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Abstract

This thesis presents results in Extreme Value Theory with application
to Bioinformatics. First, we obtain the asymptotic behavior of the prob-
ability of high level excursions for the maximum of the Wiener process
increments, followed by the normalization sequence for the corresponding
limiting Gumbel distribution. Next, we consider the Shepp statistics for
Gaussian random walk and establish asymptotic formulas for the case of
moderate and excessively large deviations. The latter is related to the
problem of sequence comparing.

Further, we study extreme values of student’s t-statistics under non-
normality and various deviations from i.i.d assumption. The study is
motivated by the analysis of systematic errors in a particular kind of bi-
ological experiments (BioScreen array experiments) which showed that
the t-statistics distribution has a certain tail behavior regardless of what
is the true model. We give a theoretical explanation of this phenomenon
and a basis for new methods to correct theoretical p-values. The ob-
tained asymptotic formulas are very accurate for small sample sizes and
are of practical interest for quantile estimation in connection to High
Throughput Screening.

Keywords: Extreme Value Statistics, Extreme Value Theory, Asymp-
totic Behavior, High Level Excursions, Quantile Estimation, Wiener Pro-
cess, Gaussian Random Walk, Shepp Statistics, Student’s t-statistics,
Self Normalized Sums, Gumbel Law, Limit Theorems, Test Power, Small
Sample Size, False Discovery Rate, High Throughput Screening.
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1 Introduction

In this section we give an overview of the three papers included in the
thesis. For convenience we start with the third paper, where we give the
motivation for the study and describe an important concept of Extreme
Value Theory. Then follow the two other papers, which have a different
motivation and are more theoretical.

Paper 3

The origin of the paper was the study of the experimental design for
a particular kind of biological experiments, namely BioScreen array ex-
periments, see [4], [5] and [6]. The aim of the experiments is to identify
gene modified strains or conditions leading to differential growth behavior
of Yeast colonies. Omitting the details, the phenotypic growth property
of interest of the mutant cell (i.e. in which the gene is ”knocked out”)
is compared to the same property of a wild type cell, and this is done
for many different modified strains and/or growth conditions. Moreover,
there is an experimental spatial layout of the single growth experiments
in batches on micro-titer arrays. The ”difference” is associated with the
parameter called LSC, which is assumed to be measured with normally
distributed error with mean zero. The hypothesis testing is based on the
one-sample t-test for the two replicates of LSC. However, a histogram
of the LSC values in a wild type data set (for which the null hypothe-
sis is known to be true) showed that the distribution of the LSC devi-
ates from normal. The latter results in the deviation of the distribution
of the corresponding t-statistics from the theoretical t-distribution with
one degree of freedom. Furthermore, the analysis of the experimental
setup revealed spatial systematic biases (see [6]), making it practically
impossible to model the true distribution of the LSC values. Even if the
distribution was known, obtaining the exact theoretical distribution of
the corresponding t-statistics would be questionable.

To overcome this difficulty we instead look at the resulting t-statistics. To
be specific, we wish to correct the theoretical quantile by approximating
the tail of the distribution of the t-statistics under the null hypothesis.
The wild type data set consists of 1584 t-values, which limits the use of
the non-extreme methods of quantile estimation to as far as, say, 0.99.
The reason for going further out in the tail is, for example, that [5] uses
the significance level of 0.001. Another reason is a multiple comparison
problem (common to High-Throughput screenings), which arises when
one considers a set, or family, of statistical inferences simultaneously.
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We now introduce a Peaks over Threshold method. For a random vari-
able X with distribution function F , the probability of exceedance over
large thresholds is approximated using generalized Pareto distribution.
Assume that the distribution tail has an approximation property

Fu(x) = P (X > u+ x|X > u) ≈ H(x) =
(

1 +
ξx

σ̃

)−1/ξ

,

for u large and {x : x > 0 and 1+ ξx/σ̃ > 0}, where σ̃ = σ+ ξ(u−μ) and
μ, σ and ξ are some constants; ξ and σ̃ are called the parameters of the
generalized Pareto distribution. For ξ = 0, we interpret the distribution
as the limit as ξ → 0, i.e.

H(x) = exp(−x/σ̃), x > 0.

For an independent sample, given large fixed u one typically estimates the
probability P (X > u) with a relative frequency and fit the parameters ξ
and σ̃ using only observations larger than u. Once the parameters of the
generalized Pareto distribution are ”known”, the p upper quantile, xp, is
estimated as

xp = u+
σ̃

ξ

([
P (X > u)

1 − p

]ξ
− 1

)
.

Indeed, for x > u,

P (X > x|X > u) ≈
(

1 +
ξ(x− u)

σ̃

)−1/ξ

,

therefore,

P (X > x) ≈ P (X > u)
(

1 +
ξ(x− u)

σ̃

)−1/ξ

.

For modeling threshold excesses and the parameter estimation for gen-
eralized Pareto families we refer to [2] and [1]. The book by Beirlant et
al. (2004) focuses on the Extreme Value Theory from a mathematical
statistician point of view, while Coles (2001) puts more emphasis on ap-
plications.

Within the BioScreen problem, however, we obtain a stronger result.
Inspired by the p-p plot of the t-values for the wild type data set, fig.1
of [9], the focus was shifted towards the behavior of the one-sample t-
statistics under non-normality, dependency and non-stationarity. The
main result of [9] follows.

Let X = (X1,X2, ..,Xn), n ≥ 2 be a general random vector, where
components need not be independent or identically distributed. Assume
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X has a continuous density function g(x1, x2, ..xn) and denote Tn the cor-
responding t-statistics. We prove that under some (quite mild) regularity
conditions on g,

P (Tn > u)
tn−1(u)

= Kg + o(1) as u→ ∞, (1.1)

where tn−1 stands for a t-distribution tail with n− 1 degrees of freedom.
The exact expression for the constant Kg is given in Theorem 2.1 of [9].

Note that in terms of the Peaks over Threshold method this means that
the parameters of the generalized Pareto distribution for the t-statistics
are invariant to the sample distribution. Indeed, assuming Kg > 0, which
holds if g(x, x, .., x) is positive for some x > 0,

P (Tn > u+ x|Tn > u) =
P (Tn > u+ x)

P (Tn > u)
≈ tn−1(u+ x)

tn−1(u)
,

and the latter expression does not depend on g.

Estimating quantile xp is thus equivalent to estimating the probability
P (Tn > u) for some large enough u. The simulation study of [9] shows
that for n = 2, the threshold u can be as low as 0.95 quantile of the t1
distribution.

The result is complemented by a second order approximation formula.
Assuming g is twice-differentiable and satisfies some additional regular-
ity conditions,

P (Tn > u) −Kgtn−1(u)

tn+1

(√
n+1
n−1u

) = Mg − Lg + o(1),

where constants Mg and Lg are defined in Theorem 2.2. This is com-
pared to several other suggested tail approximations in the case of i.i.d.
random variables. For small n the new method looks superior.

Paper 2

The starting point for this paper was the problem of detecting homol-
ogy (similarity) between long DNA or protein molecules, [3]. Each of
the protein molecules is represented as a sequence of letters that denote
chemical groups in a poly-peptide chain. Element-by-element comparison
is rarely used in practice. One of the reasons is the computational time it
takes to compare two very long sequences (e.g. sequence against a huge
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database) and another is the possible mismatches, say, due to sequencing
errors. Moreover, some elements of the molecule are more similar in their
chemical functions than others, and the mismatches might be because of
the evolutionary mutations rather than that the molecules come from un-
related organisms or perform totally different functions. This argument
led to invention of weight matrixes (such as BLOSUM62 or PAM250) and
different kinds of scoring functions. For further reading we refer to such
algorithms as BLAST or FASTA. Inspired by these practical bioinfor-
matics methods we study a mathematically relevant matching problem
and present a theoretical result on extreme values of the Shepp statistics
for Gaussian random walk.

Let (ξi, i ≥ 1) be a sequence of independent standard normal random

variables and let Sk =
k∑
i=1

ξi be the corresponding random walk. We

study the renormalized Shepp statistic

M
(N)
T =

1√
N

max
1≤k≤TN

max
1≤L≤N

(Sk+L−1 − Sk−1)

and determine asymptotic expressions for

P
(
M

(N)
T > u

)
when u,N and T → ∞

in a synchronized way. There are three types of relations between u and
N that give different asymptotic behavior. For these three cases we es-
tablish the limiting Gumbel distribution of M (N)

T when T,N → ∞ and
present corresponding normalization sequences.

Paper 1

This result is essential for the proof of [7].

We study

MT = max
0≤t≤T

max
0≤s≤1

W (t+ s) −W (t),

where W (·) is a standard Wiener process and determine an asymptotic
expression for P (MT > u) when u→ ∞. Further we establish the limit-
ing Gumbel distribution of MT as T → ∞ and present the corresponding
normalization sequence.
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Extremes of Shepp statistics for the Wiener process

DMITRII ZHOLUD

Abstract. Define Y (t) = max
0≤s≤1

W (t + s) − W (t), where W (·) is a standard

Wiener process. We study the maximum of Y up to time T : MT = max
0≤t≤T

Y (t)

and determine an asymptotic expression for P (MT > u) when u → ∞. Fur-

ther we establish the limiting Gumbel distribution of MT when T → ∞ and

present the corresponding normalization sequence.

Key words. Wiener process increments, Shepp statistics, high level excur-

sions, analysis of extreme values, large deviations, asymptotic behavior, distri-

bution tail, Gumbel law, limit theorems, weak theorems.

AMS 2000 Subject Classifications: Primary-60G70;
Secondary-60G15, 60F05;

.

1 Introduction

First, we introduce two different techniques used in the asymptotic theory
of Gaussian processes and fields. For a Gaussian process Z(t), consider
asymptotic behavior of the probability

P
(

max
[0,T ]

Z(t) > u

)
, u→ ∞. (1.1)

In the case when Z(t) is a stationary Gaussian process with a covari-
ance function r(t) such that r(t) − r(0) is a regularly varying function
of index α for t → 0, the exact asymptotic forms of (1.1) were given by
Pickands (1969).

In the non-stationary case, besides [1], [4] and related papers there
are a number of results for Gaussian processes with a unique point of
maximum variance. When Z(t) is a Gaussian process with continuous
paths, zero mean and nonconstant variance, and there is a unique fixed
point of maximum variance t0 in the interval [0, T ], the asymptotic be-
havior of probability in (1.1) is known. The theory sketched out above is
described in detail in [9].

Next, define X(t, s) = W (t+ s)−W (t) and Y (t) = max
0≤s≤1

X(t, s), for

W (·) a standard Wiener process. Let MT = max
[0,T ]

Y (t) be the maximum

up to time T of Y (t). The aim of this paper is to find the asymptotic
behavior of P (MT > u), the probability of high level excursions of Y (t)
as u→ ∞ and to obtain the limiting distribution of MT when T → ∞.

2



For the first task it is crucial to use a representation of MT as a
maximum of the Gaussian field X(t, s) over rectangle [0, T ] × [0, 1]:

MT = max
[0,T ]×[0,1]

X(t, s).

Since for fixed s, X(·, s) is a stationary process, and for fixed t, X(t, ·) is
a process with a unique point of maximum variance, the asymptotic be-
havior was obtained by combining standard techniques for corresponding
cases. Let ψ(u) be the tail of the standard normal distribution func-
tion. The following result and its proof, as well as the expression for the
constant H are given in Section 2.

Theorem 1.1. If Tu2 → ∞ and Tu2ψ(u) → 0 when u→ ∞, then

P (MT > u) = HTu2ψ(u)(1 + o(1)).

When the asymptotic behavior of the tail of distribution of MT is
known, we find a limiting distribution of MT when T → ∞. In this case
it is essential to use the representation of MT as a maximum up to time
T of stationary process Y (t). When |t1 − t2| > 1, the random variables
Y (t1) and Y (t2) are independent . The method of establishing the limit
theorem is common. Introduce a partition of [0, T ] into long blocks Ai,

of length S, and short blocks Bi of length 1: [0, T ] =
n⋃
i=0

(Ai∪Bi), where

Ai = [i(S + 1), i(S + 1) + S) , Bi = [i(S + 1) + S, (i+ 1)(S + 1)) .

Then define a sequence of independent identically distributed random
variables (i.i.d. r.v.) Yi = max

Ai

Y (t), i = 1, 2, .. Letting S to infinity and

following the proof of J. Pickands theorem [6] for max{Y1, Y2, ...}, the
only thing left is to show that random variables Ȳi = max

Bi

Y (t) give neg-

ligible contributions to the limiting distribution of MT = max{Y1, Ȳ1, Y2,
Ȳ2, Y3, Ȳ3...}. However, this idea is extended to obtain a more general
result (Lemma 3.1). It will be used when building limit theorems for
Shepp statistics for a Gaussian random walk [10]. As a corollary of the
lemma stated in Section 3 we obtain the limiting Gumbel distribution for
MT , when T → ∞.

Theorem 1.2. For any fixed x and T → ∞, the following relation
holds:

P

(
max

(t,s)∈[0,T ]×[0,1]
aT (W (t+ s) −W (t) − bT ) ≤ x

)
= e−e

−x

+ o(1),

where

aT =
√

2 lnT , bT =
√

2 lnT +
lnH + 1

2 (ln lnT − lnπ)√
2 lnT

.
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A similar result for standardized Wiener process increments is ob-
tained in [5]. There are also a number of works about strong laws for
increments of Wiener processes [2], [3].

One of the applications of the result derived in this paper is given
in [10]. Let (ξi, i ≥ 1) be standard normal random variables, and Sk be

the corresponding random walk, Sk =
k∑
i=1

ξi, S0 = 0. Define a random

variable ζ
(N)
L (k) = 1√

N
(Sk+L−1 − Sk−1). Asymptotic behavior of the

probability

P

(
max

0<k≤T N
0<L≤N

ζ
(N)
L (k) > u

)
,

when u→ ∞, N → ∞ in some synchronized way is then examined. For
fixed u, owing to the weak convergence of a random walk to a Wiener
process,

P

(
max

0<k≤T N
0<L≤N

ζ
(N)
L (k) > u

)
= P (MT > u) (1 + o(1)) , N → ∞.

Paper [10] shows that this equation also holds when u→ ∞, u/
√
N → 0.

2 Asymptotic behavior of the tail of distri-
bution of MT .

In this section we find the asymptotic behavior of the probability

P (MT > u) = P

(
max
0≤t≤T
0≤s≤1

W (t+ s) −W (t) > u

)
, (2.1)

when u → ∞ and T → ∞ in an appropriate way. As before, we denote
X(t, s) = W (t+ s) −W (t). The proof is divided into two steps:

First, for any positive constant B we focus on the asymptotic behavior
of a maximum ofX over a thin layer [0, T ]×[1−Bu−2, 1]. Within this area
and assuming that u is large, X(t, s) and X(t, 1) will behave in a similar
way and it will be shown that it is possible to determine the asymptotic
behavior using the standard technique for stationary processes.

Second, knowing the asymptotic behavior of maximum of X over the
area of its maximum variance, we will show that the maximum over the
complementary set [0, T ] × [0, 1 −Bu−2] gives a neglible contribution to
the probability in (2.1).

The proof of the first part is based on the Double Sum Method: the
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lemma below is the analog of Lemma 6.1, [9]. To proceed, let A and
B be any positive constants and denote p = Au−2, q = Bu−2 and
A0(u) = [0, p] × [1 − q, 1]. Although it is possible to obtain a repre-
sentation similar to what we get in Lemma 2.1 by repeating the proof of
Lemma 6.1, [9], our proof does not follow the standard procedure. In-
stead of passing on to the family of conditional distributions as in [9], we
’extract’ the common part of the increment X(t, s) for all (t, s) ∈ A0(u)
and use independence of Wiener process increments.

Lemma 2.1. Let u→ ∞. Then

P

(
max
A0(u)

W (t+ s) −W (t) > u

)
= HB

A

1√
2πu

e−
u2
2 (1 + o(1)),

where

HB
A = e−

A+B
2 E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A) −W (t)

)
.

Proof: We have that since 1 − q > p for large u,

P
(

max
A0(u)

W (t+ s) −W (t) > u

)

= P

(
W (1 − q) −W (p) +

+ max
A0(u)

W (t+ s) −W (1 − q) +W (p) −W (t) > u

)
,

and by stationarity and independence of Wiener process increments
W (t+ s)−W (1− q) and W (p)−W (t), the probability above is equal to

P
(
ξ + max

A0(u)
W (t+ s− (1 − q) + p) −W (t) > u

)

= P

(
ξ + max

0≤t≤p
0≤s≤q

W (t+ s+ p) −W (t) > u

)
,

where random variable ξ is normally distributed with zero mean, variance
σ2 = 1− p− q and is independent of the expression inside the maximum
sign. Thus,

P
(

max
A0(u)

W (t+ s) −W (t) > u

)

= 1√
2πσ

∞∫
−∞

e−
v2

2σ2 P

(
max
0≤t≤p
0≤s≤q

W (t+ s+ p) −W (t) > u− v

)
dv.

After the change of variables v = u− w
u , the last expression equals

5



σ−1√
2πu

∞∫
−∞

e−
(u− w

u
)2

2σ2 P

(
max
0≤t≤p
0≤s≤q

u(W (t+ s+ p) −W (t)) > w

)
dw

=
σ−1

√
2πu

e−
u2

2σ2

∞∫
−∞

e−
w2/u2

2σ2 e
w
σ2 P

(
max
0≤t≤A
0≤s≤B

W (t+ s+A) −W (t) > w

)
dw.

Next, by dominated convergence, which follows from the upper estimate
of the probability under the integral sign (Borel Theorem [9], p.13) and
relations σ2 → 1 and

e−
u2

2σ2 = e−
u2
2 (1+p+q+o(u−2))(1 + o(1)) = e−

u2
2 e−

A+B
2 (1 + o(1)),

when u→ ∞, we obtain the desired representation. �

Corollary 2.1.1.
1) HB

A is nondecreasing with respect to the parameters A and B.
2) HB

A1+A2
≤ HB

A1
+HB

A2
.

3) HB
A ≤ AHB

1 , for any integer A.

Our next aim is to move on from the rectangle [0, Au−2]×[1−Bu−2, 1]
to the layer [0, T ]× [1−Bu−2, 1]. We use Lemma 2.1 and Bonferroni in-
equality to obtain estimates of the probability of high level excursions of
the maximum of X. Then we will show that estimates from below and
from above are asymptotically equivalent.

Let Ar(u) = [rAu−2, (r + 1)Au−2] × [1 − Bu−2, 1]. For ease of nota-
tion we suppress dependence on u. Using stationarity of X(t, s) with
respect to t, we obtain that

(Tu
2

A + 1)P
(

max
(t,s)∈A0

X(t, s) > u

)
≥ P

⎛
⎝ max

0≤t≤T

1−Bu−2≤s≤1

X(t, s) > u

⎞
⎠ ≥

≥ (Tu
2

A − 1)P
(

max
(t,s)∈A0

X(t, s) > u

)
−

−
∑

0≤l,m≤ T u2
A

+1
l �=m

P
(

max
(t,s)∈Al

X(t, s) > u, max
(t,s)∈Am

X(t, s) > u

)
.

(2.2)
Let pl,m denote the summands in the last sum in (2.2). The sum, owing
to stationarity, does not exceed

2
(
Tu2

A
+ 1
) T u2

A +1∑
n=1

p0,n. (2.3)

6



Estimating the probabilities p0,n from above, we will show that the sum
(2.3) is negligible, and thus the upper and lower estimates in (2.2) are
asymptotically equivalent.

The estimates are obtained in slightly different ways, in the same
manner as in Lemma 7.1, [9]. The next lemma is a modification of Lemma
6.3, [9].

Lemma 2.2. There exists an absolute constant C such that inequality

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤ C(AB)2ψ(u)e−

1
4 (r−1)A

holds for any A,B any 1 < r ≤ 1 + u2

A , and for any u, u ≥ u0,

u0 = inf
{
u : e−4Au−2 ≤ 1 − 2Au−2 , Bu−2 ≤ 1

2

}
.

Proof: The Gaussian field X(t, s) has zero mean, is stationary in t, and
its covariance function is

K(t, s; t1, s1) = mes
(
[t, t+ s]

⋂
[t1, t1 + s1]

)
. (2.4)

Consequently, a global Hölder condition holds:

E (X(t, s) −X(t1, s1))
2 ≤ 2(|s− s1| + |t− t1|). (2.5)

Introducing the notation Y (v,w) = X(v) +X(w), where v = (t, s) and
w = (t1, s1), we get:

P
(

max
A0

X(t, s) > u,max
Ar

X(t, s) > u

)
≤ P

(
max
A0×Ar

Y (v,w) > 2u
)
.

Using (2.4), (2.5) and restrictions on r and u it is straightforward to
estimate the minimum and maximum values of the variance of Y (v,w)
and then to obtain an estimate from below of the covariance function of
normalized field Y ∗(v,w), see Lemma 6.3, [9]. Further steps repeat the
proof of the lemma. �

Corollary 2.2.1. When r > 1+ u2

A and u ≥ u0 the following inequality
holds

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤ C(AB)2ψ(u)2.

Condition r > 1 + u2

A implies that the events inside the probability are
independent and makes up the proof.
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Corollary 2.2.2. When r = 1 and u ≥ u0, the following inequality
holds

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)

≤
(
C(AB)2e−

1
4

√
A + (

√
A+ 1)HB

1

)
ψ(u).

The proof follows the corresponding method on p.107 in Lemma 7.1, [9].

We are now ready to estimate (2.3) from above. Since

T u2
A +1∑
n=1

p0,n = p0,1 +

u2
A +1∑
n=2

p0,n +

T u2
A +1∑

n= u2
A +2

p0,n ,

estimating the first summand by using Corollary 2.2.2,
the second using Lemma 2.2 and the last using Corollary 2.2.1, we get
that

(2.3) ≤ 2
(
Tu2

A + 1
)
ψ(u)

{(
C(AB)2e−

1
4

√
A + (

√
A+ 1)HB

1

)
+

+ C(AB)2
∞∑
n=2

e−
1
4 (n−1)A + Tu2

A C(AB)2ψ(u)
}
.

Assuming that Tu2 → ∞ and Tu2ψ(u) → 0 it follows from (2.2), (2.3),
Lemma 2.1 and the estimate of (2.3) above that

lim
u→∞

P

⎛
⎜⎝ max

0≤t≤T

1−Bu−2≤s≤1

X(t,s)>u

⎞
⎟⎠

Tu2ψ(u) ≤ A−1HB
A

and (2.6)

lim
u→∞

P

⎛
⎜⎝ max

0≤t≤T

1−Bu−2≤s≤1

X(t,s)>u

⎞
⎟⎠

Tu2ψ(u) ≥ (A′)−1HB
A′ −

−2C(A′)−1

{(
(A′B)2e−

1
4

√
A′ +

√
A′+1
C HB

1

)
+ (A′B)2

∞∑
n=2

e−
1
4 (n−1)A′

}
.

Thus, noticing that the expression in the last line tends to zero when
A′ → ∞, and applying Corollary 2.1.1 3), we see that:

∞ > HB
1 ≥ lim

A→∞
A−1HB

A ≥ lim
A′→∞

(A′)−1HB
A′ .
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Finally, we want to show that the limit

HB = lim
A→∞

A−1HB
A , ∞ > HB

1 ≥ HB > 0, (2.7)

that exists as a consequence of the just obtained estimate, is positive.
This is done by considering the probability of high excursions over the
subset D =

⋃
i

A2i ∩ [0, T ] × [0, 1] and following the proof of D.16 in [9].

Thus, assuming A and A′ in (2.6) tend to infinity and applying (2.7),
we obtain the asymptotic behavior of the probability of high level excur-
sion of maximum of X(t, s) over the ’upper’ layer [0, T ] × [1 −Bu−2, 1]:

Lemma 2.3. Assuming Tu2 → ∞ and Tu2ψ(u) → 0, the following
equality holds:

P

⎛
⎝ max

0≤t≤T

1−Bu−2≤s≤1

X(t, s) > u

⎞
⎠ = HBTu2ψ(u)(1 + o(1)).

Below we give the second part of the proof. It shows that the asymp-
totic behavior of the probability of the high level excursion of the maxi-
mum of X(t, s) over the ’upper’ layer, which corresponds to the area of
the maximum variance of the field, gives the main contribution to (2.1).

Let Bn(u) = [0, T ] × [1 − (n + 1)Bu−2, 1 − nBu−2] and assume that
the conditions Tu2 → ∞ and Tu2ψ(u) → 0 are satisfied. As before, for
notational convenience we suppress the dependence of Bn on u.

Lemma 2.4. Starting from large enough values of u, if nBu−2 ≤ 1
2 , then

P

(
max

(t,s)∈Bn

X(t, s) > u

)
≤ 4H2Be−

1
2nBTu2ψ(u)(1 + c(u)),

where c(u) → 0, when u→ ∞.

Proof: Normalizing by the maximum standard deviation of X(t, s) over
Bn we get

P
(

max
(t,s)∈Bn

X(t, s) > u

)
= P

(
max

(t,s)∈Bn

X(t,s)√
1−nBu−2 >

u√
1−nBu−2

)

= P

⎛
⎜⎜⎝ max

0≤t≤T/(1−nBu−2)

1− Bu−2
1−nBu−2 ≤s≤1

X(t, s) > u√
1−nBu−2

⎞
⎟⎟⎠

≤ P

⎛
⎝ max

0≤t≤2T

1−2Bu−2≤s≤1

X(t, s) > u√
1−nBu−2

⎞
⎠ .
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The expression on the right-hand side satisfies the conditions of Lemma
2.3, and for large enough u inequality ψ( u√

1−nBu−2 ) ≤ 2ψ(u)e−
1
2nB holds

uniformly in n. �

Lemma 2.5. If nBu−2 > 1
2 , then

P

⎛
⎜⎝ max

(t,s)∈[0,T ]×[0,1]
∖ n⋃

i=0
Bi

X(t, s) > u

⎞
⎟⎠ ≤ CTu4ψ(

√
2u).

Proof: Expanding the set over which the maximum is taken, we get

P

⎛
⎜⎝ max

(t,s)∈[0,T ]×[0,1]
∖ n⋃

i=0
Bi

X(t, s) > u

⎞
⎟⎠ ≤ P

⎛
⎝ max

0≤t≤T

0≤s≤ 1
2

X(t, s) > u

⎞
⎠ .

The maximum of the variance of X(t, s) over the set [0, T ]× [0, 1
2 ] equals

1
2 . Applying Theorem 8.1, [9] we conclude the proof. �

Below follows the proof of Theorem 1.1:

Lemmas 2.3, 2.4 and 2.5 imply that

lim
u→∞

P

(
max

[0,T ]×[0,1]
X(t,s)>u

)
Tu2ψ(u) ≥ lim

u→∞

P

(
max

(t,s)∈B0
X(t,s)>u

)
Tu2ψ(u) = HB

and

lim
u→∞

P

(
max

[0,T ]×[0,1]
X(t,s)>u

)
Tu2ψ(u) ≤ lim

u→∞
1

Tu2ψ(u)

⎡
⎣P( max

(t,s)∈B0

X(t, s) > u

)
+

+
u2
2B∑
n=1

P
(

max
(t,s)∈Bn

X(t, s) > u

)
+ P

(
max

(t,s)∈B̂
X(t, s) > u

)⎤⎦
≤ HB′

+ 4H2B′ ×
∞∑
n=1

e−
1
2nB

′
,

where B̂ denotes [0, T ]×[0, 1]
∖ u2

2B +1⋃
n=0

Bn. ConstantHB = lim
A→∞

A−1HB
A is

non-decreasing with respect to the parameter B, and the last inequalities
show that it is bounded from above. Thus, lim

B→∞
HB = H, say, exists,

finite and positive, and lim
B′→∞

HB′
+ 4H2B′ ×

∞∑
n=1

e−
1
2nB

′
also equals H.

�
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3 Limit theorem for MT .

In this section we consider the case where T goes to infinity, and we
obtain limit distribution of (MT − aT )/bT for appropriate normalization
functions aT and bT . First we prove a general lemma, which can serve
as a template for obtaining limiting theorems not only for random fields,
but for a family of fields as well. We assume that the specific asymp-
totic behavior of the tail of distribution of the maximum of some field
takes place and that this asymptotic behavior is defined by an asymp-
totic relation between threshold u, parameter S that defines the set over
which the maximum is taken, and parameter N discussed below. The
condition that defines the asymptotic behavior will be denoted by, say,
D(u,N, S). The following lemma shows that knowing asymptotic behav-
ior under D(u,N, S) we can derive a new condition involving T and N
such that if it holds when T goes to infinity, MT has limiting Gumbel
distribution.

Lemma 3.1. Assume that:
1) XN (t, s) N = 1, 2... is a a family of fields defined on the set [0,∞) ×
[0, 1], which are stationary with respect to parameter t.
2) For any N , any t, t1 such that |t − t1| > 1 and any s, s1 ∈ [0, 1], the
random variables XN (t, s) and XN (t1, s1) are independent.
3) By D(u,N, S) we refer to some mathematical statement that involves
variables u,N, S and such that if D(u,N, S) is fulfilled then the follow-
ing asymptotic behavior of the tail of the distribution of a maximum of
XN (t, s) over the set DS = [0, S] × [0, 1] takes place:

P

(
max
DS

XN (t, s) > u

)
∼ SF (u,N) (3.1)

for some function F (u,N). We also demand that if D(u,N, 1), then
(3.1) holds for S ≡ 1 .

4)Let T → ∞ and suppose there exist appropriate normalizing functions
aT and bT such that, defining uT = bT + x

aT
, lim

T→∞
(N→∞)

TF (uT , N) = e−x

for any fixed x . Functions aT and bT may also depend on N .

5)Let S = S(T ) be such a function that S → ∞ and n = T/(S+ 1) → ∞
when T → ∞.

Then, if D(uT , N, 1) and D(uT , N, S(T )) hold,

P

(
max
DT

XN (t, s) > uT

)
→ 1 − e−e

−x

. (3.2)

11



Proof: Let us introduce a partition [0, T ] =
n⋃
i=0

(Ai ∪Bi), with

Ai = [i(S + 1), i(S + 1) + S] and Bi = [i(S + 1) + S, (i+ 1)(S + 1)] ,

so that |Ai| = S, |Bi| = 1, i = 0, 1, .. .

For the expression on the left-hand side of (3.2) we have that

P
(

max
DT

XN (t, s) ≤ uT

)

= 1 − P
(

n⋃
i=0

{
max

Ai×[0,1]
XN (t, s) > uT ∪ max

Bi×[0,1]
XN (t, s) > uT

})
.

Applying stationarity of XN (t, s) with respect to t we obtain the fol-
lowing estimate:

1 − nP
(

max
[0,1]2

XN (t, s) > uT

)
− P

(
n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
≤

≤ P
(

max
DT

XN (t, s) ≤ uT

)
≤ 1−P

(
n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
. (3.3)

The term nP
(

max
[0,1]2

XN (t, s) > uT

)
is estimated using D(uT , N, 1) and

3) and, for penultimate equality, 4)

nP
(

max
[0,1]2

XN (t, s) > uT

)
= nF (uT , N)(1 + o(1)) = TF (uT ,N)

S+1 (1 + o(1))

= e−x(1+o(1))
S+1 = o(1).

Using the fact that for i �= j r.v. max
Ai×[0,1]

XN (t, s) and max
Aj×[0,1]

XN (t, s)

are independent, see 2), and, again, stationarity, we estimate the expres-
sion on the right-hand side of (3.3) using D(uT , N, S(T )) and 3) in the
third step, and 4) and 5) in the fifth

1 − P
(

n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
=

n∏
i=0

P
(

max
Ai×[0,1]

XN (t, s) ≤ uT

)

=
(

1 − P
(

max
A0×[0,1]

XN (t, s) > uT

))n
= (1 − SF (uT , N))n

= en ln(1−SF (uT ,N)) = e−nSF (uT ,N)(1+o(SF (uT ,N))) = e−TF (uT ,N)(1+o(1))

= e−e
−x

(1 + o(1)).
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It therefore follows from (3.3) that

e−e
−x

(1 + o(1)) + o(1) ≤ P
(

max
DT

XN (t, s) ≤ uT

)
≤ e−e

−x

(1 + o(1)),

and this finishes the proof. �

Corollary: Wiener process.

Put XN (t, s) ≡ W (t + s) −W (t). We say that D(u,N, S) holds if and
only if Su2 → ∞ and Su2ψ(u) → 0 , u → ∞ . Thus, conditions 1),2)
and 3) of the lemma are satisfied by Theorem 1.1.

It is easy to verify that Condition 4) is satisfied for

uT =
x√

2 lnT
+
√

2 lnT +
lnH + 1

2 (ln lnT − lnπ)√
2 lnT

.

In 5) we set S(T ) =
√
T . Condition D(uT , N, 1) becomes equivalent to

uT → ∞ that is equivalent to T → ∞ owing to our choice of uT . Finally,
using 3) it is easy to show that

S(T )u2
Tψ(uT ) = S(T )/T × TF (uT , N) = ee

−x

(1 + o(1))/
√
T = o(1).

Thus D(uT , N, S) is equivalent to T → ∞ and Theorem 1.2 holds.
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Extremes of Shepp statistics for Gaussian random walk

DMITRII ZHOLUD

Abstract. Let (ξi, i ≥ 1) be a sequence of independent standard normal ran-

dom variables and let Sk =
k∑

i=1

ξi be the corresponding random walk. We study

the renormalized Shepp statistic M
(N)
T = 1√

N
max

1≤k≤TN
max

1≤L≤N
(Sk+L−1 − Sk−1)

and determine asymptotic expressions for P
(
M

(N)
T > u

)
when u, N and T →

∞ in a synchronized way. There are three types of relations between u and

N that give different asymptotic behavior. For these three cases we establish

the limiting Gumbel distribution of M
(N)
T when T, N → ∞ and present corre-

sponding normalization sequences.

Key words. Gaussian random walk increments, Shepp statistics, high ex-

cursions, extreme values, large deviations, moderate deviations, asymptotic

behavior,

distribution tail, Gumbel law, limit theorems, weak theorems.

AMS 2000 Subject Classifications: Primary-60G70;
Secondary-62P10, 60F10;

.

1 Introduction

Let (ξi, i ≥ 1) be a sequence of independent standard normal random

variables, and let Sk =
k∑
i=1

ξi, with S0 = 0, be the corresponding random

walk. Introduce the Shepp and the closely related Erdös-Rényi statistics

WN,L = max
1≤l≤L

TN,l and TN,L = max
1≤k≤N

Sk+L−1 − Sk−1,

and define

ζ
(N)
L (k) =

1√
N

(Sk+L−1 − Sk−1) =
1√
N

k+L−1∑
i=k

ξi.

We study the asymptotic behavior of the probability

P

(
max

0<k≤T N
0<L≤N

ζ
(N)
L (k) > u

)
(1.1)

when u → ∞, N → ∞ in a coordinated way. In fact, (1.1) is the
probability of exceeding the level u

√
N by the Shepp statistics WTN,N .

Related problems were described in [2], [9], [6] and [10]. Paper [9] presents
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the asymptotic behavior of the probability of moderate deviations for
Erdös-Rényi statistics under the assumption of sub-gaussian distribution
of random walk step and papers [6] and [10] study large deviations of
Erdös-Rényi and Shepp statistics for Cramér random walk. To get the full
picture of all possible cases of asymptotic behavior of (1.1) we reformulate

the result obtained by A.M. Kozlov in [6]. Let ψ(u) = 1√
2π

∞∫
u

e−x
2/2dx be

the tail of standard normal distribution and introduce the finite positive
constant

Jθ = lim
l→∞

1
θl

Eexp
{
θ max

0≤n<l
(
√

2Sn − θn)
}
.

Theorem 1.1 (A.M. Kozlov). Assume u→ ∞, N → ∞, u√
N

→ θ,

where 0 < θ <∞. If Tu2ψ(u) → 0 and Tu2 → ∞, then

P

(
max

0<k≤T N
0<L≤N

ζ
(N)
L (k) > u

)
∼ JθTu

2ψ(u).

The present paper extends this result to moderate and excessively
large deviations. For comparison and ease of reference we also restate
the main result of [13] which deals with the continuous time case and
is crucial in proving the asymptotic formula for the case of moderate
deviations. Let W (·) be a standard Brownian motion.

Theorem 1.2 (D. Zholud). Assume u→ ∞. If Tu2 → ∞ and
Tu2ψ(u) → 0, then

P

(
max
0≤t≤T
0≤s≤1

(W (t+ s) −W (t)) > u

)
= HTu2ψ(u)(1 + o(1)),

where the constant

H = lim
B→∞

lim
A→∞

A−1e−
A+B

2 E exp

(
max
0≤t≤A
0≤s≤B

(W (t+ s+A) −W (t))

)

is finite and positive.

The case of moderate deviations (i.e. u√
N

→ 0 when u→ ∞) is interme-
diate between Theorem 1.1 and Theorem 1.2.

Theorem 1.3. Assume u → ∞, N → ∞, u√
N

→ 0. If Tu2 → ∞ and
Tu2ψ(u) → 0, then

P

(
max

0<k≤T N
0<L≤N

ζ
(N)
L (k) > u

)
∼ HTu2ψ(u).
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Indeed, this asymptotic behavior is different from the one in Theorem 1.1
in the constant multiplier and coincides with the asymptotic behavior for
the case of continuous time, Theorem 1.2. The proof of Theorem 1.3 can
be found in Section 2.

A further comment is that if N → ∞ and u is fixed, then we could
apply weak convergence of a random walk to a Wiener process, and the
probabilities in Theorem 1.2 and Theorem 1.3 would coincide. However
Section 3 shows that just applying weak convergence under the probabil-
ity sign leads to incorrect results, and that the rigorous and somewhat
technical proof of Theorem 1.3 indeed is needed. The main result of this
section is as follows.

Theorem 1.4. Assume u → ∞, N → ∞, u√
N

→ ∞. If TNψ(u) → 0
and TN ≥ 1, then

P

(
max

0<k≤T N
0<L≤N

ζ
(N)
L (k) > u

)
∼ [TN ]ψ(u).

This theorem completes a full description of the possible asymptotic be-
havior of (1.1) under various relations between u and N .

Finally, using the results of sections 2-3 we obtain a limit Gumbel
distribution for M (N)

T when T,N → ∞. If one of the following relations
hold,

1)
2 lnT
N

→ 0. 2)
2 lnT
N

→ θ2 > 0. 3)
2 lnT
N

→ ∞,

then, there exist functions aT and bT such that for any fixed x

P

(
max

0<k≤T N
0<L≤N

aT (ζ(N)
L (k) − bT ) ≤ x

)
= e−e

−x

+ o(1).

The corresponding theorems and normalizing constants can be found in
Section 4. A similar result for standardized increments of Gaussian ran-
dom walk is obtained in [4].

There is also extensive literature on a.s. convergence of related quan-
tities, see e.g. [11], [2] and [3].

2 Moderate deviations of Shepp statistics.

In this section we prove Theorem 1.3. That is we find the asymptotic
behavior of the probability (1.1) when u → ∞ and u/

√
N → 0. It will

be shown that it coincides with the asymptotic behavior for continuous
time case, given in Theorem 1.2. The idea of the proof is similar to [13]
and we divide it into two main parts.
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First, for any positive constant B we focus on the asymptotic behavior
of a maximum of ζ(N)

L (k) over a thin layer

{(k, L) : 0 < k ≤ TN, (1 −Bu−2)N < L ≤ N}.

Within this area and for large u, ζ(N)
L (k) behaves approximately like

ζ
(N)
N (k), and it will be shown that it is possible to determine the asymp-

totic behavior using similar techniques as used for stationary process in
[9].

Second, knowing the asymptotic behavior of maximum of ζ(N)
L (k) over

the area of its maximum variance, we will show that the maximum over
the complementary set {(k, L) : 0 < k ≤ TN, 0 < L ≤ (1 − Bu−2)N}
gives a neglible contribution to the probability in (1.1).

The proof of the first part is based on the Double Sum Method. The
lemma below is the analog of Lemma 2.1 in [13]. Let A and B be pos-
itive constants and set p = Au−2, q = Bu−2. By A0(u) we will refer
to the set of pairs (k, L) ∈ [0, pN ] × ((1 − q)N,N ], where k and L are
positive integers.

Lemma 2.1. Let u→ ∞. Then

P

(
max
A0(u)

ζ
(N)
L (k) > u

)
= HB

A

1√
2πu

e−
u2
2 (1 + o(1)), (2.1)

where

HB
A = e−

A+B
2 E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A) −W (t)

)
.

Proof: Let [x] denote the integer part of x. We have

max
A0(u)

ζ
(N)
L (k) = max

A0(u)

1√
N

[k+L−1]∑
i=k

ξi

= 1√
N

[(1−q)N ]∑
i=[pN ]+1

ξi + max
A0(u)

1√
N

(
[pN ]∑
i=k

ξi +
k+L−1∑

i=[(1−q)N ]+1

ξi

)
.

The L+[pN ]− [(1−q)N ] random variables in the sums inside the ”max”
sign are independent of the variables in the sum outside the ”max” sign.
We renumber the variables inside the maximum sign and denote them by
ξ
′
i . Thus,

P
(

max
A0(u)

ζ
(N)
L (k) > u

)

5



= P

(
1√
N

[(1−q)N ]∑
i=[pN ]+1

ξi + max
0<k≤pN
0<L≤qN

1√
N

k+L+[pN ]−1∑
i=k

ξ
′
i > u

)

= 1√
2πσ2

∞∫
−∞

e−
v2

2σ2 P

(
max

0<k≤pN
0<L≤qN

1√
N

(S′
k+L+[pN ]−1 − S′

k−1) > u− v

)
dv,

where σ2 = [(1−q)N ]−[pN ]
N and S′

k stands for the sum
k∑
i=1

ξ
′
i with S′

0 = 0.

For the sake of briefness introduce

M(k, L) = max
0<k≤pN
0<L≤qN

1√
pN

(S′
k+L+[pN ]−1 − S′

k−1).

Using the change of variables v = u−
√
Aw
u , and recalling that u

√
p =

√
A,

the probability in question is seen to equal to

√
A√

2πσ2u

∞∫
−∞

e−
(u−√

Aw/u)2

2σ2 P (M(k, L) > w) ds

=
√
A√

2πσ2u
e−

u2

2σ2
∞∫

−∞
e−

Aw2/u2

2σ2 e
√

Aw
σ2 P (M(k, L) > w) dw. (2.2)

By weak convergence of a random walk to a Wiener process, for any
w,

lim
pN→∞

P (M(k, L) > w) = P

(
max
0≤t≤1

0≤s≤B/A

W (t+ s+ 1) −W (t) > w

)
,

whereW (·) is a standard Wiener process; using Lemma 1 [9] it is straight-
forward to show that

P (M(k, L) > w) ≤ 2e−
w2
24 .

Thus, by dominated convergence

∞∫
−∞

e−
Aw2/u2

2σ2 e
√

Aw
σ2 P (M(k, L) > w) dw

=
∞∫

−∞
e
√
AwP

(
max
0≤t≤1

0≤s≤B/A

(W (t+ s+ 1) −W (t)) > w

)
dw + o(1)

= 1√
A
E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A) −W (t)

)
+ o(1).

Finally, since σ2 = 1 − p − q + o(u−2) the factor in front of the inte-
gral (2.2) is equal to

√
A√

2πu
e−

u2
2 (1+p+q+o(u−2)(1 + o(1)) =

1√
2πu

e−
u2
2
√
Ae−

A+B
2 (1 + o(1))

6



and we obtain (2.1). �

Our next aim is to move on from the rectangle [0, pN ]×((1 − q)N,N ]
to the layer [0, TN ] × ((1 − q)N,N ]. We use Lemma 2.1 and Bonferroni
inequality to obtain estimates of the probability of high level excursions
of the maximum of ζ(N)

L (k). Then we will show that estimates from below
and from above are asymptotically equivalent.

Define Δk(u) = {kpN+1, ..., (k+1)pN}×{(1 − q)N + 1, ..., N}. For ease
of notation we suppress dependence on u and assume that pN and qN

are integers. Using stationarity of ζ(N)
L (k) with respect to k, we obtain

that

(Tp−1 + 1)P
(

max
Δ0

ζ
(N)
L (k) > u

)
≥ P

(
max

0<k≤T N
(1−q)N<L≤N

ζ
(N)
L (k) > u

)

≥ (Tp−1 − 1)P
(

max
Δ0

ζ
(N)
L (k) > u

)

− ∑
0≤l,m≤T p−1+1

l �=m

P
(

max
Δl

ζ
(N)
L (k) > u,max

Δm

ζ
(N)
L (k) > u

)
.

Let pl,m denote the summands in the last sum. This sum, due to sta-
tionarity, does not exceed

2(Tp−1 + 1)
Tp−1+1∑
n=1

p0,n.

Estimating the probabilities p0,n from above we will show that the double
sum is negligible, and thus the upper and lower estimates in Bonferroni
inequality will be asymptotically equivalent. The estimates of p0,n are
obtained in the same manner as in [9]. The proof will be divided into
four parts.

Case 1.1: 1 ≤ n < n0. The value of n0 will be chosen later. We
have:

p0,n ≤ P

(
max

0<k≤pN(n+1)/2
(1−q)N<L≤N

ζ
(N)
L (k) > u, max

pN(n+1)/2<k≤pN(n+1)
(1−q)N<L≤N

ζ
(N)
L (k) > u

)

= 2P

(
max

0<k≤pN(n+1)/2
(1−q)N<L≤N

ζ
(N)
L (k) > u

)
− P

(
max

0<k≤pN(n+1)
(1−q)N<L≤N

ζ
(N)
L (k) > u

)
.

7



Applying Lemma 2.1 we obtain that

p0,n ≤ 1√
2πu

(2HB
A(n+1)/2 −HB

A(n+1))e
−u2

2 (1 + gn(u,N)), (2.3)

where gn(u,N) → 0.

Case 1.2: n0 ≤ n ≤ εp−1 − 1. The value of ε will be chosen later.
First, introduce random variables

η = 1√
N

(1−q)N∑
i=(n+1)pN+1

ξi, ζ1 = 1√
N

npN∑
i=pN+1

ξi, ζ2 = 1√
N

npN+(1−q)N∑
i=pN+N+1

ξi.

Then, postponing the explanation of the last equality,

p0,n = P

(
η + ζ1 + max

Δ0

1√
N

(
pN∑
i=k

+
(n+1)pN∑
i=npN+1

+
k+L−1∑

i=(1−p)N+1

)
ξi > u,

η + ζ2 + max
Δn

1√
N

(
(n+1)pN∑
i=k

+
pN+N∑

i=(1−q)N+1

+
k+L−1∑

i=npN+(1−q)N+1

)
ξi > u

)

= P
(
η + ζ1 + max

Δ0
ζ

′
L(k) > u, η + ζ2 + max

Δ0
ζ

′′
L(k) > u

)
,

where

ζ
′
L(k) =

1√
N

⎛
⎝k+L−(1−q−2p)N−1∑

i=k

ξ
′
i

⎞
⎠

and (2.4)

ζ
′′
L(k) =

1√
N

⎛
⎝k+L−(1−2q−2p)N−1∑

i=k

ξ
′′
i

⎞
⎠ .

The main idea of this representation is that we consider ζ(N)
L (k) for all

possible pairs (k, L) ∈ Δ0 and ”extract” the common summand η + ζ1.
Analogously, for each (k, L) ∈ Δn we ”extract” the summand η + ζ2.
These summands are always present in ζ(N)

L (k) when k, L are within the
corresponding sets. It is easy to check that for ε < 1/2 and u large,
the restriction on n ensures that the variables η, ζ1, ζ2 are independent.
By construction they are also independent of the variables that remain
inside the maximum signs. The latter are renumbered and called ξ′i and
ξ′′i in such a way that (2.4) holds. Although ξ′i and ξ′′j may denote the

8



same r.v. ξr, in our case the dependence between ζ ′L(k) and ζ ′′L(k) does
not matter. What will be essential is that η, ζ1, ζ2, are independent of
ζ ′L(k) and of ζ ′′L(k). For the sake of brevity we omit the arguments for
ζ ′L(k) and ζ ′′L(k), as well as the set over which the maximum is taken.

From (2.4) it follows that

p0,n ≤ P (2η + ζ1 + ζ2 + max ζ ′ + max ζ ′′ > 2u)

= 1√
2πσ2

∞∫
−∞

P
(
ζ1+ ζ2

2 + max ζ′+ max ζ′′

2 > u− v
)
e−

v2

2σ2 dv,

where σ2 now is equal to [(1−q)N ]−[(n+1)pN ]
N . After the change of vari-

ables v = u−√
ps we get that

p0,n ≤
√
A√

2πσ2u
e−

u2

2σ2
∞∫

−∞
P
(
ζ1+ ζ2
2
√
p + max ζ′+ max ζ′′

2
√
p > s

)
e

√
As

σ2 ds

= σ√
2πu

e−
u2

2σ2 Ee
√

A
σ2

(
ζ1+ ζ2

2
√

p +max ζ′+ max ζ′′
2
√

p

)

= σ√
2πu

e−
u2

2σ2 Ee
√

A
σ2

(
ζ1+ ζ2

2
√

p

)
Ee

√
A

σ2

(
max ζ′+ max ζ′′

2
√

p

)
. (2.5)

We will now estimate the three factors that form the bound for p0,n.
Since σ2 = 1− q− (n+ 1)p+ o(u−2), for sufficiently large u the factor in
front of the expectation is bounded by

σ√
2πu

e−
u2

2σ2 ≤ 2√
2πu

e−
u2
2 e−

A(n+1)+B
2 .

Next, since random variable ζ1+ζ2
2
√
p is normally distributed, has zero mean

and its variance is less than (n− 1)/2 we have

Ee
√

A
σ2

(
ζ1+ ζ2

2
√

p

)
≤ e

A(n−1)
4σ4 .

In order to estimate the remaining expectation we will require an estimate
of the probability

P
(

max ζ ′ + max ζ ′′

2
√
p

> s

)
, s > 0.

According to notation in (2.4) and denoting S
′
k =

k∑
i=1

ξ
′
i and S

′′
k =

k∑
i=1

ξ
′′
i

we see that the latter equals

P
(

max
Δ0

(
S

′
k+L−(1−q−2p)N−1 − S

′
k−1

)
+

9



+ max
Δ0

(
S

′′
k+L−(1−2q−2p)N−1 − S

′′
k−1

)
> 2

√
pNs

)

≤ P
(

max
Δ0

S
′
k+L+(q+2p)N−N−1 + max

0<k≤pN
−S′

k−1+

+ max
Δ0

S
′′
k+L+(2q+2p)N−N−1 + max

0<k≤pN
−S′′

k−1 > 2
√
pNs

)

≤ 4P
(

max
0<k≤(2q+3p)N

S
′
k >

√
pN
2 s

)
≤ 4e−

1
8 ( A

3A+2B s
2) < 4e−

s2
24 , (2.6)

where we applied Lemma 1 [9] in the second to the last step.
Thus, for any positive t we obtain the following estimate

Eet
(

max ζ′+ max ζ′′
2
√

p

)
=

∞∫
−∞

tetsP
(

max ζ
′
+max ζ

′′

2
√
p > s

)
ds ≤ 1+4t

∞∫
0

ets−
s2
24 ds

= 1+4te6t
2

∞∫
0

e−
(s−12t)2

24 ds ≤ 1+4
√

24πte6t
2
. (2.7)

Then we put t =
√
A
σ2 and when A is large, the estimate 2.7 gives

Ee
√

A
σ2

(
max ζ′+ max ζ′′

2
√

p

)
<

8
√

24π
σ2

√
Ae

6A
σ4 .

We are now ready to estimate p0,n. Gathering the estimates of the factors
in (2.5) we get

p0,n ≤
16

√
24π
σ2

√
A√

2πu
e−

u2
2 e−An(

1
2− 1

4σ4 )+A( 23
4σ4 − 1

2 )−B
2 .

Owing to the restriction n0 ≤ n ≤ εp−1 − 1 we have

σ2 = 1 − q − (n+ 1)p+ o(u−2) > 1 − 2ε.

Choosing ε such that 4(1 − 2ε)2 = 3 we conclude that

p0,n ≤ C1

√
A√

2πu
e−

u2
2 e−A

n−43
6 −B

2 , (2.8)

where C1 is some positive constant.

Case 1.3: εp−1 ≤ n ≤ p−1 + 1. In much the same way the rep-
resentation (2.4) gives

p0,n ≤ P
(

2η + ζ1 + ζ2 + max
Δ0

ζ ′L(k) + max
Δ0

ζ ′′L(k) > 2u
)
.

However, when n ≥ εp−1, it may turn out that the sum in the expression
for η is empty. In this case we set η = 0. We should also change the upper
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limit of summation in the definition of ζ1 to min{npN, (1−p)N}, and the
lower limit of summation for ζ2 to max{2pN+(1−p)N+1, (n+1)pN+1}.
Therefore, ζ ′ and ζ ′′, may consist of a smaller number of summands.

For any positive t, multiplying both parts of the inequality under
the probability sign by t/2 and applying Chebyshev’s inequality to the
exponents, we obtain that

p0,n ≤ e−tuEet
(
η+

ζ1+ζ2
2 +max ζ′+max ζ′′

2

)

= e−tuEet(η+
ζ1+ζ2

2 )Eet
(

max ζ′+max ζ′′
2

)
. (2.9)

Although ζ ′ and ζ ′′ may contain smaller number of summands, it can
be seen that this does sufficiently change the proof of (2.6). Thus the
estimate (2.7) remains valid and

Eet
(

max ζ′+max ζ′
2

)
< 1 + 4

√
24πt

√
pe6t

2p. (2.10)

Next, according to the remark about limits of summation in ζ1 and ζ2,
the variance of ζ1+ζ22 does not exceed (n−1)p

2 . The variance of η does not
exceed max{0, 1−(n−1)p}. Applying Laplace transformation to the sum
η+ ζ1+ζ2

2 , and since restrictions on n provide (ε−p)/2 ≤ (n−1)p/2 ≤ 1/2,

Eet(η+
ζ1+ζ2

2 ) ≤ e
t2 max{ (n−1)p

2 ,1− (n−1)p
2 }

2 < e
t2(1−ε/4)

2 . (2.11)

So, gathering (2.11), (2.10) and (2.9),

p0,n ≤ (1 + 4
√

24πt
√
pe6t

2p)e
t2(1−ε/4)

2 e−tu.

Setting t = u
1−ε/4 , we obtain the desired estimate:

p0,n ≤ C2

√
Ae6Ae

− u2

2(1− ε
4 ) . (2.12)

Case 1.4: n > p−1+1. In this case the two events inside the probability
p0,n are independent and Lemma 2.1 gives

p0,n ≤ 2(HB
A )2ψ(u)2. (2.13)

The bounds obtained in cases 1.1-1.4 allow us to estimate p0,n for any
value of n. Let p0(u) = 1√

2πu
e−

1
2u

2
. Estimates (2.3), (2.8), (2.12), (2.13)

imply that

2(Tp−1 + 1)
Tp−1+1∑
n=1

p0,n ≤ 2(Tp−1 + 1) ×

11



×
{(

n0−1∑
n=1

(
2HB

A(n+1)/2 −HB
A(n+1)

)
(1 + gn(u,N))+

+
∞∑

n=n0

C1

√
Ae−A

n−43
6 −B

2

)
p0(u) +

+ p−1C2

√
Ae6Ae

− u2

2(1− ε
4 ) + Tp−12(HB

A )2ψ(u)2
}

.

Recall that p−1 = u2/A. If Tu2 → ∞ and Tu2ψ(u) → 0, then using
the estimate above and the Bonferroni inequality on page 2 we conclude
that

lim
u,N

P

(
max

0<k≤T N
(1−q)N<L≤N

ζ
(N)
L (k) > u

)/
Tu2p0(u) ≤ A−1HB

A

and (2.14)

lim
u,N

P

(
max

0<k≤T N
(1−q)N<L≤N

ζ
(N)
L (k) > u

)/
Tu2p0(u) ≥ A−1HB

A −

− 2A−1
n0−1∑
n=1

(
2HB

A(n+1)/2 −HB
A(n+1)

)
− 2C1e

− B
2√

A

∞∑
n=n0

e−A
n−43

6 .

It was proved in [13] that the limit

HB = lim
A→∞

A−1HB
A , HB > 0

exists. ThusA−1
(
2HB

A(n+1)/2 −HB
A(n+1)

)
→ 0, whenA→ ∞. Choosing

n0 to be greater than 43 and letting A in (2.14) tend to infinity we obtain
the asymptotic behavior of the probability of high level excursions for
maximum of ζ(N)

L (k) over the ’upper’ layer,

P

(
max

0<k≤T N
(1−q)N<L≤N

ζ
(N)
L (k) > u

)
= HBTu2p0(u)(1 + o(1)). (2.15)

The second part of the proof is to show that the asymptotic behavior
of the probability (1.1) is determined by the behavior of ζ(N)

L (k) over the
’upper’ layer, which corresponds to the area of the maximum variance
of the field. Thus we need to estimate the probability of the high level
excursion of the maximum of the random walk over the complementary
set. Applying stationarity of ζ(N)

L (k) with respect to k we obtain the
following estimate

12



P

(
max

0<k≤T N
0<L≤(1−q)N

ζ
(N)
L (k) > u

)

≤ (Tp−1 + 1)
p−1−1∑
n=1

P

(
max

0<k≤pN
(1−(n+1)q)N<L≤(1−nq)N

ζ
(N)
L (k) > u

)
. (2.16)

Let pn denote probability under the sum sign. Bounds for pn will be
obtained in two steps.

Case 2.1: n < 13
16p

−1 − 1. The restriction on n ensures that the sum
’extracted’ from ζ

(N)
L (k) in the equality below is not empty:

max
0<k≤pN

(1−(n+1)q)N<L≤(1−nq)N

ζ
(N)
L (k) = 1√

N

[(1−(n+1)q)N ]∑
i=[pN ]+1

ξi +

+ max
0<k≤pN

(1−(n+1)q)N<L≤(1−nq)N

1√
N

(
[pN ]∑
i=k

ξi +
k+L−1∑

i=[(1−(n+1)q)N ]+1

ξi

)
.

Repeating the proof of Lemma 2.1 we obtain the following analog of the
equality (2.2),

pn =
√
A√

2πσ′2u
e−

u2

2σ′2

∞∫
−∞

e−
Aw2/u2

2σ′2 e
√

Aw
σ′2 P (M(k, L) > w) dw, (2.17)

where σ′2 is equal to [(1−(n+1)q)N ]−[pN ]
N .

The expression (2.2) for the probability in Lemma 2.1 differs from (2.17)
only in the variance σ′2 of the ’extracted’ summand. Recall that σ2 in
Lemma 2.1 is equal to [(1−q)N ]−[pN ]

N . It is straightforward to show that

σ2

σ′2 = 1 +
nq

1 − (n+ 1)q − p
+ o(u−2) = 1 + z.

With this notation the right-hand side of (2.17) can be rewritten as

√
A√

2πσ′2u
e−

u2

2σ2 (1+z)

∞∫
−∞

e−
Aw2/u2

2σ2 (1+z)+
√

Aw
σ2 ze

√
Aw
σ2 P (M(k, L) > w) dw.

The first exponent under the integral sign is a parabola with respect to
w and attains its maximum at the point w = z

z+1
u2√
A

. Straightforward
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calculation then show that

pn ≤
√
A√

2πσ′2u
e−

u2

2σ2K

∞∫
−∞

e
√

Aw
σ2 P (M(k, L) > w) dw,

where
K = 1 +

z

1 + z
= 1 +

nq

1 − q − p
≥ 1 + nq.

Finally, owing to Lemma 2.1 there exists a constant C such that

pn ≤ σ

σ′ e
−nB

2 HB
A

1√
2πu

e−
u2
2 (1 + o(1)) ≤ Ce−

nB
2 HB

A p0(u),

where o(1) → 0 uniformly in n when u,N → ∞.

Case 2.2: np ≥ 13
16 . Now σ′2 can be arbitrary small and we estimate pn

using Lemma 1 of [9]:

pn ≤ P

⎛
⎝ max

0<k≤pN

0<L≤ 3
16 N

ζ
(N)
L (k) > u

⎞
⎠ ≤ 2P( max

0<k≤ 3
16N+pN

Sk >
1
2u

√
N)

≤ 2e
− u2

4( 3
16 +p) ≤ 2e−u

2
.

Thus, combining the estimates for pn obtained in cases 2.1 and 2.2, with
(2.16) and (2.15) we have

lim
u,N

P

(
max

0<k≤T N
0<L≤N

ζ
(N)
L (k) > u

)/
(Tu2p0(u)) ≤ HB +A−1HB

AC
∞∑
n=1

e−
nB
2

and

lim
u,N

P

(
max

0<k≤T N
0<L≤N

ζ
(N)
L (k) > u

)/
(Tu2p0(u)) ≥ HB .

It was proved in [13] that the limit H = lim
B→∞

HB exists and is posi-

tive. Letting first A, and then B tend to infinity, we conclude that upper
and lower limits coincide and equalH. This finishes the proof of Theorem
1.3.

3 Very large deviations of Shepp statistics.

Here we prove Theorem 1.4. The asymptotic behavior of the probability
(1.1) under assumption that u/

√
N → ∞ is considered. First, we find
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the asymptotic behavior of the probability

P
(

max
0<k≤TN

ζ
(N)
N (k) > u

)
. (3.1)

As in the previous section, we then show that the maximum of the field
ζ
(N)
L (k) over the complementary set {(k, L) : 0 < k ≤ TN, 0 < L ≤
N − 1} gives a neglible contribution to the probability (1.1).

Now a key lemma that plays an essential role in establishing the
asymptotic formula for (3.1).

Lemma 3.1. Let ξ1 and ξ2 be standard normal variables with correlation
coefficient α < 1. Then,

P (ξ1 > u, ξ2 > u) <
1√
2πu

e−
1
2u

2 1√
2πu

(1 + α)
√

1 + α√
1 − α

e−
1
2u

2 1−α
1+α .

Proof: The variable ξ2 can be expressed as the sum of two independent
variables αξ1 and ζ, where ζ ∼ N(0, 1 − α2). By ϕζ(·) we will refer to
the density function of ζ. Denoting the probability in the statement of
the lemma by I(u) we have

I(u) = P (ξ1 > u,αξ1 + ζ > u)

= 1√
2π

∞∫
u

e−
v2
2 P(ζ > u− αv)dv = − 1√

2π

∞∫
u

P(ζ>u−αv)
v de−

v2
2

= −P(ζ>u−αv)√
2πv

e−
v2
2

∣∣∣∞
u

+ 1√
2π

∞∫
u

e−
v2
2 dP(ζ>u−αv)

v

= e−
u2
2√

2πu
P (ζ > u(1 − α))+ 1√

2π

∞∫
u

e−
v2
2

(
α
ϕζ(u−αv)

v − P(ζ>u−αv)
v2

)
dv.

Write K(u) for the first summand in the last expression. The second
summand is less than

α√
2πu

∞∫
u

e−
v2
2 ϕζ(u− αv)dv

and thus I(u) is bounded by

K(u) + α√
2πu

∞∫
u

1√
2π(1−α2)

e
− 1

2

(
v2+

(u−αv)2

1−α2

)
dv

= K(u) + α e
− u2

2√
2πu

∞∫
u

1√
2π(1−α2)

e
− 1

2
(v−αu)2

1−α2 dv

= K(u) + αK(u) = 1√
2πu

e−
1
2u

2
(1 + α)P

(
ζ√

1−α2 > u
√

1−α√
1+α

)
.
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The lemma now follows from the standard upper estimate of standard
normal distribution tail. �

Next, we estimate (3.1) using Bonferroni inequality:

[TN ]P
(
ζ
(N)
N (1) > u

)
≥ P

(
max

0<k≤TN
ζ
(N)
N (k) > u

)

≥ [TN ]P
(
ζ
(N)
N (1) > u

)
− ∑

1≤l,m≤T N
l �=m

P
(
ζ
(N)
N (l) > u, ζ

(N)
N (m) > u

)
.

By stationarity, and applying Lemma 3.1 with

α = αn = Eζ(N)
N (1)ζ(N)

N (n) = max{0, N − (n− 1)
N

},

we get that the double sum is bounded by

2TN
TN∑
n=2

P
(
ζ
(N)
N (1) > u, ζ

(N)
N (n) > u

)
< 2TN

TN∑
n=N+1

P
(
ζ
(N)
N (1) > u

)2

+ 2TN
N∑
n=2

1√
2πu

e−
1
2u

2 1√
2πu

(1 + αn)
√

1+αn√
1−αn

e−
1
2u

2 1−αn
1+αn .

As before let p0(u) denote 1√
2πu

e−
1
2u

2
, the asymptotic bound for standard

normal distribution tail. The first summand is then less than

2(TN)2P
(
ζ
(N)
N (1) > u

)2

= 2(TN)2p0(u)2(1 + o(1))

and the second is estimated from above by

2TNp0(u)
2
√

2N√
2πu

N∑
n=2

(
e−

u2/N
4

)n−1

= o(TNp0(u)),

where we took into account that u/
√
N → ∞.

Replacing the double sum by its upper estimate and dividing both sides
of the Bonferroni inequality by [TN ]p0(u), and assuming TN ≥ 1, we get
that

1 + o(1) ≥
P
(

max
0<k≤TN

ζ
(N)
N (k) > u

)
[TN ]p0(u)

≥ 1 − 4TNp0(u)(1 + o(1)) + o(1).

Finally, for TNp0(u) → 0 we obtain the following asymptotic formula for
the probability (3.1),

P
(

max
0<k≤TN

ζ
(N)
N (k) > u

)
= [TN ]p0(u)(1 + o(1)). (3.2)
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The remaining step is to note that the probability for the maximum over
the complementary set is neglible. Since

P

(
max

0<k≤T N
0<L≤N−1

ζ
(N)
L (k) > u

)
≤ TN

N−1∑
L=1

P
(
ζ
(N)
L (1) > u

)

≤ TN
N−1∑
L=1

p0

(
u
√

N
L

)
= TNp0(u)

N−1∑
L=1

e−
u2(N−L)

2L

≤ TNp0(u)
N−1∑
L=1

(
e−

u2/N
2

)N−L
= o(TNp0(u)).

Combining this estimate and (3.2) we get the proof of Theorem 1.4.

4 Limit theorems for M
(N)
T .

In this section we consider the case when T,N go to infinity. It can be
shown that for appropriate normalization constants aT and bT the limit
distribution of

(
M

(N)
T − aT

)/
bT is Gumbel. Theorem 4.1 exhibits the

normalizing constants for three different limit relations between T and
N .

Theorem 4.1. Assume that one of the following relations hold:

1)
2 lnT
N

→ 0. 2)
2 lnT
N

→ θ2 > 0. 3)
2 lnT
N

→ ∞.

Then for any fixed x

P

(
max

0<k≤T N
0<L≤N

aT (ζ(N)
L (k) − bT ) ≤ x

)
= e−e

−x

+ o(1),

where

aT =
√

2 lnT , bT =
√

2 lnT +
F (T,N) + 1

2 (ln lnT − lnπ)√
2 lnT

and the function F (T,N) is given by

1) F (T,N) = lnH 2) F (T,N) = ln
Jθ
θ

3) F (T,N) = − ln
2 lnT
N

.

The proof follows from Lemma 3.1 of [13] closely, and is hence omitted.
The limit distribution for the case 2 lnT

N = θ2, 0 < θ < ∞ was ob-
tained by A.M. Kozlov in [6] and was reformulated in Theorem 4.1 for
comparison purpose.
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Extremes of Student’s t-statistics for non-normal and
not necessarily i.i.d. random variables.
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Göteborg, Sweden. dmitrii@math.chalmers.se

Abstract. Let X = (X1, X2, .., Xn), n ≥ 2, be a random vector with con-

tinuous joint density g. Consider Student’s t-statistic Tn =
√

nX−µ0√
S2 , where

X and S2 stand for the sample mean and the sample variance respectively.

We determine asymptotic expressions for P (Tn > u) when u → ∞ and show

they are accurate for small n. This gives a basis for new methods to correct

theoretical p-values in high-throughput screenings, where sample size can be

as low as two to five. The results are complemented by the examples and a

simulation study.

Key words. Student’s t-statistic, self normalized sums, asymptotic behav-

ior, extreme values, high-throughput screening, false positive/discovery rate,

test power, small sample size, non-normal, skewed, heavy tailed, dependent,

non-stationary, non-i.i.d.

AMS 2000 Subject Classifications: Primary-60G70, 60F10;
Secondary-62P10;

.

1 Introduction

The origin of this article was the paper [18] which studies systematic er-
rors in a particular kind of biological experiments (so called BioScreen
array experiments, see [2] and [3]) and their impact on false positive and
false discovery rates. Omitting details, the parameter of interest, called
LSC, was assumed to be normally distributed if the null hypothesis was
true. However, a histogram of the LSC values in a wild type data set
(for which the null hypothesis is known to be true) in fact is somewhat
skewed. We therefore made a p-p plot of all the (one sample) t-statistics
computed in this experiment, see Fig. 1. Each test was based on two
LSC replicates and the p-p plot showed clear deviations from the theo-
retical t1 distribution. Interestingly, both the lower and upper tails of the
plot approached straight lines, as indicated by the two arrows in Fig. 1.
However the slopes of these lines were different from the theoretical 45◦

slope. Similar behavior was observed in a number of related experiments.

The aim of the present paper is to give a theoretical explanation of this
phenomenon, and to give a basis for new methods to correct theoretical
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p-values - the latter will be pursued further in a subsequent paper.
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Figure 1: A histogram of 3456 LSC values from the wild type dataset (left).

The p-p plot for the corresponding t-tests (right). The diagonal line corre-

sponds to t1 distribution.

It is worth mentioning that the data in [18] showed similar behavior
for a two-sample t-test as well. The corresponding theoretical problem
will also be studied in a later paper.

Now follows the mathematical formulation of the problem. Let X =
(X1,X2, ..Xn), n ≥ 2, be a random vector with independent and nor-
mally distributed components with mean μ and variance σ2. The t-test
of the hypothesis H0 : μ = μ0 is based on

Tn =
√
n
X − μ0√

S2
,

where X = 1/n
n∑
i=1

Xi and S2 = 1/(n− 1)
n∑
i=1

(Xi −X)2.

Assuming the null hypothesis is true, the statistics Tn has a Student’s
t-distribution with n− 1 degrees of freedom. The t-distribution function
is given by

1 − tn−1(x) = P (Tn ≤ x) = K

x∫
−∞

(1 + t2/(n− 1))−n/2dt,

2



where K = Γ( n
2 )√

(n−1)πΓ( n−1
2 )

and Γ stands for the Gamma function.

In hypothesis testing, tail probabilities of the random variable Tn and
accurate approximations of those are important. New high-throughput
screening methods used in e.g drug discovery may lead to millions of bio-
chemical, genetic or pharmacological tests and the sample size used in
each test may then have to be as small as 2-5. This often makes a ”stan-
dard” Normal approximation inapplicable. Furthermore, the significance
level in a multiple testing situations then often is smaller than say 0.001.
This motivates study of the asymptotic behavior of the tail t-statistic
distribution for small sample size n.

When the sample size is small, the Normal approximation and the some-
what more accurate Edgeworth expansion (see e.x. [6], [7]) perform
poorly, especially in the tail area. The so-called saddlepoint approxi-
mation is more accurate. We cite [14]: ” To overcome the difficulties
encountered by the Normal approximation and the Edgeworth expansion,
one can consider using a saddlepoint approximation, which provides a
very good approximation to the tail, as well as in the center of the dis-
tribution. By a ’good’ approximation, here, we imply one with a small
relative error. By comparison, the Edgeworth expansion gives only ab-
solute errors. ” Except for numerical results, however, the saddlepoint
approximation [14], [15] does not provide any estimates for the relative
error. It provides good but complicated approximations and does not
tell anything explicit about the behavior of the t-statistics as one goes
further out in the tail.

Assume now X = (X1,X2, ..,Xn), n ≥ 2 is a general random vector,
where components need not be independent or identically distributed.
Let g(x1, x2, ..xn) be its density function, which we assume to be contin-
uous. We will show that under some (quite mild) regularity conditions
on g,

P (Tn > u)
tn−1(u)

= Kg + o(1) as u→ ∞, (1.1)

with an exact expression for the constant Kg given in Theorem 2.1.

Note that neither independence nor stationarity of the r.v.-s that con-
stitute the vector X is required. The regularity assumptions for g make
the result applicable to a wide class of densities. In particular this in-
cludes all the examples in numerical section of [14]. Furthermore, the
assumption of continuity of g can be weakened, see Corollary 2.1.3.

For Kg > 0, equation (1.1) implies that the relative error of approxima-
tion of the probability P (Tn > u) by Kgtn−1(u) tends to zero as u→ ∞.
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Under some extra assumptions on g, we obtain the limit behavior of the
absolute error in Theorem 2.2. Together with (1.1) this gives that the rel-
ative error converges to zero as O(1/u2) when u→ ∞. Theorem 2.2 can
be viewed as a more accurate approximation formula. In contrast to other
approximation methods, the speed of convergence in (1.1) is inversely pro-
portional to n. This is important for high throughput screening methods.

Consider a right-tailed t-test and small enough significance level α. As-
sume normality and independence under H0 and let g be the distribution
under H1. Equation (1.1) then gives that the test power and false dis-
covery rate (FDR) are approximately

Kgα and
m0

m0 +Kg(m−m0)
,

where m0 is the number of true null hypotheses and m−m0 is the number
of false null hypotheses. Note that the power of the test is proportional
to the significance level, and that, perhaps in contradiction to what could
be expected, FDR does not improve as one goes further out in the tail.
This observation can be extended to the case when the tests have not
necessarily the same distribution under H1.

The other way around, let g be the distribution under the null hypothesis.
Using 1 − α quantile of t-distribution, as if g was normal, is thus mis-
leading if g in fact is not normal. By Theorem 2.1 the true false positive
rate is instead approximately Kgα. Given the proportionality constant
Kg we can thus adjust the quantile. For the case when g is known, Kg

may be calculated directly. However, a key point now is that in case of
”unknown” g, the constant can be estimated from data under the null
hypothesis. But this is a subject of the later paper. We just mention the
advantage compared to other methods: the saddlepoint approximation,
for example, requires an exact analytical expression for the g.

There is an extensive literature on approximations of t-statistics. Pa-
pers [12], [13] and [8] describe the saddlepoint approximation method in
general, while [4], [14], [17] and [15] introduce saddlepoint approximation
for t-statistics. Related approximation methods, such as normal approx-
imation and Edgeworth expansion can be found in [6], [7], [5] and [10].

The structure of the paper is as follows. Section 2 contains the proof
of the main result (1.1) and the limit expression for the relative error
(see Theorem 2.1 and Theorem 2.2). The proofs are given in terms of
self normalized sums and the corresponding formulas for t-statistics are
presented in Corollary 2.1.3. Section 3 includes as examples the ap-
proximation formulas for normal, Cauchy, t2 and centered exponential
distributions and a simulation study of the relative errors.

4



2 Asymptotic expressions for P (Tn > u).

The aim of the current section is to establish an asymptotic formula
that provides accurate tail approximation for the case when population
distribution is not necessarily normal or i.i.d. Without loss of generality
we assume that μ0 in the definition of statistics Tn is zero. Otherwise
we could just subtract μ0 from each component of X and use the density
g̃ = g(x− μ0) instead. Variables in bold letters, if not defined otherwise,
denote the corresponding vectors, i.e x = (x1, x2, .., xn). We will do the
computations in terms of the so-called self-normalized sum Sn/Vn where
Sn and V 2

n are defined to be
∑
Xi and

∑
X2
i respectively. The standard

identity

{Tn ≥ u} =

{
Sn
Vn

≥ u

(
n

u2 + n− 1

)1/2
}

shows that the asymptotic behavior of P (Tn > u) as u → ∞ can be
derived from the asymptotic behavior of

p(ε) = P
(
Sn/Vn ≥ √

n(1 − ε)
)

for ε→ 0+.

Theorem 2.1. If g is continuous and there exists c <
√
n such that

∞∫
0

hn−1 max∑
x2

i
=h2∑

xi>ch

g(x1, x2, .., xn)dh <∞ (2.1)

then
p(ε)

tn−1(u(ε))
= Kg + o(1) as ε→ 0+, (2.2)

where the constant Kg is given by

Kg =
2(πn)n/2

Γ(n2 )

∞∫
0

hn−1g(h, h, .., h) dh (2.3)

and

u(ε) =
√
n− 1(1 − ε)√
1 − (1 − ε)2

. (2.4)

Proof: The starting point of the proof is equality

p(ε) =
∫
D1

g(x)dx,
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where D1 = {x : Sn/Vn ≥ √
n(1 − ε)} and dx is the standard notation

for dx1dx2..dxn. Let e1, e2, .., en be the standard basis in R
n, define a

unit vector In = (1/
√
n, 1/

√
n, .., 1/

√
n) and let A be some orthogonal

linear operator such that
A(en) = In. (2.5)

We now conduct a series of variable changes. First, changing coordinate

system x = Ay we have Sn =
√
nyn and V 2

n =
n∑
i=1

y2
i , and therefore

p(ε) =
∫
D2

g(Ay)dy,

where D2 =
{
y :

n∑
i=1

y2
i <

y2
n

(1−ε)2 , yn > 0
}

.

Next, the variable change yi = titn for i = 1, 2, ..n − 1 and yn = tn
gives

p(ε) =
∫
D3

tn−1
n g (tnA(t1, t2, .., tn−1, 1)) dt,

where D3 =
{
t :

n−1∑
i=1

t2i <
1

(1−ε)2 − 1, tn > 0
}
. From Fubini’s theorem

we obtain that

p(ε) =
∫

· · ·
∫

B

∞∫
0

tn−1
n g (tnA(t1, .., tn−1, 1)) dtndt1..dtn−1, (2.6)

where B =
{

(t1, ..tn−1) :
n−1∑
i=1

t2i <
1

(1−ε)2 − 1
}
.

We now split B up into the disjoint union of two half-balls

B1 = {(t1, ..tn−1) ∈ B, t1 ≥ 0} and B2 = {(t1, ..tn−1) ∈ B, t1 < 0}

and study the integrals over B1 and B2 separately. It will be seen that
the integrals have the same asymptotic behavior when ε→ 0+. We start
with the ”upper” half-ball B1. Introduce new variables r, k1, k2, ..kn−2, h
by

t1 = (n− 1)1/2r−1
√

1 − (k2
1 + k2

2 + ...+ k2
n−2),

ti = (n− 1)1/2r−1ki−1, for 2 ≤ i ≤ n− 1,

and
tn = (n− 1)−1/2 hr√

1 + r2/(n− 1)
, h, r > 0.
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By construction
n−1∑
i=1

t2i = (n− 1)r−2

and recalling the definition of u(ε) in (2.4), it is straightforward to show
that the equations above define a bijection between the sets{∑

k2
i < 1, r > u(ε), h > 0

}
and B1 × {tn > 0} .

The Jacobian determinant of the transformation is

(n− 1)n/2−1

(
1 −∑ k2

i

)−1/2

rn−1
√

1 + r2/(n− 1)

and according to the variable change above the integral (2.6) over B1

equals

∞∫
u(ε)

∫
· · ·
∫

∑
k2

i<1

∞∫
0

(
1 + r2/(n− 1)

)−n/2
H(r, k1, ..kn−2, h) dhdk1...dkn−2dr,

where

H(r, k1, ..kn−2, h) = (1−∑ k2
i )

−1/2

√
n−1

×

hn−1g

(
h√

1 + r2/(n− 1)
A

(√
1 −
∑

k2
i , k1, ..kn−2, r/

√
n− 1

))
.

Letting

F (r) =
∫

· · ·
∫

∑
k2

i<1

∞∫
0

H(r, k1, ..kn−2, h) dhdk1..dkn−2, (2.7)

we rewrite this as

∞∫
u(ε)

(
1 + r2/(n− 1)

)−n/2
F (r)dr. (2.8)

Note that u(ε) → ∞ as ε → 0+ and thus our next aim is to study the
asymptotic behavior of F (r) when r → ∞.
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First we find the point-wise limit of H(r, k1, .., kn−2, h) as r → ∞. Intro-
duce a unit vector

w(k1, k2, .., kn−2) =
(√

1 −
∑

k2
i , k1, ..kn−2, 0

)
(2.9)

and set
x(r) =

1√
1 + r2/(n− 1)

. (2.10)

Suppressing the argument of w, we rewrite H(r, k1, ..kn−2, h) as

(
1 −∑ k2

i

)−1/2

√
n− 1

hn−1g
(
hA
(
x(r)w +

√
1 − x(r)2en

))
. (2.11)

Now recall that the linear operator A in (2.11) is orthogonal, which gives
||A(w)|| = 1. Thus noting that x(r) → 0 as r → ∞ and using (2.5) we
get that for fixed h,

lim
r→∞hA

(
x(r)w +

√
1 − x(r)2en

)
= lim
r→∞

[
hx(r)A (w) + h

√
1 − x(r)2In

]
= hIn.

By assumption, the density g is continuous and from (2.11) we conclude
that

lim
r→∞H(r, k1, ..kn−2, h) =

(
1 −∑ k2

i

)−1/2

√
n− 1

hn−1g (hIn) . (2.12)

Next, we construct an integrable bound for H. The bound is obtained
by replacing the factor

hn−1g
(
hA
(
x(r)w +

√
1 − x(r)2en

))
(2.13)

in (2.11) by
hn−1 max∑

x2
i
=h2∑

xi>ch

g(x1, x2, .., xn), (2.14)

where constant c is defined by (2.1).

Indeed, using orthogonality of A, the argument of g in (2.13) satisfies∣∣∣∣∣∣hA(x(r)w +
√

1 − x(r)2en

)∣∣∣∣∣∣ = h

and the sum of its coordinates, owing to (2.5), is equal to〈
hA
(
x(r)w +

√
1 − x(r)2en

)
,
√
nIn
〉

= h
√
n
√

1 − x(r)2 > ch,
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where 〈·, ·〉 stands for scalar product and the last inequality holds for u
large enough. Thus (2.13) is bounded by (2.14).

We can now conclude that F (r) is bounded by a constant as follows.
Expression in (2.14) does not depend on k1, k2, .., kn−2 and hence, the
integral for the corresponding bound of H is a product of two finite in-
tegrals: the integral of (2.14) is finite according to (2.1) and the integral
of the remaining factor (which does not depend on h) is finite and equals
In−2/

√
n− 1, where constant In is defined in Lemma 2.1.

The dominated convergence theorem, (2.12) and Lemma 2.1 below hence
imply that

lim
r→∞F (r) =

∫
· · ·
∫

∑
k2

i<1

∞∫
0

(
1 −∑ k2

i

)−1/2

√
n− 1

hn−1g(hIn) dhdk1..dkn−2

=
In−2√
n− 1

∞∫
0

hn−1g(hIn) dh =
(πn)n/2√

(n− 1)πΓ(n−1
2 )

∞∫
0

hn−1g(h, h, .., h) dh.

We now go back to (2.6) and estimate the integral over the set B2. The
calculations are similar, except that the variable change on page 6 is
modified by taking t1 = −(n − 1)1/2r−1

√
1 − (k2

1 + k2
2 + ...+ k2

n−2). It
can be seen that further calculations are equivalent to estimating the
integral over B1 but with Ã(x) = A((−x1, x2, .., xn)) instead of A. The
linear operator Ã is orthogonal and satisfies (2.5). Redefine F (r) in (2.7)
accordingly and call it F̃ (r). Since the limit of F (r) does not depend on
A, the limits for F̃ (r) and F (r) coincide. Finally, p(ε) is the sum of (2.8)
and (2.8) with F (r) replaced by F̃ (r). Noting that u(ε) → ∞ as ε→ 0+
finishes the proof. �

To get a second order version of this result we next assume that g ∈
C2(Rn). Let ∇g and Hess(g) denote the gradient and the Hessian matrix
of g, respectively

∇g =
(
∂g

∂x1
,
∂g

∂x2
, ..,

∂g

∂xn

)

and

Hess(g) =

⎛
⎜⎜⎜⎜⎝

∂2g
∂x1∂x1

∂2g
∂x1∂x2

· · · ∂2g
∂x1∂xn

∂2g
∂x2∂x1

∂2g
∂x2∂x2

· · · ∂2g
∂x2∂xn

...
...

. . .
...

∂2g
∂xn∂x1

∂2g
∂xn∂x2

· · · ∂2g
∂xn∂xn

⎞
⎟⎟⎟⎟⎠ .

9



Assume also that

∞∫
0

hn||∇g||dh <∞ and

∞∫
0

hn+1 max∑
x2

i
=1∑

xi=0

x Hess(g) xT dh <∞, (2.15)

where gradient and Hessian are computed at the point (h, h, ..h). With
the notation of Theorem 2.1 we then have the following result

Theorem 2.2. If g ∈ C2(Rn) and satisfies (2.1) and (2.15), then

p(ε) −Kgtn−1(u(ε))

tn+1

(√
n+1
n−1u(ε)

) = Mg − Lg + o(1),

where

Lg =
(n− 1)(πn)n/2

Γ(n2 )

∞∫
0

hn
1
n

∑
i

∂g

∂xi
dh

and

Mg =
(n− 1)(πn)n/2

Γ(n2 )

∞∫
0

hn+1

⎡
⎣ 1
n

∑
i

∂2g

∂2xi
− 1
n(n− 1)

∑
i
=j

∂2g

∂xi∂xj

⎤
⎦ dh.

All the partial derivatives are computed at the point (h, h, ..h).

Proof: We start from equation (2.11). Our aim is to replace it by an
asymptotic expression for H(r, k1, .., kn−2, h) as r → ∞. Next, we will
obtain asymptotic expressions for F (r) and F̃ (r) and then substitute
them into (2.8). Recall that by F̃ (r) we denote the analog of (2.7) for
the case when integral (2.6) is calculated over the set B2, see Theorem
2.1. Define

f(x) = g
(
hA
(
xw +

√
1 − x2en

))
.

The derivatives f ′(x) and f ′′(x) are then equal to〈
∇g, hA(w) − h

x√
1 − x2

In

〉

and 〈(
hA(w) − h

x√
1 − x2

In

)
Hess(g), hA(w) − h

x√
1 − x2

In

〉
−

−
〈
∇(g), h

1
(1 − x2)3/2

In

〉
,

10



where ∇(g) and Hess(g) are taken at the point hA
(
xw +

√
1 − x2en

)
.

Taylor expansion for f(x) at 0 gives

f(x) = g (hIn) + h 〈∇g,A(w) 〉x+

+
1
2
[
h2 〈A(w)Hess(g), A(w)〉 − h〈∇g, In〉

]
x2 + o(x2), (2.16)

where ∇g and Hess(g) are computed at the point hIn. Setting x = x(r)
as defined by (2.10) and substituting it into (2.16) we get the asymptotic
expression for f(x(r)) as r → ∞. Substituting the latter into (2.11)
we get the asymptotic expression for H(r, k1, .., kn−2, h). The regularity
conditions (2.15) ensure that the dominated convergence theorem holds,
and the asymptotic expression for F (r) follows from (2.7). Replacing A
by Ã(x) = A((−x1, x2, .., xn)) we get the asymptotic expression for F̃ (r).
Note that the second summand in (2.16) gives no contribution to the sum
F (r) + F̃ (r) since the integral

∫
· · ·
∫

∑
k2

i<1

∞∫
0

(
1 −∑ k2

i

)−1/2

√
n− 1

hn 〈∇g,A(w)〉 dhdk1..dkn−2

changes sign, but not absolute value, when A is replaced by Ã. The latter
follows from the identity

Ã(w(k1, k2, .., kn−2)) = −A(w(−k1,−k2, ..,−kn−2))

and the symmetry of the ball
∑
k2
i < 1. Analogously, the integrals of the

third summand in (2.16) for A and Ã coincide. This gives

F (r) + F̃ (r) =
∫ ··· ∫∑
k2

i<1

∞∫
0

(1−∑ k2
i )

−1/2

√
n−1

hn−1 ×

(2.17)
× [2g (hIn) + h2 〈A(w)Hess(g), A(w)〉x(r)2 −

− h 〈∇g, In〉x(r)2
]
dhdk1..dkn−2+x(r)2o(1).

Substituting F (r) + F̃ (r) into (2.8) and using Lemma 2.1, straightfor-
ward calculations show that the first and the last summands in square
brackets in (2.17) contribute to p(ε) as

Kgtn−1(u(ε)) and − Lgtn+1

(√
n+ 1
n− 1

u(ε)

)
.

We next turn to the remaining summand and compute

∫
· · ·
∫

∑
k2

i<1

∞∫
0

hn+1 〈A(w)Hess(g), A(w)〉√
1 −∑ k2

i

dhdk1..dkn−2. (2.18)

11



The expression in the numerator is a quadratic form and can be written
as ∑

1≤i≤j≤n
αij(h)wiwj ,

where wi stands for i-th coordinate of the vector w and αij(h) are the
coefficients computed at the point h. Note that since

wj(k1, ..,−kj−1, .., kn−2) = −wj(k1, .., kj−1, .., kn−2) for j > 1

and

wi(k1, ..,−kj−1, .., kn−2) = wi(k1, .., kj−1, .., kn−2) for i �= j,

then

∫
· · ·
∫

∑
k2

i<1

∞∫
0

hn+1 αij(h)wiwj√
1 −∑ k2

i

dhdk1..dkn−2 = 0 for i �= j.

Together with wn = 0 the integral (2.18) then equals

n−1∑
i=1

∫
· · ·
∫

∑
k2

i<1

∞∫
0

hn+1 αii(h)w2
i√

1 −∑ k2
i

dhdk1..dkn−2,

and substituting w1 =
√

1 −∑ k2
i , wi = ki−1 for 1 < i < n and using

Lemma 2.1 we get

In−2

∞∫
0

hn+1α11(h) dh+
n−1∑
i=2

In−2

n− 1

∞∫
0

hn+1 (αii(h) − α11(h)) dh

=
In−2

n− 1

∞∫
0

hn+1
n−1∑
i=1

αii(h) dh,

where In is defined in Lemma 2.1. Writing A for the matrix of the
operator A, we have

n∑
i=1

αii(h) = tr(A Hess(g)AT ) = tr(Hess(g)) =
∑
i

∂2g

∂2xi

and

αnn(h) = 〈A(en)Hess(g), A(en)〉 =
1
n

∑
i,j

∂2g

∂xi∂xj
.

12



The integral (2.18) thus equals

In−2

∞∫
0

hn+1

⎡
⎣ 1
n

∑
i

∂2g

∂2xi
− 1
n(n− 1)

∑
i
=j

∂2g

∂xi∂xj

⎤
⎦ dh,

where all partial derivatives are computed at hIn. Substituting the ex-
pression above into (2.17) and then (2.17) into (2.8), simple algebra gives

the remaining terms Mgtn+1

(√
n+1
n−1u(ε)

)
and o(tn+1(u(ε))). �

In the proof we have used the following lemma.

Lemma 2.1. We have that

In =
∫

∑
x2

i<1

1√
1 −∑x2

i

dx =
∫

∑
x2

i<1

(n+ 1)x2
1√

1 −∑x2
i

dx =
π(n+1)/2

Γ(n+1
2 )

.

Proof: Passing to spherical coordinates it can be seen that

In =

1∫
0

rn−1
(
1 − r2

)−1/2
dr

1∫
0

rn−1dr

∫
∑
x2

i<1

1 dx.

The integral on the right-hand side of the last equation is a volume of a
unit n-ball and equals π

n
2 /Γ(n2 + 1). Combining this with

1∫
0

rn−1
(
1 − r2

)−1/2
dr =

√
πΓ(n2 )

2Γ(n+1
2 )

we get the first equality. Similarly,

Jn =

1∫
0

rn+1
(
1 − r2

)−1/2
dr

1∫
0

rn−1dr

π∫
0

cos2(ϕ1) sin(ϕ1)n−2dϕ1

π∫
0

sin(ϕ1)n−2dϕ1

∫
∑
x2

i<1

1 dx

and direct calculation gives the second equality. �

Note that the dominated convergence theorem used in Theorems 2.1 and
2.2 can be relaxed to hold only almost everywhere and the assumption
of continuity of g can then be weakened. We now develop this idea. Let
C0 be the set of such positive x that g is continuous at the point xIn.
Similarly, let C2 be the set of positive x for which g is twice differentiable
at the point xIn. Below follows a summary of the above theorems in
terms of tail probabilities of t-statistics.
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Corollary 2.1.3. If μ(C0) = 1 and g satisfies condition (2.1) of Theorem
2.1, then

P (Tn > u)
tn−1(u)

= Kg + o(1) as u→ ∞,

where the constant Kg is defined in Theorem 2.1 and positive if there
exists a point x ∈ C1 such that g(xIn) > 0. If, in addition, μ(C2) = 1
and g satisfies (2.15), then

P (Tn > u) −Kgtn−1(u)

tn+1

(√
n+1
n−1u

) = Mg − Lg + o(1),

where constants Mg and Lg are defined in Theorem 2.2.

An interesting consequence of the corollary is that the tail of non-central
t-distribution is asymptotically constant times the tail of the correspond-
ing t-distribution.

3 Simulation study

In this section we study the relative error of approximations of P (Tn > u)

by Kgtn−1(u) and by Kgtn−1(u)+ (Mg − Lg) tn+1

(√
n+1
n−1u

)
. For sim-

plicity we limit our simulations to the i.i.d case so that g(x1, x2, .., xn) =
g(x1)g(x2)..g(xn) for some density g(x). The constants Kg, Lg and Mg

then take form

Kg = 2cn

∞∫
0

hn−1g1(h)n dh , Lg = (n− 1)cn

∞∫
0

hng′1(h)g1(h)
n−1 dh

and

Mg = (n− 1)cn

∞∫
0

hn+1
[
g′′1 (h)g1(h)n−1 − (g′1(h))

2g(h)n−2
]
dh,

where cn = (πn)n/2

Γ( n
2 ) . As in the simulation study of [15] we choose g to

be the normal, Cauchy, t2 or centered exponential density. It can be
checked that these densities satisfy the conditions of Corollary 2.1.3 and
that the constants Kg and Mg−Lg are as given in Table 1. The constants
for normal distribution with non-zero mean are calculated numerically,
see Appendix A. In connection with the Cauchy and t2 distributions it
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is worth mentioning a more general formula. That is, when g is a t-
distribution with ν degrees of freedom,

Kg =
(πn)n/2 B

(
nν
2 ,

1
2

)
√
πB
(
ν
2 ,

1
2

)n and Mg − Lg =
n2 + n− 2
n(ν + 1) + 2

Kg,

where B(·, ·) stands for the Beta function.

Distribution Density g Kg Mg − Lg

N(0, σ2) 1√
2πσ

e−
1

2σ2 x
2

1 0

Cauchy 1
π(1+x2)

nn/2

(4π)
n−1

2 Γ(n+1
2 )

n2+n−2
2n+2 Kg

t2
1

(2+x2)3/2
(πn)n/2Γ(n)

2nΓ( 3n
2 )

n2+n−2
3n+2 Kg

Centered
Exponential

e−(x+1), x ≥ −1 2πn/2Γ(n)

ennn/2Γ(n
2 )

(n−1)
2 Kg

Table 1: The constants Kg and Mg−Lg for the normal, Cauchy, t2 or centered

exponential densities.

We start with the analysis of the relative error for normal distribution. If
g ∼ N(μ, σ2) then Tn has a non-central t-distribution with n− 1 degrees
of freedom and non-centrality parameter μ

√
n/σ. Setting σ2 = 1, the

−1.2 −0.6 0 0.6 1.2
0.5

0.8

0.95

1

1
 
−
 
P
(
 
T
n
 
>
 
u
 
)

Non−Centrality μ n1/2
−1.2 −0.6 0 0.6 1.2

0.5

0.8

0.95

1

Non−Centrality μ n1/2

Figure 2: The region of small (less than 0.01) absolute relative error for the first

order (left plot) and second order (right plot) approximations of P (Tn > u).

The red, green and blue areas correspond to n = 2, 3 and 5 accordingly. Tn

has a non-central t-distribution.
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plots in fig. 2 show the behavior of the relative error for different combi-
nations of threshold u and non-centrality parameter μ

√
n.

First, we see that the more the initial distribution deviates from standard
normal (the non-centrality parameter is proportional to μ), the slower
the relative error converges to zero. Second, the ’nested’ structure of
the sets shows that given a fixed value of the non-centrality parameter
(μ
√
n = const), the relative error converges slower for larger n.

The behavior of the relative error for a fixed threshold u is illustrated
by fig. 3.

−1−0.6
0

0.61

0
3

6

−0.49

0

0.49

Non−Centrality μ n1/2
Threshold  u

−1−0.6
0

0.61

0
3

6

−0.49

0

0.49

Non−Centrality μ n1/2
Threshold  u

−1−0.6
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0.61

0
3

6

−0.49
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0.49

Non−Centrality μ n1/2
Threshold  u

−1−0.6
0

0.61

0
3

6

−0.49

0

0.49

Non−Centrality μ n1/2
Threshold  u

Figure 3: The relative error versus non-centrality parameter μ
√

n and thresh-

old u. The left and right plots correspond to the first and second order ap-

proximation formulas respectively; the upper plots correspond to n = 2 and

the lower plots to n = 5. Small (less than 0.01) values of the absolute relative

error are shown in green.

It can be seen that the relative error tends to infinity when μ
√
n → ∞

(n is fixed) and also when n→ ∞ and the non-centrality parameter μ
√
n

is fixed and non-zero. The first observation is purely empirical and the
second can be derived from Theorem 2.4 of [1] and expressions for the
constants Kg and Mg − Lg in Appendix A.

We now proceed with the examples of [15]. Since the exact value of
the probability P (Tn > u) is hard to calculate, we only consider sample
sizes 2 and 5. When using Monte-Carlo simulations, it is important to
take into account that the relative error of the method itself depends
not only on the number of simulations, but also on the value of the esti-
mated probability. We thus set the number of simulations varying from
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1, 000, 000 to 5, 000, 000, 000 inversely proportionally to P (Tn > u). The
range of values for u is such that tn(u) varies from 0.5 to 0.999 for n = 2
and from 0.5 to 0.9999 for n = 5. The simulation for standard normal
distribution showed that the relative error of the Monte-Carlo method
itself is less than 0.001 uniformly in u.

As we see from fig. 4, the approximations for n = 2 are extremely ac-
curate starting from as low as q0.95. The relative errors for the first and
second order approximations are less than 0.01 and 0.0005 respectively
for all three distributions.

0.5 0.8 0.95
−0.1

0.01

0.05

0.1

0.3

0.5

R
el

at
iv

e 
E

rr
or

0.5 0.8 0.95
t
n−1

(u)
0.5 0.8 0.95

Figure 4: n = 2. The plots show the relative error for the approximation of

P (Tn > u) by Kgtn−1(u) (red line) and Kgtn−1(u)+(Mg − Lg) tn+1

(√
n+1
n−1

u
)

(black line). Left, middle and right plots correspond to Cauchy, t2 and centered

exponential distributions accordingly. The horizontal blue line is a zero mark.

According to the simulation section of [14], this is much more accurate
than the precision of the saddlepoint approximation for n = 5. For the
case n = 5 similar precision is reached further out in the tail (from 0.0005
to 0.0001 quantile), see fig. 5.
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Figure 5: n = 5. The same as in fig. 4 except that the order of the plots is

from the upper to the lower. We use original scale for x-axis and qr stand for

r-quantile of the t5 distribution.
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Appendix A: Constant estimation.

Let g(x) = N(μ, 1). The computation of the constants Kg, Lg and Mg

is done separately for μ > 0 and μ < 0. The Mathematica 6.0 code for
μ > 0 follows:

g[x ]:=PDF[NormalDistribution[μ, 1], x];

cn:=
(πn)n/2

Gamma[n
2 ] ;

Assuming
[
μ > 0 && n ∈ Integers && n > 0,

{
k = FullSimplify

[
2cnIntegrate

[
xn−1g[x]n, {x, 0,∞}]] ,

l = FullSimplify
[
(n− 1)cnIntegrate

[
xn∂xg[x]g[x]n−1, {x, 0,∞}]] ,

m = FullSimplify
[
(n− 1)cn

Integrate
[
xn+1

(
∂x,xg[x]g[x]n−1 − (∂xg[x]) 2g[x]n−2

)
, {x, 0,∞}]]

}]
Executing the code above gives

Kg = Hypergeometric1F1
(

1 − n

2
,
1
2
,−nμ

2

2

)
(3.1)

+

√
2nμΓ

(
n+1

2

)
Hypergeometric1F1

(
1 − n

2 ,
3
2 ,−nμ2

2

)
Γ
(
n
2

) ,

and by FullSimplify [m− l] we obtain that

Mg −Lg = − (n− 1)μ
2
√
nΓ
(
n
2

)e−nμ2

2 × (3.2)

×
(
n3/2μΓ

(n
2

)
Hypergeometric1F1

(
n

2
+ 1,

3
2
,
nμ2

2

)

+
√

2Γ
(
n+ 1

2

)(
(n+ 1)Hypergeometric1F1

(
n+ 3

2
,
3
2
,
nμ2

2

)

−nHypergeometric1F1
(
n+ 1

2
,
3
2
,
nμ2

2

)))
,

where Γ stands for the Gamma function and Hypergeometric1F1 (fur-
ther simply 1F1) is the Kummer’s confluent hypergeometric function of
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the first kind.

The code for μ < 0 is identical, except that μ > 0 in the ”Assuming”
statement is replaced by μ < 0. In this case

Kg =
e−

nμ2

2 Γ
(
n+1

2

)
HypergeometricU

(
n
2 ,

1
2 ,

nμ2

2

)
√
π

,

where HypergeometricU (further simply U) is the Kummer’s confluent
hypergeometric function of the second kind. Assuming μ < 0 and using
the identity

U(a, b, z) =
π

sinπb

[
1F1(a, b, z)

Γ(a− b+ 1)Γ(b)
− z1−b

1F1(a− b+ 1, 2 − b, z)
Γ(a)Γ(2 − b)

]

and Kummer’s transformation 1F1(a, b, z) = ez1F1(b− a, b,−z) it is easy
to show that the expression above is equivalent to (3.1). The expression
for Mg − Lg (after some re-arrangement) gives (3.2) and formulas (3.1)
and (3.2) are thus valid for any μ. Interestingly, Mathematica 6.0 would
not be able to compute the constants without considering the two sepa-
rate cases.

The constants for the Cauchy, t2 and centered exponential densities
are obtained by replacing g[x ]:=PDF[NormalDistribution[μ, 1], x] by the
corresponding distribution. The ”Assuming” statement is modified ac-
cordingly.
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neering, (Marcel Dekker, New York , 2001)

[2] http://mathworld.wolfram.com/topics/
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Appendix B: Contour plots.

The construction of fig. 2 and fig. 3 in the simulation section involves
non straight-forward computations. First, consider the Mathematica 6.0
code that would have produced produce fig.2 and fig.3. Let k[μ ,n ] and
k[μ ,n ] be the constants Kg and Mg−Lg as defined in Appendix A. The
probability P (Tn > u) is computed by

pt[μ ,n ,u ]:=1−CDF [NoncentralStudentTDistribution [n− 1, μ
√
n] , u]

and the (first and second order) approximation formulas take form

f1[μ ,n ,u ]:=k[μ, n](1 − CDF[StudentTDistribution[n− 1], u])

and

f2[μ ,n ,u ]:=k[μ, n](1 − CDF[StudentTDistribution[n− 1], u])

+ ml[μ, n]
(
1 − CDF

[
StudentTDistribution[n+ 1],

√
n+1
n−1u

])
.

The relative errors re1[μ ,n ,u ] and re2[μ ,n ,u ] equal

1 − f1[μ, n, u]/pt[μ, n, u] and 1 − f2[μ, n, u]/pt[μ, n, u].

The following fragment illustrates that Mathematica 6.0 does not provide
flexible enough numerical computation tools.

RegionPlot
[{

Abs
[
re1
[
μ
/√

2 , 2, u
]]
< 0.01,

Abs
[
re1
[
μ
/√

3 , 3, u
]]
< 0.01,

Abs
[
re1
[
μ
/√

5 , 5, u
]]
< 0.01

}
, {μ,−2, 2}, {u, 0, 11},

PerformanceGoal → ”Quality”,PlotPoints → 20,

MaxRecursion → 1]

For simplicity we use the scale which is different from the scale in fig.2.
Constructing the plots in the same scale as in fig. 2 would result in much
more severe problems. The output of the above code is displayed in fig.
6. Comparing with the plots in fig. 2 we notice that the behavior of the
relative errors in the lower part of the graph differs (the thin regions are
cut off). Increasing the PlotPoints or MaxRecursion parameters would
result in sufficiently longer computational time (presumably, due to the
way Mathematica 6.0 computes the non-central t-distribution) and huge
image size, while down-sampling to bitmap format causes blurriness.
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Figure 6: The contour plots produced by Mathematica 6.0.

To overcome this problem we considered using MathLab 2008. Note
that in order to estimate the contour lines both MatLab and Mathemat-
ica evaluate the function on the pre-defined grid. The disadvantage of
such approach in Mathematica, for example, is that the grid is equally-
spaced. Thus setting the PlotPoints parameter to an even number one
would never get the whole peak that corresponds to zero non-centrality
parameter (assuming the interval is symmetric). Setting PlotPoints to
21, on the other hand, would give much better quality for the first order
approximation formula. The thin regions for the second plot will still be
missing, since to capture all the ”locations” of the thin regions one would
need to choose too small grid step. The latter results in days of compu-
tation and megabytes of space for storing the figure with such resolution
in a vector format. To overcome the problem we consider using our own
algorithm for contour line estimation. Let F (x, y) = 0 be the twice differ-
entiable contour line with bounded curvature and assume that the initial
point (x0, y0) with dist((x0, y0), F (x, y) = 0) < ε for some small enough
positive ε is given. The contour line is estimated point-by-point, start-
ing at (x0, y0) and following those of the two possible directions which is
”closer” to the initial vector. The initial vector must not coincide with
∇F (x0, y0). Unlike in the ”grid approach”, the resulting contour line is
a locally simply connected component. If the contour line has more than
one path connected components then the step r should be set smaller
than minimum of the distances between the current component and all
the other components. The latter ensures that the algorithm does not
”jump” from one component to another.

function [x y]=SmoothContour(x0,y0,Fun,r,boundx,boundy)
% alpha - the angel between the direction of the contour
% line and OX axis. boundx and boundy are boundary
% intervals for x and y. MaxIterations - maximum allowed
% iterations of the algorithm.
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MaxIterations=1000;
MinCycleLength=8;
eps=0.0000001;
a_eps=0.001;

% Setting initial guess for the countour line direction.
% In this example - towards the region center. Choose other
% direction if needed.

alpha=angle((mean(boundx)-x0)+sqrt(-1)*(mean(boundy)-y0));

% Check if (x0,y0) belongs to the contour line.

if abs(Fun(x0,y0))<eps
SolutionFound=1;
x=zeros(1,MaxIterations);
y=zeros(1,MaxIterations);
x(1)=x0;
y(1)=y0;

else
x=[];
y=[];
return

end

Iter=1;
Cycled=0;

% Iteration cycle is repeated while solution F(x,y)=0 exists
% and within bounds, maximum number of iterations is not
% reached and contour plot does not intersect with itself.

while (SolutionFound)&&(Iter<MaxIterations)&&(~Cycled)...
&&(boundx(1)<=x(Iter))...
&&(x(Iter)<boundx(2)) ...
&&(boundy(1)<=y(Iter))...
&&(y(Iter)<boundy(2)) ...

% Check if Fun(x,y) has different signs alone the contour
% line. The estimated angel alpha of the contour line
% direction must not be orthogonal to the contour line
% direction.
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if Fun(x(Iter)+r*cos(alpha)+r*cos(alpha-pi+a_eps)...
,y(Iter)+r*sin(alpha)+r*sin(alpha-pi+a_eps))...

*Fun(x(Iter)+r*cos(alpha)+r*cos(alpha+pi-a_eps)...
,y(Iter)+r*sin(alpha)+r*sin(alpha+pi-a_eps))>0

break;
end

% Find the next contour point.

[alpha_new, fval, SolutionFound]=fzero(...
@(a) Fun(x(Iter)+r*cos(alpha)+r*cos(a),...
y(Iter)+r*sin(alpha)+r*sin(a))...
,[alpha-pi+a_eps alpha+pi-a_eps]);

% If no solution found - terminate.

if (~SolutionFound)
break;

end

% Else - compute the coordinates of the contour point.

x(Iter+1)=x(Iter)+r*cos(alpha)+r*cos(alpha_new);
y(Iter+1)=y(Iter)+r*sin(alpha)+r*sin(alpha_new);

% If contour line intersects with itself - terminate.

if (Iter>MinCycleLength)&&...
(...
min((x(1:Iter-MinCycleLength)-x(Iter+1)).^2 ...

+(y(1:Iter-MinCycleLength)-y(Iter+1)).^2)...
<=4*r^2 ...
)
disp(’Self-intersection found.’);
break;

end

% Re-estimate the direction of the contour line and continue
% with the next iteration

alpha=angle((x(Iter+1)-x(Iter))...
+sqrt(-1)*(y(Iter+1)-y(Iter)));

Iter=Iter+1;
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end

x(Iter:end)=[];
y(Iter:end)=[];

Next follows the implementation of the Kummer’s confluent hypergeo-
metric function of the first kind (see constant estimation, Appendix A).

function y=Hypergeometric1F1(a,b,z)

MaxIterations=100;
Prescision=0.0000000000001;
x=zeros(length(z),MaxIterations);
n=0;

while True
n=n+1;
x(:,n)=prod((a:a+n-1)./(b:b+n-1)./(n:-1:1))*(z.^n)’;
if ((n>MaxIterations)||(sum(abs(x(:,n))>Prescision))==0)

break;
end

end

y=sum(x,2)’+1;

And the relative errors for the first and second order approximation for-
mulas are defined as follows:

function y=RelativeError1(mu,n,u)
% Computing relative error of approximation formula (1)

k=Hypergeometric1F1((1-n)/2, 1/2, -n*mu.^2/2)...
+ sqrt(2*n)*gamma((n + 1)/2)/gamma(n/2)*mu...
.*Hypergeometric1F1(1 - n/2, 3/2, -n*mu.^2/2);

f= k*(1 - tcdf(u,n-1));
ptrue= 1 - nctcdf(u,n-1,mu*sqrt(n));
y = 1 - f./ptrue;

function y=RelativeError2(mu,n,u)
% Computing relative error of approximation formula (2)

k=Hypergeometric1F1((1-n)/2, 1/2, -n*mu.^2/2)...
+ sqrt(2*n)*gamma((n + 1)/2)/gamma(n/2)*mu...
.*Hypergeometric1F1(1 - n/2, 3/2, -n*mu.^2/2);
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ml= -1/(2*sqrt(n)*gamma(n/2))*(n - 1)*mu...
.*exp(-n*mu.^2/2)...
.*(...

n^(3/2)*gamma(n/2)*mu...
.*Hypergeometric1F1(1 + n/2, 3/2, n*mu.^2/2)...
+ sqrt(2)*gamma((n + 1)/2)...
*(...
-n*Hypergeometric1F1((n + 1)/2, 3/2, n*mu.^2/2)...
+(n + 1)...
*Hypergeometric1F1((n + 3)/2, 3/2, n*mu.^2/2)...
)...
);

f = k*(1 - tcdf(u,n-1)) + ...
ml*(1 - tcdf(sqrt((n + 1)/(n - 1))*u,(n + 1)));

ptrue= 1 - nctcdf(u,n-1,mu*sqrt(n));
y = 1 - f./ptrue;

Finally, we build the plots.

LE=norminv(0.1,0,1);
RE=norminv(0.9,0,1);
Step=0.01;
MaxP=0.99999;
MaxU=13;
Scale=’No P-Value’;
Color=[’r’ ’g’ ’b’];

figure() %First plot

i=1;
for n=[2 3 5]

r1=fzero(@(mu) RelativeError1(mu,n,0)-0.01,[ -1 0]);
r2=fzero(@(mu) RelativeError1(mu,n,0)+0.01,[ 0 1]);
if strcmp(Scale,’P-Value’)

[x1 y1]=SmoothContour(r1,0,...
@(mu,u) RelativeError1(mu,n,u)-0.01,Step,...
[LE RE],[0 tinv(MaxP,n-1)]);
[x2 y2]=SmoothContour(r2,0,...
@(mu,u) RelativeError1(mu,n,u)+0.01,Step,...
[LE RE],[0 tinv(MaxP,n-1)]);
y=tcdf([y1(length(y1):-1:1) y2],n-1);

else
[x1 y1]=SmoothContour(r1,0,...
@(mu,u) RelativeError1(mu,n,u)-0.01,Step,...
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[LE RE],[0 MaxU]);
[x2 y2]=SmoothContour(r2,0,...
@(mu,u) RelativeError1(mu,n,u)+0.01,Step,...
[LE RE],[0 MaxU]);
y=[y1(length(y1):-1:1) y2];

end

x=[x1(length(x1):-1:1) x2];

area(x,y,1+(MaxU-1)*(1-strcmp(Scale,’P-Value’)),...
’FaceColor’,Color(i));

hold on;
i=i+1;

end

figure() %Second plot

i=1;
for n=[2 3 5]

r1=fzero(@(mu) RelativeError2(mu,n,0)-0.01,[ -1 0 ]);
r2=fzero(@(mu) RelativeError2(mu,n,0)+0.01,[ 0 0.1]);
r3=fzero(@(mu) RelativeError2(mu,n,0)+0.01,[ 0.1 1]);
r4=fzero(@(mu) RelativeError2(mu,n,0)-0.01,[ 0.1 1 ]);
if strcmp(Scale,’P-Value’)

[x1 y1]=SmoothContour(r1,0,...
@(mu,u) RelativeError2(mu,n,u)-0.01,Step,...
[LE RE],[0 tinv(MaxP,n-1)]);
[x2 y2]=SmoothContour(r2,0,...
@(mu,u) RelativeError2(mu,n,u)+0.01,Step,...
[LE RE],[0 tinv(MaxP,n-1)]);
[x3 y3]=SmoothContour(r4,0,...
@(mu,u) RelativeError2(mu,n,u)-0.01,Step,...
[LE RE],[0 tinv(MaxP,n-1)]);
y=tcdf([y1(length(y1):-1:1) y2 0 y3],n-1);

else
[x1 y1]=SmoothContour(r1,0,...
@(mu,u) RelativeError2(mu,n,u)-0.01,Step,...
[LE RE],[0 MaxU]);
[x2 y2]=SmoothContour(r2,0,...
@(mu,u) RelativeError2(mu,n,u)+0.01,Step,...
[LE RE],[0 MaxU]);
[x3 y3]=SmoothContour(r4,0,...
@(mu,u) RelativeError2(mu,n,u)-0.01,Step,...
[LE RE],[0 MaxU]);
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y=[y1(length(y1):-1:1) y2 0 y3];
end

x=[x1(length(x1):-1:1) x2 r3 x3];

area(x,y,1+(MaxU-1)*(1-strcmp(Scale,’P-Value’)),...
’FaceColor’,Color(i));

hold on;
i=i+1;

end

The appearance of the plots is adjusted by the following code

if strcmp(Scale,’P-Value’)
set(gca,’YLim’,[0.5 MaxP+0.01]);
set(gca,’YTick’,[0.5 0.8 0.95 0.99999]);
ylabel(’1 - P( T_n > u )’);

else
set(gca,’YLim’,[0 MaxU+0.21]);
set(gca,’YTick’,[0 3 6 MaxU]);
ylabel(’Threshold u’);

end

axis square;
set(gca,’XLim’,[LE-0.03 RE+0.03]);
set(gca,’XTick’,[-1.2 -0.6 0 0.6 1.2 ]);
xlabel(’Non-Centrality \mu n^{1/2}’);
grid on;
box on;
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Appendix C: Monte-Carlo simulations.

The true probabilities for the case of the Cauchy, t2 and centered ex-
ponential densities are estimated by means of Monte-Carlo simulations.
Consider the case n = 2. The number of Monte-Carlo simulations varies
from 1, 000, 000 to 1000, 000, 000 inversely proportionally to the value of
tcdf(u, n− 1). The MatLab code below corresponds to the Cauchy den-
sity. The other densities are handled accordingly.

function [P_Montecarlo]=PEstimate(n)

alpha=[0.5:-0.02:0.02 0.05:-0.01:0.01 0.005 0.001]’;
u=tinv(1-alpha,n-1);

P_Montecarlo=zeros(1,length(u));

for i=1:l
k=0;
j=0;
while j<1/alpha(i)

A=trnd(1,n,1000000);
Xbar=mean(A);
Xstd=std(A);
T=sqrt(n)*Xbar./Xstd;
k=k+sum(T>u(i));
j=j+1;

end

P_Montecarlo(i)=k/(j*1000000);
disp([’Cauchy ’ num2str(alpha(i)) ’ done’]);

end

The constants Kg and Mg − Lg are given by

K Cauchy = nˆ(n/2)/((4 ∗ pi)ˆ(n/2 − 0.5) ∗ gamma((n+ 1)/2))

and
ML Cauchy = (nˆ2 + n− 2)/(2 ∗ n+ 2) ∗K Cauchy,

and the relative error estimation becomes straightforward.
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