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The repla
ement problem: A polyhedral and 
omplexityanalysis. The 
omplete versionTorgny Almgren,∗ Ni
las Andréasson,† Mi
hael Patriksson,‡Ann-Brith Strömberg,‡ and Adam Woj
ie
howski‡January 26, 2009Abstra
tWe 
onsider an optimization model for determining optimal opportunisti
 maintenan
e (thatis, 
omponent repla
ement) s
hedules when data is deterministi
. This problem, whi
hgeneralizes that of Di
kman, Epstein, and Wilamowsky [4℄, is a natural starting point forthe modelling of repla
ement s
hedules when 
omponent lives are non-deterministi
, when
ea mathemati
al study of the model is of large interest. We show that the 
onvex hull of the setof feasible repla
ement s
hedules is full-dimensional, and that all the ne
essary inequalitiesare fa
et-indu
ing. We show that when maintenan
e o

asions are �xed, the remainingproblem redu
es to a linear program; in some 
ases the latter is solvable through a greedypro
edure. We further show that this basi
 repla
ement problem is NP-hard.1 Introdu
tionThe importan
e of performing maintenan
e operations well�and of improving the state of theart�seems to be impossible to overestimate: a

ording to [8, Chapter 1℄, maintenan
e 
osts inplants in the US alone a

ounted for more than $600 billion in 1981, more than $800 billionin 1991, and were then proje
ted to in
rease to be
ome more than $1.2 trillion by the year2000. It is stated that these evaluations indi
ate that on average, one third, or $250 billion,of all maintenan
e dollars are wasted through ine�e
tive maintenan
e management methods.A

ording to a re
ent study (made by Forum Vision Instandhaltung, Germany), maintenan
e
osts in the manufa
turing industry within the EU amount to roughly $2 trillion per year.Studies over the last 20 years have indi
ated that around Europe, the dire
t 
ost of maintenan
eis equivalent to between 4% and 8% of total sales turnover. Also in these 
ases, it is quitenatural to assume that not all the money spent is spent well: a

ording to information gatheredby the Swedish Center for Maintenan
e Management, maintenan
e is quite often performed toofrequently, and surprisingly often equipment failure is triggered by inspe
tions and the 
onditionmonitoring itself. One obje
tive with 
onstru
ting and studying mathemati
al models for theoptimization of the s
heduling of maintenan
e and inspe
tion a
tivities is to mitigate some ofthese problems, and to thereby 
ontribute to a shift of fo
us from 
onsidering maintenan
e asmainly a 
ost-indu
ing a
tivity to that of an investment in availability improvement.One strategy for planning maintenan
e a
tivities is so 
alled opportunisti
 maintenan
e, inwhi
h a mathemati
al model is utilized to de
ide whether, at a (possibly already planned) mainte-nan
e o

asion, more than the ne
essary maintenan
e a
tivities should be performed. A

ording
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to Di
kman et al. [4℄, Jorgenson and Radner [7℄ introdu
ed the original opportunisti
 repla
e-ment/maintenan
e problem. They 
onsidered a system of sto
hasti
ally failing 
omponents,whi
h in
ur extensive maintenan
e 
osts upon failure, that is, for shutting down and disassem-bling the system. When the system is down for whatever reason, 
omponents may be repla
ed atno additional maintenan
e 
ost. Thereby, opportunities arise to trade o� remaining life of 
om-ponents in order to avoid maintenan
e 
osts asso
iated with 
omponent failure, perhaps alreadyin the near future. This is their main motive for studying the problem.In [6, 3℄ a problem asso
iated with fusion power plants is addressed. For safety reasons, 
om-ponents are assigned life limits at whi
h removal is mandatory, and before whi
h the probabilityof failure is e�e
tively zero. Their problem therefore is deterministi
. (Later, in [5℄, this problemwas solved for the 
ase of an in�nite horizon and for a system of two 
omponents.)Our original motivation for studying the repla
ement problem was a proje
t 
on
erning theoptimization of jet engine maintenan
e s
hedules at Volvo Aero Corporation (VAC). An air
raftengine 
onsists of thousands of parts. Some of the parts are safety-
riti
al, as in fusion powerplants, whi
h means that if they fail there will be an engine breakdown, possibly with 
atastrophi

onsequen
es. Therefore, the safety-
riti
al parts have �xed life limits, and must be repla
edbefore they are rea
hed. Hen
e, we 
onsider the safety-
riti
al parts as having deterministi
lives. All other parts of the engine are 
onsidered to have sto
hasti
 lives; therefore, their lifelimits need to be estimated, whi
h in turn makes it mu
h more di�
ult to 
ompute a reliablerepla
ement s
hedule. For some of these parts failure distributions may be 
omputed fromhistori
al data and monitoring observations. This information 
ould then be dis
retized andbe used as an input into optimization models. This was the subje
t of two PhD proje
ts (see[1, 10℄).Taking into a

ount parts that are either deterministi
 or sto
hasti
 in a uni�ed model isquite a lot more 
omplex than what has been studied in the past; even sto
hasti
 models foundin the literature typi
ally do not in
orporate failure distributions but failure intensities only, andsolution approa
hes provide simple maintenan
e poli
ies for in�nite horizon problems.The purpose of the present paper is to initiate a detailed mathemati
al study of opportunisti
maintenan
e optimization models through an analysis of a basi
 repla
ement model. In thenear future we will 
onsider extensions to this problem. In a re
ent 
ase study at Volvo AeroCorporation the stru
ture of the jet engine, and in parti
ular the disassembly of its parts, hasbeen taken better into a

ount through detailed 
ost dependen
ies between 
omponents. Further,re
ent appli
ations of opportunisti
 maintenan
e optimization to the generation of wind andnu
lear power have resulted in the study of multi-stage sto
hasti
 programming models, properlyin
orporating sto
hasti
 information about the remaining lives of 
omponents.2 The basi
 repla
ement modelConsider a set N of 
omponents and de�ne N = |N |. Consider also a set T = {1, . . . , T} oftimes, with T ≥ 2. Suppose that a new 
omponent i ∈ N has a (deterministi
) life of is Ti timesteps. (Without loss of generality, 2 ≤ Ti ≤ T .) The pur
hase 
ost at time t ∈ T for 
omponent
i is cit > 0. There is a �xed 
ost of dt > 0 asso
iated with a maintenan
e o

asion at time t,independent of the number of parts repla
ed at this o

asion.The obje
tive is to minimize the 
ost of having a working system between times 1 and T .
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Letting
zt =

{
1, if maintenan
e shall o

ur at time t,

0, otherwise, t ∈ T ,

xit =

{
1, if part i shall be repla
ed at time t,

0, otherwise, i ∈ N , t ∈ T ,the repla
ement problem is that to
minimize

(x,z)

∑

t∈T

(
∑

i∈N

citxit + dtzt

)
, (1a)

subject to

ℓ+Ti∑

t=ℓ+1

xit ≥ 1, ℓ = 0, . . . , T − Ti, i ∈ N , (1b)
xit ≤ zt, t ∈ T , i ∈ N , (1
)
xit ≥ 0, t ∈ T , i ∈ N , (1d)
zt ≤ 1, t ∈ T , (1e)

xit ∈ {0, 1}, t ∈ T , i ∈ N . (1f)
zt ∈ {0, 1}, t ∈ T . (1g)The 
onstraint (1b) ensures that ea
h part is repla
ed before the end of its life; the 
onstraint(1
) enfor
es the payment of the �xed maintenan
e 
ost dt whenever any part is repla
ed at time

t, and, on
e this 
ost is paid, indu
es maintenan
e opportunities at no extra maintenan
e 
ost.The remaining 
onstraints are de�nitional; the removal of (1f)�(1g) amounts to a 
ontinuousrelaxation of the problem.This problem originates from [4℄; the model in [1℄ repla
es the original 
onstraints∑i∈N xit ≤
Nzt, t ∈ T , with the equivalent but stronger 
onstraints (1
); the model (1), in turn, generalizesthe 
ost fun
tion in [1℄ to allow for time dependen
y.As a numeri
al illustration, we 
onsider an instan
e of (1) with T = 60, N = 4, T1 = 13,
T2 = 19, T3 = 34, T4 = 18, c1t = 80, c2t = 185, c3t = 160, and c4t = 125 for all t ∈ T . The datais 
hosen so that the relations between the lives and the 
osts are similar to those for the fanmodule of the RM12 engine, maintained at VAC. The model is solved for dt = 0, 10, and 1000 forall t (where dt = 10 represents the most reasonable value in the maintenan
e situation at VAC).For dt = 0, the optimal total number of repla
ement o

asions is 11 and there is no advantagewith repla
ing a 
omponent before its life limit is rea
hed. In
reasing the value of dt from 0 to 10de
reases the optimal total number of repla
ement o

asions from 11 to �ve. It is now bene�
ialto repla
e the 
omponents in larger groups and they are often repla
ed before their respe
tivelife limits are rea
hed. For dt = 1000 it is very important to utilize the opportunity to repla
eseveral 
omponents at the same time. The optimal total number of repla
ement o

asions is four(the least feasible number of repla
ement o

asions for this instan
e).Figure 1 shows optimal maintenan
e s
hedules for ea
h of the three 
ases. The horizontalaxis represents the 60 time steps and ea
h maintenan
e o

asion is represented by a verti
albar, where a dot at a 
ertain height represents a 
omponent of the 
orresponding type beingrepla
ed. The �gure 
learly illustrates how opportunisti
 repla
ement be
omes more bene�
ialwith an in
reasing �xed maintenan
e 
ost.The remainder of the paper is organized as follows. Se
tion 3 presents some properties 
har-a
terizing an optimal maintenan
e s
hedule. In parti
ular, we show that if the variables zt,asso
iated with the maintenan
e o

asions, are �xed to binary values, then the polyhedron aris-ing from the 
ontinuous relaxation of the variables xit, asso
iated with the repla
ement of theparts, is integral (i.e., possesses integral extreme points). In other words, the integrality re-stri
tions on those variables may be dropped. Moreover, we provide results, in part rea
hed in3



PSfrag repla
ements dt = 0

dt = 10

dt = 1000 timetimetime
Figure 1: Optimal maintenan
e s
hedules for dt = 0, 10, and 1000 for all t. When dt in
reasesfrom 0 to 10 the repla
ement o

asions 1�3, 5�7, and 9�11, are grouped into one o

asion for ea
hof the three groups. When dt is in
reased from 10 to 1000, the last four maintenan
e o

asionsare rearranged into three o

asions; the redu
tion from �ve to four o

asions results in severalmore 
omponent repla
ements.[4℄, on the possibility to a priori remove some maintenan
e o

asions from 
onsideration. InSe
tion 4 we perform a polyhedral study of the 
onvex hull of the set of feasible solutions tothe model (1), referred to as the repla
ement polytope. We show that the repla
ement poly-tope is full-dimensional under natural assumptions and that the ne
essary inequality 
onstraints(1b)�(1e) in the original formulation (1) are fa
et-de�ning. Further, we show that they are notsu�
ient to 
ompletely des
ribe the repla
ement polytope. By using Chvátal�Gomory roundingwe 
onstru
t a new 
lass of valid inequalities and show that they are fa
et-de�ning. Finally, inSe
tion 5, we establish that the problem (1) is NP-
omplete, based on a redu
tion from the set
overing problem. We 
on
lude with remarks on 
urrent and planned resear
h endeavours.3 Spe
ial properties of optimal solutionsWe here present some spe
ial properties of the problem (1). First we show that the integrality
onstraints on the variables xit 
an be relaxed. Then we review a result from [4℄ and show thatfor instan
es of the problem where 
osts are non-in
reasing with time the repla
ement a
tivitieswill only o

ur at times that are sums of positive integer multiples of life limits. Finally, we showthat, again for non-in
reasing 
osts and given �xed binary values of the zt variables, the optimal
xit values 
an be obtained by a greedy algorithm.3.1 Integrality propertyThe following proposition 
on
erns integrality properties of the polyhedron in R

N×T de�ned by(1b)�(1d), when the variables zt, t ∈ T , are �xed to binary values. A

ordingly, we let z̃t ∈ {0, 1},
t ∈ T , and de�ne T̃ = {t ∈ T | z̃t = 1}; hen
e, z̃t = 0, t ∈ T \ T̃ .Proposition 1 (integral polyhedron) The polyhedron de�ned by (1b) and

xit ≤ 1, t ∈ T̃ , (2a)
xit ≤ 0, t ∈ T \ T̃ , (2b)for i ∈ N , is integral.Proof We derive the result by showing that the 
onstraint matrix of (1b) and (2) is totallyunimodular (TU) using the 
hara
terization in [9, pp. 542�543, Thm. 2.7℄. The inequalities (1b)and (2) separate over i ∈ N ; therefore it su�
es to show that the 
onstraint matrix of the4



inequality system
ℓ+Ti∑

t=ℓ+1

xit ≥ 1, ℓ ∈ {0, . . . , T − Ti}, (3a)
−xit ≥

{
−1, t ∈ T̃ ,

0, t ∈ T \ T̃ ,
(3b)is TU for ea
h i ∈ N . Let Ai ∈ B

(T−Ti+1)×T be the 
onstraint matrix de�ned by the lefthand sides of the inequalities (3a), that is, for ea
h r ∈ {0, . . . , T − Ti}, let ai
rs = 1 for s ∈

{r + 1, . . . , r + Ti} and ai
rs = 0 for s ∈ T \ {r + 1, . . . , r + Ti}. The essential property of thematrix Ai is that the ones appear 
onse
utively in ea
h row, that is, if ai

rℓ = ai
rk = 1 and

1 ≤ ℓ ≤ k ≤ T , then ai
rs = 1 for all s ∈ {ℓ, . . . , k}. Let B ∈ B

T×T be the 
onstraint matrixde�ned by the left hand sides of the inequalities (3b). Then B = −IT (minus the T ×T identitymatrix). Therefore, it is enough to show that property (ii) of [9, pp. 542�543, Thm. 2.7℄ issatis�ed for J = T . Let J1 = {s ∈ T | s odd} and J2 = T \ J1. For ea
h ℓ ∈ {0, . . . , T − Ti} itholds that
∑

s∈J1

ai
ℓs −

∑

s∈J2

ai
ℓs =





1, if Ti is odd and ℓ is even,

−1, if Ti is odd and ℓ is odd,
0, if Ti is even,and for ea
h ℓ ∈ T it holds that

∑

s∈J1

bℓs −
∑

s∈J2

bℓs =

{
−1, if ℓ is even,

1, if ℓ is odd.It follows that the property (ii) stated in [9, pp. 542�543, Thm. 2.7℄ holds. Hen
e, the 
onstraintmatrix ((Ai)T, BT)T of (3) is TU. Sin
e the right-hand sides of (3) are all integral it follows from[2, p. 221℄ that the 
orresponding polyhedron is integral.The result of Proposition 1 implies that the binary requirements on the variables xit 
an berelaxed, provided that the model (1) is to be solved using an algorithm that dete
ts extremeoptimal solutions to linear programming subproblems.3.2 Non-in
reasing 
ostsThe results presented in this subse
tion are derived for instan
es of the model (1) for whi
h the
osts are non-in
reasing with time, that is, ci,t+1 ≤ cit and dt+1 ≤ dt for all i and t.The following proposition extends [4, Thm. 2℄ from three to N 
omponents. It implies thatwe may a priori set zt = 0 in (1) for ea
h t whi
h is not a non-negative sum of life limits.Proposition 2 (a priori variable elimination) For all instan
es of (1) with 
osts ful�lling ci,t+1 ≤
cit and dt+1 ≤ dt for all i and t, an optimal solution exists with zt = 0 for every t ∈ T whi
h isnot a sum of non-negative integer multiples of the life limits (that is, for every t ∈ T su
h that{
ℓ ∈ Z

N
+ |
∑

i∈N ℓiTi = t
}

= ∅).Proof Consider a feasible solution to (1) with zt = 1 for some t that is not a positive sum of lifelimits Ti, i ∈ N . Let the 
orresponding obje
tive value be f . Assume, without loss of generality,that t is the earliest time with su
h a property (that is, all previous repla
ements have o

urredat times that are positive sums of lives Ti). This implies that all parts must have remaining lives5



greater than zero, sin
e otherwise t would have been a positive sum of lives. We 
an thereforepostpone all repla
ements made at t to the time t̃ > t, when some part i ∈ N rea
hes a remaininglife of zero. The time t̃ is then a positive sum of lives. The adjusted solution, with zt = 0 and
zt̃ = 1, is feasible and the 
orresponding 
ost f̃ ≤ f . This pro
edure 
an be applied to all times
t that are not positive sums of life limits and for whi
h zt = 1. The result follows.The next proposition shows that given values of zt, t ∈ T , the greedy algorithm de�ned belowprodu
es 
orresponding optimal values of xit, i ∈ N , t ∈ T .Definition 3 (greedy rule) Let the set T̃ be de�ned by the �xed values of the variables zt, t ∈ T(as in Se
tion 3.1). The greedy rule for the basi
 repla
ement problem is de�ned as follows: Giveall parts their initial lives. (*) Move to the earliest time t̃ ∈ T̃ . Let all parts age. Repla
e ea
hpart having a remaining life that is shorter than the time left to next repla
ement o

asion. Let
T̃ := T̃ \ {t̃}. If T̃ 6= ∅, repeat from (*).Proposition 4 (greedy rule yields optimum) Consider the problem (1) and assume that ci,t+1 ≤

cit holds for all i and all t. Let the set T̃ be su
h that for ea
h t ∈ T̃ ∪{0} there is an s ∈ T̃ ∪{T+1}with 0 < s− t ≤ mini∈N Ti. Let z̃t, t ∈ T , be de�ned by T̃ . Then the greedy rule of De�nition 3yields 
orresponding optimal values of the variables xit, i ∈ N , t ∈ T .Proof Let x̃it, i ∈ N , t ∈ T , be the solution obtained by the greedy rule. Then, (x̃, z̃) is
learly feasible in (1). Let (x̄, z̃), su
h that x̄ 6= x̃, be feasible in (1). We 
an then postpone anyrepla
ement 
orresponding to x̄it that is possible to postpone to the next time in T̃ . This willtransform x̄ to x̃ without introdu
ing any additional repla
ements and at a non-in
reasing 
ost.Hen
e, ∑i∈N

∑
t∈T cit(x̃it − x̄it) ≤ 0 holds and the result follows.4 The repla
ement polytopeWe let the set S ⊂ R

N×T × {0, 1}T be de�ned by the values of the variables (x, z) that ful�lthe 
onstraints (1b)�(1e), (1g). The 
onvex hull of S, denoted conv S, is 
alled the repla
ementpolytope. By studying the fa
ial stru
ture of conv S and thereby des
ribing it by a �nite setof linear inequalities, it is possible to solve the problem using linear programming te
hniques.Our ambition here is to take the �rst steps towards su
h a 
omplete linear des
ription of therepla
ement polytope.We �rst 
ompute the dimension of the repla
ement polytope and show that all the ne
essaryinequalities in (1b)�(1e) de�ne fa
ets of the same. However, by an example we show that thesebasi
 inequalities do not 
ompletely de�ne conv S. We then derive a new 
lass of fa
ets by usingChvátal�Gomory rounding.4.1 The dimension and basi
 fa
ets of conv SIn this se
tion we derive the dimension of the repla
ement polytope conv S and investigate theinequalities used to de�ne S. Under weak and natural assumptions we show that the repla
ementpolytope is full-dimensional. Further, we show that all inequalities that are ne
essary to de�nethe repla
ement polytope are fa
ets of the same.Proposition 5 (dimension of the repla
ement polytope) If Ti ≥ 2 for all i ∈ N , then the dimen-sion of conv S is (N + 1)T , that is, conv S is full-dimensional.Proof First note that sin
e S ⊆ R
(N+1)T it holds that dim(conv S) ≤ (N +1)T . Let the ve
tors

(xk, zk) ∈ B
(N+1)T , k ∈ {0, . . . , (N + 1)T}, be given by the following. For i ∈ N and t ∈ T , let6



xk
it = 0 if k ∈ {(N + 1)(t − 1) + i, (N + 1)t} and xk

it = 1 otherwise. For t ∈ T , let zk
t = 0 if

k = (N + 1)t and zk
t = 1 otherwise. Sin
e Ti ≥ 2 for i ∈ N it holds that ∑ℓ+Ti

t=ℓ+1 xk
it ≥ 1 for all

i ∈ N , all ℓ ∈ {0, . . . , T − Ti}, and all k ∈ {0, . . . , (N + 1)T}.Moreover, for all t ∈ T and k ∈ {0, . . . , (N + 1)T} su
h that zk
t = 0 it holds that xk

it = 0,
i ∈ N ; it follows that (xk, zk) ∈ S. It 
an be veri�ed that the only solution to the system

(N+1)T∑

k=0

xk
itαk = 0, i ∈ N ,

(N+1)T∑

k=0

zk
t αk = 0, t ∈ T ,

(N+1)T∑

k=0

αk = 0,is αk = 0, k ∈ {0, . . . , (N + 1)T}, implying that the ve
tors (xk, zk), k ∈ {0, . . . , (N + 1)T},are a�nely independent. Hen
e, it holds that dim(conv S) ≥ (N + 1)T , thus implying that
dim(conv S) = (N + 1)T . The proposition follows.The repla
ement polytope is not full-dimensional if Ti = 1 for some i ∈ N , sin
e it thenholds that xit = zt = 1, t ∈ T , for all (x, z) ∈ conv S. Letting A= denote the matrix 
orre-sponding to the equality subsystem of conv S, this would yield that rankA= ≥ 2T and thus that
dim(conv S) ≤ (N − 1)T . However, the 
ase that Ti = 1 is not interesting in pra
ti
e sin
e itwould mean that 
omponent i must be repla
ed�and thus maintenan
e must be performed�atevery time step.The following result from polyhedral 
ombinatori
s ([9, Thm. 3.6 of Ch. I.4℄) is utilized todetermine fa
ets of conv S.Theorem 6 (
hara
terization of fa
ets) Let P be a full-dimensional polyhedron and F = {x ∈
P | πTx = π0} a proper fa
e of P (i.e., ∅ 6= F ⊂ P ). The following two statements are equivalent:1. F is a fa
et of P .2. If λTx = λ0 for all x ∈ F then (λ, λ0) = α(π, π0) for some α ∈ R.Proposition 7 (the inequalities (1b) de�ne fa
ets) If Ti ≥ 2 for all i ∈ N , then ea
h of theinequalities ∑ℓ+Tr

t=ℓ+1 xrt ≥ 1, ℓ = 0, . . . , T − Tr, r ∈ N , de�nes a fa
et of conv S.Proof Sin
e Ti ≥ 2 for i ∈ N , conv S is full-dimensional (
f. Proposition 5). Hen
e, we 
an usethe uniqueness 
hara
terization of the fa
et des
ription from Theorem 6 to show the proposition.For ea
h r ∈ N and ea
h ℓ ∈ {0, . . . , T − Tr}, let F̂rℓ = { (x, z) ∈ conv S |
∑ℓ+Tr

t=ℓ+1 xrt = 1 }.Further, let x0
it = z0

t = 1, i ∈ N , t ∈ T . Sin
e Ti ≥ 2 it follows that (x0, z0) ∈ S \ F̂rℓ. Then,de�ning the ve
tor (xA, zA) as xA
it = 0 if i = r and t ∈ {ℓ+ 2, . . . , ℓ+ Tr}, xA

it = 1 otherwise, and
zA
t = 1, t ∈ T , it follows that (xA, zA) ∈ F̂rℓ and hen
e that F̂rℓ is a proper fa
e of conv S.Moreover, there exist values of λ ∈ R

N×T , µ ∈ R
T , and ρ ∈ R su
h that the equation

∑

t∈T

(
∑

i∈N

λitxit + µtzt

)
= ρ (4)is satis�ed for all (x, z) ∈ F̂rℓ. We will show that for any value of ρ ∈ R, in a solution to (4) thefollowing hold: λit = ρ if i = r and t ∈ {ℓ + 1, . . . , ℓ + Tr}, λit = 0 otherwise; µt = 0 for t ∈ T .Choose any i ∈ N \ {r} and any t ∈ T . Let, for j ∈ N and k ∈ T , x1

jk = 0 if (j, k) = (i, t),
x1

jk = xA
jk otherwise, and let z1 = zA. It follows that (x1, z1) ∈ F̂rℓ. The ve
tors (xA, zA)and (x1, z1), respe
tively, inserted in (4) then yield that λit = 0. It follows that λit = 0 for all

i ∈ N \ {r} and all t ∈ T . 7



For ea
h t ∈ T \ {ℓ + 1, . . . , ℓ + Tr + 1}, let, for i ∈ N and k ∈ T , x2
ik = 0 if (i, k) = (r, t),

x2
ik = xA

ik otherwise, and let z2 = zA. It follows that (x2, z2) ∈ F̂rℓ. The ve
tors (xA, zA) and
(x2, z2), respe
tively, inserted in (4) then yield that λrt = 0 for all t ∈ T \{ℓ+1, . . . , ℓ+Tr +1}.Further, let, for i ∈ N and t ∈ T , xB

it = 0 if i = r and t ∈ {ℓ + 1, . . . , ℓ + Tr − 1},
xB

it = 1 otherwise, and let zB
t = 1, t ∈ T . Moreover, let, for i ∈ N and t ∈ T , x3

it = 0 if
(i, t) = (r, ℓ + Tr + 1), x3

it = xB
it otherwise, and let z3 = zB. It follows that (x3, z3) ∈ F̂rℓ. Theve
tors (xB, zB) and (x3, z3), respe
tively, inserted in (4) then yield that λr,ℓ+Tr+1 = 0. Theequation (4) 
an then be rewritten as

ℓ+Tr∑

t=ℓ+1

λrtxrt +
∑

t∈T

µtzt = ρ. (5)For ea
h t ∈ T \{ℓ+1, ℓ+Tr +1}, let, for i ∈ N , x4
ik = z4

k = 0 if k = t, x4
ik = xA

ik and z4
k = zA

kotherwise. It follows that (x4, z4) ∈ F̂rℓ. The ve
tors (xA, zA) and (x4, z4), respe
tively, insertedin (5) then yield that µt = 0 for t ∈ T \ {ℓ + 1, ℓ + Tr + 1}.Further, for ea
h t ∈ {ℓ + 1, ℓ + Tr + 1}, let, for i ∈ N , x5
ik = z5

k = 0 if k = t, x5
ik = xB

ik and
z5
k = zB

k otherwise. It follows that (x5, z5) ∈ F̂rℓ. The ve
tors (xB, zB) and (x5, z5), respe
tively,inserted in (5) then yield that µℓ+1 = µℓ+Tr+1 = 0. Equation (5) 
an then be rewritten as
ℓ+Tr∑

t=ℓ+1

λrtxrt = ρ. (6)For ea
h t ∈ {ℓ + 2, . . . , ℓ + Tr}, let for i ∈ N and k ∈ T , x6
ik = 0 if (i, k) = (r, ℓ + 1),

x6
ik = 1 if (i, k) = (r, t), and x6

ik = xA
ik otherwise, and let z6 = zA. It follows that (x6, z6) ∈ F̂rℓ.The ve
tors (xA, zA) and (x6, z6), respe
tively, inserted in (6) then yield that λr,ℓ+1 = ρ = λrt,

t ∈ {ℓ + 2, . . . , ℓ + Tr} Sin
e (xA, zA) ∈ F̂rℓ it follows that λrt = ρ, t ∈ {ℓ + 1, . . . , ℓ + Tr}. Theequation (6) 
an then be rewritten as ∑ℓ+Tr

t=ℓ+1 ρxrt = ρ. From [9, pp. 91�92℄ then follows thatthe inequality ∑ℓ+Tr

t=ℓ+1 xrt ≥ 1 de�nes a fa
et of conv S.Proposition 8 (the inequalities (1
) de�ne fa
ets) If Ti ≥ 2 for all i ∈ N , then ea
h of theinequalities xrs ≤ zs, r ∈ N , s ∈ T , de�nes a fa
et of conv S.Proof Sin
e Ti ≥ 2 for i ∈ N , conv S is full-dimensional (
f. Proposition 5). Hen
e, we 
an usethe uniqueness 
hara
terization of the fa
et des
ription from Theorem 6 to show the proposition.For ea
h r ∈ N and ea
h s ∈ T , let Frs = { (x, z) ∈ conv S | xrs = zs }. Further, let, for
i ∈ N and t ∈ T , x0

it = 0 if (i, t) = (r, s), x0
it = 1 otherwise, and let z0

t = 1, t ∈ T . It followsthat (x0, z0) ∈ S \ Frs. Then, letting xA
it = zA

t = 1, i ∈ N , t ∈ T , it follows that (xA, zA) ∈ Frsand hen
e that Frs is a proper fa
e of conv S.Moreover, there exists values of λ ∈ R
N×T , µ ∈ R

T , and ρ ∈ R su
h that the equation (4) issatis�ed for all (x, z) ∈ Frs. We will show that for any value of µs ∈ R, in a solution to (4) thefollowing hold: λit = −µs if (i, t) = (r, s), λit = 0 otherwise; µt = 0 for t ∈ T \ {s}; ρ = 0.For ea
h ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x1
jt = 0 if (j, t) = (r, ℓ), x1

jt = xA
jt otherwise,and let z1 = zA. It follows that (x1, z1) ∈ Frs. The ve
tors (xA, zA) and (x1, z1), respe
tively,inserted in (4) then yield that λrℓ = 0 for ℓ ∈ T \ {s}.Similarly, for ea
h k ∈ N\{r} and ea
h ℓ ∈ T , let for j ∈ N and t ∈ T , x2

jt = 0 if (j, t) = (k, ℓ),
x2

jt = xA
jt otherwise, and let z2 = zA. It follows that (x2, z2) ∈ Frs. The ve
tors (xA, zA) and

(x2, z2), respe
tively, inserted in (4) then yield that λkℓ = 0 for k ∈ N \ {r} and ℓ ∈ T ; hen
e,the equation (4) 
an be rewritten as
λrsxrs +

∑

t∈T

µtzt = ρ. (7)8



For ea
h ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x3
jt = z3

t = 0 if t = ℓ, x3
jt = z3

t = 1 otherwise.It follows that (x3, z3) ∈ Frs. The ve
tors (xA, zA) and (x3, z3), respe
tively, inserted in (7) thenyields that µℓ = 0 for ℓ ∈ T \ {s}. Equation (7) 
an now be rewritten as
λrsxrs + µszs = ρ. (8)Let, for j ∈ N and t ∈ T , x4

jt = z4
t = 0 if t = s, x4

jt = z4
t = 1 otherwise. It follows that

(x4, z4) ∈ Frs. The ve
tors (x4, z4) and (xA, zA), respe
tively, inserted in (8) then yield that
0 = ρ = λrs + µs. The equation (8) 
an thus be rewritten as µsxrs = µszs, and from [9, pp.91�92℄ follows that the inequality xrs ≤ zs de�nes a fa
et of conv S.Proposition 9 (the inequalities (1d) de�ne fa
ets) If Ti ≥ 2 for all i ∈ N , then ea
h of theinequalities xrs ≥ 0, r ∈ N : Tr ≥ 3, s ∈ T , de�nes a fa
et of conv S.Proof Sin
e Ti ≥ 2 for i ∈ N , conv S is full-dimensional (
f. Proposition 5). Hen
e, we 
an usethe uniqueness 
hara
terization of the fa
et des
ription from Theorem 6 to show the proposition.For ea
h r ∈ N su
h that Tr ≥ 3 and ea
h s ∈ T , let F̃rs = { (x, z) ∈ conv S | xrs = 0 }.Further, let x0

it = z0
t = 1, i ∈ N , t ∈ T . It follows that (x0, z0) ∈ S \ F̃rs. Then letting, for

j ∈ N and t ∈ T , xA
jt = 0 if (j, t) = (r, s), xA

jt = 1 otherwise, and letting zA
t = 1, t ∈ T , it followsthat (xA, zA) ∈ F̃rs and hen
e that F̃rs is a proper fa
e of conv S.Moreover, there exists values of λ ∈ R

N×T , µ ∈ R
T , and ρ ∈ R su
h that the equation (4) issatis�ed for all (x, z) ∈ F̃rs. We will show that for any value of λrs ∈ R, in a solution to (4) thefollowing hold: λit = 0 if (i, t) ∈ {N × T } \ {(r, s)}; µt = 0 for t ∈ T ; ρ = 0.For ea
h i ∈ N and ea
h t ∈ T , let for j ∈ N and k ∈ T , x1

jk = 0 if (j, k) = (i, t), x1
jk = xA

jkotherwise, and let z1 = zA. Sin
e Tr ≥ 3, it follows that (x1, z1) ∈ F̃rs. The ve
tors (xA, zA)and (x1, z1), respe
tively, inserted in (4) then yield that λit = 0 for all (i, t) ∈ {N ×T }\{(r, s)}.The equation (4) 
an then be rewritten as (7).For ea
h t ∈ T , let, for j ∈ N and k ∈ T , x2
jk = z2

k = 0 if k = t, x2
jk = xA

jk and z2
k = zA

kotherwise. Sin
e Tr ≥ 3, it follows that (x2, z2) ∈ F̃rs. The ve
tors (xA, zA) and (x2, z2),respe
tively, inserted in (7) then yield that µt = 0 for t ∈ T .Sin
e xrs = 0 for all (x, z) ∈ F̃rs it follows that ρ = 0. Equation (7) 
an then be rewritten as
λrsxrs = 0, and from [9, pp. 91�92℄ follows that the inequality xrs ≥ 0 de�nes a fa
et of conv S.The inequalities xrs ≥ 0, s ∈ T (
f. Proposition 9) do not de�ne fa
ets for any r ∈ Nsu
h that Tr = 2 sin
e the 
onstraints (1d) are then implied by (1b)�(1
), (1e) a

ording to
xr,s+1 ≥ 1 − xrs ≥ 1 − zs ≥ 0, s ∈ T \ {T}, and xr1 ≥ 1 − xr2 ≥ 1 − z2 ≥ 0. Hen
e, the
onstraints (1d) need to be de�ned only for i ∈ N su
h that Ti ≥ 3.Proposition 10 (the inequalities (1e) de�ne fa
ets) If Ti ≥ 2 for all i ∈ N , then ea
h of theinequalities zs ≤ 1, s ∈ T , de�nes a fa
et of conv S.Proof Sin
e Ti ≥ 2 for i ∈ N , conv S is full-dimensional (
f. Proposition 5). Hen
e, we 
an usethe uniqueness 
hara
terization of the fa
et des
ription from Theorem 6 to show the proposition.For ea
h s ∈ T , let Fs = { (x, z) ∈ conv S | zs = 1 }. Further, let, for j ∈ N and t ∈ T ,
x0

jt = z0
t = 0 if t = s, x0

jt = z0
t = 1, otherwise. It follows that (x0, z0) ∈ S \ Fs. Then, letting

xA
it = zA

t = 1, i ∈ N , t ∈ T , it follows that (xA, zA) ∈ Fs and that Fs is a proper fa
e of conv S.Moreover, there exists values of λ ∈ R
N×T , µ ∈ R

T , and ρ ∈ R su
h that the equation (4) issatis�ed for all (x, z) ∈ Fs. We will show that for any value of ρ ∈ R, in a solution to (4) thefollowing hold: λit = 0 for i ∈ N and t ∈ T ; µs = ρ, µt = 0 for t ∈ T \ {s}.For ea
h r ∈ N and ea
h ℓ ∈ T , let, for j ∈ N and t ∈ T , x1
jt = 0 if (j, t) = (r, ℓ), x1

jt = 1otherwise, and let z1 = zA. It follows that (x1, z1) ∈ Fs. The ve
tors (xA, zA) and (x1, z1),9



respe
tively, inserted in (4) then yield that λrℓ = 0 for r ∈ N and ℓ ∈ T . Equation (4) 
an thenbe rewritten as
∑

t∈T

µtzt = ρ. (9)For ea
h ℓ ∈ T \ {s}, let, for j ∈ N and t ∈ T , x2
jt = z2

t = 0 if t = ℓ, x2
jt = z2

t = 1 otherwise.It follows that (x2, z2) ∈ Fs. The ve
tors (xA, zA) and (x2, z2), respe
tively, inserted in (9) thenyield that µℓ = 0 for ℓ ∈ T \ {s}. Equation (9) 
an then be rewritten as µszs = ρ. Sin
e zs = 1for all (x, z) ∈ Fs it follows that µs = ρ, whi
h yields the equation ρzs = ρ. From [9, pp. 91�92℄then follows that the inequality zs ≤ 1 de�nes a fa
et of conv S.The impli
ation of Propositions 7�10 is that all of the inequalities ne
essary in the des
riptionof the set S de�ne fa
ets of its 
onvex hull. A natural question then arises: Is conv S 
ompletelydes
ribed by the system (1b)�(1e)? The answer to this question is �no�, whi
h be
omes apparentby the following example.Example 11 (
ontinuous relaxation) Consider a system with N = 2, T1 = 3, and T2 = T = 4.Then the problem tominimize x11 + x12 + 2x13 + x14 + x21 + 5x22 + 5x23 + x24 + 3z1 + 3z2 + z3 + 3z4,subje
t to (1b)�(1g),has the two optimal solutions
(x11, x12, x13, x14;x21, x22, x23, x24; z1, z2, z3, z4) = (0, 0, 1, 0; γ, 0, 0, 1−γ; γ, 0, 1, 1−γ) (10)for γ ∈ {0, 1}, with obje
tive value 7. Relaxing the integrality requirements yields the optimalsolution
(x11, x12, x13, x14;x21, x22, x23, x24; z1, z2, z3, z4) = (

1

2
, 0,

1

2
,
1

2
;
1

2
, 0, 0,

1

2
;
1

2
, 0,

1

2
,
1

2
) (11)with obje
tive value 6.5. Hen
e the 
onvex hull of the set of feasible solutions to the system(1b)�(1g) is not 
ompletely de�ned by the inequalities therein.A

ording to the Propositions 7�10, all of the ne
essary inequalities de�ne fa
ets of conv S.Sin
e, by Proposition 5, conv S is full-dimensional (under reasonable assumptions) the minimaldes
ription of conv S is unique. Therefore, all of these fa
ets are ne
essary to des
ribe conv S.Example 11 shows that the inequalities (1b)�(1e) are not su�
ient to des
ribe conv S. Butto 
ompletely des
ribe conv S we need also other fa
ets; fa
et-generating pro
edures will bepresented in forth
oming work.5 Complexity analysisWe next show that the problem de�ned in (1) is NP-hard.Theorem 12 (redu
tion of set 
overing to (1)) The set 
overing problem is polynomially redu-
ible to (1).Proof Let {At}

m
t=1 be a given 
olle
tion of nonempty subsets of the �nite set {1, . . . , n}. Letting

ait = 1 if i ∈ At and 0 otherwise, the set 
overing problem is de�ned as tominimize m∑

t=1

yt, (12a)10



subje
t to m∑

t=1

aityt ≥ 1, i = 1, . . . , n, (12b)
yt ∈ {0, 1}, t = 1, . . . ,m. (12
)Consider then an instan
e of the program (1) su
h that N = n, T = m, dt = 1, Ti = m, and

cit = 2(1−ait) for all i = 1, . . . , n and t = 1, . . . ,m. Sin
e Ti = T = m, ea
h 
omponent must berepla
ed on
e between the times 1 and T , and one repla
ement is always enough (for feasibility).Furthermore, in every optimal solution and for ea
h i and t su
h that ait = 0, xit = 0 holds sin
e
cit = 2 > d and there exists a t̃ ∈ T with ait̃ = 1, whi
h implies that cit̃ = 0. Hen
e, this spe
i�
instan
e of (1) 
an be reformulated as the problem tominimize{ m∑

t=1

zt

∣∣∣∣∣

m∑

t=1

aitxit ≥ 1, i = 1, . . . , n, and (1
)�(1g) holds } . (13)An optimal solution (x∗, z∗) to (13) is given by
z∗ ∈ argmin

z∈{0,1}m

{
m∑

t=1

zt

∣∣∣∣∣

m∑

t=1

aitzt ≥ 1, i = 1, . . . , n

} (14)and x∗
it = aitz

∗
t , i = 1, . . . , n, t = 1, . . . ,m. The result then follows, sin
e the program (14) isequivalent to (12).Sin
e (12) is an NP-hard problem it follows from [9, Prop. 6.4, p. 132℄ that (1) is an NP-hardproblem.Finally, it should be mentioned that the 
omplexity of the instan
e of (1) for whi
h the 
osts

cit are non-in
reasing with time (i.e., ci,t+1 ≤ cit for all i and t) is still an open question; thisin
ludes the interesting spe
ial 
ase for whi
h the 
osts are independent of time (i.e., cit = ciand dt = d for all i and t), as originally studied in [4℄ and [1℄.6 Con
lusions and future resear
hThe opportunisti
 maintenan
e model has been shown to have a ni
e inherent stru
ture, in thatwhile the problem is NP-hard, it redu
es to a linear program on
e the maintenan
e o

asionsare �xed; the latter 
an in some 
ases even be solved through a greedy pro
edure. Also, all thene
essary linear 
onstraints de�ne fa
ets of the 
onvex hull of the set of feasible s
hedules. Itwould be interesting to investigate whether additional fa
ets exist whi
h 
an be relatively easilygenerated.Work in progress in
lude the proper modelling of maintenan
e de
isions over time when
omponent lives are nondeterministi
. In parti
ular, we study models wherein one in
orporatessu

essive improvements of life distribution estimates through the addition of measurement-basedinformation about the 
ondition of the system. Even in the 
ase when 
osts are independent oftime, we have already shown that su
h a sto
hasti
 extension of the 
urrent model is NP-hard.In order to provide a 
omputationally feasible model we will therefore also investigate how tobest de�ne an a

urate enough s
enario representation of the 
omponent lives.The repla
ement problem (1) has been utilized in studies of optimal maintenan
e s
hedulesat Volvo Aero (as reported in [1, 10℄), as well as to maintenan
e s
heduling problems in thenu
lear and wind power industries. In the near future, experien
es from the latter a
tivities willbe reported. 11
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