pus = p, which yields the equation pzs = p. From [9, pp. 91 92]
then follows that the inequality z; < 1 defines a facet of conv S. 0

The implication of Propositions 7 10 is that all of the inequalities necessary in the description
of the set S define facets of its convex hull. A natural question then arises: Is conv S completely
described by the system (1b) (1e)? The answer to this question is “no”, which becomes apparent
by the following example.

EXAMPLE 11 (continuous relaxation) Consider a system with N =2, T} = 3, and 1o =T = 4.
Then the problem to

minimize T11 + 12 + 2213 + T14 + x21 + Ox29 + Ox23 + Tog + 321 + 3220 + 23 + 324,
subject to  (1b) (1g),

has the two optimal solutions
(211, T12, 213, 145 T21, T22, T23, Ta4; 21, 22, 23, 24) = (0,0,1,0;7,0,0,1—7v;7,0,1,1—~)  (10)

for v € {0,1}, with objective value 7. Relaxing the integrality requirements yields the optimal
solution

1

111 11 11
; ; =(2,0,-,%;2,0,0, =5 =,0, =, = 11
(.’E117$12,$13,.’E14,$21,.’E22,$23,.’E24,2’172272’3,2’4) (27 7272727 ) 72727 7272) ( )
with objective value 6.5. Hence the convex hull of the set of feasible solutions to the system
(1b) (1g) is not completely defined by the inequalities therein. O

According to the Propositions 7 10, all of the necessary inequalities define facets of conv S.
Since, by Proposition 5, conv S is full-dimensional (under reasonable assumptions) the minimal
description of conv S is unique. Therefore, all of these facets are necessary to describe conv S.

Example 11 shows that the inequalities (1b)—(1e) are not sufficient to describe conv S. But
to completely describe conv S we need also other facets; facet-generating procedures will be
presented in forthcoming work.

5 Complexity analysis
We next show that the problem defined in (1) is NP-hard.

THEOREM 12 (reduction of set covering to (1)) The set covering problem is polynomially redu-
cible to (1).

ProoFr Let {A;}" be a given collection of nonempty subsets of the finite set {1,...,n}. Letting
ai; = 1if i € A; and 0 otherwise, the set covering problem is defined as to

m
minimize Z Yt, (12a)
t=1

10



m

subject to Zaityt >1, i=1,...,n, (12b)
t=1

ye € {0,1}, t=1,...,m. (12¢)

Consider then an instance of the program (1) such that N =n, T =m, d; = 1, T; = m, and
cit =2(1—ay) foralli=1,...,nand t =1,...,m. Since T; = T = m, each component must be
replaced once between the times 1 and 7', and one replacement is always enough (for feasibility).
Furthermore, in every optimal solution and for each ¢ and ¢ such that a;; = 0, z;; = 0 holds since
cit = 2 > d and there exists a t € T with a;7 = 1, which implies that c,;; = 0. Hence, this specific
instance of (1) can be reformulated as the problem to

m
minimize g 2t

t=1

Zaitxit >1,i=1,...,n, and (1c)—(1g) holds } (13)
t=1

An optimal solution (x*,2*) to (13) is given by

m m
Z*Eargmin{Zzt Zaztztzl,izl,...,n} (14)

0™ Li=1  [t=1

and zf, = a2, 1 =1,...,n,t =1,...,m. The result then follows, since the program (14) is
equivalent to (12). O

Since (12) is an NP-hard problem it follows from |9, Prop. 6.4, p. 132] that (1) is an NP-hard
problem.

Finally, it should be mentioned that the complexity of the instance of (1) for which the costs
it are non-increasing with time (i.e., ¢;;4+1 < ¢i for all 4 and t) is still an open question; this
includes the interesting special case for which the costs are independent of time (i.e., ¢z = ¢
and d; = d for all ¢ and t), as originally studied in [4] and [1].

6 Conclusions and future research

The opportunistic maintenance model has been shown to have a nice inherent structure, in that
while the problem is NP-hard, it reduces to a linear program once the maintenance occasions
are fixed; the latter can in some cases even be solved through a greedy procedure. Also, all the
necessary linear constraints define facets of the convex hull of the set of feasible schedules. It
would be interesting to investigate whether additional facets exist which can be relatively easily
generated.

Work in progress include the proper modelling of maintenance decisions over time when
component lives are nondeterministic. In particular, we study models wherein one incorporates
successive improvements of life distribution estimates through the addition of measurement-based
information about the condition of the system. Even in the case when costs are independent of
time, we have already shown that such a stochastic extension of the current model is NP-hard.
In order to provide a computationally feasible model we will therefore also investigate how to
best define an accurate enough scenario representation of the component lives.

The replacement problem (1) has been utilized in studies of optimal maintenance schedules
at Volvo Aero (as reported in [1, 10]), as well as to maintenance scheduling problems in the
nuclear and wind power industries. In the near future, experiences from the latter activities will
be reported.
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