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A GLOBALLY CONVERGENT NUMERICAL METHOD AND ADAPTIVITY
FOR A HYPERBOLIC COEFFICIENT INVERSE PROBLEM *

LARISA BEILINAT AND MICHAEL V. KLIBANOV #

Abstract. A globally convergent numerical method for a multidimensional Coefficient Inverse Problem for a
hyperbolic equation is presented. It is shown that this technique provides a good starting point for the so-called finite
element adaptive method (adaptivity). This leads to a natural two-stage numerical procedure, which synthesizes both
these methods. Numerical examples are presented.

1. Introduction. This paper is a continuation of the previous publication of the authors [5],
where a new globally convergent numerical method for a Coeflicient Inverse Problem (CIP) for a
hyperbolic PDE was developed. Compared with [5], the main new element here is a synthesis of the
method of [5] with the locally convergent so-called finite element adaptive method, which we call
“adaptivity” for brevity. The adaptivity technique for inverse problems was previously developed
in [6, 7, 8, 9, 4]. The underlying reason of this synthesis is that the estimate of the difference
between the correct solution and the computed one in the global convergence Theorem 6.1 depends
on a small positive parameter 7. This parameter incorporates both the error in the boundary data
and errors generated by some approximations of the numerical procedure of [5]. The error in the
boundary data models the error in measurements and is, therefore unavoidable. At the same time,
two other approximation errors cannot be made zero, and they are not parts of previously developed
locally convergent techniques. On the other hand, since 7 is small, then Theorem 6.1 guarantees
that the solution obtained by the technique of [5] provides a good approximation for the correct
solution of the CIP. Therefore, this solution can be used as a good starting point for a subsequent
enhancement via a locally convergent numerical method, which is the adaptivity in our case. As a
result, a natural two-stage numerical procedure is developed here. On the first stage, the globally
convergent method of [5] provides a good approximation for the correct solution. And on the second
stage, this approximation is taken as the starting point for the adaptivity technique, which provides
an enhancement, i.e., a better approximation for the correct solution. The adaptivity technique is
based on several applications of the quasi-Newton method. Convergence of Newton-like methods
for general ill-posed problems was proven in [3].

We call a numerical method for a CIP globally convergent if: (1) a theorem is proven, which
ensures that this method leads to a good approximation for the correct solution of that CIP,
regardless on the availability of a priori given good first guess for that solution, and (2) this theorem
is confirmed by numerical experiments. On the other hand, convergence of a locally convergent
numerical method to the correct solution can be guaranteed only if the starting point is located in
a small neighborhood of this solution.

There are four more new elements of this paper compared with [5]: (1) The globally convergent
algorithm is different from one in [5] in the sense that now “inner” iterations with respect to terms
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in certain quasilinear elliptic equations are used until they converge. Whereas previously a priori
chosen number of iterations was used. This change requires a modification of the proof of the
convergence Theorem 6.1 compared with [5]. (2) The stopping rule for the globally convergent part
differs from one of [5]. Namely, we now evaluate certain L, norms at the boundary rather than
inside of the domain of interest. (3) The first rigorous explanation is presented of the meaning of
the so-called v function in the adaptivity technique in an estimate of the difference between correct
and computed solutions. This is unlike the previous heuristic argument of [9], where the function
1 was introduced for a CIP. (4) 2-D numerical examples are different from ones of [5].

A conventional way to solve numerically a CIP for a PDE is via the minimization of a least
squares objective functional. This functional characterizes the misfit between the data and the
solution of that PDE with a “guess” for the unknown coefficient. However, it is well known that the
phenomenon of multiple local minima and ravines of these functionals represents the major obstacle
in this approach. Because of this phenomenon, any gradient-like method of the minimization
of such a functional would likely converge to a local minimum, which is located far from the
correct solution. Furthermore, due to the ill-posed nature of CIPs, a global minimum, even a well
pronounced one, is not necessarily close to the correct solution. Hence, there is no guarantee that
the calculated coefficient is indeed close to the correct one. Hence, one needs to know a priori
a good first approximation for the solution. At the same time, in many important applications
such an approximation is unavailable. The method of [5] relies on the structure of the underlying
differential operator instead of using a least squares objective functional. Thus, the phenomenon
of local minima is avoided in this method.

The adaptivity technique minimizes least squares objective functionals on a sequence of adap-
tively refined meshes until images are stabilized (usually on 4-5 refined meshes). The minimization
is performed via the quasi-Newton method. The key idea of the adaptivity is that on each step a
posteriori analysis shows subdomains where the biggest error in the solution is. These are those
subdomains where the gradient of the Lagrangian attains its maximal values (within certain range).
An important point here is that those subdomains are found without a priori knowledge of the so-
lution. Thus, additional finite elements are used in such subdomains. It was shown in previous
publications that the adaptivity is capable to significantly improve reconstruction results. At the
same time, it was shown numerically in the recent publication [10] that the adaptivity cannot pro-
vide good quality images unless a good first guess about the solution is known a priori. This is
because the quasi-Newton method is a locally convergent one. The latter leads to a logical conclu-
sion that a synthesis of the adaptivity with the globally convergent method of [5] should be used.
In our numerical experiments we image a medium with small inclusions in it, although we do not
assume a priori knowledge of such a structure. We refer to [1] and references cited there for another
approach to imaging of small inclusions.

There are also some other numerical methods for multidimensional CIPs, which do not use a
good first guess for the solution. While the current paper works with a single measurement event,
they work for some CIPs with the data resulting from multiple measurements [12, 13, 14, 24, 25, 26].
These publications were discussed in [5].

In section 2 we formulate both forward and inverse problems. In section 3 we transform the
inverse problem to the Dirichlet boundary value problem for a nonlinear integral differential equation
in which the unknown coefficient is not present. Since this transformation was described in several
previous publications [19, 5], we outline it only briefly here for the sake of completeness. It is the
numerical solution of the resulting equation, which represents the major difficulty. The numerical
method of this solution was the main new point of [5], In section 4 we formulate the layer stripping
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procedure with respect to s > 0, which is the parameter of the Laplace transform of the original
hyperbolic PDE. Note that we do not use the inverse Laplace transform, since approximations
for the unknown coeflicient are obtained in the “Laplace’s domain”. In section 5 we describe the
algorithm. Section 6 is devoted to the convergence analysis. In section 7 we briefly describe the
method of the solution of the forward problem. In section 8 we describe the main ideas of the
adaptivity technique referring to the proof of a posteriori estimate to [7, 8, 9]. In particular, the
above mentioned rigorous explanation of the meaning of the function v is given in subsection 8.2.
In section 9 numerical experiments are presented. We summarize our results in section 10. Some
procedures are outlined only briefly in this paper, since they were discussed in details in [5].

2. Statements of Forward and Inverse Problems. As the forward problem, we consider
the Cauchy problem for a hyperbolic PDE. The case of a boundary value problem in a finite
domain is not considered in our theoretical derivations only because an analogue of the asymptotic
behavior (2.9) is not proved in this case, since (2.9) is actually derived from Theorem 4.1 of [29].
That theorem establishes a certain asymptotic behavior of the fundamental solution of a hyperbolic
equation near the characteristic cone.

Consider the Cauchy problem for the hyperbolic equation

c(z)uy = Auin R3 x (0, 00), (2.1)

u(x,0) = 0,us (2,0) =0 (z — o) . (2.2)

Equation (2.1) governs a wide range of applications, including e.g., propagation of acoustic and
electromagnetic waves. In the acoustical case 1/4/c(x) is the sound speed. In the 2-D case of EM
waves propagation in a non-magnetic medium, the dimensionless coefficient ¢(x) = e,(z), where
er(x) is the relative dielectric function of the medium, see [15], where this equation was derived
from Maxwell’s equations in the 2-D case. Let d; and d be two positive constants and 2 C R3
be a convex bounded domain with the boundary 9Q € C3. We assume that the coefficient c () of
equation (2.1) is such that

c(x) € [dy,2da] ,dy < dg,c(x) = 2d; for x € R\, (2.3)

c(z) € C* (R?), (2.4)

We consider the following

Inverse Problem. Suppose that the coefficient ¢ (z) satisfies (2.3) and (2.4), where the pos-
itive numbers d; and dy are given. Assume that the function ¢ (z) is unknown in the domain (.
Determine the function ¢ (z) for z € Q, assuming that the following function g (z, ) is known for a
single source position zo ¢ Q

u(z,t) =g (z,t),¥(z,t) € 02 x (0,00). (2.5)

A priori knowledge of constants dy, ds corresponds well with the Tikhonov concept for ill-posed
problems [30]. In applications the assumption c(z) = 2d; for x € R*\ () means that the target
coefficient ¢ (x) has a known constant value outside of the medium of interest 2. Another argument
here is that one should bound the coefficient ¢ (z) from the below by a positive number to ensure
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that the operator in (2.1) is a hyperbolic one on all iterations of our method. Since we do not impose
any “smallness” conditions on numbers d; and ds, our numerical method is not a locally convergent
one. The function g (z,t) models time dependent measurements of the wave field at the boundary of
the domain of interest. In practice measurements are performed at a number of detectors, of course.
In this case the function g (z,t) can be obtained via one of standard interpolation procedures, a
discussion of which is outside the scope of this publication. In the case of a finite time interval,
on which measurements are performed, one should assume that this interval is large enough and
thus, the t-integral of the Laplace transform over this interval is approximately the same as one
over (0,00).
Consider the Laplace transform of the functions u,

w(zx,s) = /u(x,t)efs’fdt, for s > s = const. > 0, (2.6)
0

where s is a certain number. It is sufficient to choose s such that the integral (2.6) would converge
together with corresponding (z,t)-derivatives. We call the parameter s pseudo frequency. The
equation for the function w is

Aw — s%c(z) w = —6 (v — x0) c(20), Vs > s = const. >0 (2.7)
with the following condition at the infinity

lim w(z,s) =0,Vs > s = const. > 0. (2.8)

|z| =00

Under some natural conditions linked with the regularity of geodesic lines generated by the eikonal
equation corresponding to the function c(z) the following asymptotic behavior takes place (see
Lemma 2.1 in [5])

DPDYw(z,s) = DD {W {1 +0 GH } 5 — 00, (2.9)

where |5] < 2,7 =0,1,z # xo, f (x,20) is a certain function, f (x,zq) # 0 for x # x¢ and [ (z, x0)
is the length of the geodesic line connecting points = and .

We briefly mention now that the idea of [5] can also be extended to similar CIPs for the parabolic
PDE

c(x)Upy = AU —a(z) U, (2.10)

U(z,0) =06 (x — o).

To do this, one needs to apply the following analogue of the above Laplace transform
W (z,s) = /U(aj,t) exp (—s%t) dt.
0

Hence, AW — (sc(z) + a(z)) W = —& (z — z¢) and also W satisfies (2.8). In the electromagnetic
case equation (2.10) governs propagation of a component of the electric field in a conductive medium
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with the conductivity function o (x) := c(x). In the case of diffuse optical tomography one can
usually assume that the diffusion coefficient D := 1/c = const. > 0 and the target of the CIP is the
spatially changing absorption coefficient p, (x) := a (), see, e.g., [2].

Although we have only one condition (2.5) rather than “traditional” two boundary conditions
for our inverse problem, the information about the normal derivative of the function w at 0f2 is
actually inscribed in (2.5), because the original equation (2.6) holds in a wider domain and the
coefficient ¢ (x) is known outside of 2. To formalize the latter, one should consider the boundary
value problem for equation (2.7) for x € R3\ () with the boundary condition (2.5) and condition
(2.8). Solution of this problem provides the normal derivative of the function w at 992. The question
of uniqueness of this Inverse Problem is a well known long standing open problem. It is addressed
positively only if the function § (x — x¢) above is replaced with a such a function f(z) € C* (R?)
that f(z) # 0,Vz € Q. An example of this function is function is

2
f(z) = Ccexp (—%) ,/f(x)da::L
]R3

where ¢ > 0 is a small positive number and the positive constant C. is chosen such that the
above integral equals 1. Corresponding theorems are proved via the method of Carleman estimates
[19, 20]. In principle, one can replace the 0 (r — xo) — function with a § (x — x¢) — like smooth
function, which is not zero in Q. The resulting function @ will be close to the function w in a
certain sense, and the above mentioned uniqueness result would be applicable then. In principle
our numerical method can be extended to this case, although a corresponding development is outside
of the scope of this publication. It is an opinion of the authors that because of applications, it makes
sense to develop numerical methods, assuming that the question of uniqueness of the above inverse
problem is addressed positively.

3. Nonlinear Integral Differential Equation Without the Unknown Coefficient. It
follows from (2.6), (2.7) and the maximum principle that w(z,s) > 0,Vs > s. Consider the function
v = Inw. Since zo ¢ Q, then (2.6) and (2.8) lead to

Av+|Vo? = s%c(z) inQ, (3.1)

v(z,s) =Ineg(z,s), ¥(z,s) € 00 x [s,7], (3.2)

where ¢ (2, s) is the Laplace transform (2.6) of the function g (z,¢). We eliminate the coefficient
¢ () from equation (3.1) via the differentiation with respect to s, since dsc (x) = 0. To “isolate” the
unknown coefficient in (3.1), introduce a new function

H(x,5) = . (3.3)
It follows from (3.3) and (2.9) that
DY(H) =0 G) \DODy(H) =0 (%2) s oo (3.4)
By (3.1)
AH + s> (VH)? = ¢ (z) (3.5)



Denote
q(z,s) =0sH (x,8). (3.6)
By (3.4) and (3.6)

o0

H(x,s):—/q(x,T)dT.

S

We truncate this integral as

H(z,s) %—/q(x,T) dr +V (2,3), (3.7)
where 5 > s is a large number and
1 _
V(2,3) ~ H (2,5) = 285 (3.8)
5

The number 5 should be chosen in numerical experiments. We call V' (z,3) the “tail”, this function
is unknown, and this is why we use ” ~ ” here. By (3.4) the tail is small for large values of 3.
In principle, therefore, one can set V (z,3) := 0. However, our numerical experience shows that
it would be better to update somehow the tail function in an iterative procedure. We call the
updating procedure “iterations with respect to tails”.

Thus, we obtain from (3.5)- (3.7) the following (approximate) integral nonlinear differential
equation

2

Aq — 25*Vq - /Vq (x,7)dr + 2s /Vq (x,7)dr (3.9)

+252VqVV —25VV - / Vq(z,7)dr +2s(VV)? =0

In addition, (3.2), (3.3) and (3.6) imply that the following Dirichlet boundary condition is given for
the function ¢

q(z,8) =9 (x,8), V(z,8) €0 x[s,5], (3.10)
where
Vs 2Inyp
¢(x’s):<ps2_ 83 .

Suppose for a moment that the function ¢ is approximated together with its derivatives D%q, |a| <
2. Then the corresponding approximation for the target coefficient can be found via (3.5) as

¢(z)=AH +s*(VH)?, (3.11)
6



where the function H is approximated via (3.7). Although any value of the pseudo frequency
s € [s,3] can be used in (3.11), but we found in our numerical experiments that the best value
is s := s. If integrals would be absent and the tail function would be known, then this would be
the classic Dirichlet boundary value problem for the Laplace equation. However, the presence of
integrals implies the nonlinearity and represents the main difficulty here. Another obvious difficulty
is that equation (3.9) has two unknown functions ¢ and V. The reason why we can handle this
difficulty is that we treat functions ¢ and V differently: while we iteratively find approximations
for ¢ being sort of “restricted” only to equation (3.9), we find updates for V using solutions of
forward problems (2.1), (2.2) and the formula (3.8). In those forward problems corresponding
approximations for the unknown coefficient ¢, obtained from (3.11), are used.

4. A Sequence of Elliptic Dirichlet Boundary Value Problems. We approximate the
function ¢ (x, s) as a piecewise constant function with respect to the pseudo frequency s. That is,
we assume that there exists a partition s = sy < sy_1 < ... < 81 < 89 = 5,8;_1 — 8; = h of the
interval [s, 5] with a sufficiently small grid step size h such that ¢ (x,s) = ¢, (z) for s € (s, Sp—1)-
Hence,

n—1

/S Vq(z,7)dr = (sn—1 — $)Van(x) + h Z Vg;(x), s € (Sn, Sn—1)- (4.1)

j=1
We approximate the boundary condition (3.10) as a piecewise constant function,
dn (33) = En (33) , T € 897 (42)

where
T =y [ v (4.3)

On each subinterval (sp,s,—1],n > 1 we assume that functions ¢; (z), j = 1,...,n — 1 are known.
We obtain an approximate equation for the function g, (x). Then we multiply this equation by the
Carleman Weight Function (CWF) of the form

Cra(s) = X7 s € (s, 801, (4.4)

and integrate with respect to s over (s,,sp—1). In (4.3) A >> 1 is a parameter, which should be
chosen in numerical experiments. Theorem 6.1 provides a recipe for this choice. We obtain (see
details in [5])

n—1

Ln (QTL) = AQn - Al,n <h Z VQ1> V(In + AhLV(Invv — &(Qn

i=1

n—1 2
I n
=2 }O (Van)? — Ap nh? (Z \Y7 (x)) (4.5)
i=1
n—1
+242,VV (h Z qu‘) — Ay (VV)2,n=1,..,N,
i=1
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where Iy := Io (A h),A1n == A1 n (AN h), A2 = A2, (A h) are certain integrals involving the
CWF. Thus, we have obtained the Dirichlet boundary value problem (4.2), ( 4.5) for a nonlinear
elliptic PDE with the unknown function ¢, (x) . In this system the tail function V' is also unknown.
An important observation is that

|Il,n (Av h)| 452

Foo) S (4.6)

Therefore, by taking A >> 1, we mitigate the influence of the nonlinear term with (V¢,)” in (4.5),
which enables us to solve a linear problem on each iterative step. We have added the term —eg,, to
the left hand side of equation (4.5), where ¢ > 0 is a small parameter. We are doing this because,
by the maximum principle, if a function p(z) is the classical solution of the Dirichlet boundary
value problem

Ly (p) —ep= f(z) in Q,p [s0= ps(2),
then [22] (Chapter 3, §1)

max |p| < max |max |pp|, e max |f|] .
Q o0 Q

On the other hand, if € = 0, then the analogous estimate would be worse because of the involvement
of some constants depending on maxg [Vq;|. Therefore, it is anticipated that the introduction of
the term —eq,, should provide a better stability of our process, and we have indeed observed this
in our computations.

5. The Algorithm. The above considerations lead to the algorithm described in this section.
In particular, we describe here our procedure for iterative updates of the tails. We refer to subsection
5.4 of [18] for the first procedure of this sort, which was applied to a linearized CIP. Below C*™* (Q)
are Hélder spaces, where k > 0 is an integer and a € (0, 1) [22]. Denote |f],, , = ||f||ck+a(§) Vfe

C* (Q) . Our algorithm reconstructs iterative approximations ¢, ; (z) € C* () of the function
¢ (x) only inside the domain . On the other hand, to iterate with respect to tails, we need to solve
the forward problem (2.1), (2.2). To do this, we need to extend each function ¢, i (z) outside of the
domain €2 in such a way that the resulting function ¢, € C* (R®), G, 1 > di in Q and ¢, ; = 2d;
outside of Q. The corresponding procedure is rather standard and is described in section 5 of [5].
In this section we mention convergencies of certain “sub-procedures”. Numerical specifications of
corresponding convergence criteria are given in subsection 9.1.
In accordance with (3.7), (3.11) and (4.1) denote

n—1

Hyi(x) =hgn;+h Z g (@) + Vo (z) 2 € Q, (5.1)
j=1

Cni(2) = AHpi + 52 (VH,.)?, (5.2)

where functions ¢, gn i, Vy,,; are defined in this section below. Here m,, is the number of iterations
with respect to tails for the given n where i = 1, ..., m,,. In our algorithm we set

qo ‘= 07 q%l = 07 V171 (33) = ‘/1(?1 (33) ) (53)
8



qg,l =qn-1, Vo1 () :=Vooim, , (x),for n > 2, (5.4)
where Vlo,1 (z) is a certain starting value for the tail function, which is specified in subsection 9.1.
Step n1,n > 1. Suppose that functions ¢1,...,¢n—1,43, = gn—1 € C*T*(Q),¢cr1 € C*(Q)

and the tail function V;, 1(z,3) € C**%(Q) are constructed, see (5.3), (5.4) . We now construct the
function g¢y,1. To do this, we solve iteratively the following Dirichlet boundary value problems

n—1

Aqg,l - Aln h Z VQj : qul,l - Eqﬁ,l + Aquﬁ,l . VV,LJ =
j=1
2

Iln . 1 n—1

IO (V na ) — Az h? Z Vyg; (z (5.5)
n—1 _

+2A2nvvn71 : h Z qu ((E) - A2n (v‘/n,l)2 7q7]2,1 € CQ-HX (Q) 7k = ]-a 27 weey
j=1
a1 () =, (2) ,x € OQ. (5.6)

We call these “iterations with respect to the nonlinear term”. We iterate here until the process
converges. Then we set

Gn1 = klim qf;l in the % () norm.
— 00

Next, we reconstruct an approximation ¢, 1 (z),2 € Q for the unknown function ¢ (z) using the
resulting function g, 1 (x) and formulas (5.1), (5.2) at i = 1. Hence, ¢, 1 € C* (). Assume that
cn,1 (z) > dy in Q. Construct the function ¢, 1 (z) € C (R?) . Next, solve the forward problem (2.1),
(2.2) with ¢ (x) :=¢,,1 (x) . We obtain the function u, i (z,t) . Calculate the Laplace transform (2.6)
of this function and obtain the function wy, 1(z,3) this way. Next, following (3.8), we set for = € Q

1 _
Voo (2,3) = = Inwy(z,3) € C*T (Q) . (5.7)

Step n;, i > 2,n > 1. Suppose that functions g, ;—1, Vy,i (z,5) € C*T (Q) are constructed.
We now iterate with respect to the tail only. That is, we solve the boundary value problem

n—1

AQTL i Aln h Z V(]j ' VQn,i — EQn,i + AanQn,i : v‘/n,i
j=1
2
Il ) ) n—1
_ozln ) _ , 5.8
2 IO (an,zfl) A2nh ; Vq] (iC) ( )
n—1
+ 240, VWi [ D Vg (2) | = Azn (VVii)?,
j=1



tn,i () = ¥y, (2), 2 € ON. (5.9)

Having the function g, ;, we reconstruct the next approximation ¢, ; € C%(Q) for the target coeffi-
cient using (5.1), (5.2), and, assuming that ¢, ;(z) > d; in €, construct the function ¢, ; € C*(R3).
Next, we solve the forward problem (2.1), (2.2) with c(x) := ¢, (z), calculate the Laplace trans-
form (2.6) and update the tail as in (5.7), where (wy, 1, Vn,2) is replaced with (wy 4, Viit1). We
iterate with respect to 7 until convergence occurs at the step i := m,,. Then we set

dn ‘= 4n,m,, S 02+a (ﬁ) yCn ‘= Cnymy, eCe (ﬁ) )

1 _
Vo1, (2,3) = = Inwy, m, (x,3) € otans (Q) . (5.10)

If functions ¢, (z) did not yet converge, then we proceed with Step (n + 1), , provided that
n < N, where N is a prescribed iteration number, N < N, see Theorem 6.1. However, if either
functions c,(z) converged, or n = N, then we stop. It follows from (5.7) that in principle, to
update the tail, one can solve the problem (2.7), (2.8) for s =5 instead of the problem (2.1), (2.2).
However, our computational experience shows that it is better to proceed via solving the problem
(2.1), (2.2) and calculating the Laplace transform then. We do not yet have an explanation for this.

6. Global Convergence. By the concept of Tikhonov for ill-posed problems [30], which we
follow, one should assume first that there exists an “ideal” exact solution of an ill-posed problem
with the exact data. Next, one should assume the presence of an error of the level ¢ in the data,
where ¢ > 0 is a small parameter. Suppose that an approximate solution is constructed for each
sufficiently small {. This solution is called a “regularized solution”, if it tends to the exact solution
as ¢ — 0.

6.1. Exact solution. First, we introduce the definition of the exact solution. We assume that
there exists a coefficient ¢* (x) € [2dy, 2d5] satisfying condition (2.4), and this function is an exact
solution of our Inverse Problem with the exact data in g*(«,t) in (2.8). The Laplace transform (2.6)
of the function g* (z,t) leads to the exact function ¢* (z, s) = w* (z,s),V (z,s) € IQ X [s,5]. Here
the function w* (z,s) € C? (R¥\ {|z — z¢| <}),Vy > 0,Vs > s is the solution of the forward
problem (2.7), (2.8) with ¢ (z) := ¢* (z). Also, let

In [w* (z, s)] 7

OH* (z,s)

H* (z,s) = B

q (z,s) = , V¥ (x,5) = H" (z,3).

S

The function ¢* satisfies an obvious analogue of equation (3.9) with the boundary condition (see
(3.10)

q" (x,8) =v" (z,8), (z,8) € 00 X [s,9], (6.1)

where

. 1 dp* 2yt
b (2, 8) = L9y Ll

p*s?  Os s3

Definition. We call the function ¢* (x, s) the exact solution of the problem (3.9), (3.10) with
the exact boundary condition ¢¥* (z, s).
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Hence,
g (z,5) € C*T* (Q) x C™ [s,3]. (6.2)

We now follow (4.1)-(4.5). First, we approximate functions ¢* (z,s) and ¥* (z,s) via piecewise
constant functions with respect to s € [s,35]. Let

@)= [ 0@ Tw=g [ o @s)as (6.3)

Then

q" (,5) = g () + Qn (,5) , " (x,8) = b, (2) + W (2,5) ;5 € [50,80-1],
where by (6.1) functions @, ¥,, are such that

|Qn (2,8)]51 0 < C7hy |Vy (2,8)]5,, <C*h,n=1,..,N, for s € [sp,sn-1], (6.4)
where the constant C* = C* (||q*||02+a(§)xcl[§)§]) > 0 depends only on the C*™* (Q) x C![s, 3]
norm of the function ¢* (z, s). Hence, we can assume that

* < *' .
 ax, lgnlora <C (6.5)

Without a loss of generality, we assume that
Cr>1. (6.6)

By the Tikhonov concept, the constant C* should be known a priori. By Lemma, 2.1, it is reasonable
to assume that C* is independent on 3, although we do not use this assumption. By (6.3)

¢ (x) =1, (x),z € ON. (6.7)

Hence we obtain the following analogue of the equation (4.5) from (6.2)

n—1
i=1
I n—1 2
=272 (Va;)? = Agh® (Z v (a:>> (6.8)
=1

n—1

+245,VV* <h > Vg (x)) — App |VV* P+ F, (2, b)),

i1
where the function F, (z,h,\) € C* (Q) and
< C*h. .
max |y (2, h, M), < C7h (6.9)
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We also assume that the function g(z,t) in (2.8) is given with an error. This naturally produces
an error in the function v (x,s) in (3.10). An additional error is introduced due to the averaging
n (4.3). Hence, it is reasonable to assume that

where ¢ > 0 is a small parameter characterizing the level of the error in the data ¢ (x,s). The
parameter h can also be considered as a part of the error in the data, since we have replaced a
smooth s-dependent function with a piecewise constant one.

Lk _ ‘

< C h), 6.10
oo SO @) (6.10)

6.2. Convergence theorem. First, we reformulate the Schauder theorem in a simplified
form, which is convenient for our case, see Chapter 3, §1 in [22] for this theorem. Assuming that

F>1, Mh> 1, (6.11)
it was shown in [5] that

< 837 .
1glang{|A17n| + | A2, |} < 837 (6.12)

Introduce the positive constant M* = M* (IIq*|\Cg+a(§)Xcl[ ] ,§) = M*(C*,3s) by

* * —2
M* = 2C" max <8$ ) max, {|A1,n| + |A2n|}) . (6.13)

Hence, (6.12) and (6.13) imply that
M* =16C*3>. (6.14)

Consider the Dirichlet boundary value problem

3
Au+ Z bj(x)ue, —d(x)u = f(x), z € Q,
j=1

u log= g (z) € C*T(09).
Assume that the following conditions are satisfied
bj,d, f € C*(Q) ,d () > 05 max (b, |d],) <1.

By the Schauder theorem, there exists unique solution u € C? (Q) of this boundary value prob-
lem, and with a constant K = K () > 0 depending only on the number the domain {2 the following
estimate holds

[ty o < K [19]02aon) + 1f1a)] - (6.15)

In the formulation of Theorem 6.1 we provide estimates (6.19)-(6.24) via M* and also use (6.14)
to obtain estimates via 5. This formulation is almost the same as one in [5]. Note that the definition
of the norm in the space C*(€2) implies that

ifely < 1l felo s Vi1, f2 € O (9). (6.16)
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Theorem 6.1. Let QO C R? be a conver bounded domain with the boundary 0Q € C3. Suppose
that (6.5)-(6.7) and (6.9)-(6.11) hold. Let the exact coefficient c* (z) satisfies (2.4) and c* €
[2d1,2da],c* (z) = 2dy for © € R3\Q, where numbers di,d> > 0 are given. For any function
c(x) € C* (R?) such that c(z) > dy in Q and c(z) = 2dy in R3N\Q consider the solution u (x,t)
of the Cauchy problem (2.1), (2.2). Let w.(z,s) € C*T* (R¥\ {|z — x| <7}),Vy > 0 be the
Laplace transform (2.6) of u(z,t) and V. (z) = 5 2 Inw. (z,5) € C*** () be the corresponding
tail function. Suppose that the cut-off pseudo frequency s is so large that both for c¢* (x) and any
such function c(z) the following estimates hold (see (3.4))

V¥ ota & IVelpra <& (6.17)

where ¢ € (0,1) is a sufficiently small number. Let V11 (z,5) € C*T* (Q) be the initial tail function
and let (see (5.3))

Viilyre <6 (6.18)

Denote n := 2(h+o+&+¢€). Let K = K(Q) > 0 be the constant of the Schauder theorem in
(6.15) and N < N be the total number of functions g, calculated by the above algorithm. Suppose
that the number N = N (h) is connected with the step size h via N (h)h = 3, where the constant
B > 0 is independent on h. Let 3 be so small that

5 < min (2 1 1 _ o2 1 ok (6.19)
min | = min | = . .

- 7 162KC*s 16205t ) — 7 16K M*5*" (M*)?

In addition, let the number 1 and the parameter X of the CWF satisfy the following estimates

n <o (Q,M*,d1) =m0 (Q, ||q*||cz+a(§)xcl[§,§} ,d1,§)

— min 11 d1 1 — min 11 & 2 (6.20)
- 2" 4K’ 32-160*s% 8C*s% ) 24K’ 32M*52" M* )’ :

A >\ (C*, K, 3,7m) = max <164 (C*)*3%,6-16% (C*)* K%, n—12> . (6.21)

Then for every integer n € [I,N] the following estimates hold

* * «f 1 . 1
‘qﬁ,l - (Jn|2+a N gn,i — (Jn|2+a <2KM (\/_X + 377) = 32C* K5 (ﬁ + 377) J (6.22)
|05 1]5 s 0 s [0nsily 0 < 207, (6.23)
Cni—C*| < 8M*3? <L +3n ) =128C*5* L +3n (6.24)
M,1 a = \/X — \/X . .
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In addition, functions c, ; () > dy in Q and ¢, (z) > di in R3.

Proof. The major part of the proof is the same as one in [5]. The only thing we prove now
is the convergence of functions q,’j)l for k — oo, because it was not proven in [5].The idea of the
proof is to consider the differences ¢f; = ¢F; — ¢}, Gni = qn.i — q;;, obtain Dirichlet boundary
value problems for linear elliptic equations for them via subtracting (6.8) from either (5.5) or (5.8),
and (6.7) from either (5.6) or (5.9), and then sequentially use the estimate (6.15) of the Schauder
theorem to estimate norms |§Z?H| from the above. In doing so, one needs to estimate

?n,k\ <2 <.
24«

It follows from [5] that given the number n, estimates (6.22) and (6.23) for |¢; 1 —az|,, .+ |an1l,,
can be proven, using the above outlined idea, without the proof of convergence of functions
qﬁ)l, k — oco. Hence, we assume now that these estimates are valid. Consider for example the case
n = 1, since other cases are similar. Let m,r > 2 be two positive integers. Denote a,» = ¢i"1 — 47 ;-
Setting in (5.5), (5.6) n = 1,k := m, then k := r and subtracting two resulting equations, we obtain

24’ |q~n’i|2+04
differences of tails V,, , = V,, » — V* using (5.10), (6.17) and (6.18), as

I
Aamw — EQm,r + A171Vamr Vi = 2%Vam,17r,1 . (qul_l + Vq{,_ll) , (6.25)
0

Qm,r |BQ: 0. (626)
For the vector function f = (f1, fo, f3), fi € C* () denote

1/2

3
flo= D1 fa |
j=1

Hence, |Van,—1,-1], < V3 |am,1,r,1|2+a and by (6.23) |Vq1’ff1 + Vq{fll‘a < 44/3C*. Hence, (4.6)
and (6.16) lead to

100C*52

I
1,1 <— |am—1r—1ly o - (6.27)

2I—Ovam—1,r—1 : (VQTfl + Vq{fll)

A

[e3%

Applying (6.15) to (6.25), (6.26), and taking into account (6.21) and (6.27), we obtain

100K C*3? 100

|am7r|2+a <— |am71,r71|2+a < T e |am71,r71|2+a . (628)
A 6-162C*s

Since by (6.6) and (6.11) C*3? > 1, then (6.28) implies that
1
|am,r|2+a S E |am717r71|2+a . (629)

It follows from (6.29) that the sequence {q’fyl}f:l satisfies the Cauchy convergence criterion. [.

Remarks:

1. It often happens in the computational practice of ill-posed problems that theoretical esti-
mates of convergence theorems are more pessimistic than ones obtained in numerical studies, and
also some discrepancies between analytical results and their numerical implementations often occur.
Our computational experience tells us that this is exactly our case in reference to estimates (6.19)-

14



(a) Grpm (b) G =Grem UGrpym  (€) Grem =2

Fic. 6.1. The hybrid mesh (b) is a combinations of a structured mesh (a), where FDM is applied, and a mesh
(c), where we use FEM, with a thin overlapping of structured elements. The solution of the inverse problem is
computed in the square Q and c(z) = 1 for x € G\ Q.

(6.24). It seems to be at the first glance that because of (6.24), one can stop the iterative process
at n = 1. However, our numerical experience shows that this way one cannot obtain good images.
Hence, we use in our computations a stopping rule, which is different from (6.24). Actually, we
do not use the C?T(Q) norm to verify convergence, because it is rather complicated in the com-
putational practice to consider this norm and also because all norms in finite dimensional spaces
are equivalent, and we work in a finite dimensional space of finite elements in our computations.
In addition, we have used the §— function in (2.1) and the whole space R? only for the sake of
a convenient formulation of the asymptotic behavior (2.9). In our computations we use the plane
wave and a bounded domain G for the solution of the forward problem. Other main discrepancies
between our theory and the computational implementation are listed in subsection 7.2 of [5]. In
particular, it is stated there that we verify the asymptotic behavior at s — oo computationally.

2. Truncating integrals at a high pseudo frequency s is a natural thing to do, because one
routinely truncates high frequencies in physics and engineering. By truncating integrals, we actually
come up with a different, although a quite reasonable mathematical model.

3. One of the back bones of the theory of ill-posed problems is that the number of iterations
can be chosen as a regularization parameter, see, e.g., page 157 of [16]. Therefore, we have a vector
(5, N, my, ...,my) of regularization parameters, see details about their choice in subsection 8.2.
Setting N (h)h = 3 = const. > 0 is in an agreement with, e.g., Lemma 6.2 on page 156 of [16],
since this lemma shows a connection between the error in the data and the number of iterations
(that lemma is proven for a different algorithm). The number 3 is small because our algorithm is
originated by equation (3.9), which contains nonlinear terms with s-integrals of the Volterra type.
It well known that in general solutions of nonlinear integral equations of the Volterra type can be
estimated only on sufficiently small intervals.

7. Computations of the Forward Problem. In this paper we work with the computation-
ally simulated data. That is, the data are generated by computing the forward problem (7.2) with
the given function c(z). To solve the forward problem, we use the hybrid FEM/FDM method
described in [11]. The computational domain in all our tests G = Grrpym U Gppam is set as
G = [-4.0,4.0] x [-5.0,5.0]. This domain is split into a finite element domain Grry = Q =
[-3.0,3.0] x [-3.0,3.0] and a surrounding domain G rpas with a structured mesh, see Figure 6.1.
The space mesh in ) consists of triangles and in Ggpys - of squares with the mesh size h = 0.125
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t="175 . . t=11.2

Fic. 7.1. Test 1: Isosurfaces of the simulated ezact solution to the forward problem (7.2) at different times
with a plane wave initialized at the top boundary.

in the overlapping regions. At the top and bottom boundaries of G we use first-order absorbing
boundary conditions [17] which are exact in this particular case since the plane wave is initialized
in normal direction into G in all our tests. At the lateral boundaries, mirror boundary conditions
allow us to assume an infinite space domain in the lateral direction.

The forward problem is computed in the domain G C R? (Figure 6.1). The coefficient c(z) is
unknown only in domain 2 C G and

c(x) =1in G\ (7.1)

The trace of the solution of the forward problem is recorded at the boundary 0. Next, the
coefficient c(z) is “forgotten”, and our goal is to reconstruct this coefficient for z € Q from the
data ¢ (x, s). The boundary of the domain G is 0G = 0G1 U 0G3 U 0G3. Here, 0G; and 9G, are
respectively top and bottom sides of the largest domain of Figure 6.1 and 0G3 is the union of left
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t=9.1

Fig. 7.2. Test 2: Isosurfaces of the simulated ezact solution to the forward problem (7.2) with a plane wave
initialized at the bottom boundary.

and right sides of this domain. In our first test the forward problem is

2
c(x) % —Au=0, inGx(0,7),
u(-,0) = 0, %(-,0) —0, in G,
Onulyg, = f(t), on OG1 x (0, 1], (7.2)

8"u|8G1 = 8tu, on 8G1 X (tl,T),
ﬁnu|3G2 = 6,5’[1,, on 8G2 X (O,T),
8"“|0G3 =0, on 9G35 x (0,T),

where T is the final time and f(¢) is the plane wave defined as

et o) 41 2
_ {din(st 17(;/ D i<ty =2 r =17,
S

flt

~—

Thus, the plane wave is initialized at the top boundary 0G; and propagates into G for ¢t € (0,1].
First order absorbing boundary conditions [17] are used on 0G; x (t1,T] and 9G3 x (0,7, and
the Neumann boundary condition is used on the bottom boundary 0G3. In the second test we
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consider the case when the plane wave is initialized at the bottom boundary and use the Neumann
boundary condition at the top boundary. In the integral (2.6) of the Laplace transform we integrate
fort € (0,7).

8. The Adaptivity Technique. In this section we describe the adaptivity technique, for the
sake of completeness, as well as for the sake of the above mentioned rigorous explanation of the
meaning of the ¢ function. However, we are not proving the estimate (8.27) here for the Frechet
derivative of the Lagrangian and instead refer for details to [7, 8, 9].

To use the adaptivity technique, we formulate the inverse problem for the boundary value
problem (7.2) as an optimization problem, where we seek the unknown coefficient c¢(x), which gives
the solution of the boundary value problem (7.2) for the function u(x,t) with the best least squares
fit to the time domain observations g (z,t), see (2.5). Denote Q7 = Q x (0,T),ST = 9Q x (0,T).
Our goal now is to find the function ¢(z) which minimizes the Tikhonov functional

E(u,c) = % /(u s, — g(x, ) 2dodt + %7/@— co)? da, (8.1)

St Q

where v is the regularization parameter and ¢y is an initial guess for the unknown coefficient c.
On the first step of the adaptivity we take the same mesh as one we have used for the globally
convergent method. The first guess ¢y = ¢o (x) is also taken the one, which was obtained on the
globally convergent stage. On each follow up step of the adaptivity when mesh refinement is used,
the function ¢g () is taken from the previous step. In doing so, values of that function are linearly
interpolated from the coarser grid on the finer grid. Note that since ¢(x) = 1 in the domain
G\, then given the function g(x,t) = u |9, one can uniquely determine the function u(x,t)
for (z,t) € (GN\R) x (0,T) as the solution of the boundary value problem for equation (7.2) for
with boundary conditions on both boundaries 0G and 0f). Hence, one can uniquely determine the
function p (z,t),

ou
% |ST:p(‘r’t)' (82)

Since we deal with computationally simulated data, in our computations both functions p (z,t) and
g (z,t) are calculated from the solution of the forward problem (7.2) with the correct value of the
coefficient ¢(z).

Denote
H?(Qr) ={f € H*(Qr) : f(x,0) = fi(x,0) = 0},
Hy(Qr) ={f € H'(Qr) : f(x,0) =0},
H2(Qr) ={f € H*(Qr) : f(x,T) = fi(x,T) = 0},
HL(Qr) ={f € H'(Qr): f(x,T) =0}, (8.3)

where all functions are real valued. Hence, U C U C U as sets, U is dense in U and U is dense in
U'. Also denote ((-,-)) the inner product in U! and [-] the norm generated by this product.
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To solve the problem of the minimization of the functional (8.1), we introduce the Lagrangian

L(v) = E(u,c) + / ¢ - (cuy — Au) dzdt, Vo € Hf, (Qr), (8.4)
Qr

where ¢ € H2 (Qr) is the Lagrange multiplier and v = (u,¢,¢) € U. Since the function u solves
equation (7.2) then L(v) = E(u,c). This is because the second term in L(v) is zero. Integration by
parts and (8.4) leads to

L(v) = E(u,c) — /c(gc)utgptd;vdt—i—/VuV(pdacdt— /pcpdadt. (8.5)
Qr QT St

We search for a stationary point of the functional L(v),v € U satisfying
L'(v)(@) =0, Vo= (u,¢,¢) €U (8.6)

where L'(v)(-) is the Frechet derivative of L at the point v. To find the Frechet derivative L'(v) (7),
consider L (v +7)—L (v) Yo € U and single out the linear, with respect to 7, part of this expression.
Hence, we obtain from (8.5) and (8.6)

T
L'(v) (0) = /E v (c—co) — /utgptdt dx — / c(x) (prus + urp,) dadt (8.7)
0

Q Qr
+ / (VuVy + VuVe) — /p@dadt =0,v0 = (u,p,¢) € U.
Qr St

Integration by parts in (8.7) leads to

T
L'(v) (v) = /E v (c—co) — /utgptdt dx + / @ (cuy — Au) dxdt (8.8)
Q 0 Qr

+ / u (cppr — Ayp) dedt + /ﬂ [(u — g) — Ony] dodt, Vo = (u,p,¢) € U.
Qr St

Hence (8.6) and (8.7) imply that every integral term in formula (8.8) equals zero. We obtain that
if (u,¢,¢) =v € U is a minimizer of the Lagrangian L(v) in (8.5), then

cuy — Au = 0, (.TJ, t) € Qr, (89)
u(z,0) = u(x,0) =0, (8.10)
Ot |sp=p (x,1); (8.11)
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cou — Dp =0, (z,t) € Qr, (8.12)

o(x,T) = ¢i(z,T) =0, (8.13)
dyp
o 157= (W =9) (z,1), (z,%) € Sr; (8.14)
T
v(e—co) — /0 upy dt = 0,2 € Q. (8.15)

The boundary value problem (8.12)-(8.14) should be solved backwards in time. Uniqueness and
existence theorems for initial boundary value problems (8.9)-(8.11) and (8.12)-(8.14), including the
case of weak H (Qr) and H} (Qr) solutions, can be found in Chapter 4 of [23]. We minimize
L(v) in an iterative process via solving on each step boundary value problems (8.9)-(8.11) and
(8.12)-(8.14). We find weak solutions of problems (8.9)-(8.11), (8.12)-(8.14) via the FEM.

To formulate the FEM for boundary value problems (8.9)-(8.11) and (8.12)-(8.14) we introduce
finite element spaces W} C H, (Qr) and W C qu, (Qr) for functions u and ¢ respectively.
These spaces consist of continuous piecewise linear functions in space and time satisfying initial
conditions u (z,0) = 0 for u € W}* and ¢ (z,T) = 0 for ¢ € W;”. We also introduce the finite
element space V}, C Lo (£2) of piecewise constant functions for the target coefficient c¢(x) and denote
U, = WP x W¢ x V,, C U. So, we consider Uj, as a discrete analogue of the space U. Since all
norms in a finite dimensional space are equivalent, it is convenient for us to intorduce in Uj the
same norm as one in U'. The functional L (v;,) is defined in terms of (8.5) and L’ (v) () is defined
in terms of (8.7). The FEM for (8.6) now reads: Find vj, € Uy, such that

L' (vp) () =0, Vo€ Up. (8.16)

We solve this discrete problem using the quasi-Newton method with the limited storage [27].
More precisely, let ¢, (z) € V}, be a piecewise constant approximation of the unknown coefficient
c(x). We compute iteratively the sequence {c]'}, m = 1,... of approximations of ¢ as

e (z) = it (2) — aH™g" (x), (8.17)

where « is the step length computed via the line-search algorithm [28]. Here, H™ is the Hessian of
the Lagrangian. The Hessian is computed by the usual BFGS update formula of the Hessian:

Hm+l _ (I _ dmsmymT)Hm(I _ dmymSmT) _’_pSmSmT’m — 17“.7

where
dm =1/(y™ s™),m =1, ... (8.18)
and
y" =gt = g™
Corrections s™ in (8.18) are defined as s™ = ¢! — ¢*. In our computations we have used a

special BFGS update formula with limited storage for the Hessian [27] where we store a finite
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number n = m — 1 of corrections for the computed gradients and parameters in (8.18). Whenn =0
then the quasi-Newton method is the usual gradient method with H® = I. The nodal values of the
gradient g™ (x) are given by (see (8.15))

T
g™ (@) = (e — co) / o dt. (8.19)
0

Here ul* € W, " € W} are functions u and ¢ obtained on the m'" iteration via solving boundary
value problems (8.9)-(8.11) and (8.12)- (8.14) respectively with ¢ := ¢, ¢q := c},, see subsection
8.3 for our stopping criterion.

8.1. A posteriori error estimate for the Lagrangian. When performing computational
experiments, we are concerned with the accuracy of obtained results. We now address the issue of a
posteriori error bound that estimates the error of the finite element approximation of the function
¢ in terms of the residual error obtained in the reconstruction process. The latter error bound can
be evaluated once the FEM solution has been computed, since this solution is used then for the
derivation of that error bound. The resulting a posteriori error estimate enables us to estimate and
adaptively control the finite element error to a desired tolerance level via refining the mesh locally.

Let v € U be a minimizer of the Lagrangian L on the space U, and v;, be a minimizer of this
functional on Uj,. That is, v is a solution of the problem (8.7) and vy, is a solution of the problem
(8.16). Since the second stage of our two-stage procedure, the adaptivity, is a locally convergent
numerical method and the first good approximation for the second stage is obtained on the first
stage, we can assume that we work in a small neighborhood of the exact solution v* € U of our
original CIP. Thus, we assume that

lv—v"|lg £dand |[v—wv4|y <0, (8.20)

where § is a sufficiently small positive number. We now obtain a posteriori error estimate for the
error in the Lagrangian,

1
L(v) — L(vn) :/O %L(EH (1 — e)un)de
(8.21)

= / L'(ev+ (1 —€)vp) (v —vp)de = L' (vp) (v —vp) + R,
0

where R is the second order, with respect to v — vy, remainder term, |R| < C'|jv — vh||20 with a
certain positive constant C' (in principle, more details can be given here, which, however, is outside
of the scope of this paper. We ignore R because of (8.20).

Let Py : U' — Uy, be the operator of the orthogonal projection of the space U! on the subspace
Up. Since v € U and U C U! as a set, we can apply the operator P, to the element v. In other words,
Py, (v) := v} is the interpolant of v via finite elements of Uj. Using the Galerkin orthogonality (8.16)
with the splitting v — v, = (v — v}) + (v} — vy), we obtain the following error representation:

L(v) — L(vy) = L' (vp) (v — v}), (8.22)

involving the residual L'(vy,)(+) with v — v{ appearing as the interpolation error. This splitting is
one of the main tricks in the adaptivity idea, because it allows us to use the Galerkin orthogonality
(8.16) and then to use the standard estimates of interpolation errors. We estimate v — v} in terms
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of derivatives of v and the mesh parameters h in space and 7 in time. Finally we approximate
the derivatives of v by corresponding derivatives of vy, see details in [7]-[9]. It turns out that
the dominating contribution of the error in the Lagrangian (8.4) is presented in residuals of the
reconstruction and it is estimated from the above by

T
ymax |ep — co| + mgx/ [uht@ne| dt.
Q Q 0

This observation indicates that the error in the Lagrangian can be decreased by refining the grid
locally in those regions, in which the absolute value of the gradient with respect to ¢ attains its
maximum. The latter forms the basis for the adaptivity technique, see Section 8.3.

8.2. A posteriori error estimate for the unknown coefficient. A more general a pos-
teriori error estimate is the one, which can be used to estimate the error in the reconstructed
coefficient rather than the error in the Lagrangian [9]. This estimate involves the solution ¥ € U of
the following problem

—L"(v) (8,3) = () Vo € U, (8.23)

where the function ¢ € U is a function of our choice, ((-,-)) is the Ly inner product in U in space
and time, and L"(vy) (-, -) is the second Frechet derivative (the Hessian) of the Lagrangian L(v) at
vp. The second Frechet derivative of the Lagrangian expresses the sensitivity of the derivative of
the Lagrangian (8.4) with respect to changes in v.

The main goal in the adaptive error control is to find a mesh with a few nodes as possible such
that |c—cp| < ¢ for a given tolerance €, where ¢, € V}, is the third component of the vector function
Vp, i.€., ¢, is an approximation of the function ¢, which is found in our computations. Thus, in the
adaptive algorithm, the solution obtained on a coarse mesh will be interpolated to the refined mesh
and used then as an initial guess for a new optimization procedure. Following the ideas of [9], a
posteriori estimate of the error between the exact coefficient ¢ and the computed one ¢, involves
the solution of the problem (8.23).

Assuming existence of the solution of the problem (8.23), we obtain by choosing T = v — vy, in
(8.23)

(¢, 0 = vn)) = =L"(vn) (v — 3, D)

= —L'(v)(®) + L'(0,) (%) + R = L' (v3)(¥) + R, (8.24)

where L' (v) (vn) = 0 due to (8.6), and again R is the second order remainder term.
Since v € U and U C U' as a set, we can apply the projection operator P, to v. Hence,
P,v := 7} is the interpolant of v. Using splitting o = (0 — v}) + v, the Galerkin orthogonality

L/(’Uh)(%{) =0, Va;{ € W,
and ignoring R, we obtain from (8.24)
(0 = vn)) = L'(vn)(©) = L' (vn) (T = 03) + L' (0n) (03) = L' (vn) (@ — 73) -

Hence, we have obtained the following analog of a posteriori error estimate for the error in the
Lagrangian (8.22)

(v —vy)) = L' (v,) (¥ — 91). (8.25)
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We conclude, that the concrete form of the estimate (8.25) is the same as one for the Lagrangian L(v)
with only v—v] replaced with 7—v/, compare (8.25) with (8.22). Hence, to estimate |((v, v — v))],
we can use estimates for the derivative of the Lagrangian, thus ending up with the same problem
as one in subsection 8.1.

We now provide the first rigorous explanation of the meanln%/lof the estimate from the above of
|((,v —vp))| in (8.25), which is formulated in (8.26). Let {1y },_; C Us be an orthonormal basis
in the finite dimensional space Uj,. Assume that for each function 1) there exists unique solution
¥y, € U of the problem (8.23) such that ||y, — v*||; < & (see (8.20)). Denote ¥), = Pyvy,. By
(8.25) we have the following approximate estimate

(v = o)) < L (0n) (B, — )]
Using splitting v — v, = (v}, —vn) + (v — v}) again, noting that v—wv} = (I — P)v and that by the
definition of the orthogonal projection ((¢x,v—vi)) = (¥, (I — Py)v)) = 0, we conclude that
numbers ((¢,v — v,)) are Fourier coefficients of the vector function v{ — v), € U, with respect to
the orthonormal basis {wk}kle in the space U},. Hence,

M M 5
Feun]® =Y 1 (@rw = on))” < 37 L (o) @, — T,
k=1 k=1
M 1/2
[’U}IL — Uh] S <Z |L/(Uh)(5¢k — fljik)|2> . (8.26)
k=1

Hence, estimates ’L’ (vn) (Vyy, — ka)’ from the above for all &k = 1, ..., M would provide us with an

estimate of the difference between the interpolant of our target minimizer of the Lagrangian and
the minimizer of this Lagrangian on the subspace Uy, which will be found in computations. Note
that an analogous estimate was not obtained previously in [9].

Similarly to [7]-[9] we estimate ¥ — ¥} in terms of derivatives of ¥ and the mesh parameters h
in space and 7 in time. Finally we approximate the derivatives of v by corresponding derivatives
of vy, see details in [7]-[9]. Then the estimate of the right hand side of (8.25) is expressed in terms
of residuals of the reconstruction and associated dual weights and has the following form

(60— va)) | < |L/(on)(F — )] < / Ruyop dedt

Qr
+ /RuQag d;vdt—&—/Rg,lag dxdt
St
+ /Rmag da:dt—&—/R%aa dxdt
Qr
+ /Rclag dx—l—/QRCZJg dxdt, (8.27)
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where v = (U, ,¢) is a solution of the problem (8.23) for a chosen function ¢ € U and Sp =
02 x (0,T). Residuals are defined as

Ruy = ma b [0,]], Ry = o0 0]

RV’l = ‘uh|ST -9

)

P = s 1 0]l Ry = v 0]

5uh

_ |9¢n|  |Oun
ot

R = ot

, Re, = [(cn — o) (8.28)

and different weights o have the following form:

0z = C17|[0ipn]| + C1h |[0s@n]] 5
oy = Cl’T |[8tﬂh]| + Clh |[8Sﬂh]| 5 (829)

oz = Ca[cn]

)

where [0] on a space element K (or time-interval J) denotes the maximum of the modulus of the
jump of the quantity U across a face of K (or boundary node of .J). In particular [0,9] on a space-
element K denotes the maximum of the modulus of the jump in the normal derivative of v across a
side of K. Also, [0;7] on a time-interval J is the maximum of the modulus of the jump of the time
derivative of v across a boundary node of J. Here C; and C5 are interpolation constants.

Thus, to find weights (8.29) in estimates (8.27), we need to compute the problem (8.23) to find
the function v. It follows from (8.26) that choosing different functions 1)y, from the orthonormal basis
{1/)k}kM:1 of the subspace Uy, in the problem (8.23), we obtain an approximate a posteriori control
of the error between the interpolant vi of the exact minimizer v € U and computed minimizer
v, € Up, of the Lagrangian. The main difficulty here is in the solvability of the problem (8.23). A
certain numerical method for the solution of this problem was proposed in [9], and it was confirmed
by numerical examples. However, questions of convergence and stability of that method, so as
the question of existence of solution of the problem (8.23) are open. Still, we can come up with a
simplified estimate (8.26) which does not require solution of the problem (8.23), although assumes its
existence, see next subsection. Our computational experience shows that this estimate is sufficient
for our goal.

8.3. The adaptive algorithm. In this section we present our adaptive algorithm based on
computations of the residuals for the computed coefficient c. The initial guess value ¢y for the
unknown coefficient ¢ in our adaptive algorithm on the initial mesh is taken from the solution
obtained by the above globally convergent algorithm.

One can see from (8.26) and (8.27) that the error in the reconstructed coefficient consists out
of a sum of integrals of different residuals multiplied by the interpolation errors. Thus, to estimate
the error in the unknown coefficient, we need to compute the approximated values of (uy, ¢n,cn)
together with the residuals and interpolation errors. We refine the mesh adaptively at the end of
the optimization procedure (8.17), (8.19). Hence, we can assume that the values of the residuals
R,,,i = 2,3 and interpolation errors oz for the adjoint solution ) are small and we ignore them
in (8.27). Value of the residual R, is small because ||un|s, — g|| << 1 and we can ignore it
as well in (8.27). Thus, we compute only dominating residuals R., and R.,. Our computational
experience shows that this is enough, i.e., that the approximate error estimate (8.30) is sufficient
for the solution enhancement via the adaptivity technique.
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It follows from (8.26) that if a solution of the problem (8.23) exists for each function ), then
we can write the following approximate estimate for the error in the computed unknown coefficient

T
Hci — ch||L2(Q) < MCyA(Q) |[Eh]|/ <mgx R, (z,t) + mﬁax R, (x,t)) dt, (8.30)
0

where A (Q) is the area of the domain Q (volume in the 3-d case) and M is the dimension of the
subspace Uy. If, however, solution of the problem (8.23) does not exist for some (or all) functions
g, then it follows from (8.22) that the integral term in (8.30) estimates from the above the error
in the Lagrangian,

T
|L(v) — L(vy)| =~ | L (vs) (v — 1;,[1)| <A(Q) |[Ch]|/ <rnngc1 (z,t) + rnﬁax]i’C2 (x,t)) dt. (8.31)
0

Thus, we can hope to decrease the error via locally refining mesh in those regions, where values
of residuals R, (x,t), R., (x,t) are close to the maximal ones. Estimates (??) and (8.27) allow
us to control the error in the computed reconstructed coefficient ¢;. Since residuals R., and R,
are independent on the solution of the problem (8.23), our algorithm does not use that solution.
Although estimates (8.30) and (8.31) are approximate ones, our computational experience shows
that they are sufficient.

In our computations we use the following version of the adaptive algorithm.

0. Choose an initial mesh K}, and an initial time partition Jy of the time interval (0, T]. Start
with an initial guess co = cgiop, which was computed in the above globally convergent
algorithm, and compute the sequence of ¢ in the following steps:

1. Compute the solution u™ of the forward problem (8.9)-(8.11) on K}, and Ji, with ¢(z) = ¢™.

2. Compute the solution ¢™ of the adjoint problem (8.12)-(8.14) backwards in time on K},
and Ji.

3. Update the coefficient ¢ := ¢, on K} and Ji using the quasi-Newton method (8.17)

= ¢m — qH™ g™,

4. Stop computing c if either the norm of the gradient ¢”* of the Lagrangian with respect to
the coefficient in (8.19) is |[g"||1,(q) < 0 or norms ||g"[|1, ) are stabilized. Otherwise set
m = m + 1 and go to step 1. Here, 6 is the tolerance in quasi-Newton updates. In our
computations we took # = 107°.

5. Compute the residuals, R, , R, and refine the mesh at all points where

/ <max R, (z,t) + max R,., (x, t)) dt > tol. (8.32)
Q Q
0
Here tol is a tolerance chosen by the user.

6. Construct a new mesh K and a new time partition Ji. On Ji the new time step 7 should
be chosen with respect to the CFL condition. Interpolate the reconstructed coefficient ¢y,
from the previous mesh to the new mesh. Return to the step 1 and perform all the steps
of the optimization algorithm on the new mesh.
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9. Numerical Testing.

9.1. Results of reconstruction using the globally convergent algorithm. We have
performed numerical experiments to reconstruct the medium, which is homogeneous with ¢ (z) =1
except of two small squares, where ¢ (z) = 4, see Figure 6.1-c). However, we have not assumed a
priori knowledge of neither the structure of this medium nor of the background constant ¢ (z) =1
for x € O\ those two squares, although, following the Tikhonov concept (as mentioned in section
2), we have assumed the knowledge of the constant d; = 1/2, see (2.3) and (7.1). Because of this,
the starting value for the tail V;; (x,35) was computed via solving the forward problem (7.2) for
¢ = 1. Let we=1 (z,35) be the corresponding function w (z,s) at s = 5. Then, using (3.8), we took
Via(2,3) =5 2Inwe= (z,3).

It was found in [5] that for domains G, specified in section 7 the interval [s,3] = [6.7,7.45]
is the optimal one, and so we have used it in our numerical studies. We have chosen the step size
with respect to the pseudo frequency h = 0.05. Hence, N = 15 in our case. We have chosen two
sequences of regularization parameters \ := \,, and ¢ = ¢, for n = 1, ..., N, which are the same as
ones in [5],

An =20,n=1,2; A\, =200,n = 3,4, 5; \,, = 2000, n > 6;
en=0,n=1,2;¢, =0.001,n=3,4,5;¢, =0.01,n=06,7,
e, =0.1,n>8.

Once the function g, is calculated, we update the function ¢ := ¢,, as in (5.1), (5.2), see subsection
7.3 of [5] for some numerical details. The resulting computed function is ¢ (z) := cx(x). Comparing
with [5], in the current work we choose a completely different stopping rule. In calculating iterations
with respect to the nonlinear term (Section 5), we consider norms ',

k k -
Fn = ||qn,l|69 - wn”LQ(aQ)'

We stop our iterations with respect to nonlinear terms when either
either F¥ > Fk=1 or FF < ¢

where £ = 0.001 is a small tolerance number of our choice. In other words, we stop iterations, when
either F* starts to grow or are too small. Next, we iterate with respect to the tails and use the
same stopping criterion. Namely, we stop our iterations with respect to tails when either

Frni>Fnpia (9.1)
or
Fmi S g, (92)

where F, ; =||qn,iloo — ¥,,||1,00)- S0, in accordance with Section 5 the number i, on which these
iterations are stopped, is denoted as i := m,. Once the criterion (9.1)-(9.2) is satisfied, we take
the last computed tail Vj, ,,,., set Vo411 := Vi, and run computations again. This difference
allows us to get a more flexible stopping rule in global convergence algorithm. Hence, the number
m., of iterations with respect to tails is chosen automatically “inside” of each iteration for ¢,.
Thus, numbers m,, vary with n. This is different from [5], where numbers m,, where not chosen
automatically.
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Fic. 9.1. Test 1.1: spatial distribution of cj, after computing qn j;n = 9,10,11,12, where n is number of the

computed function q.
|
i

a) c10,2 b) ¢11,1 ¢) 121 d) c131

Fic. 9.2. Test 2.1: spatial distribution of cj, after computing q, r;n = 10,11,12,13 where n is number of the
computed function q.

In all our tests we have introduced the multiplicative random noise in the boundary data, ¢,
by adding relative error to computed data g using the following expression

Q; (gmam - gmin)a

i) _ i
gg(a:,t)—g(a:,t) 1+ 100

Here, g (¢/,t7) = u (2%,17) , 2" € OS2 is a mesh point at the boundary 99, ¢/ € (0,T) is a mesh point
in time, «; is a random number in the interval [—1;1], gmas and gmi, are maximal and minimal
values of the computed data g, respectively, and o = 5% is the noise level.

Computations were performed on 16 parallel processors in NOTUR 2 production system at
NTNU, Trondheim, Norway (67 IBM p575+ 16-way nodes, 1.9GHz dual-core CPU, 2464 GB mem-
ory).

Test 1.1

We test our numerical method on the reconstruction of the structure given on Figure 6.1-c).
The plane wave f is initialized at the top boundary 0G1 of the computational domain G, propagates
during the time period (0, ¢1] into G, is absorbed at the bottom boundary 0Gs for all times ¢ € (0,T)
and it is also absorbed at the top boundary 0G; for times ¢t € (1,7, see Figures 7.1.

Figure 9.1 displays isosurfaces of resulting images of functions ¢, ;,n = 9,10,11,12. Figure
9.3-a) presents the one-dimensional cross-sections of computed images of functions ¢, superim-
posed with the correct one along the vertical line passing through the middle of the right small
square. Comparison of images of functions ¢, , for different values n and k shows that the inclu-
sion/background contrasts grow with the grow of n and k.
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Fic. 9.3. The one-dimensional cross-sections of the image of the function c, j computed for corresponding
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F1c. 9.4. Computed La-norms of the Fy, ; = ||an,i |aq _EnIILz(aQ).

One can see from Figure 9.1 that the 3.8 : 1 contrast in the right square is imaged for n := N =
12 (see below for this choice of N). Thus, we have obtained the 5% error (0.2/4) in the imaged
contrast, which is exactly the same as the noise level in the data. As to the left square, we got the
same contrast. However, location of the left square is shifted downwards, and both imaged squares
are on about the same horizontal level. Values of the function c¢(x) = 1 outside of these squares are
also imaged accurately.

Using Figure 9.4-a) which shows computed Le-norms F), ;, we analyze results of the reconstruc-
tion. One can see on Figure 9.4 that the number m,, of iterations with respect to tails indeed varies
with n, since m,, is chosen automatically now, using the criterion (9.1)-(9.2). We observe that the
computed F), ; decrease until computing the function gg. Next, Fyo > Fgo, Fig2 < Fy 2 and then
these norms stabilize on n = 11,12. For n = 13,14, 15 norms F}, » grow steeply. Thus, we conclude,
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that N = 12 and we take c12,2 as our final reconstruction result.

Test 2.1

We now test our globally convergent method on the structure given on Figure 6.1-c). However,
the difference with the previous test is that we use the plane wave, which is initialized at the
bottom boundary of computational domain G, see Fig.7.1. Figure 9.2 displays isosurfaces of
resulting images of functions ¢, x,n = 10,11,12,13. Figure 9.3-b) displays the one-dimensional
cross-sections of computed images of functions ¢, ; superimposed with the correct one along the
vertical line passing through the middle of the left small square. One can see from Figure 9.2 that
the 3.8 : 1 contrast for n := N = 12 (see below for this choice of N) in the left square is imaged
again with 5% error (0.2/4) which is the same as the noise level in the data. As to the right square,
we got the same 3.8 : 1 contrast. However, again both squares are imaged on about the same
vertical level.

Using Figure 9.4-b), which shows computed Lo-norms F), ;, we analyze results of the recon-
struction. We observe that computed norms F;, ; decrease with n until computing the function g7,
i.e.., until n = 7 and these numbers grow with the increase of n = 8,9. Next, we observe a steep
decrease at n = 10 and a stabilization for n = 11,12. For n = 13,14, 15 norms F}, ; grow steeply.
Thus, we conclude, that N = 12 and we take c12,1 as our final reconstruction result. We observe,
that in both Tests 1.1 and 2.1 the location of the square, which is located closer to the side from
which the plane wave is launched, is imaged better, while the inclusion/background contrast is
imaged well in both small squares, so as the value of the coefficient ¢(x) = 1 outside of (imaged)
small squares. Thus, we are prompted to use the adaptivity technique in order to enhance images
of locations.

9.2. The synthesis of the globally convergent algorithm with the adaptivity. The
goal of two tests of this subsection is to demonstrate the performance of the synthesis of our
globally convergence algorithm with the adaptivity technique. Since the adaptivity is a locally
convergent numerical method, we take the starting point for the adaptivity the image obtained
by the globally convergent method. Below “Test 1.2” (respectively “Test 2.2”) means that we take
the image obtained in the above Test 1.1 (respectively in Test 1.2), as the starting point for our
finite element adaptive algorithm. The boundary data g = u |sq in both Tests 1.2 and 2.2 are the
same as ones in Test 1.1 and 2.1 respectively, except that in Test 1.2 we use two noise levels in two
“sub-tests™ 0% and 5%. In Tests 1.2 and 2.2 let T" be the side of the square €2, opposite to the side
from which the plane wave is launched and 'y =T x (0,7) . In some sense the side I'r is the most
sensitive one to the resulting data.

The adaptive algorithm means, that we find the solution of our problem in an iterative process,
where we start with a coarse mesh shown on Figure 9.5-a), c), find an approximate solution by
the quasi-Newton method on this mesh, see Section 8.3. Next, we evaluate residuals as in (8.32).
Then we refine the mesh locally at those regions where residuals have largest values, construct a
new mesh and a new time partition, and repeat the computations again on this new mesh. We
stop iterative process when Ls-norms of the computed gradient for the coefficient are stabilized or
started to increase for all further refinements of the mesh. Let |R.(x)| = |Re, ()| + |Rey (2)] , see
(8.27) and (8.31). We refine the mesh at all regions where

[Re(x)| = fmax|Re(z)], (9.3)

where 8 = const € (0,1) is the tolerance number of our choice. The choice of the parameter (3
depends on the behavior of the computed value of max|R.(z)| in right hand side of (9.3). If we take
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opt.it. | 4608 elements | 5340 elements | 8230 elements | 14604 elements | 23344 elements
1 0.0193568 0.0167242 0.0146001 0.0131787 0.0224184
2 0.0193944 0.0157746 0.0139716 0.0133006 0.0208246
3 0.0133565 0.0208889
4 0.0125237 0.0204343
TABLE 9.1

Test 1.2: ||u |r; —gllrory) on adaptively refined meshes. The number of stored corrections in quasi-Newton
method is n = 15. Computations was performed with the noise level 0 = 0% and with the reqularization parameter
v = 0.01.

0 too small (for example, 8 = 0), then we will refine mesh almost in the entire domain (2, since,
realistically, after the optimization procedure |R.(z)| will be non- zero at almost all mesh points.
Unlike this, our goal is to construct a new mesh with a few nodes as possible, while still getting
a good enhancement of the solution obtained on the globally convergent stage of our two-stage
numerical procedure. Hence, we take only maximal values of the computed residual |R.(x)| and
refine mesh in a small neighborhood of those points where this maximal value is achieved. On the
other hand, the parameter 3 can not be taken too close to 1 also, since in this case the automatic
adaptive algorithm will come up with a too narrow region, where the mesh should be refined. Thus,
the choice of § depends on concrete values of the gradient function |R.(x)| and should be chosen
in numerical experiments. In (9.3) we take 5 = 0.1 on the coarse mesh, 3 = 0.2 on the one, two
and three refined meshes, and 5 = 0.6 for all next refinements of the initial mesh.

On all refined meshes we have used a cut-off parameter C.,; for the reconstructed coefficient

¢p, such that
Ch,
Cp =
Cglob,

We choose C.,; = 0 for m < 3, Cryy = 0.3 for m > 3 in all tests. Here, m is the number of iterations
in quasi-Newton method. Hence, the cut-off parameter ensures that we do not go too far from cg;p.
The application of the adaptivity technique allows us to get more correct locations of both small
squares depicted in Figure 6.1-c).

In the adaptive algorithm we can use box constrains for the reconstructed coefficient. We
obtain these constraints using the solution obtained in the globally convergent part. Namely, in
Tests 1.2 and 2.2 minimal and maximal values of the target coefficient in box constraints are taken
using results of Tests 1.1 and 2.1. So, when conducting Tests 1.1 and 2.1, we have used only the
knowledge of the number d; = 0.5 in (2.3). Now, since we know that the solution obtained on the
first stage is a good approximation for the correct solution (Theorem 6.1) and the maximal value of
the computed coefficient is 3.8, we set do = 2 in (2.3). Thus, in tests 1.2 and 2.2 we enforce that the
coefficient c(z) belongs to the set of admissible parameters, c(z) € Cyy = {c € C(Q)|1 < ¢(z) < 4}.

Test 1.2.

We test the synthesis of both globally convergent and adaptive methods with the starting point
on the coarse mesh taken from the results of Test 1.1 and with the plane wave initialized at the top
boundary of the computational domain GG. More precisely, as the starting point for the coefficient
c(z) in the adaptive algorithm on the coarse mesh we take ci22, which corresponds to Figure 9.1-
d). The initial coarse mesh is shown on Figures 9.5-a,c). We have performed two set of numerical
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opt.it. | 4608 elements | 5340 elements | 6356 elements | 10058 elements | 14586 elements
1 0.0992683 0.097325 0.0961796 0.0866793 0.0880115
2 0.0988798 0.097322 0.096723 0.0868341 0.0880866
3 0.0959911 0.096723 0.0876543
4 0.096658
TABLE 9.2

Test 1.2: ||u |r; —gllro ) on adaptively refined meshes. The number of stored corrections in quasi-Newton
method is n = 15. Computations was performed with the noise level o = 5% and with the reqularization parameter
v = 0.01.

experiments: with introducing ¢ = 0% and ¢ = 5% of the multiplicative random noise in the
function g (z,t) in an adaptive procedure. Testing was performed on 4 times adaptively refined
meshes shown on Figure 9.5. We note that in both Tests 1.2 and 2.2 boundary points are the same
for all refinements of the initial mesh, since they are located at the common boundary with the
subdomain Grpys (Figure 6.1) and should be kept unchanged in order to perform the exchange
procedure in the hybrid method when solving the forward problem (7.2). Figure 9.5 shows that the
adaptivity technique enhances the quality of the reconstruction obtained on the first stage. We are
able to reconstruct well locations of both small squares while preserving a good initially obtained
inclusion/background contrast, which turns out to be now 4:1 instead of 3.8:1 calculated on the first
stage. The value of the coefficient ¢ (z) = 1 outside of small squares is also imaged well. We observe
that the use of the initial coarse mesh with 4608 elements does not improve the image obtained on
Test 1.1.

9.2.1. The case o = 0%. Images 9.5-b), f), j), n), s) were obtained with ¢ = 0% in the
boundary data g, with the regularization parameter v = 0.01 and without using the smoothness
indicator procedure applied to the reconstructed coefficient c¢(z). As it was stated in subsection
7.3 of [5], this procedure consists in a local averaging of computed values of ¢, ; (z) . The effect of
using smoothness indicator procedure can be seen from comparison of ¢ = 0% and o = 5% images
of Figure 9.5. So, when this procedure was not applied, we got more elements in new adaptively
refined meshes and more “washed away” images compared with images for the case of ¢ = 5% when
this procedure was in place.

In Table 9.1 we present computed Lo-norms of ||u [, —g|[z,r,) in the quasi-Newton method
for adaptively refined meshes. Here functions u |r,. are computed via the forward problem solutions
and the same in two more tests below. We observe that these norms decrease as meshes are refined.
Then they slightly increase and are finally stabilized for all refinements n > 3 of the initial mesh.

9.2.2. The case o = 5%. Images 9.5-d), h), 1), p), u) were obtained with o = 5% in the
boundary data g, with regularization parameter v = 0.01 and with the smoothing indicator proce-
dure on the all adaptively refined meshes. The use of the smoothing indicator for the reconstructed
coefficient cj has helped us to obtain more accurate images as well as to get a lesser number of finite
elements in computational meshes. Table 9.2 presents computed Lo-norms of [[u |r, —gl|r,ry)-
We observe that norms at the boundary are decreasing as meshes are refined. Then they slightly
increase and are finally stabilized for all refinements n > 3 of the initial mesh.

Test 2.2

Now we test the synthesis of the globally convergent numerical method with the adaptivity
with the starting point on the coarse mesh taken from the result of Test 2.1 and with the plane
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opt.it. | 4608 elements | 5298 elements | 7810 elements | 11528 elements | 19182 elements
1 0.0992683 0.0976474 0.0976851 0.089979 0.0977153
2 0.0988798 0.0974385 0.0901018 0.097487
3 0.0959911 0.0901153 0.0975039
TABLE 9.3

of stored corrections in quasi-Newton
and with the reqularization parameter

on adaptively refined meshes. The number
was performed with the noise level o = 5%

Test 2.2: ||u ‘FT _gHLQ(FT)
method is n = 15. Computations
v = 0.01.

B A

a) 5298 elements b) 7810 elements c¢) 11528 elements d)

f) 7810 elements

e) 5298 elements g) 11528 elements

F1G. 9.6. Test 2.2: Adaptively refined computational meshes on a)-d) and spatial distribution of the parameter
cp, with o = 5%, which corresponds to these meshes, on e)-h).

wave initialized at the bottom boundary of the computational domain G. The initial guess for the
adaptive algorithm on the coarse mesh is the computed coefficient c¢;2 1 (x) presented on Figure 9.2-
¢). The boundary data g is taken the same as in Test 2.1, i.e., with the o = 5% of the multiplicative
random noise.

Again, we have performed tests on 4 times adaptively refined meshes shown on Figure 9.6-
a)-d). Just as in Test 1.2, we observe that the adaptivity technique improves the quality of the
reconstruction, see reconstruction results on Figure 9.6-e)-h). In Table 9.3 we present computed
norms of ||u |, —g||z,r,)- We observe that these norms decrease as meshes are refined. They
decrease until the third refinement. On the fourth refinement they slightly increase and then they
stabilize. Further mesh refinements are not necessary since norms ||u |s, —g||z,(s;) are stabilized
for all refinements with n > 3 of the initial mesh, and we get the same reconstruction result with
further refinements. Thus, using Table 9.3, we conclude that on three times refined mesh we get
solution of our inverse problem.
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10. Summary. We have presented a modified globally convergent numerical method of [5] for
a multidimensional CIP for a hyperbolic PDE. As it follows from the global convergence Theorem
6.1, the globally convergent numerical method provides a good starting point for the finite element
adaptive method. This naturally leads to a two-stage numerical procedure, which synthesizes both
approaches. On the first stage the globally convergent numerical method is used. On the second
stage solution obtained on the first is used as the starting point for the locally convergent adap-
tivity technique. This technique enhances the solution obtained on the first stage. An important
observation of our numerical testing is that the first step of the adaptivity, when the quasi-Newton
method applied on the same coarse mesh, on which the globally convergent part was working, does
not provide a noticeable change for the image obtained on the globally convergent stage, see Figure
9.5. Hence, the use of locally refined meshes, which is the central point of to the adaptivity, is
essential here.

The adaptivity is based on a posteriori analysis of: (1) the error in the Lagrangian and (2) the
error in the solution. As aresult, one can locate spots where the maximum error of the reconstructed
coefficient likely is. Next, the spatial mesh is refined locally with the feedback from a posteriori error
estimator. The main achievement of the adaptivity is that one does not need to know in advance
the solution of a corresponding CIP for that a posteriori error analysis. Another new element of this
work is that we have rigorously explained the meaning of the so-called 1 function in the procedure
of estimating the error in the computed coefficient, which was not explained previously. Numerical
tests have shown a good performance of our two-stage procedure.

Acknowledgement. The authors are grateful to M.Yu. Kokurin for fruitful discussions.
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